Seminar of the Extension of the Mathematical Institute SAS in Košice
21. 1. 2016 | Ján Borsík – Points of convergence and of uniform convergence |
Abstract: Let $f_n$ be functions defined on a topological space $X$ with values in a metric space $Y$. We say that a sequence $(f_n)$ converges uniformly at a point $x$ if for any $\varepsilon>0$ there exists an index $n_0$ and a neigbourhood $U$ of $x$ such that for every $y\in U$ and every $m,n>n_0$, the distance of points $f_m(y)$ and $f_n(y)$ is less than $\varepsilon$. T. Šalát proved that the set of points of uniform convergence is a $G_\delta$-set (and if the sequence converges then it contains all isolated points). We show that if $X$ is a metric space then every $G_\delta$-set containing all isolated points is a set of points of uniform convergence for some convergent sequence, and also of some sequence of quasicontinuous functions. Nevertheless it need not to be a set of points of uniform convergence of some convergent sequence of quasicontinuous functions. | |
16. 2. 2016 | Peter Eliaš – On one combinatorial problem |
Abstract:
For given $n$ we are looking for the greatest possible $m$ such that there exists a family $\{(X_i,Y_i):i=1,\dots,m\}$
satisfying conditions
|
|
1. 3. 2016 | Roman Frič – Upgrading probability (link to the presentation ) |
18. 3. 2016 | Emília Halušková – On direct limit closed classes of algebras |
Abstract:
Let $F$ be a type of algebras and $L_F$ be the family of all logic formulas over $F$.
If $\Sigma$ is a set of sentences from $L_F$ then let $\Sigma^*$ denote the family of all algebras
of type $F$ satisfying all sentences from $\Sigma$. Let $n$ be a natural number and le $\kappa$ be an ordinal. Let $\mathbf{A}$, $\mathbf{B}$ be quantifier-free formulas from $L_F$ such that $x_0,\dots,x_{n-1}$ are all variables occuring in the formula $\mathbf{A}$ and $x_t$, $t\lt\kappa$, are all variables occuring in the formula $\mathbf{B}$. Let us consider the sentence $\Phi$ given by
$(\forall x_0,\dots,x_{n-1})$
$(\mathbf{A}(x_0,\dots,x_{n-1})$ $\Rightarrow$ $(\exists x_t,$ $n\le t\lt\kappa)$
$\mathbf{B}(x_t,$ $t\lt\kappa))$.
If the formula $\mathbf{A}$ is finite a $\mathbf{B}$ is positive in $\Phi$ then the family of algebras $\{\Phi\}^*$ je closed under direct limits. For monounary algebras, the statement holds without assuming that $\mathbf{A}$ is finite. The following theorem was also presented: Theorem. Let $\Sigma$ be a set of first order sentences from $L_F$. The the following statements are equivalent:
|
|
1. 4. 2016 | Ján Haluška – Polarities in the perception of colours |
22. 4. 2016 | Giselle Antunes Monteiro – Kurzweil's and Dobrakov's approaches to integration (link to the presentation ) |
6. 5. 2016 | Ing. Michal Hospodár – Stavová zložitosť konkatenácie regulárnych jazykov |
Abstrakt: We study the state complexity of the concatenation operation on regular languages represented by deterministic and alternating finite automata. For deterministic automata, we show that the upper bound $m2^n-k2^{n-1}$ on the state complexity of concatenation can be met by ternary languages, the first of which is accepted by an $m$-state DFA with $k$ final states, and the second one by an $n$-state DFA with $\ell$ final states for arbitrary integers $m,n,k,\ell$. In the case of $k\le m-2$, that is, in the case when the first automaton has at least two non-final states, we are able to provide appropriate binary witnesses. We use these witnesses to describe a pair of binary languages meeting the upper bound $2^m+n+1$ for the concatenation on alternating finite automata. This solves an open problem stated by Fellah, J\"urgensen, and Yu [1990, Constructions for alternating finite automata, Intern. J. Computer Math. 35, 117-132], where the upper bound $2^m+n+1$ is proven. | |
26. 5. 2016 | Tomáš Gregor – Polopole hyperbolických komutatívnych kvaterniónov |
Abstrakt: Systém $(S,+,\cdot)$ nazývame polopole, ak $+$ je komutatívna asociatívna operácia s neutrálnym prvkom $0$, $(S\setminus \{0\},\cdot)$ je komutatívna grupa a platí distributívny zákon $x\cdot (y+z) = x \cdot y + x\cdot z$ $\forall x,y,z \in S$. Hyperbolické komutatívne kvaternióny sú čísla tvaru $a+b i+c j+d k$, kde $a,b,c,d \in \mathbb{R}$ a $i,j,k$ sú imaginárne jednotky. Sčítanie je definované po zložkách a násobenie je dané vzťahom $i^2=j^2=k^2= ijk=1$. Tento systém obsahuje delitele nuly, ale existuje v ňom podmnožina, ktorá je polopoľom. | |
