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Nondeterministic and Deterministic Finite Automata

NFA N = (Q,X%,0,/,F): Example (An NFA)

0 ICRXXLXQ

\ a,b
@ computation on w = ajap - - - ak a,b

ai az as ak
go — g1 — Qg2 —» -+ —> gk

.y w = aaa
@ accepting if gx € F o> qg > qg (acc)
o rejecting if gx ¢ F o g0 >q>aq0>q (ref)
NFA N = (Q,%,6,/,F) is a DFA: Example (An incomplete DFA)
o |l|=1

e if (g,a,p) and (g, a,r) arein 4,

b
\ a a,b a,b
OROROZO,

@ NFAs may have multiple initial states

@ DFAs may be incomplete
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Subset Automaton and Reverse of NFA
Example (Subset automaton)

The (incomplete) subset automaton N
of NFA N = (@, %,5, 1, F) (2)2-(2)22(2)
b

is the DFA (2Q\ {0}, %,8', 1, F')...
Every n-state NFA can be simulated ab 72~ ab
by an (2" — 1)-state incomplete DFA. OnOn®
Example (Reverse of NFA)
The reverse of an NFA N
N =(Q,X,8,1,F) is the NFA \l . i’ab.aj.
OnOni
NR =(Q,%, 6%, F, 1), NR
2 N
where (p, a, q) € 5% iff (q,a,p) € 6 . a'ba'b
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Unambiguous Finite Automata
Definition (N = (Q, X, 4,1, F)) Example (not unambiguous)

An NFA is unambiguous if it has
at most one accepting computation N2
on every input string. a
) ) - two accepting computations on a
@ S C Q@ is reachable in N
if S =9(/,w) for some w

ON
@ S C Q is co-reachable in N \ a e

. . : R
if S is reachable in N - two accepting computations on abb

Proposition Example (unambiguous)

An NFA is unambiguous iff o (in)complete DFA

A \thrl‘ T5| <1 o NFA N s.t. NR deterministic
Or eaCh reachable
@ NFA in the first slide

and each co-reachable T
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Why Unambiguous Finite Automata?

Motivation and History

fundamental notion in the theory of variable-length codes
[Bersten, Perrin, Reutenauer: Codes and Automatal
ambiguity in CF languages: ambiguous, unambiguous,
and deterministic CF languages are all different
ambiguity in finite automata [Schmidt 1978]

- lower bound method based on ranks of matrices
elaborated in [Leung 2005]

o UFA-to-DFA conversion: 2"
e NFA-to-UFA conversion: 2" — 1

lower bound method further elaborated in 2002
by Hromkovi&, Seibert, Karhumaki, Klauck & Schnitger
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Why Operations on Unambiguous Finite Automata?

Motivation for me:-)

e conference trip at DLT 2008 (Kyoto): A. Okhotin - ...
"What is the complexity of complementation on UFAs?"

@ operations on unary UFAs investigated by him in 2012
- lower bound n?~°() for complementation

@ the second problem for which
"give me a large enough alphabet” method didn't work ...
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Lower Bounds Methods |

Well known: To prove that a DFA is minimal, show that

- all its states are reachable, and
- no two distinct states are equivalent.

Well known(?): To prove that an NFA is minimal, describe

a fooling set for the accepted language.

For UFAs: rank of matrices [Schmidt 78, Leung 05]:

Let N be an NFA. Let My be the matrix in which

@ rows indexed by non-empty reachable sets

@ columns indexed by non-empty co-reachable sets
@ in entry (S, T) we have 0/1 if S and T are/are not disjoint.
Then every UFA for L(N) has at least rank(M}y) states.
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Lower Bounds Methods Il

Lemma (Leung 1998, Lemma 3)

Let M, be the (2" — 1) x (2" — 1) matrix with

e rows and columns indexed by non-empty subsets of {1,2,...,n}
e M,(S, T)=0/1iffS and T are/are not disjoint.

Then rank(M,) = 2" — 1.

If each non-empty set is co-reachable in NFA N,
then every UFA equivalent to N
has > |non-empty reachable| states.
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The Complexity ions on DFA

Dokl Akad. Nauk SSSR T
Tom 104 (1970), No. 6 .

