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Abstract. We continue the study of Rosenthal families initiated by Damian
Sobota. We show that every Rosenthal filter is the intersection of a finite fam-

ily of ultrafilters that are pairwise incomparable in the Rudin-Keisler partial

ordering of ultrafilters. We introduce a property of filters, called an r-filter,
properly between a selective filter and a p-filter. We prove that every r-ultra-

filter is a Rosenthal family. We prove that it is consistent with ZFC to have

uncountably many r-ultrafilters such that any intersection of finitely many of
them is a Rosenthal filter.

1. Introduction

The notion of a Rosenthal family comes from a reformulation of a variant of
Rosenthal’s Lemma [12, Lemma 1.1] by Damian Sobota [13, 14] and is based on
the observation that Rosenthal’s Lemma is equivalent to the statement that [ω]ω is
a Rosenthal family with this meaning:

Definition 1.1 ([14, Definition 1.3]). A family F ⊆ [ω]ω is a Rosenthal family if
for every matrix {ck,n}k,n∈ω of non-negative reals such that

(1.1) (∀k ∈ ω)
∑
n∈ω

ck,n ≤ 1

and for every ε > 0 there exists A ∈ F such that

(∀k ∈ A)
∑

n∈A\{k}

ck,n < ε.

A matrix satisfying (1.1) is called a Rosenthal matrix. A Rosenthal family that is
a filter, semifilter, ultrafilter, etc., is called respectively, a Rosenthal filter, a Rosen-
thal semifilter, a Rosenthal ultrafilter, etc.

We start with some known results about Rosenthal families:

Theorem 1.2 (Rosenthal’s Lemma). [ω]ω is a Rosenthal family. �

Theorem 1.3 (Sobota [14, Theorem 3.6]). A selective ultrafilter is a Rosenthal
ultrafilter. �

Theorem 1.4 (Sobota [14, Theorem 3.17]). If Martin’s Axiom for σ-centered forc-
ing notions holds, then there is a Rosenthal P -point which is not a Q-point. �
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The following duplicity can be observed: If there exists a selective ultrafilter,
then the conclusion of Theorem 1.2 follows from the conclusion of Theorem 1.3
because every ultrafilter is a subset of [ω]ω, otherwise these two results seem to be
non-inclusive. On the other hand, the use of the notion of a semifilter can unify
these two cases because [ω]ω is a selective semifilter. This is a reason why we
consider some natural combinatorial properties of ultrafilters and filters also in the
context of semifilters. Some questions about Rosenthal families can be restricted
to upward closed families because F ⊆ [ω]ω is a Rosenthal family if and only if
its upward closure {A ⊆ ω : (∃B ∈ F) B ⊆ A} is a Rosenthal family. From this
point of view passing to semifilters seems not to be very limiting in the study of
Rosenthal families.

In Section 2 we collect various properties of Rosenthal families, some of them
considered in [14], and we prove relations between them. Perhaps three of these
results are most important for later applications: First, the property “to be a Rosen-
thal family” is invariant under Rudin-Keisler isomorphism. This allows to consider
Rosenthal families on arbitrary countable set. Second, a Rosenthal family F is not
decomposable. This means that F is not a subfamily of an infinite sum of the form∑
n∈ω Fn. Third, the semifilter of positive sets with respect to a filter on ω (i.e.,

a full semifilter) has no local diagonal.
In Section 3 we present several results on cardinal invariants related to properties

considered in previous section; some of these invariants were considered in [14].
The main result of Section 4 says that every Rosenthal filter is Rudin-Keisler

equivalent to the sum of a finite collection of Rosenthal ultrafilters pairwise incom-
parable in the Rudin-Keisler ordering. Equivalently, every Rosenthal filter is the
intersection of a finite collection of Rosenthal ultrafilters pairwise incomparable in
the Rudin-Keisler ordering.

In Section 5 we introduce s-, p-, and r- properties of semifilters as generalizations
of a selective ultrafilter and a P -point. These generalizations to semifilters are
not completely new and some germs of them can be found in [4, 10] for ideals
on ω. Semifilters can be treated as forcing notions and the generic subset of a full
s-semifilter, r-semifilter, p-semifilter is an s-ultrafilter, r-ultrafilter, p-ultrafilter,
respectively. The main results of this section are Ramsey-like characterizations of
the selective properties of semifilters.

In Section 6 we prove that if F is an r-semifilter which has no local diagonal, then
F is a Rosenthal family. Note that Theorem 1.2 and Theorem 1.3 are consequences
of this result. Moreover, if one takes a bit care in the proof of Theorem 1.4, then
also the ultrafilter constructed there will be an r-ultrafilter. However, it is open
whether this ultrafilter may be a non-r-ultrafilter.

A box product of full r-semifilters is an ω-closed forcing notion adding many
r-ultrafilters. But the box product of any number of copies of the selective semifil-
ter [ω]ω and of r-semifilters of the form H>0

a = {A ⊆ ω : lim supn∈ω |an ∩A| =∞}
(where a = {an : n ∈ ω} is a partition of ω with lim supn∈ω |an| = ∞) produces
a generic set of ultrafilters such that any intersection of finitely many ultrafilters
from this set is a Rosenthal filter.

2. Properties of Rosenthal families

In this paper, filters and ultrafilters on an infinite countable set always contain
the Fréchet filter. The Rudin-Keisler partial ordering of filters on ω is defined by
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G ≤RK F if there is f ∈ ωω such that G = f(F) = {A ⊆ ω : f−1(A) ∈ F}. In
a natural way we shall use this partial order for arbitrary families of subsets of ω.
We write G =RK F , if G = f(F) for some bijection f ∈ ωω. By the next lemma the
property of being a Rosenthal family is invariant under =RK.

Lemma 2.1. Let f : ω → ω be one-to-one and let F ⊆ [ω]ω. F is a Rosenthal
family if and only if f [F ] = {f(A) : A ∈ F} is a Rosenthal family.

Proof. If {ck,n}k,n∈ω is a Rosenthal matrix, then dk,n = cf(k),f(n) is a Rosenthal
matrix because

∑
n∈ω dk,n =

∑
n∈ω cf(k),f(n) ≤

∑
n∈ω cf(k),n ≤ 1 for all k ∈ ω. Let

A ∈ F be such that for all k ∈ A,
∑
n∈A\{k} dk,n < ε. Then for every k = f(i) for

an i ∈ A,
∑
n∈f(A)\{k} ck,n =

∑
n∈A\{i} cf(i),f(n) =

∑
n∈A\{i} di,n < ε. Therefore,

if F is a Rosenthal family, then f [F ] is a Rosenthal family. The converse direction
is similar. �

A family F of subsets of a set X is said to be an upper family (or an upward
closed family) on X, if B ∈ F and B ⊆ A ⊆ X imply A ∈ F . We say that an upper
family F on X is an ultrafamily, if for every set A ⊆ X, A ∈ F or X \ A ∈ F .
For an upper family F denote F=0 = {X \ A : A ∈ F}, F>0 = P(X) \ F=0, and
F<1 = P(X) \ F . The sets in F>0 are called F-positive sets.

An upper family F on X is said to be a semifilter on X, if X ∈ F , ∅ /∈ F , and
A \ a ∈ F for all A ∈ F and a ∈ [X]<ω (see Zdomskyy [16]). A semifilter is an
ultrasemifilter, if it is an ultrafamily.

Natural examples of semifilters are H and H>0 when H is a filter on ω; in
this case H ⊆ H>0 and the equality holds if and only if H is an ultrafilter. If F is
a semifilter on ω, then also F>0, F∩F>0, F∪F>0 are semifilters on ω, [ω]<ω ⊆ F=0,
(F>0)=0 = F<1, (F>0)>0 = F , (F>0)<1 = F=0, and (F ∩ F>0)>0 = F ∪ F>0.

Definition 2.2. Let F ⊆ [ω]ω.

(1) F has the antichain property, if there exists a partition A of ω such that
(∀A ∈ F)(∃a ∈ A) a ⊆ A and |a| ≥ 2 (this notion was introduced in [14]).

(2) Let f ∈ ωω be a non-diagonal function, i.e., (∀k ∈ ω) f(k) 6= k.
(a) We say that f is a diagonal of F , if (∀A ∈ F) A ∩ f−1(A) 6= ∅, i.e.,

(∀A ∈ F)(∃k ∈ A) f(k) ∈ A.
(b) We say that f is a local diagonal of F , if there exists A ∈ F such that

(∀B ∈ F ∩ P(A)) B ∩ f−1(B) 6= ∅.
(c) A diagonal f of F is said to be a subdiagonal of F or a superdiagonal

of F , if (∀k > 0) f(k) < k or (∀k ∈ ω) f(k) > k, respectively.
(3) A function f : ω → P(ω) is said to be a set mapping, if k /∈ f(k) for all

k ∈ ω. A set A ⊆ ω is called free with respect to f , if (∀k ∈ A) A∩f(k) = ∅
(see [3]). A set mapping f : ω → [ω]<ω is said to be uniformly finite, if
there is l ∈ ω such that |f(k)| ≤ l for all k ∈ ω. A uniformly finite set
mapping f is said to be a multi-diagonal of F , if no set in F is free with
respect to f .

(4) F is decomposable, if there exists a partition {An : n ∈ ω} of ω such that
(∀A ∈ F)(∀n ∈ ω) |A ∩An| = ω.

Obviously, if f is a diagonal of F , then g(n) = {f(n)} is a multi-diagonal of F .
Every non-diagonal finite-to-one function is a diagonal of the Fréchet filter. In the
next we will show that no Rosenthal filter (family) has a diagonal.
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We say that a set F0 ⊆ F is dense in F , if (∀A ∈ F)(∃B ∈ F0) B ⊆ A; F0 is an
open subset of F , if (∀A ∈ F0)(∀B ∈ F ∩ P(A)) B ∈ F0.

Lemma 2.3. Let F ⊆ [ω]ω.

