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CARDINAL INVARIANTS AND THE COLLAPSE
OF THE CONTINUUM BY SACKS FORCING

MIROSLAV REPICKY

Abstract. We study cardinal invariants of systems of meager hereditary families of subsets of OJ con­

nected with the collapse of the continuum by Sacks forcing §and we obtain a cardinal invariant l)w such

that § collapses the continuum to l)w and l) :::: l)w :::: b. Applying the Baumgartner-Dordal theorem

on preservation of eventually narrow sequences we obtain the consistency of l) = l)w < b. We define

two relations ::5; and ::5~ on the set (W OJ) Fin of finite-to-one functions which are Tukey equivalent to the

eventual dominance relation off unctions such that if9' <:::: (WOJ)Fin is::5~-unbounded, well-ordered bY::5~,
and not ::5;-dominating, then there is a nonmeager p-ideal. The existence of such a system 9' follows from
Martin's axiom. This is an analogue of the results of [3], [9, 10] for increasing functions.

§o. Introduction. The question when Sacks forcing § collapses cardinals arose
after the proof of Baumgartner and Laver [4]that adding W2 Sacks reals by countable
support iteration to a model of CH one gets a model in which Sacks forcing collapses
the continuum to WI. Roslanowski and She1ah [12] proved that Sacks forcing
collapses the continuum to the dominating number il which was a confirmation of
the hypothesis of Carlson and Laver [5]. Shortly after Peter Simon [13] proved
the collapse of the continuum by § to the unbounded number b (see also [11,
Theorem 3.1 (1)] for a simplification of the proof). On the other hand, Judah,
Miller and Shelah [8] proved the consistency of Martin's axiom together with the
collapse of the continuum by Sacks forcing to WI. This indicates that the previously
mentioned results on the collapse of cardinals by Sacks forcing are far from the
complete answer. In connection with Martin's axiom we can ask about (definable)
cardinal invariants to which Sacks forcing collapses the continuum and which are
equal to the continuum under Martin's axiom. From another point of view we can
ask about a simple principle violating Martin's axiom which implies the collapse of
the continuum by Sacks forcing to WI.

In the present paper we continue this study. In Section 1 to every perfect tree
p <:;:: <OJ 2--condition of the Sacks forcing §.-we associate several hereditary meager
families of subsets of w. These families are naturally connected with various ways
of measurement of rapidity of branching in perfect trees. This way we obtain
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several natural systems % of hereditary meager sets I s::; g(w) and we introduce
several cardinal invariants for them which are monotone with respect to a pre­
ordering :S of %'s. Later in Section 2 it is shown that some of these cardinal
invariants characterize the unbounded number b or the dominating number ". The
most important cardinal from them is K;(%). It is shown that K;(%) 2:: Q for many
families % where Q is the distributivity number of g(w ) jFin, but there is a system
% = {IJ : p E §} of meager ideals for which K;(%) is exactly the cardinal to which
§ collapses the continuum (Theorem 1.11). This is the substance of the above
mentioned Simon's proof.

In Section 3 the following property of hereditary sets is isolated and studied: A set
I s::; g(w ) is said to be w-small if there is a countable set B s::; [w yo such that for every
x E I there is b E B such that Ix nb I < w. For the family Lw of w-small hereditary
subsets of g(w), the cardinal K;(Lw) has the form Qw which can be considered
as a generalization of the distributivity number Q = Ql. By monotonicity of the
cardinal invariant K;(%), we have Q ::; Qw ::; b and by applying the preservation
theorem of Baumgartner and Dordal for eventually narrow sequences in a finite
support iterated forcing we obtain the consistency of Qw < b (Theorem 3.6). It
follows that Qw is an upper bound for the collapse of the continuum by §which is
consistently strictly smaller than b.

Baumgartner and Dordal [3] have proved that under Martin's axiom there exists
a well-ordered family of increasing functions which is not a dominating family.
This result was used in [9, 10] for a construction of a nonmeager p-ideal. Finite­
to-one functions can be in some sense considered as a generalization of increasing
functions. The advantage of this generalization is that the domain and range of
functions need not be ordered. Section 4 deals with an analogue of these results for
finite-to-one functions although the results are expressed in an equivalent language
using partitions of w into finite sets.

Our notation is standard and it is more or less compatible with that of [2,6, 7].

§1. Meager hereditary families. A tree is a set p s::; <w2 such that (1) 0 E p, (2) if
t E P and s s::; t, then s E p, and (3) s~O E p or s~1 E p for every s E p. A tree p
is perfect if for every s E p there is t E <w 2 such that s s::; t, t~O E p, and t~ 1 E P
(i.e., t is a splitting node of p). If p is a tree and s E p, then (p)s = {t E P : t s::; s or
s s::; t} is a tree. We denote the set of splitting nodes and the set of levels containing
splitting nodes for a given tree p by

sp(p) = {s E p: s~O E p ands~1 E p},

br(p) = {n E w : sp(p) n n 2 =1= 0}.

For a tree p and a set a s::; w the tree p[a] s::; p is defined by induction (see [13]):

1. 0Ep[a].