Vol 11 (19

ESTIMATES OF THE NUMBER OF STATES OF FINITE AUTOMATA

Maslov 1970 et

It is well known that, if T(A) and T(B) are cepresentable in automata 4 and B with m and n
tates, respectively (m > 1, n > 1), then:

1) T(A)U T(B) is representable in an automaton with m-n states;
2) T(A)- T(B) is rcptcseutable in an automaton with (m — 1). 2" + 2"~ ! states (n > 3)
3) T(A) is representable in an automaton with (3/4). 2™ — 1 states (m > D.
Let us construct examples of automata over the alphabet 2= {O, 1} for which these estimates
iare attained.
1. Union. 4 has states {S a5 g Sm_li and transitions Sm~[1 = So’ Sil = S‘_ﬂ for ifm-1,
30 Sy, and S | is the termmal state. B has states {P, .-, P"_lf and transitions P 1= P,
Pn_ 0=P;P0= Py for idn-1, P _, is the terminal state.

2, Producl B has the states {P Pn } and transitions P _pls Pn_? Pn_zl = Pn—l’

-1 is the terminal state. The automaton A

P1~P forz<n—-2P 0= P PO P+lf0rt,41L—1 P
lsthesameasmthe case of the union.

3. Iteration. A has the states 1Sg o) Sm_ll and transitions S 1=S., §1=S5,, for

55;4 m=1 5,0=S;, S0=S5, _, for i>0. S _ is the terminal state.
Corresponding to 4 and B we construct automata as in [2.4] and we find the required .number

of attainable and disrinct states, which proves the minimality [3].
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A General Formulation of the Problem

Maslov 1970

A general formulation of the problem is as follows: We have eveats T(Al.) (1<i<k) repre-

seatable in automata A‘. with n, states, respectively, and a k-place operation [ on events, pre-

serving representability in finite automata. What is the maximal number of states of a minimal auto-
Maton representing f(T(Al)' cee, T(Ak)), for the given n?

"We have languages L(A;) (1 < i < k)

recognized by automata A; with n; states, respectively,

and a k-ary regular operation f.

What is the maximal number of states

of a minimal automaton recognizing f(L(A1), ..., L(Ax)),

for the given n;?”

In this paper:

- automata are unambiguous (UFAs)

- f: intersection, reversal, shuffle, star and positive closure,
left and right quotients, concatenation,
complementation, and union
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Intersection on Unambiguous Finite Automata

Intersection:
KﬂL:{W|W€KandW€L}l

Known results for intersection:

DFA: mn binary [Maslov 1970]
NFA: mn binary [Holzer & Kutrib 2003]

Our result for intersection on UFAs:

UFA: mn |X|>2

v

Proof sketch:

@ upper bound: given UFAs A and B, construct
the direct product automaton A x B; it is a UFA

@ lower bound: the witnesses in [HK'03]
for NFA intersection are deterministic, so UFAs [

v

Galina Jirdskova Operations on Unambiguous Finite Automata



Shuffle on Unambiguous Finite Automata

Shuffle:
KWLl ={uviuvy - ugvg | viua---ux € K and viva--- v € L}

Known results for shuffle:

DFA: 77
in-DFA: 2™ —1 b-letter [Campeanu, Salomaa & Yu 2002]
NFA: mn binary  [G. J. & Masopust, DLT 2010]

Our result for shuffle on UFAs:
UFA: 2™ —1 |X|>5

Proof sketch for lower bound:

@ take the witness incomplete DFAs from [CSY'02]

@ in the mn-state NFA for shuffle
- each non-empty set is reachable [CSY'02]
- each non-empty set is co-reachable [
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Concatenation on Unambiguous Finite Automata

Concatenation:
KL={uv|ueKandvelL}

Known results for concatenation:

DFA: (m—1/2)-2" binary [Maslov 1970]
NFA: m+n binary [Holzer & Kutrib 2003]

Our result for concatenation on UFAs:
UFA: (3/4)-2m.2" -1 |X|>7

Proof idea for the upper bound:

@ construct an (m + n)-state NFA N for KL

@ show that at most (3/4) - 2™ - 2" — 1 subsets
are reachable in the subset automaton of N ]
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Star on Unambiguous Finite Automata

Star:
L*={wup---ug | k>0and u; € L for all i} J

Known results for the star operation:

DFA: (3/4)-2" binary [Yu, Zhuang & K. Salomaa 1994]
NFA: n+1 unary  [Holzer & Kutrib 2003]

Our result for star on unambiguous automata:

UFA: (3/4)-2" |Z|>3

©© Proof idea for the lower bound:
N - start with YZS'94 binary witness DFA for star

- define a new symbol ¢
- compute the rank of the corresponding matrix [
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Ternary Witness UFA for Star Meeting the Boun

‘The state complexities of some basic
operations on regular languages*

Yu, Zhuang & K. Salomaa 1994

Theorem 3.3. For any integer n>2, there exists a DFA A of n states such that any DFA
accepting (L(A))* needs at least 2"~ ' +2"~2 states.

Fig. 4. DFA 4,
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Reversal on Unambiguous Finite Automata

Reversal:
LR = {wR | w € L}, where wF is the mirror image of w

Known results for the reversal operation:

DFA: 27 binary [Leiss 1981, Sebej 2009]
NFA: n+1 binary [Holzer & Kutrib 2003, G. J. 2005]

Reversal on UFAs:

@® UFA: n [Z|>1

If Ais unambiguous, then AR is unambiguous. [ \
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Complementation on UFAs: Partial Results

Known results for complementation:

DFA: n unary [folklore]
NFA: 27 binary [Birget 1993, G. J. 2005]

UFA: > n?>°()  unary [Okhotin 2012]

Our unsuccessful attempts for UFAs:

@ the matrix method didn't work:
rank(M(c) =rank(M,) £1
@ the fooling-set method didn't work:
e if L is accepted by an n-state UFA,
then every fooling set for L€ is of size < n?/2

o we only found a fooling set of size n+ /n
e conjecture: every fooling set for L€ is of size < 2n

o large alphabets didn't work either
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Complementation on UFAs: Partial Results

Known results for complementation:

DFA: n unary [folklore]
NFA: 27 binary [Birget 1993, G. J. 2005]
UFA: > n?>°()  unary [Okhotin 2012]

Our upper bound on complementation for UFAs:
UFA: < 20.79n+|ogn

Proof sketch for the upper bound:

If L is accepted by an n-state UFA A, then

usc(L€) < |R| (reachable in A)
usc(L€) < [C| (co-reachable in A)
if max{|S| | S € R} > n/2, then |C| is small
otherwise, min{|R]|, |C|} is small O
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Summary and Open Problems

The complexity of operations on unambiguous finite automata:

sc |Z| | usc |~| | nsc ||
intersection mn 2 | mn 2 | mn 2
left quotient 2" —1 2 12"—1 2 | n+1 2
positive closure % -2 —1 2 % 2"—1 3 |n 1
star 3.0m 2| 3.0n 3 |n+1 1
shuffle 7 2mn —1 5 | mn 2
reversal 2" 2| n 1 | n+1 2
concatenation (m—1/2)-2" 2| 2.2m" -1 7 |m+n 2
right quotient n 112"-1 2 |'n 1
complementation | n i | < abetiness 2" 2

> p2—o(1) 1

Galina Jirdskova Operations on Unambiguous Finite Automata



Acknowledgments

1. Thank you very much for your attention

2. Many thanks to ...

@ "big" Jozko and "small” Jozko
@ Maria, Jonas, and Dominik

Galina Jirdskova Operations on Unambiguous Finite Automata



Greetings from Maria, Jonas, and Dominik

Maria 2004 Sept. 2015 3 weeks 3 months

Galina Jirdskova Operations on Unambiguous Finite Automata



Summary and Open Problems

The complexity of operations on unambiguous finite automata:

sc |Z| | usc |~| | nsc ||
intersection mn 2 | mn 2 | mn 2
left quotient 2" —1 2 12"—1 2 | n+1 2
positive closure % -2 —1 2 % 2"—1 3 |n 1
star 3.0m 2| 3.0n 3 |n+1 1
shuffle 7 2mn —1 5 | mn 2
reversal 2" 2| n 1 | n+1 2
concatenation (m—1/2)-2" 2| 2.2m" -1 7 |m+n 2
right quotient n 112"-1 2 |'n 1
complementation | n i | < abetiness 2" 2

> p2—o(1) 1

Galina Jirdskova Operations on Unambiguous Finite Automata