(1) F has no local diagonal if and only if for every uniformly finite set mapping
f : ω → [ω]<ω the set {A ∈ F : A is free w.r.t. f} is dense in F .

(2) If F has no local diagonal, then F has no multi-diagonal.
(3) The following assertions are equivalent for a filter F : (i) F has no diagonal.

(ii) F has no local diagonal. (iii) F has no multi-diagonal.

Proof. (1) Let f : ω → [ω]l for some l > 0 be a uniformly finite set mapping and
let A0 ∈ F . Let fi ∈ ωω, i < l, be non-diagonal functions such that f(k) = {fi(k) :
i < l} for all k ∈ ω. If F has no local diagonal, then by induction on i < l, let
Ai+1 ∈ F ∩ P(Ai) be such that (∀k ∈ Ai+1) fi(k) /∈ Ai+1. Then Al ∈ F , Al ⊆ A0

and Al is free with respect to f . The converse is obvious.
(2) A consequence of (1).
(3) (ii) → (iii) holds by (2) and (iii) → (i) is obvious. We show (i) → (ii). Let

f be a non-diagonal function. By (i) there is B0 ∈ F such that B0 ∩ f−1(B0) = ∅.
Given A ∈ F for B = A ∩ B0 we have B ∩ f−1(B) = ∅ and, since F is a filter,
B ∈ F ∩ P(A). Therefore f is not a local diagonal of F . �

A family F is decomposable if and only if there exists a partition {An : n ∈ ω}
of ω such that (∀A ∈ F)(∀∞n ∈ ω) A∩An 6= ∅ (by gluing infinite subfamilies of this
partition together we obtain a partition satisfying the property in definition). If
F is decomposable, then F is isomorphic to a subfamily of an infinite sum

∑
n∈ω Fn

defined in Section 4. This larger family is truly decomposable and by the following
proposition neither this larger family is Rosenthal (we can say “larger” due to
Lemma 2.1).

Proposition 2.4. Let F ⊆ [ω]ω.

(1) If F has the antichain property, then F has a superdiagonal and a subdiag-
onal.

(2) If F is decomposable, then F has a subdiagonal.
(3) If F has a diagonal or a multi-diagonal, then F is not Rosenthal.

Proof. (1) Let A be a family of pairwise disjoint sets witnessing the antichain
property of F . By removing singletons we can assume that |a| ≥ 2 for all a ∈ A.
For a ∈ A denote ma = min a and na = min(a \ {ma}). The partial functions
f : ma 7→ na and g : na 7→ ma for a ∈ A can be extended in an obvious way to
a superdiagonal of A and a subdiagonal of A, respectively.

(2) Let {An : n ∈ ω} be a partition of ω such that (∀A ∈ F)(∀n ∈ ω) |A∩An| = ω
and let f ∈ ωω be a subdiagonal function defined by f(k) = n, if k ∈ An \ (n+ 1),
and f(k) = 0, if k ∈ An ∩ (n + 1), otherwise. The function f is a diagonal of F
because given A ∈ F for any n ∈ A and k ∈ A ∩An \ (n+ 1) we have f(k) = n.

(3) Let f ∈ ωP(ω) be a multi-diagonal of F and l > 0 be such that (∀k ∈ ω)
|f(k)| ≤ l. The matrix {ck,n}k,n∈ω defined by

ck,n =

{
1/l, if n ∈ f(k),

0, otherwise
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is a Rosenthal matrix because
∑
n∈ω ck,n =

∑
n∈f(k) ck,n ≤ |f(k)|/l ≤ 1 for all

k ∈ ω. Let A ∈ F and k ∈ A be such that f(k)∩A 6= ∅. Then
∑
n∈A\{k} ck,n ≥ 1/l.

Therefore F is not a Rosenthal family. �

Corollary 2.5 (Sobota [14]). A family F ⊆ [ω]ω with the antichain property is not
Rosenthal. �

Proposition 2.6. There is a family F ⊆ [ω]ω with a subdiagonal but with no
superdiagonal.

Proof. Let D+ = {f ∈ ωω : (∀k ∈ ω) k < f(k)} and let F = {Af : f ∈ D+}
where Af = {f (n)(0) : n ∈ ω}. The function f defined by f(k) = 0 for k > 0 and
f(0) = 1 is a subdiagonal of F because 0 ∈

⋂
F . We show that no g ∈ D+ is

a diagonal of F . For g ∈ D+ consider Af ∈ F with f = g + 1. For every n ∈ ω,

f (n)(0) < g(f (n)(0)) < f (n+1)(0) because f (n+1)(0) = g(f (n)(0)) + 1. Therefore
Af ∩ g−1(Af ) = ∅. �

Corollary 2.7 (Sobota [14]). There is a family F ⊆ [ω]ω which is not Rosenthal
and does not have the antichain property. �

Sobota in [14, Remark 3.20] gave an argument based on a variant of Hajnal’s
free set theorem by which every ultrafilter is Rosenthal with respect to the class of
all “uniformly finitely supported” Rosenthal matrices. We use the same argument
in the proof of the following proposition:

Proposition 2.8. If H is a filter on ω, then H>0 has no local diagonal.

Proof. [6, Excercise 26.9] states: Assume that f : S → [S]≤k is a set mapping for
some natural number k. Then S is the union of 2k + 1 free sets with respect to f .

Fix a non-principal ultrafilter G that extends the filter H. Let f ∈ ωω be a non-
diagonal function. By previous claim there is a partition of ω into three sets X
such that X ∩ f−1(X) = ∅. One of these sets, say C, belongs to G. Let A ∈ H>0

be arbitrary and let B = A ∩ C. Then B ∈ H>0, B ⊆ A, and B ∩ f−1(B) = ∅.
Therefore f is not a local diagonal of H>0. �

There are also other semifilters without local diagonals (see Theorem 6.6).
The next lemma extends the Talagrand’s characterization of non-meager filters

(see [1, Theorem 4.1.2], [15], [16]) for upper families. Its dual form is in [11,
Lemma 1.3].

Lemma 2.9. An upper family F ⊆ P(ω) is not meager if and only if for every
finite-to-one function f ∈ ωω there is A ∈ [ω]ω such that ω \ f−1(A) ∈ F . �

Lemma 2.10. An upper family without diagonal is not meager. Consequently, ev-
ery upward closed Rosenthal family is not meager, and in particular, every Rosen-
thal filter and every Rosenthal semifilter is not meager.

Proof. We apply Lemma 2.9. Let F ⊆ [ω]ω be an upper family with no diagonal.
Let f ∈ ωω be a finite-to-one function. Let π ∈ ωω be a bijection such that
g(k) = π(f(k)) 6= k for all k ∈ ω. Since g is not a diagonal of F , there is B ∈ F
such that B ∩ g−1(B) = ∅. The set A = π−1(B) is infinite and ω \ f−1(A) =
ω \ g−1(B) ⊇ B ∈ F . �
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The converse of Lemma 2.10 does not hold because if f ∈ ωω is an unbounded
non-diagonal function, then {A ∈ [ω]ω : A ∩ f−1(A) 6= ∅}, the largest upper family
with diagonal f , is an open dense subset of [ω]ω. For Rosenthal filters we get
a stronger result in Section 4: Every Rosenthal filter is the intersection of finitely
many ultrafilters pairwise incomparable in the Rudin-Keisler ordering. By Plewik’s
result, intersection of < c ultrafilters is a non-meager filter ([1, 9]). The proof of
Lemma 2.10 works also if the function f is not finite-to-one and we get the following:

Lemma 2.11. Every upper family which is ≤RK-above the Fréchet filter has a di-
agonal and consequently is not Rosenthal. �

3. Cardinal invariants

We prove that every family F ⊆ [ω]ω of cardinality smaller than the reaping
number r is not Rosenthal, i.e., r ≤ ros with the following denotation.

Definition 3.1. Let

cov(M) = min{|F| : F ⊆M and R =
⋃
F},

anti = min{|F| : F ⊆ [ω]ω does not have the antichain property},
diag = min{|F| : F ⊆ [ω]ω does not have a superdiagonal},
diag = min{|F| : F ⊆ [ω]ω does not have a subdiagonal},
diag = min{|F| : F ⊆ [ω]ω does not have a diagonal},
dcmp = min{|F| : F ⊆ [ω]ω is not decomposable},
ros = min{|F| : F ⊆ [ω]ω is Rosenthal},
r = min{|F| : F ⊆ [ω]ω and (∀B ∈ [ω]ω)(∃A ∈ F) A ⊆∗ B or A ⊆∗ ω \B}.

A family F satisfying the property in the definition of r is called a reaping family.

Proposition 3.2 (Sobota [14]). cov(M) ≤ anti ≤ r. �

Proposition 3.3. anti ≤ min{diag, diag} ≤ max{diag, diag} ≤ diag ≤ ros ≤ c and
dcmp ≤ diag.

Proof. ros ≤ c holds by Rosenthal’s Lemma and the other inequalities follow by
Proposition 2.4. �

Recall that the dominating number d is the minimal cardinality of a family D ⊆
ωω such that every f ∈ ωω is dominated by a g ∈ D, i.e., (∀n ∈ ω) f(n) ≤ g(n); the
dominance of functions can be replaced here by the eventual dominance. D. Sobota
has proved anti ≤ d which follows also by the next proposition.

Proposition 3.4. diag ≤ d and dcmp = r ≤ diag.

Proof. Proof of diag ≤ d. Let D+ = {f ∈ ωω : (∀k ∈ ω) k < f(k)}. We are going
to define mappings ϕ : ωω → [ω]ω and ψ : D+ → ωω such that for every g ∈ ωω,
f ∈ D+, and k ∈ ω,

k, f(k) ∈ ϕ(g)→ ψ(f)(k) > g(k)

It follows that diag ≤ d because if F ⊆ ωω and |F| < diag, then for a superdiago-
nal f of {ϕ(g) : g ∈ F} the function ψ(f) is not dominated by any g ∈ F .
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For g ∈ ωω define ϕ(g) = {ḡ(n)(0) : n ∈ ω} where ḡ(k) = max{g(k), k + 1} for
all k ∈ ω. For f ∈ D+ let ψ(f) = f + 1. Assume f ∈ D+ and k, f(k) ∈ ϕ(g). Then
for some i ≥ 1, ψ(f)(k) > f(k) = ḡ(i)(k) ≥ g(k).