2. If s E p[a] and Isl = n, then s~O E p[a] if and only if s~O E p, and
s~1 E p[a] if and only if s~1 E p and n E a or s~O tf- p.

Clearly, p[a] is a maximal tree q s::; p with br(q) s::; a.
Trees provide countable coding of closed sets in w2, namely, for every closed

set A in w2 there is a unique tree p s::; <w2 such that A = [p] where [p] = {x E
W2: ('tin E w) xin E pl. The projection ofa set A s::; W2 by a s::; w is the set
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A fa = {x fa: x E A} which is a subset of a 2. Sometimes it is easier to manipulate
with trees than with closed sets. We shall denote by § the set of all perfect trees
p ~ <co2 ordered by inclusion.

The next lemma summarizes some properties of the defined operations.

LEMMA1.1. Let p, q be trees and a, b be subsets of w.

1. br(p) ~ a if and only if p[a] = p.
2. a ~ b implies p[a] ~ p[b]. In particular, p[a] ~ p = p[w].
3. p[a][b] = p[a n b] = p[a] n p[b].
4. p[a] n q[b] ~ (p n q)[a n b]; if p[a] n q[b] is a tree, then the equality holds.
5. p[a] U p[b] ~ p[a U b]
6. If br(p) ~ a, then the projection of [p] to [p] fa is one-to-one.
7. If p is a perfect tree and br(p) ~ a U b, then there is a perfect tree q ~ p such

that br(q) ~ a or br(q) ~ b.
8. If P is a perfect tree and sp(p) ~ cud for some c, d ~ <CO2,then there is

a perfect tree q ~ p such that sp(q) ~ c or sp(q) ~ d.
9. If A ~ CO2is perfect, a E [w]CO,and A fa is uncountable, then there is a perfect

set B ~ A such that the projection of B onto B f(a \ n) is one-to-one for all .
nEw.

PROOF. Assertions (1)-(5) follow from definitions.
(6) Let x, y E [p] be distinct and let n be minimal such that x(n) =I- y(n). Then

x fn = y fn is a splitting node of p and hence n Ea. Therefore x fa =I- y fa.

(7) is a special case of (8) for c = UnEa n2 and d = UnEb n2.
(8) If sp(p) ~ cud, then either there is s E p such that sp((p)s) ~ c, or

sp((p )s) n d =I- 0 for all s E p. In the former case let q = (p)s and then sp(q) ~ c.
In the latter case let us choose inductively ts E sp(p) n d for s E <CO2so that
ts~i ~ ts-i for i E {O, I} and let q be the perfect tree with sp(q) = {ts : s E <CO2}.

Then sp(q) ~ d.
(9) Let {kn : nEw} be an increasing enumeration of a and let an = {kj : j ~ n}.

By induction we define a system of perfect sets Bs ~ A for s E <CO2 so that

(i) Bs-o, Brl are disjoint subsets of Bs, the diameter of Bs is :::;2-n for s E n2,
B0 = A, and

(ii) {Bs fan: s E n2} is a disjoint system of uncountable subsets ofan2.

Let us assume that Bs for s E n2 have been constructed. By (ii), for every s E n2

we can fix is E {O, I} such that B; = {x E Bsfan : x(kn) = is} is uncountable
and let Cs = B; fan+l. Let us choose perfect sets Cso,C} ~ Cs so that the system
{C; : s E n2 and i E {O, I}} is disjoint and let BS-i be a perfect subset of the set

{x E Bs : xfan+l E Cn of diameter :::;2-(n+1).
By (i) the system {Bs : s E <CO2} is a fusion sequence and hence the set B =

nnEco USE"2 Bs is perfect and B ~ A. We claim that the projection of B onto B fan
is one-to-one for each n. To see this let x, y E B be distinct and nEw. There are

m ~ n and distinct sx, Sy E m2 such that x E Bsx and y E Bsy. Then x fan =I- y fan

because, by (ii), Bsx fam n Bsy fam = 0. --1

REMARK1.2. These remarks are concerned with assertions of Lemma 1.1.

(1) The assumption that p[a] nq[b] is a tree in (4) is necessary for the inclusion ;2
and cannot be omitted. Namely, there are p, q, a, b (here, p, q must be distinct,
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by (2)) such that p[a] n q[b] ~ (p n q)[a n b]: Let p = <co2, q = «co2)(I),

a = b = w \ {O}. Then p[a] = «co2)(0), q[b] = q = «co2)(I)' p[a] n p[b] = {0} is
not a tree and (p n q)[a n b] = q[b] = «co2)(I)'

(2) In the inclusion (5), the equality p[a] U p[b] = p[a U b] does not hold in
general: There are p, a, b such that p[a U b] contains a perfect tree while neither
p[a] nor p[b] contains a perfect tree: Let a, b be any infinite disjoint subsets of w
such that w \ (a Ub) is infinite, 0 E a, and 1 E b. Let p be the set of all s E <co2 such
that s(i) = 0 whenever i E a Ub, i i- 0, and s(O) = 0 or s(1) = O. Then p[a], p[b]

do not contain perfect subtrees while p[a U b] contains the perfect tree «co2)(1,1).