16. 6. 2016 | Peter Mlynárčik – Nondeterministic Complexity of Operations on Closed and Ideal Languages |
Abstract: We study the nondeterministic state complexity of basic regular operations on the classes of prefix-, suffix-, factor-, and subword-closed regular languages and on the classes of right, left, two-sided, and all-sided ideal regular languages. For the operations of union, intersection, complementation, concatenation, square, star, and reversal, we get the tight upper bounds for all considered classes. | |
13. 9. 2016 | Galina Jirásková – Operations on Unambiguous Finite Automata (link to the presentation ) |
23. 9. 2016 | Markus Holzer (Justus-Liebig-Universität, Giessen, Germany) – The Computational Complexity of RaceTrack |
Abstract: Martin Gardner in the early 1970’s described the game of RaceTrack [M. Gardner, Mathematical games—Sim, Chomp and Race Track: new games for the intellect (and not for Lady Luck), Scientific American, 228(1):108–115, Jan. 1973]. Here we study the complexity of deciding whether a RaceTrack player has a winning strategy. We first prove that the complexity of RaceTrack reachability, i.e., whether the finish line can be reached or not, crucially depends on whether the car can touch the edge of the carriageway (racetrack): the non-touching variant is NL-complete while the touching variant is equivalent to the undirected grid graph reachability problem, a problem in L but not known to be L-hard. Then we show that single-player RaceTrack is NL-complete, regardless of whether driving on the track boundary is allowed or not, and that deciding the existence of a winning strategy in Gardner’s original two-player game is P-complete. Hence RaceTrack is an example of a game that is interesting to play despite the fact that deciding the existence of a winning strategy is most likely not NP-hard. This is a joint work with Pierre McKenzie from the University de Montreal, Quebec, Canada. | |
27. 9. 2016 | Matúš Palmovský – State complexity of combined operations for prefix-free a suffix-free languages |
Abstract: We investigate the state complexity of combined operations for prefix-free and suffix-free regular languages. Prefix-free and suffix-free deterministic finite-state automata have a unique structural property that is crucial for obtaining the precise state complexity of basic operations. Based on the same property, we establish the state complexity of several operations: catenation-of-union, catenation-of-intersection, catenation-of-star. | |
13. 10. 2016 | Miroslav Ploščica – Voľné množiny pre systémy množín funkcií |
27. 10. 2016 | Jozef Pócs – On concept reduction based on some graph properties |
Abstract: The theory of concept lattices represents a well established and widely used conceptual data-mining method. Considering additional information represented by a graph structure on a set of objects, we propose a reduction of concepts. Using graph-theoretical point of view on FCA together with simple probabilistic arguments we derive the mean value of the cardinality of the reduced hierarchical structure. | |
24. 11. 2016 | Miroslav Repický – Umocňovanie mohutností v modeli Helperna a Lévyho |
Abstrakt:
Nech $A$ je generická spočítateľná množina Cohenových reálnych čísel pridaná
forcingom s konečnými funkciami z $\omega\times\omega$ do $2$ a nech
$\mathfrak{N}$ je tranzitívny model ZF tvorený dedične ordinálne definovateľnými
množinami nad $A$ vo $V[G]$.
V modeli $\mathfrak{N}$ neplatí axióma výberu a každý ideál na Booleovej algebre
sa dá rozšíriť na prvoideál.
Pre mohutnosť množiny (kardinálne číslo) $\mathfrak{m}=|X|$ označme mohutnosti
$e(\mathfrak{m})=|[X]^{\lt\omega}|$,
$e^*(\mathfrak{m})=|\bigcup_{n\in\omega}[X]^n\times n!|$,
a tiež $\mathfrak{a}=|A|$. Mohutnosti $\mathfrak{a}\lt e(\mathfrak{a})\lt e^*(\mathfrak{a})$ sú Dedekindovsky konečné v modeli $\mathfrak{N}$ a pre umocňovanie mohutností v modeli $\mathfrak{N}$ platí:
|