Proof of dcmp = r. If F ⊆ [ω]ω and |F| < r, then applying definition of r one
can construct inductively a sequence of pairwise disjoint sets An such that for every
n ∈ ω, (∀A ∈ F) |A ∩ An| = |A \ An| = ω. Then obviously, F is decomposable.
Therefore r ≤ dcmp. On the other hand, a family F from the definition of r
witnessing the equality |F| = r is not decomposable and therefore r ≥ dcmp. �

By the consistency of d < r (forcing with a measure algebra preserves dominating
families while random reals kill reaping families) we get:

Corollary 3.5. It is consistent with ZFC that diag < diag. �

Further information on these cardinal numbers is in Corollary 6.8.

4. Decomposable families

In this section we prove that every Rosenthal filter is the intersection of a finite
family of pairwise ≤RK-incomparable Rosenthal ultrafilters.

Assume that Fi ⊆ P(Xi) for i ∈ I. Define
∑
i∈I Xi =

⋃
i∈I{i} × Xi and∑

i∈I Fi = {A ⊆
∑
i∈I Xi : (∀i ∈ I) {n ∈ ω : (i, n) ∈ A} ∈ Fi}. For a family

F ⊆ P(X) we write F =RK

∑
i∈I Fi if there is a bijection f :

∑
i∈I Xi → X such

that F = {A ⊆ X : f−1(A) ∈
∑
i∈I Fi}. For example, if {Ai : i ∈ I} is a partition

of ω and Fi ⊆ P(Ai) \ {∅} for i ∈ I, then
∑
i∈I Fi =RK {A ⊆ ω : (∀i ∈ I)

A ∩Ai ∈ Fi}. Let F�A = {A ∩B : B ∈ F}.
We say that a family {Fi : i ∈ I} of filters on ω is separated by a family

{Ai : i ∈ I} of pairwise disjoint subsets of ω if Ai ∈ Fi for all i ∈ I. In this case we
say that the family of filters is discrete. Every finite family of ultrafilters is discrete.

Lemma 4.1. Let {Fi : i ∈ I} be a family of filters on ω separated by a partition
{Ai : i ∈ I}.

(1)
⋂
i∈I Fi =RK

∑
i∈I Fi�Ai and

⋂
i∈I F

>0
i =RK

∑
i∈I F

>0
i �Ai.

(2)
⋂
i∈I Fi =RK

∑
i∈I Fi and

⋂
i∈I F

>0
i =RK

∑
i∈I F

>0
i whenever F=0

i �Ai 6=
[Ai]

<ω for all i ∈ I.
(3)

⋂
i∈I Fi =RK

∑
i∈I Fi for every discrete family of ultrafilters on ω.

Proof. (1) follows by definitions and (3) is a consequence of (2).
(2) For every i ∈ I there is a bijection fi : Ai → ω such that Fi = {B ⊆ ω :

f−1
i (B) ∈ Fi�Ai} and F>0

i = {B ⊆ ω : f−1
i (B) ∈ F>0

i �Ai} (choose A′i ∈ Fi such
that A′i ⊆ Ai and |Ai\A′i| = ω and let the bijection fi : Ai → ω be such that f�A′i is
the identity on A′i and fi(Ai\A′i) = ω\A′i). It follows that

∑
i∈I Fi =RK

∑
i∈I Fi�Ai

and
∑
i∈I F

>0
i =RK

∑
i∈I F

>0
i �Ai. Now apply (1). �

Lemma 4.2. An upper family F on a set X is an ultrafamily if and only if there
are no two disjoint F-positive sets.

Proof. (∃A ⊆ X)(A /∈ F and X \ A /∈ F) ↔ (∃A ⊆ X)(X \ A /∈ F=0 and
A /∈ F=0) ↔ (∃A ⊆ X)(X \ A ∈ F>0 and A ∈ F>0) ↔ there are two disjoint
F-positive sets. �

We say that F has the finiteness property, if (∃p ∈ ω)(∀A ∈ F) |A ∩ p| ≥ 2.
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Lemma 4.3. Let F ⊆ [ω]ω be an upper family. (1) If there are two disjoint finite
F-positive sets, then F has the finiteness property. (2) If F has the finiteness
property, then F is not Rosenthal.

Proof. (1) If p ∈ ω contains two disjoint finite F-positive sets, then p witnesses
that F has the finiteness property.

(2) Fix a Rosenthal matrix {ck,n}k,n∈ω with all ck,n > 0. Let p ∈ ω be such that
(∀A ∈ F) |A ∩ p| ≥ 2 and let ε = min{ck,m : k,m < p}. Then F is not Rosenthal
because every A ∈ F contains distinct k,m < p with

∑
n∈A\{k} ck,n ≥ ck,m ≥ ε. �

Lemma 4.4. If an upper family F ⊆ [ω]ω is a Rosenthal family, then there exists
a finite partition A ⊆ F>0 of ω such that

(i) for every A ∈ A, F�A = {A ∩B : B ∈ F} is an upper ultrafamily on A,
(ii) at most one of the sets A ∈ A is finite and then F�A contains at least one

singleton,
(iii) for every A ∈ A ∩ [ω]ω, F�A is a Rosenthal ultrafamily on A, and
(iv)

∑
A∈A F�A is a Rosenthal family on ω.

If F is a Rosenthal semifilter, then moreover,

(v) A ⊆ [ω]ω and F�A is a Rosenthal ultrasemifilter on A for every A ∈ A.

Proof. We say that a partition A of ω is primitive, if A ⊆ F>0 and no A ∈ A is
union of two disjoint nonempty F-positive sets. One can observe that, if no finite
partition is primitive, then there exists an infinite partition of F-positive sets and
consequently, F is decomposable. Therefore, by Proposition 2.4, it follows that
there is a finite primitive partition A of ω. Now, condition (i) is obviously satisfied
and condition (ii) holds because by Lemma 4.3, F has not the finiteness property.

(iii) F�A is a Rosenthal family on ω because for every B ∈ F , A∩B ∈ F�A and
A ∩B ⊆ B. Due to Lemma 2.1, F�A is a Rosenthal family on A.

(iv) Since A ⊆ F>0,
∑
A∈A F�A =RK {B ⊆ ω : (∀A ∈ A) A ∩ B ∈ F�A} ⊇ F

and consequently,
∑
A∈A F�A is a Rosenthal family by Lemma 2.1.

(v) If F is a semifilter, then F>0 ⊆ [ω]ω and for every A ∈ F>0, F�A is
a semifilter on A. Therefore the assertion holds by (iii). �

Theorem 4.5. Every Rosenthal filter is Rudin-Keisler equivalent to the sum of a fi-
nite collection of Rosenthal ultrafilters pairwise incomparable in the Rudin-Keisler
ordering.

Proof. Let F be a Rosenthal filter on ω. Let A ⊆ F>0 be a finite partition of ω
satisfying conditions (i)–(v) of Lemma 4.4. For every A ∈ A, F�A is a filter on A
and by (iii), F�A is a Rosenthal ultrafilter on A. Obviously, F ⊆ {B ⊆ ω : (∀A ∈ A)
A∩B ∈ F�A}. Since F is a filter and A is finite, the opposite inclusion also holds.
Therefore F =RK

∑
A∈A F�A.

Assume that A0, A1 ∈ A are distinct such that F�A0 ≤RK F�A1, i.e., F�A0 =
{A ⊆ A0 : f−1(A) ∈ F�A1} for some f ∈ A1A0. Since A1 ∩ f(A1) = ∅, there is
a non-diagonal function h ∈ ωω such that h(n) = f(n) for n ∈ A1 and h(n) ∈ A1 for
n ∈ ω \ A1. By Proposition 2.4, F has no diagonal and hence there is A ∈ F such
that A ∩ h−1(A) = ∅. Then (A ∩ A1) ∩ f−1(A ∩ A0) = ∅ because f−1(A ∩ A0) =
h−1(A ∩ A0) ⊆ h−1(A). This is a contradiction because A ∩ A1 ∈ F�A1 and
f−1(A ∩A0) ∈ F�A1 as A ∩A0 ∈ F�A0. Therefore the ultrafilters F�A for A ∈ A
are pairwise ≤RK-incomparable. �
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By Lemma 4.1, Theorem 4.5 has the following consequences:

Corollary 4.6. A Rosenthal filter is the intersection of a finite family of Rosenthal
ultrafilters pairwise incomparable in the Rudin-Keisler ordering. �

Corollary 4.7. A filter contained in two different ≤RK-comparable ultrafilters is
not Rosenthal. �

By Lemma 5.4 (1) below, the factors of the decomposition of a Rosenthal semi-
filter into Rosenthal ultrasemifilters in Lemma 4.4 need not be Rudin-Keisler in-
comparable.

Question 4.8. Does the converse of Theorem 4.5 or Corollary 4.6 hold?

5. Combinatorics on semifilters

Comfort and Negrepontis in [2, Theorem 9.6] have proved the equivalence of ten
distinct properties of ultrafilters including selective, Ramsey, weakly Ramsey, and
quasi-normal ultrafilter. In the present section we generalize to semifilters some
selectivity properties known for ultrafilters and filters and prove characterizations
for them analogous to those in [2] (restricted to the four mentioned properties).
Some of these results we apply in the next section.

For A ⊆ ω, n ∈ ω, and ϕ ∈ ωω denote

[A]n = {a ⊆ A : |a| = n},
[A]n,ϕ = {a ∈ [A]n : ϕ�a is one-to-one},
Mon = {ϕ ∈ ωω : ϕ is non-decreasing, finite-to-one, and surjective}.

Definition 5.1. Let F be a semifilter on ω and let ρ ∈ ωω be non-decreasing and
ρ ≥ 1.