(3) In the inclusion [p[a]Ha ~ [p]la the equality does not hold in general. In
fact, there are a perfect tree p and a E [w]COsuch that [p]la = a2 and i[q[a]] I = 1
for every tree q ~ p: To see this take infinite a ~ w such that 0 1. a and w \ a is
infinite and let p be the set of all s E <co2 such that s (i) = s (i - 1) for every positive
i E (dom s) n a.

A family I ~ .9' (X) is an ideal on a set X if (1) 0 E I and X 1. I, (2) lis hereditary
(which means that a E I whenever a ~ b for some b E 1), and (3) a U bEl for
every a, bEl.

Let I be a hereditary set on w, let f : w -+ w, and let a ~ w. Let us denote

f(1) = {x ~ w : f-l(x) E I}, f-l(1) = {x ~ w : f"x E I},

I1a = {x E I: x ~* a}

where a ~* b means that a \ b is finite.
Notice that f(1) and I1a are hereditary families and they are ideals whenever

I is an ideal. Also, f-l(f(1)) ~ I and f (f-l (1)) = I. If! is an ideal on w, then
[w]<co~ f(1) if and only if f-l( {n}) E I for every nEw.

A function f : w -+ w is finite-to-one if f -1({n }) is finite for every nEw. We
shall denote by (COW)Finthe family offinite-to-one functions.

The topology on .9' (w) has a clopen base consisting of sets [s] = {x ~ w :
x ndom s = {i : s (i) = 1}} for s E <co2,i.e., .9'(w) is homeomorphic to the Cantor
space CO2 via characteristic functions.

LEMMA 1.3. Let I ~ .9'(w) be a hereditary family. The following conditions are
equivalent:

1. I is a meager subset of.9'(w).

2. There is a disjoint sequence offinite sets {an}~o such that UnEx an 1. I for all
XE[W]co.

3. There is an increasing sequence of natural numbers {kn}~o with ko = 0 such

thatUnEAkn,kn+d 1. I for all x E [w]co.
4. There is afinite-to-one f : w -+ w such that f(1) ~ [w]<co.

PRoOF. (2) -+ (1) Let us assume that (Yx E [w]CO)UnEx an 1. I. Equivalently,
I n nnEco Um>n{y ~ w : am ~ y} = 0 because I is hereditary. However, this
condition says that I is disjoint from a GJ dense set and hence I is meager.

The implication (3) -+ (2) is trivial and for implications (3) -+ (4) and (4) -+ (2)
it is enough to apply f-l ({n}) = [kn, kn+1) and an = f-l ({n}), respectively.

(1) -+ (3) If I is meager, then I ~ UkECOhfor some nowhere dense sets Fk such
that h~Fk+l for all k E w. For k E w let h(k) be the least m > k for which
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there is a nonconstant function 'Pk,m : [k, m) ~ 2 such that [s U 'Pk,m] n Fk = 0
for all s E k2. By induction let us define ko = 0, kn+l = h(kn), and let an = {i E
[kn, kn+ 1) : 'Pkn ,kn+l (i) = I}. Then {an} ~o is an infinite disjoint family of finite
nonempty sets and Fkn is disjoint from the set An = {x <;:;; OJ : x n [kn, kn+1) = an}

because for every x E An there is s E kn 2 such that x E [s U 'Pkn ,kn+1]. Let x E [OJ]W

and k E OJ be arbitrary. There is n E x with kn ~ k. Hence, a = UiEX ai is in An

and a rf. Fk because Fk <;:;; Fkn. It follows that UnEx an rf. I for all x E [OJ]w. As
an <;:;; [kn, kn+ 1) and I is hereditary, condition (3) holds, too. -l

Now we define some hereditary families via the structure of perfect sets. Let p

be a perfect tree. In the next definitions the variable q varies on perfect trees:

Jp = {x <;:;; OJ : I[p]lxl :s; OJ}, (1.1)

Ii = {x <;:;; <w2: (Vq <;:;; p) sp(q) rt x}, (1.2)

I~ = {x <;:;; OJ: (Vq <;:;; p) br(q) rt x}, (1.3)

I; = {x <;:;; OJ: I[p[x]]l :s; OJ}, (1.4)

Is = {x <;:;; <w2: (Vp E S) sp(p) rt x}. (1.5)

NWDp = {x <;:;; <w2 : x n sp(p) is nowhere dense in (p,:2)} (1.6)

Let n : <w2 ~ OJ be the finite-to-one function defined by n(s) = Isi. We define

(1. 7)

Clearly, Jp and NWDp are ideals. By (7) and (8) of Lemma 1.1, If, and I; are
ideals. It follows that 12 is an ideal, too. Is = If, for p = <w2 and hence Is is an
ideal. By Remark 1.2 (2), Ii need not be an ideal but it is a hereditary family. Notice
that n(ls) = [OJrw and for p = <w2, Jp = I; = Ii = [OJ ]<w and 12 = [<w2]<w.

By Lemma 1.1 (9) it follows that

Jp = {x <;:;; OJ : (Vq <;:;; p) the restriction [q]lx is not one-to-one}. (1.1')

LEMMA1.4. n(l2) = Jp <;:;; n(lf,) = I; <;:;; Ii andI2 <;:;; If, <;:;; NWDp.

PROOF.By (1.1') and Lemma 1.1 (6) we have Jp <;:;; I;' The equality n(lf,) = I;
is by the equivalence br(q) <;:;; x if and only if sp(q) <;:;; n-1(x) for x <;:;; OJ. By
Lemma 1.1 (I) we have

I~ = {x <;:;; OJ: (Vq <;:;; p) I[q[xlll :s; OJ} (1.3')

and therefore I; <;:;; Ii- The inclusion Jp <;:;; n(lf,) implies 12 = n-1(Jp) <;:;; If,. We
prove If, <;:;; NWDp.

If x <;:;; <w 2 and x rf. NWD p, then there is So E x nsp(p) such thatfor every s E p
with So <;:;; s there is s' E x n sp(p) with s <;:;; s'. This enables an inductive definition
of a perfect tree q <;:;; p with stem So such that sp(q) <;:;; x and hence x rf. IJ,. -l

In general, the inclusions in Lemma 1.4 are strict. For example, by (1.3') and
Remark 1.2 (3), Jp is usually distinct from I;'

LEMMA1.5. Jp, If" I;, Ii are meager in 9'(OJ), and 12, NWDp are meager in
9'«w2).
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PROOF. By Lemma 1.4 it is enough to prove that IJ and NWDp are meager. Let
f p E Ww be such that for every s E p with Isl = f p(n) there exists a splitting node
t :2 sin p with It I < fp(n + 1). The sets an = [fp(n),Jp(n + 1)) for nEw are

pairwise disjoint and for every x E [w]Wwe have UnEx an 1:- Ii because p[UnEx an]

is a perfect tree. This proves that Ii is meager. To prove that NWD p is meager take
for an the nth splitting level of p. -1

We will prove in Lemma 3.4 that all these hereditary sets belong to a smaller class
than the class of meager hereditary sets.

By next lemma every ideal 12 is isomorphic to some Jq where the isomorphism is
given by a fixed bijection from <w2 onto w.

LEMMA1.6. For every p E § and every f E (WW)Pin there is q E § such that

Jq = f-l(Jp).

PROOF. Set q = {s E <w2 : (3t E p) s ~ f 0 t} where (f 0 t)(k) = t(f(k)).
Then [q] = {f 0 x : x E [pH and [qHa = {(fta) 0 y : y E [pHf"a} for every
a ~ w. As the composition operation is one-to-one it follows that a E Jq if and
only if f"a E Jp. -1

LEMMA1.7. § is isomorphic to a dense subset of !!J>«w2)/ Is.

PROOF. Let [x]s denote the equivalence class determined by the set x ~ <W2
modulo the ideal Is. The mapping <p: § -+ !!J>«w2)/ Is defined by <p(p) = [sp(p )]s
is a dense embedding. -1

REMARK1.8. Let B be an almost disjoint family on w of size 2w. If I is
a hereditary meager subset of !!J>(w)and f is a finite-to-one function such that
f(I) ~ [w]<w, then A = {f-l(x) : x E B} is almost disjoint family of size 2W and
A n I = 0. Therefore meager ideals are not c.c.c ..

For a ~ wand A ~ !!J>(w)by a ..l A we mean la n bl < w for all b E A. If
I ~ !!J>(w)is a hereditary set, then a ..l I if and only if[ar n I = 0. A matrix is
a set of maximal almost disjoint families on w.

Now we introduce some cardinal invariants for subsets % of the system

L = {I ~ !!J>(w) : I is a hereditary meager set}.

For arbitrary % ~ L we define

"'(%) = min{I.w'1 :.w' is a matrix and ('VI E %)(3A E .w') IA \ II = 2W},

",'(%) = min{lsrl + 1.w'1: sr ~ (WW)Fin,.w' is a matrix, and
('VI E %)(3f E sr)(3A E.w') IA \ f(1)1 = 2W},

A(%) = min{lsrl + 1.w'1: sr ~ (WW)Pin,.w' is a matrix, and
('VI E %)(3f E sr)(3a E U.w') a ..l f(In,

A'(%) = min{lsrl: sr ~ (WW)Finand ('VI E %)(3f E sr)(3a E [w]W) a..l f(In,

p.(%) = min{lsrl : sr ~ (WW)Pinand ('VI E %)(3f E sr) w ..l f(In.

Sometimes it will be useful to consider the system L(Q) of meager hereditary
subsets of!!J>(Q) for an infinite countable set Q. It is easy to rewrite the definitions of
the above cardinals in this more general context by means offinite-to-one functions
f :Q -+ W (for ",I, A, A', p.) and by means of almost disjoint families on Q (for",).
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Let Q and Q' be any countable infinite sets and let % ~ L(Q) and %' ~ L(Q').
We define % ::S%' if and only if there is a finite-to-one function h : Q -+ Q' such
that (VI E %)(31' E %') h(I) ~ I' where h(I) = {x ~ Q' : h-1(x) E I}.