(i) (1) A partition {An : n ∈ ω} of ω is an F-partition, if
⋃
k≤nAk ∈ F=0 for

all n ∈ ω. A family {An : n ∈ ω} ⊆ F is F-centered, if
⋂
k≤nAk ∈ F

for all n ∈ ω.
(2) F is an s(ρ)-semifilter (a p-semifilter, respectively), if for every F-par-

tition {An : n ∈ ω} of ω there is A ∈ F such that |A ∩ An| ≤ ρ(n)
(|A ∩An| < ω, respectively) for all n ∈ ω.

(ii) (1) We define a semifilter F (n) on [ω]n for n ≥ 1 as follows:
(a) If F is a filter, then we define by induction on n ≥ 1: F (1) =
{P ⊆ [ω]1 :

⋃
P ∈ F} and F (n+1) = {P ⊆ [ω]n+1 : {m ∈ ω :

Pm ∈ F (n)} ∈ F}, where Pm = {a ∈ [ω]n : a ∪ {m} ∈ P}.
(b) F (n) =

⋃
{F (n)

0 : F0 ⊆ F is a filter}, if F is not a filter.

Let P ⊆ [ω]n and A ∈ [ω]ω. We say that P is F-big, if P ∈ F (n). We
say that P is A-big, if P is {B ⊆ ω : A ⊆∗ B}-big.

(2) F is ρ-Ramsey (ω-Ramsey, respectively), if for every n ∈ ω,
(∗)n for every F-big set P ⊆ [ω]n there exist A ∈ F and ϕ ∈ Mon such

that [A]n,ϕ ⊆ P and for every k ∈ ω, 1 ≤ |A ∩ ϕ−1({k})| ≤ ρ(k)
(A ∩ ϕ−1({k}) is arbitrary finite, respectively).

F is weakly ρ-Ramsey (weakly ω-Ramsey, respectively), if (∗)2 holds.
(iii) F is an s-semifilter, a Ramsey semifilter, a weakly Ramsey semifilter, an

r-semifilter, if F is s(1)-semifilter, 1-Ramsey semifilter, weakly 1-Ramsey
semifilter, an s(ρ)-semifilter for ρ(n) = n, respectively.
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(iv) Dual notions of [4, 10] with different notation. Let F be a filter on ω.
(1) F is an s-filter, an r-filter, a p-filter, if F is an s-semifilter, an r-semi-

filter, a p-semifilter, respectively.
(2) F is an s+-filter, an r+-filter, a p+-filter, if F>0 is an s-semifilter, an

r-semifilter, a p-semifilter, respectively.
(v) We say that F is full if for every A ∈ F , n ∈ ω, and P ⊆ [ω]n at least one

of the sets [A]n ∩ P and [A]n \ P is F-big.

Note that [A]n,ϕ ⊆ P implies P is A-big, i.e., {B ⊆ ω : A ⊆∗ B}-big.
One can observe that every s-semifilter is an r-semifilter and every r-semifilter is

a p-semifilter. For ultrafilters, an s-semifilter, a Ramsey semifilter, and a p-semifilter
mean a selective ultrafilter, a Ramsey utrafilter, and a P -point, respectively. For
ultrafilters, an s+-filter as well as an s-filter means a selective ultrafilter, a p+-filter
as well as a p-filter means a P -point, and an r+-filter and an r-filter have the same
meaning.

For a monotone function ρ ∈ ωω there are two possibilities. Either ρ is bounded
and then there is k ∈ ω such that ρ(n) = k for all but finitely many n ∈ ω and the
property of an s(ρ)-semifilter coincides with the property of an s(k)-semifilter or ρ is
unbounded and the property of an s(ρ)-semifilter coincides with the property of an
r-semifilter. To see the latter note that if F is an s(ρ)-semifilter with ρ monotone
and unbounded, then F is an s(ρ′)-semifilter for arbitrary monotone unbounded
function ρ′ (as well as for arbitrary finite-to-one ρ′): By gluing finite subsystems in
F-partitions we obtain F-partitions for which finite choices controlled by ρ produce
finite choices for original F-partitions that are controlled by ρ′.

The assertions “an ideal I is an s-ideal” and “an ideal I is an s∗-ideal” in [10] now
mean “the semifilter of I-positive sets is an s-semifilter” and “the dual filter to I is
an s-semifilter”, respectively. The same translation applies for r- and p- properties.

Note that [A]n,ϕ ⊆ P implies P is A-big, i.e., {B ⊆ ω : A ⊆∗ B}-big.

Proposition 5.2. For a semifilter F ⊆ [ω]ω the following conditions are equivalent:

(1) F is full.
(2) (∀A ∈ F)(∀X ⊆ ω) A ∩X ∈ F or A \X ∈ F .
(3) F>0 is a filter.
(4) There is a filter H on ω such that F = H>0.
(5) F is a nonempty union of ultrafilters.

Proof. (1) → (2) holds by definition for n = 1 and (3) → (4) holds due to the
equality F = (F>0)>0.

(2) → (3) Let B,C ∈ F>0, i.e., B′ = ω \ B /∈ F and C ′ = ω \ C /∈ F . By (2),
B′ ∪ C ′ /∈ F . Then B ∩ C ∈ F>0 because B′ ∪ C ′ = ω \ (B ∩ C).

(4) → (5) If H is a filter, then G ⊆ H>0 for every filter G ⊇ H and for every
A ∈ H>0 there is an ultrafilter G ⊇ H ∪ {A}.

(5)→ (1) It is enough to prove that an ultrafilter is full. Let F be an ultrafilter
on ω. Since for every A ∈ F , F ∩ P(A) is an ultrafilter on A, it is enough to
prove by induction on n ∈ ω that for any P ⊆ [ω]n at least one of the sets P
and [ω]n \ P is F-big. Let n > 0. Denote A = {m ∈ ω : Pm is F-big} where
Pm = {a ∈ [ω]n−1 : a ∪ {m} ∈ P}. If A ∈ F , then P is F-big. Assume that
ω\A ∈ F . Then for every n ∈ ω\A, Pm is not F-big, and by inductive assumption,
([ω]n \ P )m = [ω]n−1 \ Pm is F-big. Therefore [ω]n \ P is F-big. �

Corollary 5.3. (a) A full semifilter is an ultrasemifilter.
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(b) A filter is a full semifilter if and only if it is an ultrafilter.

Proof. The assertions are consequences of (1)↔ (2) of Proposition 5.2. �

Obviously, a countable sum of semifilters on ω is a semifilter on a countable set.

Lemma 5.4. Let 1 ≤ m ≤ ω and let P denote the full product
∏
n<m([ω]ω,⊆∗).

(1) The semifilter
∑
n<m[ω]ω is an s-semifilter.

(2) If G =
∏
n<m Gn is a generic subset of P, then Gn, n < m, are s-ultrafilters

and
∑
n<m Gn and

⋂
n<m Gn are s-filters [10, Example 9, p. 105].

Proof. (1) Fix a partition {An : n < m} of ω into infinite sets and let F = {A ⊆
ω : (∀n < m) A ∩ An ∈ [An]ω}. It is enough to prove that the semifilter F is
an s-semifilter because

∑
n<m[ω]ω is isomorphic to F . Let {Bn : n ∈ ω} be an

F-partition of ω, i.e., An \
⋃
k≤lBk is infinite for all l ∈ ω and n < m. Then

an = {k ∈ ω : An ∩ Bk 6= ∅} is infinite for all n < m. Let bn ∈ [an]ω for n < m
be pairwise disjoint sets and let b =

⋃
n<m bn. Define a selector B = {mk : k ∈ b}

of {Bk : k ∈ b} so that mk ∈ An ∩ Bk, if k ∈ bn. Then B ∈ F because B ∩ An =
{mk : k ∈ bn} ∈ [An]ω for all n < m.

(2) Forcing with P adds no countable subsets because P is ω-closed. It is well-
known that Gn, n < m, are selective ultrafilters and an easy forcing argument shows
that they are separated by a partition {An : n < m} of ω with An ∈ Gn. Due to
Lemma 4.1 (2), the filters

∑
n<m Gn and

⋂
n<m Gn are isomorphic and therefore it

is enough to prove that the filter G =
⋂
n<m Gn is an s-filter.

Denote p0 = 〈An : n < m〉; then p0 ∈ G. We write a condition p ∈ P by
p = 〈Apn : n < m〉. The set D = {p ∈ P : (∀n < m) Apn ⊆ An} is dense
below p0 in P; the sets Apn, n < m, are pairwise disjoint for p ∈ D. Let a condition

p ∈ D forces that a partition {Bk : k ∈ ω} of ω is a Ġ-partition, where Ġ is the
canonical name for G. For every q ≤ p, Aqn ∩

⋃
k≤lBk is finite for all l ∈ ω and

n < m (otherwise for some l and n there is q ≤ p with Aqn ⊆
⋃
k≤lBk and hence

q 

⋃
k≤lBk ∈ Ġn and q 


⋃
k≤lBk /∈ Ġ=0). Let q ∈ D be arbitrary such that q ≤ p.

Then an = {k ∈ ω : Aqn∩Bk 6= ∅} is infinite for all n < m. Let bn ∈ [an]ω for n < m
be pairwise disjoint sets and let b =

⋃
n<m bn. Define a selector B = {mk : k ∈ b} of

{Bk : k ∈ b} so that mk ∈ Aqn ∩Bk, if k ∈ bn. Define r ∈ P by Arn = {mk : k ∈ bn}
for n < m. Then r ∈ D, r ≤ q, and r 
 B ∈ Ġ because Arn ⊆ Aqn and Arn ⊆ B for
all n < m. This density argument shows that every G-partition has a selector in G.
Therefore G is an s-filter. �

Other s-, r-, p-semifilters can be obtained by the following lemma.

Lemma 5.5. Let F be a semifilter on ω.

(1) If F is an s-semifilter, an r-semifilter, or a p-semifilter, then so is the
semifilter F ∩ P(B) on B for B ∈ F .