LEMMA1.9. The defined cardinal invariants are monotone with respect to the rela­

tion ::S.Hence, % ::S%' implies 0(%) ~ O(%')lor 0 E {~, ~', A, A',p}.

PROOF.Without loss of generality let Q = Q' = w. If I, h E (WW)Fin,a ~ w,
and A,I,J ~ g;(w), then thefollowing holds:

1. a E h(I) if and only if h-1 (a) E I.

2. A is almost disjoint if and only if {h-1(a) : a E A} is almost disjoint.
3. h olE (wW)Fin,where (h 0 I)(n) = I(h(n)).
4. I ~ J implies I(I) ~ I(J).

For monotonicity of ~ apply (1) and (2) and for monotonicity of ~'(%), A(%),
A'(%), p(%) apply (3) and (4). -1

Using relation::s from Lemma 1.9 the inclusions of Lemma 1.4 can be rephrased
as follows:

LEMMA1.10.

1. {IJ: p E §}::S {I; : p E §}::S {Ii: p E §}::S {Ii: p E §}.
2. {I2: p E §}::S {Jp: p E §}::S {Ii: p E §}.
3. {I; : p E §} ::S {NWDp : p E §}. -1

A matrix in § is a system d of antichains in §. d is a shattering matrix if
every element of § is compatible with continuum many elements of some antichain
A Ed; d is a weakly shattering matrix if every element of § is compatible with
continuum many elements of Ud; d is a base matrix if Ud is dense in §. The
least cardinal to which Sacks forcing collapses the continuum we denote by sh(§).
The cardinal sh(§) is equal to the minimal size of a shattering matrix in §, to the
minimal size of a weakly shattering matrix, and to the minimal size of a base matrix.
Moreover, sh(§) ~ cf 2w (see e.g., [11]).

Let us note that we use the word matrix in two different meanings, one as a matrix
in § and the other as a matrix in g;(w)/Fin. We assume that the reader will guess
the intended meaning from the context of the occurrence.

The motivation for introducing the above cardinals comes from Simon's proof
of the fact that Sacks forcing collapses the continuum to b (see [13, 11]). Let us
note that this proof corresponds to the system of meager hereditary sets % = {I; :
p E §} and its basic idea is behind the proof of the inequalities sh(§) ~ ~({ I; :
p E §}) ~ b. The first inequality is a consequence of the next theorem and the
second is proved later by Theorem 2.5 or Theorem 2.6.

THEOREM1.11. ~ ~ ~({Jp : p E §}) and ~({I; : p E §}) = sh(§).

PROOF.Let d be a matrix of size < ~. There is a E [w]W such that (VA E d)
(3b E A) a ~* b. Let p = {s E <w2 : (Vi E (doms) \ a) s(i) = O}. Then
Jp = {x E g;(w) : Ix n al < w} and IA \ Jpl = 1 for every A E d. This proves
that ~ ~ ~({ Jp : p E §}).

Let d be a matrix satisfying the condition in the definition of ~({ I; :p E §})
(note that the underlying set for antichains and hereditary families is the countable
set <w2 instead of w). Then § = UAE,W' §A where §A = {p E § : IA \1;1 = 2W}. For



718 MIROSLAVREPICKY

every A E .91, since [SAI:::;c, we can fix a one-to-one function nA : SA -+ A such
that nA (p) (j. Ii. Now for every p E SAlet us fix a perfect tree P A (p) ~ p such that
SP(PA (p)) ~ nA (p). Then BA = {PA (p) : p E SA} is an antichain in S refining SA
and hence {BA : A E .91} is a base matrix. It follows that sh(S) :::;/'i,( {Ii: pES}).

Now we prove /'i,({Ii : pES}) :::; sh(S). Let $ = {B" : a < sh(S)} be
a shattering matrix forS. By [8, Lemma 1.1] or [11, Theorem 2.4] every antichain B"
can be refined to a maximal antichain B~ so that {[p] : p E B~} is a disjoint family
of sets. Then A" = {sp(p) : p E B~} is an almost disjoint family of subsets of<w2
for all a < sh(S). Let pES be arbitrary. As $' is a shattering matrix for S
there is a such that p is compatible with continuum many elements of B~. Then
IA" \ Ii I = 2W because p, q E S are compatible if and only if sp(q) (j. Ii. -1

For some estimations we will need the following property of b.

LEMMA1.12. Let sr ~ (WW)Finand [sri < b. There is an increasing sequence of

natural numbers {nk} ~o such that

(Vf,g E sr)(VOOn E w)(3k E w) f-l({n}) ~ g-I([nkonk+2)).

PROOF.For f,g E sr let hf,g(n) = min{m E w : (Vk E w) f-l({k}) n
g-l(n) =I- 0 -+ f-l({k}) ~ g-l(m)} (recallthatn = {O,I, ... ,n-l}). Let
h E Ww eventually dominates the system of functions {hf,g : f,g E sr} and let
h(n) > n for all n. Let us define no = 0 and nk+l = h(nk). Now, if f,g E sr, then
for all but finitely many nEw, if k is minimal such that f-l ({n}) ng-1 (nk+l) =I- 0,
then f-l({n}) ~ g-l(hf,g(nk+d) ~ g-l(h(nk+l)) = g-l(nk+2)' and hence,
f-l({n}) ~ g-l(nk+2) \g-l(nd = g-I([nkonk+2))' -1

LEMMA1.13. ).'( {I~ : pES}) ~ b.

PROOF.Let sr be a family offinite-to-one functions f : <w2 -+ wand [sri < b.

We find pES such that (Vf E sr)(Va E [w]W)(3b E [a]W) b E f(I~).
By Lemma 1.12 there is an increasing sequence {nd~o such that

(Vf E sr)(VOOn E w)(3k E w) f-l({n}) ~ n-l([nkonk+2)) (1.8)

where n(s) = [s I for s E <w2. By induction let us define a perfect tree p ~ <w2 so
that the following two conditions are satisfied:

1. For every k E w there is at most one s E p such that nk :::; Is [ < nk+2 and
s~l E p.

2. s ~ 1 E P if and only if s is a splitting node of p.
We show that p has the required properties. Let f E sr and a E [w]W be given.

By (1.8) and by refining a if necessary we can assume that for every i E a there is
k(i) E w so that f-l ({ i}) ~ n-1 ([nk(i), nk(i)+2)) and the intervals [nk(i)' nk(i)+2) for
i E a are pairwise disjoint. For i E a let us fix Si E P so that nk(i) :::; [SiI < nk(i)+2
and so that Si E sp(p) whenever possible. For i E a and y E [p] the following
conditions hold:

3. y(n(si)) = 1 if and only if Si E sp(p) and Si ~ y.

4. yf(n"f-l({i})) =I- 0 if and only if y(n(si)) = 1.
Using Konig's lemma we can find an infinite set b ~ a and x E W2 such that
Si n x ~ Sj n x for i < j and i, j E b. Then, by (3) and (4) we get

5. (3°Oi E b) yf(n"f-l({i})) =I- o if and only ify = x.
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It follows that [pHn"f-!(b) is countable. Therefore f-!(b) E n-!(Jp) and hence

bE f(IJ). -1

REMARK1.14. Notice that definitions of ..1.'(2) and /1(2) were obtained from
definition of ..1.(2) by removing sf. By removing:T from ..1.(2) in order to obtain
a definition of an invariant, a need to look for a matrix sf of minimal size having
the property

(VI E 2)(::Ja E Usf) a ..l I

arrives. However, there is no such sf if 2 contains an I such that (Va E [w]W)

(::Jb E [a]W) bEl (for example the ideal I = I§ has this property). In particular,

there is no such sf whenever {IJ : P E §} ::S 2 (see the proof of Lemma 1.13).

LEMMA1.15. If {IJ : P E §} ::S 2, then ",(2) = ",'(2) ::::;..1.(2) = ..1.'(2) ::::;
/1(2).

PROOF. If sf satisfies the condition for ",(2), then sf satisfies also the condition
for ",'(2) for:T = {idw} containing only the identity on w. Therefore ",'(2) ::::;
",(2). For the inverse inequality it is enough to observe that if A is an almost
disjoint family and f E (WW)Fin,then A' = {f-!(a) : a E A} is almost disjoint
and IA \ f(1)1 = lA' \ II for every I.

Let (:T,sf) be a witness for ..1.(2). For A E sf let A' be a refinement of A such
that I{b E A' : b ~* a}1 = 2W for all a E A. Let sf' = {A' : A E sf}. Then
(:T, sf') is a witness for ",' (2). Therefore ",' (2) ::::;..1.(2).

Applying a base matrix of 9" (w) IFin of size ~ in definition of ..1.(2) we can see
that A' (2) ::::;..1.(2) ::::;A' (2) + ~.As ~ ::::;b and A' (2) 2: b, the equalities hold.

The inequality ..1.'(2) ::::;/1(2) is trivial. -1

In the next section we prove that ..1.(2) = band /1(2) = il.

§2. Some characterizations of band il. In general, a binary relation is a triple of
sets A = (A_,A+,A) where A ~ A_ x A+: in the case when A_ = A+ = X we
represent the binary relation A as a pair (X, A).

Let b(A) and il(A) denote the minimal cardinality of an unbounded family and
of a dominating family for a relation A, respectively, i.e.,

b(A) = min{IZI : Z ~ A_ and (Vy E A+)(::Jz E Z) ,A(z,y)},

il(A) = min{IZI : Z ~ A+ and (Vx E A_)(::Jz E Z) A(x, z)}.

A morphism between relations A and JBis a pair offunctions <p_ : A_ ---> B_ and
<p+ : B+ ---> A+ such that

(Va E A_)(Vb E B+) B(<p_(a),b) ---> A(a,<p+(b)).

If there is a morphism between A and JB,then b(JB) ::::;b(A) and il(A) ::::;il(JB).
For the existence of a morphism between A and JBit is sufficient to have a function

<p_ : A_ ---> B_ such that for every bounded set X ~ B_ the inverse image <p=!(X) is
a bounded subset of A _ (let us recall that X ~ B _ is bounded if there is y E B+ such
that B(x, y) for every x E X). We shall call such a function <p_ a Tukey embedding

(then <p+(b) E A+ can be defined as a bound of the set <p=!({x E B_ : B(x, b)})
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for b E B+). The relations A and lffi are said to be Tukey equivalent if there are
Tukey embeddings from A to lffi and from lffi to A.