(2) If F is an s-semifilter, an r-semifilter, or a p-semifilter, then so is F(B) =
{A ⊆ ω : A ∩B ∈ F} for B ∈ F [10, Lemma 1.5].

(3) If F is an s-semifilter, an r-semifilter, or a p-semifilter, then so is G =⋂
n∈ω F(Bn) where Bn+1 ⊆ Bn ∈ F for all n ∈ ω [10, Lemma 1.6].

(4) If Fn, n < k (k ≤ ω), are r-semifilters or p-semifilters, then so is
∑
n<k Fn.

Proof. (1) Denote G = F ∩ P(B). For every A ⊆ B, A ∈ G=0 ↔ B \ A ∈ F ↔
(ω \ B) ∪ A ∈ F=0. Hence, if A = {An : n ∈ ω} is a G-partition of B, then
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A′ = {ω \B} ∪A is an F-partition of ω. If A ∈ F has finite intersections with sets
from A′, then A \B ∈ G has the same intersections with sets from A.

(2) Use these facts: (i) A ∈ (F(B))=0 ↔ A∪ (ω \B) ∈ F=0. (ii) If {An : n ∈ ω}
is an F(B)-partition, then A′0 = A0∪(ω\B), A′n = An∩B, n ≥ 1, is an F-partition.
(iii) If A ∈ F and |A ∩ A′n| < ω for all n, then A ⊆∗ B and hence, A ∩ B ∈ F ,
A ∩B ∈ F(B), and |(A ∩B) ∩An| ≤ |A ∩A′n| for all n ∈ ω.

(3) Use these facts: (i) A ∈ G=0 ↔ (∀n ∈ ω) A ∪ (ω \ Bn) ∈ F=0. (ii) If
{An : n ∈ ω} is a G-partition, since F is a p-semifilter, there is B ∈ F such that
Ak ∪ (ω \ Bn) ⊆∗ ω \ B for all k, n ∈ ω; then {An : n ∈ ω} is an F(B)-partition
and F(B) ⊆ G. Therefore case (2) can be applied.

(4) We prove the lemma for r-semifilters and k = ω; the case of p-semifilters and
the case of k < ω is similar. Let {An : n ∈ ω} be a partition of ω into infinite sets,
let Fn be an r-semifilter on An for every n ∈ ω, and let F = {A ⊆ ω : (∀n ∈ ω)
A ∩ An ∈ Fn}. Let {Bn : n ∈ ω} be an F-partition of ω, i.e., An \

⋃
k≤mBk ∈ Fn

for all m,n ∈ ω. For every n ∈ ω, {An ∩ Bm : m ∈ ω} is an Fn-partition. Hence,
for every n ∈ ω there exists Cn ⊆ An such that Cn ∈ Fn and Cn ∩Bm ≤ m for all
m ∈ ω. Let C =

⋃
n∈ω

⋃
m>n Cn ∩Bm. Then C ∈ F because Cn \C is finite for all

n ∈ ω. For every m ∈ ω, |C ∩Bm| = |
⋃
n<m Cn ∩Bm| ≤ m2. �

Lemma 5.5 (4) does not hold for s-semifilters because for every filter F on ω the
filter F ⊕F is not an s-filter: Let {A0, A1} be a partition of ω with the increasing
enumerations ei : ω → Ai, i < 2. The filter F ⊕ F is isomorphic to the filter
F2 = {A ⊆ ω : (∀i < 2) e−1

i (A ∩ Ai) ∈ F} and the family {{e0(n), e1(n)} : n ∈ ω}
of 2-element sets is an F2-partition of ω. If A ⊆ ω is a selector of this partition,
then A /∈ F2 because the sets e−1

0 (A ∩A0) and e−1
1 (A ∩A1) are disjoint and hence

one of them does not belong to F .

Proposition 5.6. Let F be an x-semifilter, where x ∈ {p, r, s}.
(1) The generic subset of (F ,⊆∗) is a filter.
(2) The following conditions are equivalent:

(a) Every generic subset of (F ,⊆∗) is an x-ultrafilter.
(b) Every generic subset of (F ,⊆∗) is an ultrafilter.
(c) F is full.

Proof. (1) As F is a p-semifilter, the forcing (F ,⊆∗) is ω-closed; this forcing does
not add new reals and the generic filter G ⊆ F is a filter on ω (if F is a filter, the
forcing with F is trivial and G = F).

(2) (a) → (b) is trivial and the implication (c) → (a) is known (see [4] and [10,
Proposition 4.3]). By (b), for every X ⊆ ω the set {B ∈ F : A ⊆ X or B ⊆ ω \X}
is dense in F . Then F is full because condition (2) in Proposition 5.2 holds. �

By Lemma 5.5 (1) the following condition is sufficient for a generic subset G
of an x-semifilter F to be an x-filter: If {An : n ∈ ω} is a partition of ω and

B 
F “{An : n ∈ ω} is a Ġ-partition”, then {An ∩ B : n ∈ ω} is an F ∩ P(B)-
partition of B. This condition holds for countable sums of full semifilters.

We say that an upper family F is hereditarily non-meager, if F ∩ P(B) is not
meager in P(ω) for every B ∈ F . We need this property in Proposition 5.9 through
Lemma 5.8 and in Proposition 5.10. The adverb “hereditarily” has here another
meaning than the same adverb in the notion of “hereditarily meager filters” in [8].
By Lemma 2.9 we get:
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Lemma 5.7. An upper family F ⊆ P(ω) is hereditarily non-meager if and only if
for every finite-to-one function f ∈ ωω and B ∈ F there exists A ∈ [ω]ω such that
B \ f−1(A) ∈ F . �

Lemma 5.8. Every s(ρ)-semifilter F is hereditarily non-meager.

Proof. We verify the condition in Lemma 5.7. Let a finite-to-one function f ∈ ωω
and B ∈ F be given. Let {ak : k ∈ ω} be any partition of ω into finite sets such that
|ak| = ρ(k) + 1 for all k ∈ ω. The system of sets A0 = (B ∩ f−1(a0)) ∪ (ω \B) and
Ak = B∩f−1(ak), k > 0, is an F-partition because all sets f−1(ak) are finite. Since
F is an s(ρ)-semifilter, there is a set C ∈ F such that |C ∩Ak| ≤ ρ(k) for all k ∈ ω.
Let B0 = C \ A0. Then B0 ⊆ B and B0 ∈ F because |C ∩ A0| ≤ ρ(0). For every
k > 0, B0 ∩ Ak = B0 ∩ f−1(ak), |ak| > |B0 ∩ Ak|, and hence there is ik ∈ ak such
that B0 ∩ f−1({ik}) = ∅. Let A = {ik : k > 0}. Then B \ f−1(A) ⊇ B0 ∈ F . �

Lemma 5.8 does not hold for all p-semifilters (e.g., the Fréchet filter is meager).
An ultrafilter F on ω is said to be quasi-normal (see [2]), if for every family

{An : n ∈ ω} ⊆ F there is A ∈ F such that, if n,m ∈ A and n < m, then m ∈ An.
The following proposition is a generalization of [2, Theorem 9.6] for semifilters
where conditions (2) and (3) replace quasi-normality:

An ultrafilter F on ω is said to be quasi-normal (see [2]), if for every family
{An : n ∈ ω} ⊆ F there is A ∈ F such that, if n,m ∈ A and n < m, then m ∈ An.
The following proposition generalizes the equivalences (b)↔ (e)↔ (f)↔ (i) in [2,
Theorem 9.6] for semifilters where conditions (2) and (3) modify quasi-normality:

Proposition 5.9. Let F be a semifilter on ω and let ρ ∈ ωω be non-decreasing and
ρ ≥ 1. The following statements are equivalent:

(1) F is an s(ρ)-semifilter.
(2) For every F-centered system {An : n ∈ ω} ⊆ F and {ϕn : n ∈ ω} ⊆ Mon

there exist A ∈ F and ϕ ∈ Mon such that A ⊆ A0, 1 ≤ |A ∩ ϕ−1({k})| ≤
ρ(k) for all k ∈ ω, and for every n,m ∈ A and i ≤ n, if ϕ(n) < ϕ(m), then
m ∈ An and ϕi(n) < ϕi(m).

(3) For every F-centered system {An : n ∈ ω} ⊆ F there exists A =
⋃
k∈ω ak ∈

F such that A ⊆ A0, 1 ≤ |ak| ≤ ρ(k), max ak < min ak+1, and
⋃
l>k al ⊆⋂

n∈ak An for all k ∈ ω.

(4) F is a ρ-Ramsey semifilter.
(5) F is a weakly ρ-Ramsey semifilter.

Proof. We prove (1)→ (2)→ (4)→ (5)→ (1) and (2)→ (3)→ (5).
(1) → (2) Let {An : n ∈ ω} ⊆ F be F-centered and {ϕn : n ∈ ω} ⊆ Mon.

Without loss of generality we can assume that
⋂
n∈ω An = ∅ (otherwise consider

A′n = A \ n).
Define f : ω → ω by f(m) = min{n ∈ ω : m /∈ An}. Then {f−1({n}) : n ∈ ω}

is an F-partition because {An : n ∈ ω} is F-centered and f−1({n}) ⊆ ω \ An for
all n ∈ ω. Since F is a p-semifilter there is B0 ∈ F such that |f−1({n}) ∩B0| < ω
for all n ∈ ω and f−1({0}) ∩ B0 = ∅; B0 ⊆ A0 because f−1({0}) = ω \ A0. For
every n ∈ ω the set xn = {m ∈ B0 : f(m) ≤ n} is finite by the choice of B0 and
yn = {m ∈ ω : (∃i ≤ n) ϕi(m) ≤ ϕi(n)} is finite because all ϕi are finite-to-one.

Define g : ω → ω by g(n) = max({n+ 1}∪xn ∪ yn); g(n) > n and g is monotone
because xn ⊆ xn+1 and yn ⊆ yn+1 for all n ∈ ω.