For more details on morphisms and Tukey embeddings see [1].
Let .9'pin denote the family of all partitions of w into nonempty finite sets. Here,

by a partition we mean a disjoint family of sets covering w not containing the
empty set. By technical reasons we represent these partitions as countable infinite
sequences of sets. The indexing sets for these partitions can be arbitrary infinite
countable sets (in most of the considered cases they are infinite subsets of w).

For a, b E .9'pin and lfI E W w, lfI 2: 1, we define

a ~~ b if and only if (VCOn)(3\f1(n)k) ak ~ bn,

a ~ob if and only if (VCO(n, k)) bn % ak

where 3n k means that there are n many k.
All relations ~~ with lfI 2: 1 are transitive and the relation ~i is moreover

reflexive.

Every f E (W W )Fin defines a partition {f -I ({n }) : n E rng(j)} E .9'pin together
with its indexing: This representation of elements of .9'pin we use to define the

corresponding relations on (WW)Finwhich we denote by the same symbol ~~', i.e.,
for f, g E (WW)Finand for lfI 2: 1 or lfI = 0 we define

f ~~ g if and only if {f-I({n}) : n E rng(j)} ~~ {g-I( {n}) : n E rng(g)}.

We will need the following transformations between partitions and increasing
functions: For a strictly increasing function f E Ww such that f(O) > 0 let

c(j) = {cn(j)}~o be a partition of W into intervals defined by co(j) = [0, f(O))
and Cn+I(j) = [f(n),j(n + 1)). Conversely, for a E .9'pin we define a strictly
increasing function <p(a) E Ww by <p(a)(n) = min{k > <p(a)(n - 1) : (3i) ai ~
[<p(a)(n -1),k)}whereweset<p(a)(-l) =0. Then a ~I c(<p(a)) and <p(c(j)) =
f·

LEMMA2.1. The following conditions hold:

1. a ~~ band b ~i c implies a ~~ c.
2. a ~i b implies a ~ob.
3. Ifa ~i b, then (VCOn)<p(a)(n) < <p(b)(2n).

4. If f,h E Ww are strictly increasing, f(O) > 0, h(O) > 0, and c(j) ~~ c(h),
then (VCOn)f(n) < h(2n).

PROOF. (1) and (2) are trivial.

(3) Assume that a ~i b, i.e., there is mo such that (Vm 2: mo)(3k) ak ~ bm• Let

no = 1 + maxUm<mo bm• Since no :::; <p(b)(no - 1) we have (Vn 2: 0)(3m 2: mo)
bm ~ Cn+no(<p(b)). It follows that <p(a)(n) :::;<p(b)(n +no)for all n and hence (VCOn)
<p(a)(n) < <p(a)(2n).

(4) The case lfI 2: 1 follows by (3) because <p(c(j)) = f and <p(c(h)) = h. It
remains to prove the case lfI = O. Assume that f, h are strictly increasing and

c(j) ~o c(h), i.e., (Vco(n,k) E w x w) [h(k),h(k + 1)) % [f(n),j(n + 1)). It
follows that (VCOn) 1rngh n [f(n),j(n + 1))1 :::; 1 and so there is no such that
f(n) :::;h(n + no) for all n. Consequently, (VCOn)f(n) < h(2n). -1

THEOREM2.2. ((wW)Fin, ~~) is Tukey equivalent to (Ww, :::;*)for every lfI 2: 1 and

for lfI = O. Consequently, b = b((WW)Fin,~~) and-o = -o((WW)Fin,~~).
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PROOF.We find Tukey embeddings a : (Ww, ~*) -+ (9'Fin,~~) and
p: (9'Fin,~~) -+ (Ww, ~*).

For f E Ww let f'(n) = max{f(k) : k ~ n} + n + 1 and we set aU) = cU').

Assume that g- ~ 9'Fin is ~~-bounded, i.e., there is a E 9'Fin such that b ~~ a

for all bEg-. As a ~i c(ip(a)), by Lemma 2.1 (1), b ~~ c(ip(a)) for all bEg-.

Therefore cU') ~~ c(ip(a)) for all f E a-l(g-). Then, by Lemma 2.1 (4), (V'oon)

f(n) ~ f'(n) < ip(a)(2n). Therefore a-l(g-) is bounded in (Ww, ~*).
Set p = ip. Let g- ~ Ww be ~*-bounded by a strictly increasing function h E Ww

such that h (n) > n for all n. For If/ E W w, If/ 2': 1let us define by induction h *(0) = 0
and h*(n + 1) = h(h*(n) + If/(n)). We prove that P-l(g-) is bounded by c(h*) in
(9'Fin,~~).