Define d : ω → ω by d(0) = 0 and d(k + 1) = g(d(k)); d is strictly increasing.
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Define h : ω → ω by h(m) = min{k ∈ ω : m ≤ d(k)}. Then rng(h) = ω,
m ≤ d(h(m)), and h−1({k}) = (d(k − 1), d(k)], where we let d(−1) = −1.

By Lemma 5.8 there is L ∈ [ω]ω such that B0 \h−1(L) ∈ F . We can assume that
0 ∈ L. Denote B1 = B0 \ h−1(L) and let {lk}k∈ω be the increasing enumeration
of L. Since h is non-decreasing the sequence of jk = minh−1({lk}), k ∈ ω, is
strictly increasing and j0 = 0. We can find L so that B1 ∩ [jk, jk+1) 6= ∅ for all
k ∈ ω. Since F is an s(ρ)-semifilter and the system of sets (B1 ∩ [j0, j1))∪ (ω \B1)
and B1 ∩ [jk, jk+1), k > 0, is an F-partition, there is A ∈ F such that A ⊆ B1

and 1 ≤ |A ∩ [jk, jk+1)| ≤ ρ(k) for all k ∈ ω. Then A ∩ h−1(L) = ∅ and A ⊆ A0.
Define ϕ(n) = k for n ∈ [jk, jk+1). Then ϕ ∈ Mon, 1 ≤ |A ∩ ϕ−1({k})| ≤ ρ(k) for
all k ∈ ω, and if n ∈ A, then h(n) ∈ [lϕ(n), lϕ(n)+1) \ L = (lϕ(n), lϕ(n)+1).

Let n,m ∈ A be such that ϕ(n) < ϕ(m). Then h(n) + 1 < h(m) because
h(n) < lϕ(n)+1 < h(m). Then d(h(n) + 1) < m by definition of h(m), and since
n ≤ d(h(n)), then g(n) ≤ g(d(h(n))) = d(h(n) + 1) < m and hence m /∈ xn ∪ yn.
Then f(m) > n because m /∈ xn and ϕi(n) < ϕi(m) for all i ≤ n because m /∈ yn.

(2) → (4) First note that if P ⊆ [ω]n is F-big, then there is a filter F0 ⊆ F
generated by countably many sets such that P is F0-big. Then by (2) there is
B ∈ F such that B ⊆∗ X for all X ∈ F0 and hence P is B-big.

By induction on n ∈ ω we prove that for every B-big set P ⊆ [ω]n where
B ∈ F there are A ∈ F and ϕ ∈ Mon such that A ⊆ B, [A]n,ϕ ⊆ P , and
1 ≤ |A∩ϕ−1({k})| ≤ ρ(k) for all k ∈ ω. There is nothing to prove if n = 0. Assume
that the assertion holds for an n ∈ ω and let P ⊆ [ω]n+1 be B-big. Let B0 be the set
of all m ∈ ω such that Pm = {a ∈ [ω]n : a ∪ {m} ∈ P} is B-big. Clearly, B ⊆∗ B0.
By the inductive assumption we can find Am ∈ F and ϕm ∈ Mon, satisfying
Am+1 ⊆ Am ⊆ B∩B0 for m ∈ ω and such that [Am]n,ϕm ⊆ Pm for m ∈ B0. By (2)
there are A ∈ F and ϕ ∈ Mon such that A ⊆ A0, 1 ≤ |A∩ϕ−1({k})| ≤ ρ(k) for all
k ∈ ω, and

(∗) (∀m, k, l ∈ A)[ϕ(m) < ϕ(k) < ϕ(l)→ (k, l ∈ Am and ϕm(k) < ϕm(l))].

If a ∈ [A]n+1,ϕ and m = min(a), then a\{m} ∈ [A]n,ϕ, by (∗), a\{m} ∈ [Am]n,ϕm ⊆
Pm, and hence a ∈ P . Therefore A ⊆ B and [A]n+1,ϕ ⊆ P .

(4)→ (5) is trivial.
(5) → (1) Let {An : n ∈ ω} be an F-partition of ω and let ν(n) = i for n ∈ Ai

and i ∈ ω. The set P = {{n,m} ∈ [ω]2 : n < m and m ∈ ω \
⋃
i≤ν(n)Ai} is F-big

and by (5) there are A ∈ F and ϕ ∈ Mon such that 1 ≤ |A ∩ ϕ−1({k})| ≤ ρ(k) for
all k ∈ ω and [A]2,ϕ ⊆ P . Therefore

(∗∗) (∀n,m ∈ A)(ϕ(n) < ϕ(m)→ ν(n) < ν(m)).

Define µ(0) = 0 and µ(k + 1) = max{ν(n) : n ∈ A ∩ ϕ−1({k})} + 1. By (∗∗), µ is
strictly increasing and A ∩

⋃
{Ai : µ(k) ≤ i < µ(k + 1)} ⊆ A ∩ ϕ−1({k}) for all

k ∈ ω. If µ(k) ≤ i < µ(k + 1), then k ≤ µ(k) ≤ i and |A ∩ Ai| ≤ |A ∩ ϕ−1({k})| ≤
ρ(k) ≤ ρ(i). Therefore F is an s(ρ)-semifilter.

(2) → (3) Find A ∈ F and ϕ ∈ Mon satisfying (2) for arbitrary ϕn and take
ak = A ∩ ϕ−1({k}).

(3) → (5) Let P ⊆ [ω]2 be F-big. Denote Pn = {m ∈ ω : {m,n} ∈ P} for
n ∈ ω. There is B ∈ F such that Pn ∈ F for all n ∈ B and {Pn : n ∈ B} ∪ {B} is
F-centered. Let An = Pn ∩B for n ∈ B and An = B for n ∈ ω \B. By (3) there is
a set A =

⋃
k∈ω ak ∈ F such that A ⊆ B, 1 ≤ |ak| ≤ ρ(k) and max ak < min ak+1

for all k ∈ ω, and m ∈ An whenever m ∈ al and n ∈ ak for some l > k. Let ϕ ∈ Mon
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be such that n ∈ aϕ(n) for all n ∈ A. Then 1 ≤ |A ∩ ϕ−1({k})| = |ak| ≤ ρ(k) for

all k ∈ ω. We show that [A]2,ϕ ⊆ P . Let m,n ∈ A be arbitrary with ϕ(m) > ϕ(n).
Then m ∈ An because m ∈ aϕ(m) and n ∈ aϕ(n). Since n ∈ B, An ⊆ Pn and hence
m ∈ Pn. Therefore {m,n} ∈ P . �

The next proposition is a similar characterization of non-meager p-filters and of
hereditarily non-meager p-semifilters. By Lemma 2.9 and Lemma 5.7, due to Tala-
grand’s characterization of non-meager filters, a filter is hereditarily non-meager if
and only if it is non-meager.

Proposition 5.10. Let F be a semifilter on ω. The following statements are
equivalent:

(1) F is a hereditarily non-meager p-semifilter.
(2) For every F-centered system {An : n ∈ ω} ⊆ F and {ϕn : n ∈ ω} ⊆ Mon

there exist A ∈ F and ϕ ∈ Mon such that A ⊆ A0 (if needed, A∩ϕ−1({k}) 6=
∅ for all k ∈ ω) and for every n,m ∈ A and i ≤ n, if ϕ(n) < ϕ(m), then
m ∈ An and ϕi(n) < ϕi(m).

(3) For every F-centered system {An : n ∈ ω} ⊆ F there exists A =
⋃
k∈ω ak ∈

F such that A ⊆ A0, 1 ≤ |ak| < ω, max ak < min ak+1, and
⋃
l>k al ⊆⋂

n∈ak An for all k ∈ ω.

(4) F is ω-Ramsey.
(5) F is weakly ω-Ramsey.

Proof. The proof of implications (1) → (2) → (4) → (5) and (2) → (3) → (5) are
same as in Proposition 5.9.

(5)→ (1) Let {An : n ∈ ω} be an F-partition of ω. Since the set P = {{k,m} ∈
[ω]2 : (∃n ∈ ω) k ∈ An and m /∈ An} is F-big there are A ∈ F and ϕ ∈ Mon such
that [A]2,ϕ ⊆ P . Then for every n ∈ ω there is k ∈ ω such that A∩An ⊆ ϕ−1({k})
and hence |A ∩An| < ω. Therefore F is a p-semifilter.

By Lemma 5.7 we prove that F is hereditarily non-meager. Let f ∈ ωω be finite-
to-one and B ∈ F . Define g(n) = min{m > n : (∃k ∈ ω) ∅ 6= f−1({k}) ⊆ (n,m)}.
The set P = {{k,m} ∈ [B]2 : k > g(m)} is F-big and by (5) there are C ∈ F and
ϕ ∈ Mon such that [C]2,ϕ ⊆ P . The set A = {k ∈ ω : C ∩ f−1({k}) = ∅} is infinite
because C ∩ (n, g(n)) = ∅ for all n ∈ Cmax where Cmax = {n ∈ C : (∀m ∈ C)
m > n→ ϕ(m) > ϕ(n)} is infinite. Now, C ⊆ B because [C]2,ϕ ⊆ [B]2. Therefore
B \ f−1(A) ⊇ C ∈ F . �

Corollary 5.11. Let F be an s(ρ)-semifilter with a non-decreasing ρ ∈ ωω and
ρ ≥ 1. For every F-centered system {An : n ∈ ω} ⊆ F and {ϕn : n ∈ ω} ⊆ Mon
there exist A ∈ F and ϕ ∈ Mon such that

(1) A ∩
⋃
k≥n ϕ

−1({k}) ⊆ An for all n ∈ ω,

(2) 1 ≤ |A ∩ ϕ−1({k})| ≤ ρ(k + 1) for all k ∈ ω, and
(3) for every n,m ∈ A and i ≤ n, if ϕ(n) < ϕ(m), then ϕi(n) < ϕi(m).

Proof. Denote A∗n =
⋂
k≤nAk. By Proposition 5.9 there are B ∈ F and ψ ∈ Mon

such that for every k ∈ ω, 1 ≤ |B ∩ ψ−1({k})| ≤ ρ(k), and for every n,m ∈ B and
i ≤ n, if ψ(n) < ψ(m), then m ∈ A∗n and ϕi(n) < ϕi(m). Since ψ is monotone and
surjective, for every k ∈ ω, k ≤ max(B ∩ ψ−1({k})). Define A = B \ ψ−1({0}) and
ϕ(n) = max{0, ψ(n) − 1}. For every k ≥ n, A ∩ ϕ−1({k}) = B ∩ ψ−1({k + 1}) ⊆
A∗max(B∩ψ−1({k})) ⊆ A∗k ⊆ An. Consequently (1) and (2) hold; (3) holds because

A ⊆ B and ϕ(n) < ϕ(m) implies ψ(n) < ψ(m). �
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6. Selectivity and the Rosenthal property

A particular form of Rosenthal’s Lemma states that the selective semifilter [ω]ω is
a Rosenthal family. Sobota [14, Theorem 3.6] has proved that a selective ultrafilter
is a Rosenthal family. Since the existence of selective ultrafiler is not provable
in ZFC, this Sobota’s result does not imply Rosenthal’s Lemma although every
ultrafilter is a subset of [ω]ω. On the other hand, Sobota in [14, Proposition 3.14]
introduced a full non-selective p-semifilter which is a Rosenthal family in ZFC.
By Lemma 6.3 below this semifilter is in fact an r-semifilter. All these results
are consequences of the following theorem because, by Proposition 2.8, every full
semifilter has no local diagonal. Note that by Theorem 6.6, the property of not
having a local diagonal is strictly weaker than fullness:

Theorem 6.1. If F ⊆ [ω]ω is an r-semifilter which has no local diagonal, then
F ∩ P(A) is a Rosenthal family for every A ∈ F .

Proof. Let ρ ∈ ωω be a fixed non-decreasing unbounded function such that ρ ≥ 1.
Then a semifilter is an r-semifilter if and only if it is an s(ρ)-semifilter.

For a Rosenthal matrix {ck,n}k,n∈ω and ε > 0 define

P (ε) = {{k,m} ∈ [ω]2 : m < k and ck,m < ε},
Q(ε) = {{k,m} ∈ [ω]2 : k < m and

∑
n≥m ck,n < ε}.

The set mapping fε(k) = {m < k : ck,m ≥ ε} is uniformly finite because |fε(k)| ≤
1/ε for all k ∈ ω. Since F has no local diagonal, by Lemma 2.3, for every A ∈ F
there is B ∈ F ∩ P(A) free with respect to fε, and consequently [B]2 ⊆ P (ε).
Q(ε) is F-big (in fact big with respect to any semifilter) because for every k ∈ ω

the set (Q(ε))k = {m ∈ ω : {k,m} ∈ Q(ε)} ⊇ {m > k :
∑
n≥m ck,n < ε} is co-

finite. If A ∈ F , then by Lemma 5.5 (1), F ∩ P(A) is an s(ρ)-semifilter, and by
Proposition 5.9, F∩P(A) is weakly ρ-Ramsey. Therefore for every A ∈ F there exist
B ∈ F∩P(A) and ψ ∈ Mon such that [B]2,ψ ⊆ Q(ε) and 1 ≤ |B∩ψ−1({k})| ≤ ρ(k)
for all k ∈ ω.

Let A ∈ F . By induction on n ∈ ω (using previous two observations) find ψ ∈
Mon and a decreasing sequence of sets An ∈ F such that A0 ⊆ A, [A0]2,ψ ⊆ Q(ε/2),
and [An]2 ⊆ P (2−(n+2)ε/ρ(n + 1)). Then by Corollary 5.11 there is B ∈ F and
ϕ ∈ Mon such that

(1) B ∩ ϕ−1({n}) ⊆ An and 1 ≤ |B ∩ ϕ−1({n})| ≤ ρ(n+ 1) for all n ∈ ω, and
(2) for every k,m ∈ B, if ϕ(k) < ϕ(m), then ψ(k) < ψ(m).

Hence, B ⊆ A0 and [B]2,ϕ ⊆ [A0]2,ψ ⊆ Q(ε/2). Let k ∈ B be arbitrary. Denote
m0 = min{m ∈ B : ϕ(m) > ϕ(k)}. Then {k,m0} ∈ [B]2,ϕ ⊆ Q(ε/2) and so,∑

m∈B,ϕ(m)>ϕ(k)

ck,m ≤
∑
m≥m0

ck,m < ε/2.

By (1), if m ∈ B \ {k} and n = ϕ(m) ≤ ϕ(k), then {k,m} ∈ [An]2. Therefore∑
m∈B\{k},ϕ(m)≤ϕ(k)

ck,m =
∑

n≤ϕ(k)

∑
m∈B∩ϕ−1({n})\{k}

ck,m

≤
∑

n≤ϕ(k)

∑
m∈B∩ϕ−1({n})\{k}

2−(n+2)ε/ρ(n+ 1) ≤
∑

n≤ϕ(k)

2−(n+2)ε < ε/2.

Now,
∑
m∈B\{k} ck,m =

∑
m∈B,ϕ(m)>ϕ(k) ck,m +

∑
m∈B\{k},ϕ(m)≤ϕ(k) ck,m < ε. �
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By Proposition 2.8, H>0 has no local diagonal, if H is a filter. Therefore:

Corollary 6.2. If H is an r+-filter, then H>0 is a Rosenthal family. �

The Fréchet filter is an s+-filter (Lemma 5.4 (1) for m = 1). We show that
the following filters Ha are r+-filters that are not s+-filters. Let P∞ be the set
of all partitions a = {an : n ∈ ω} of ω (into finite or infinite sets) such that
lim supn∈ω |an| =∞. For a ∈ P∞ denote

Ha = {A ⊆ ω : lim supn∈ω |an \A| <∞},
Then Ha is a filter on ω and

H=0
a = {A ⊆ ω : lim supn∈ω |an ∩A| <∞},
H>0

a = {A ⊆ ω : lim supn∈ω |an ∩A| =∞},
(H>0

a )=0 = P(ω) \ Ha.

By Lemma 3.15 of [14], H>0
a is a p-semifilter. We can say a bit more:

Lemma 6.3. H>0
a is an r-semifilter, i.e., Ha is an r+-filter, and no filter H ⊇ Ha

is an s+-filter or an s-filter.

Proof. Let {An : n ∈ ω} be an H>0
a -partition of ω. By induction on n ∈ ω

define m0 = 0, mn+1 > mn, and bn ⊆ amn+1
\
⋃
k≤nAn so that |bn| = 2n. Then

B =
⋃
n∈ω bn ∈ H>0

a because lim supm∈ω |am∩B| ≥ limn∈ω |bn| =∞ and |An∩B| ≤
|
⋃
k<n bk| =

∑
k<n 2k = 2n − 1 for all n ∈ ω. Hence H>0

a is an s(ρ)-semifilter for
ρ(n) = 2n.

If H ⊇ Ha is a filter, then H is not an s+-filter and not an s-filter because all
sets in a as well as all selectors of a belong to the ideal H=0

a and H=0
a ⊆ H=0. �

Lemma 6.4. The generic set Ga ⊆ H>0
a is a non-selective r-ultrafilter extend-

ing Ha.

Proof. By Proposition 5.6 (2) the generic subset Ga of (H>0
a ,⊆∗) is an r-ultrafilter

and Ga is not selective by Lemma 6.3. �

By Proposition 2.4 infinite sums of semifilters are not Rosenthal families because
they are decomposable. By Theorem 6.1 and Lemma 5.5 it follows that the infinite
sums of r-semifilters are r-semifilters with local diagonals. We show that the finite
sums of semifilters of the form

∑
i<s0

[ω]ω ⊕
∑
i<s1
H>0

ai with s0, s1 ∈ ω and with
ai ∈ P∞ for all i < s1 are Rosenthal semifilters. They are r-semifilters due to
Lemma 6.3, Lemma 5.4 (1), and Lemma 5.5 (4). By Theorem 6.1 it remains to
prove that they have no local diagonals. For this we need the following lemma
which is an adaptation of Lemma 3.13 from [14] for non-diagonal functions.

Lemma 6.5. Let X = {Xi : i < s} be a finite partition of ω into infinite sets,
for every i < s let Hi be a filter on Xi, let F =

∑
i<sH

>0
i = {A ⊆ ω : (∀i < s)

A ∩Xi ∈ H>0
i }, and let f ∈ ωω be a non-diagonal function. Then

(∀m ≥ 2)(∃rm > m)(∀a ∈ [ω]rm)(∀A ∈ F)(∃b ∈ [a]m)(∃B ∈ F ∩ P(A))

b ∩ f−1(b) = ∅ and B ∩ f−1(b) = ∅ and b ∩ f−1(B) = ∅.

Proof. Recall that for p ≥ 2 the Ramsey number R(p) is the minimal r ∈ ω such
that the partition relation r → [p]22 holds, i.e, for every partition {c0, c1} of [r]2

there exists a ∈ [r]p such that [a]2 ⊆ c0 or [a]2 ⊆ c1. Obviously, R(p) > p for p ≥ 3.
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Let c0 = {{k, n} ∈ [ω]2 : n 6= f(k) and k 6= f(n)} and c1 = [ω]2\c0. If a set b ⊆ ω
is homogeneous for this partition and |b| ≥ 4, then [b]2 ⊆ c0 because [b]2 ∩ c0 6= ∅
(either (i) there are distinct n, k ∈ b \ f [b], or (ii) there is exactly one n ∈ b \ f [b]
and then let k ∈ b∩ f [b] \ {f(n)}, or (iii) f�b is a permutation of b and then choose
any n ∈ b and k ∈ b \ {n, f(n), f−1(n)}; in all cases {n, k} ∈ [b]2 ∩ c0). Therefore

(∗) (∀p ≥ 3)(∀a ∈ [ω]R(p))(∃b ∈ [a]p) b ∩ f−1(b) = ∅.
If C ⊆ ω and e ∈ [ω]2, then C =

⋃
n∈e C \ f−1({n}). Since every Hi is a filter,

(∗∗) (∀C ∈ H>0
i )(∀e ∈ [ω]2)(∃n ∈ e) C \ f−1({n}) ∈ H>0

i .

Let C ∈ H>0
i . Either (∀b ∈ [ω]<ω) C \ f−1(b) ∈ H>0

i or let k ∈ ω be minimal such
that C \ f−1(k∪{k}) ∈ H=0

i . In the latter case denote Cm = C \ f−1(m \ {k}). By
induction we show that Cm ∈ H>0

i for all m ∈ ω. Clearly Cm ∈ H>0
i for m ≤ k+1.

Assume Cm ∈ H>0
i for some m ≥ k + 1 (= k ∪ {k}). By (∗∗) there is n ∈ {m, k}

such that Cm \ f−1({n}) = C \ f−1(m ∪ {n} \ {k}) ∈ H>0
i . Since n 6= k we obtain

Cm+1 ∈ H>0
i . It follows that for every i < s,

(∗∗∗) (∀C ∈ H>0
i )(∃k ∈ ω)(∀b ∈ [ω]<ω) C \ f−1(b \ {k}) ∈ H>0

i .

Let rm = R(m+ s) and let a ∈ [ω]rm and A ∈ F be given; rm > m+ s > m and
A∩Xi ∈ H>0

i for all i < s. By (∗) there exists d ∈ [a]m+s such that d∩f−1(d) = ∅.
By (∗∗∗) for every i < s there exists ki ∈ ω such that (A∩Xi)\f−1(d\{ki}) ∈ H>0

i .
Let b ∈ [d \ {ki : i < s}]m, B′ =

⋃
i<s(A ∩Xi) \ f−1(b), and B = B′ \ f [b]. Then

B ∈ F because B′ ∈ F and f [b] is finite, b∩f−1(b) = ∅ because b ⊆ d, by definition,
B ∩ f−1(b) ⊆ B′ ∩ f−1(b) = ∅, and b ∩ f−1(B) = ∅ because B ∩ f [b] = ∅. �

Theorem 6.6. Let F =
∑
i<s0

[ω]ω ⊕
∑
i<s1
H>0

ai with s0, s1 ∈ ω and ai ∈ P∞
for all i < s1. (a) The semifilter F has no local diagonal. (b) For every A ∈ F ,
F ∩ P(A) is a Rosenthal semifilter on A.

Proof. We sketch the proof of (a). Assume that A ∈ F and {mi}i∈ω is a sequence
of natural numbers ≥ 2. Lemma 6.5 can be used for a recursive construction of
ai, bi ∈ [ω]<ω and Bi ∈ F>0 for i ∈ ω starting with B0 = A and b0 = ∅ so that for
all i ∈ ω the following conditions are satisfied:

(i) ai ∈ [Bi \
⋃
j≤i bj ]

rmi , bi+1 ∈ [ai]
mi , and Bi+1 ∈ F ∩ P(Bi \

⋃
j≤i+1 bj),

(ii) bi ∩ f−1(bi) = ∅,
(iii) Bi ∩ f−1(bi) = ∅,
(iv) bi ∩ f−1(Bi) = ∅.

Let B =
⋃
i∈ω bi. One can observe that for the semifilter F in the theorem one can

make choices of mi and ai for i ∈ ω so that B ∈ F . We prove that B∩f−1(B) = ∅.
Let k ∈ B be arbitrary, i.e., k ∈ bi for some i > 0. Then k /∈ f−1(bi) by (ii);
k /∈ f−1(bj) for all j < i because bi ⊆ Bj and Bj ∩ f−1(bj) = ∅ by (iii); and
k /∈ f−1(bj) for all j > i because bj ⊆ Bi and bi ∩ f−1(Bi) = ∅ by (iv).

(b) As we have already mentioned before Lemma 6.5, F is an r-semifilter. By (a),
F has no local diagonal and therefore by Theorem 6.1, F ∩ P(A) is a Rosenthal
semifilter for every A ∈ F . �

By Corollary 4.6, every Rosenthal filter F is the intersection of a finite family of
ultrafilters pairwise incomparable in the Rudin-Keisler ordering. Due to the corre-
spondence between filters and closed subsets of βω this finite family of ultrafilters
equals to the set {p ∈ βω : F ⊆ p}. By the next theorem it is consistent to have an
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uncountable collection C of ultrafilters such that the intersection of every nonempty
finite subfamily of C is a Rosenthal filter.

Theorem 6.7. It is consistent with ZFC that there is an uncountable collection C
of r-ultrafilters on ω with the following properties:

(i) C contains uncountably many selective ultrafilters and uncountably many
non-selective ultrafilters.

(ii) If C0 ⊆ C is countable nonempty, then
⋂
C0 is an r-filter

(iii) If C0 ⊆ C is countable nonempty and all ultrafilters in C0 are selective, then⋂
C0 is an s-filter.

(iv) If ∅ 6= C0 ⊆ C, then
⋂
C0 is a Rosenthal filter if and only if C0 is finite.

Proof. Fix a partition a ∈ P∞ of ω consisting of finite sets and let a[x] =
⋃
n∈x an

for x ⊆ ω. Let κ be an uncountable cardinal and for every α ∈ κ let Fα = H>0
a if

α is even and Fα = [ω]ω if α is odd (where 2ξ is even and 2ξ+ 1 is odd). For every
α ∈ κ fix πα : Fα → [ω]ω such that

(∀A ∈ Fα)(∀x ∈ [πα(A)]ω) A ∩ a[x] ∈ Fα.
For example, if Fα = H>0

a , then for A ∈ Fα let πα(A) ∈ [ω]ω be such that
limn∈πα(A) |an ∩ A| = ∞; if Fα = [ω]ω, then for A ∈ Fα let πα(A) = {n ∈ ω :
an ∩A 6= ∅} (this works because a contains only finite sets).

Let P =
∏
α<κ Fα be ordered by p ≤ q iff (∀α ∈ κ) p(α) ⊆∗ q(α). Let G ⊆ P

be a V -generic filter on P. The forcing P is ω-closed because (Fα,⊆∗) is ω-closed
for every α ∈ κ. Therefore κ remains uncountable in V [G] and V [G] has no new
reals and no new countable subsets of κ. For every α ∈ κ, Gα = {p(α) : p ∈ G} is
a generic filter on Fα, consequently, an r-ultrafilter on ω which is selective if and
only if α is odd. Let C = {Gα : α ∈ κ}. Condition (i) is obviously satisfied.

If S ⊆ κ is countable, then for every q ∈ P there is p ≤ q such that p(α) for
α ∈ S are pairwise disjoint sets. To prove this let q ∈ P be given. Find a system
{xα : α ∈ S} ⊆ [ω]ω of pairwise disjoint sets such that xα ⊆ πα(q(α)) and define
p(α) = q(α), if α ∈ κ \ S, and p(α) = q(α) ∩ a[xα], if α ∈ S.

This density argument shows that {Gα : α ∈ S} is a separated system of ultrafil-
ters for every countable set S ⊆ κ. Then

⋂
α∈S Gα =RK

∑
α∈S Gα by Lemma 4.1 (3).

Now, condition (ii) is a consequence of Lemma 5.5 (4) and condition (iii) is proved
in Lemma 5.4 (2).

We verify (iv). Let ∅ 6= C0 ⊆ C. If C0 is infinite, then
⋂
C0 is decomposable

because C0 contains a countable infinite separated family of ultrafilters. Then by
Proposition 2.4,

⋂
C0 is not a Rosenthal family. Therefore, if

⋂
C0 is a Rosenthal

filter, then C0 is finite. To prove the converse let C0 = {Gα : α ∈ S} where S ∈
[κ]<ω \{∅} and let G′ =

⋂
α∈S Gα. Since S is finite there is a partition {Aα : α ∈ S}

of ω such that Aα ∈ Gα for α ∈ S. Then by Lemma 5.5 (1, 4), the filter G′ is an
r-filter because G′ = {A ⊆ ω : (∀α ∈ S) A ∩Aα ∈ Gα} =RK

∑
α∈S Gα ∩ P(Aα). To

prove that G′ is a Rosenthal filter, by Theorem 6.1 it is enough to prove that G′
has no diagonal (since then, by Lemma 2.3, G′ has no local diagonal).

Denote P�S = {p�S : p ∈ P}, G�S = {p�S : p ∈ G}, and Q = {q ∈ P�S : q ≤ 〈Aα :
α ∈ S〉}. The semifilter F = {A ⊆ ω : (∀α ∈ S) A ∩ Aα ∈ Fα} (partially ordered
by ⊆) is forcing equivalent to Q because the injection ϕ : A 7→ 〈A ∩ Aα : α ∈ S〉
for A ∈ F is a complete dense embedding from F into Q. The filter G′ is mapped
by ϕ onto (G�S)∩Q which is a generic subset of Q. Therefore G′ is a generic subset
of F . Let f ∈ ωω be a non-diagonal function. Since F =RK

∑
α∈S Fα ∩P(Aα), by
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Theorem 6.6, f is not a local diagonal of F and hence, for every A ∈ F there exists
B ∈ F ∩ P(A) such that B ∩ f−1(B) = ∅. By genericity of G′ there is B ∈ G′ such
that B ∩ f−1(B) = ∅. This proves that G′ has no diagonal. �

Recently, Piotr Koszmider and Arturo Mart́ınez-Celis proved in [7] that every
ultrafilter is a Rosenthal family and that ros = r. By Proposition 3.3 and Proposi-
tion 3.4 the equality ros = r has this consequence:

Corollary 6.8. diag ≤ diag = diag = dcmp = ros = r. �

Based on the previous results, it is natural to ask the following question:

Question 6.9. Is there in ZFC an infinite (or uncountable) family C of ultrafilters
such that

⋂
C0 is a Rosenthal filter for every nonempty finite family C0 ⊆ C?
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