Let a E p-l (g-) = ip-l (g-). There is m such that ip(a )(k) ~ h(k) for all k 2': m.
Let no be such that h*(no) > ip(a)(m). Given n 2': no let k be minimal such that
h*(n) ~ ip(a)(k). Then m < k ~ h*(n) because k - 1 ~ ip(a)(k - 1) < h*(n).
Hence [ip(a)(k), ip(a)(k + If/(n))) ~ [h*(n), h*(n + 1)) because ip(a)(k + If/(n)) ~

h(h*(n)+lf/(n)) = h*(n+l). Therefore a ~i c(ip(a)) ~~ c(h*)andsoa ~~ c(h*)
for all a E p-l(g-). The case If/ = 0 follows by Lemma 2.1 (2) from the case,
If/ = 2. -1

Let us recall that the additivity add(g-) and the cofinality cof(g-) of a family
of sets g- are the minimal size of an unbounded family and the minimal size of
a dominating family, respectively, in the partially ordered set (g-, ~).

COROLLARY2.3. add(L) = band cof(L) = il.

PROOF.For a E 9'Fin let I(a) = {x ~ w : (V'oon) an \ x =1= 0}. By Lemma 1.3,
I E L if and only if there is a E 9'Fin such that I ~ I(a). We show that for
a, b E 9'Fin, I(a) ~ I(b) if and only if a ~i b. Then the equalities add(L) = b

and cof(L) = il follow by Theorem 2.2.
The implication a ~ ib -+ I (a) ~ I (b) follows directly by definitions. To prove

the inverse implication let us assume that a ~i b. Then the set x = {n E w : (V'k)
ak \ bn =1= 0} is infinite. By induction on i E w let us choose ni E x so that the sets
{k : ak n bn; =1= 0} for i E ware pairwise disjoint and denote y = UiEW bn;. Then
y rj.I(b) andy E I(a) becauseak \y =1= 0forallk. ThereforeI(a) ct. I(b). -1

THEOREM2.4. Let Lo be the set of all meager ideals on w. Then add(Lo) = 2 and
cof(Lo) = 22"'.

PRoOF. It is enough to prove that there is a system of 22"' meager ideals on
a countable set Q such that no pair of them has a common upper bound in Lo. The
standard construction of an independent system of 22"' subsets of a countable set is
the key for the proof: Let Qn = {(n,s) : s E 9"(n)2} and let Q = UnEw Qn. Then
IQnl < wand IQI = w. For x ~ wand i E 2 let Ax,i = {(n, s) E Q : s(x nn) = i}.
Then {Ax,i : x E ,9l(w) and i E 2} is an independent system of size 22"' on Q,
i.e., Ax,l = Q \ Ax,o and for every finite set B ~ ,9l(w) and ip : B -+ 2 the
intersection nXEB Ax,<p(x)is infinite. Then for every function f : ,9l(w) -+ 2 the
system {Ax,f(x) : x E ,9l(w)} generates an ideal on Q which we denote by If.

Hence, if a E If, then there is a finite set B ~ ,9l(w) such that a ~ UXEB Ax,f(x) =
Q \ nXEB Ax,l-f(x)' Let no be the least n such that x n n =1= x' n n whenever
x, x' E B and x =1= x'. For n 2':no let Sn : ,9l(n) -+ 2 be defined by sn(V) = 1- f(v)
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if V E {x n n : x E B} and sn(v) = 0 otherwise. Then (n,sn) ~ UXEBAx,f(x)' It
follows that the set {n : Qn S;;;a} is finite for every a E If and so the ideals If are all
meager. If f,f' : 9"(w) --+ 2 are distinct, i.e., f(x) =I- f'(x) for some x E 9"(w),

then Ax,f(x) E If and Q \ Ax,f(x) = Ax,f'(x) E If'. Therefore If and Ifl have no
common upper bound in Lo. -1

THEOREM 2.5. If {I~ : p E §} ~ 2 ~L, then A(2) = band Jl(2) = D.

PROOF. Forg E (Ww)FinthesetIg = {x S;;;w: (vook E rng(g))g-l({k})\x =I-0}

is a meager hereditary set on w (compare with proof of Corollary 2.3). Notice that
for a E [w]W and f,g E (WW)Fin,

a 1- f(Ig) ~ (Vb E [a]W) f-l(b) ~ Ig

~ (Vb E [a]W)(::Joon E b)(::Jk E rng(g)) g-I({k}) S;;;f-l({n})

~ (Voon E a)(::Jk E rng(g)) g-I({k}) S;;;f-l({n}).

The second equivalence holds because we can find infinite set b' S;;;b such that the
sets {k : g-1 ({k}) n f-l( {n}) =I- 0} for nEb' are disjoint. Therefore

g ~i f ~ rng(f) 1- f(Ig),

f to g ~ (::Ja E [w]W) a 1- f(Ig).

Let:T be any system of functions f E (WW)Fin such that rng(f) = w. It is easy
to see that in definitions of cardinals A' (2) and Jl(2) it is enough to consider such

families. As every meager hereditary set on W is a subset of some Ig, the last two
equivalences say

:T is ~i -dominating ~ (VI E L)(::Jf E :T) W 1- f(l),

:T is :::;o-unbounded ~ (VI E L)(::Jf E :T)(::Ja E [w]W) a 1- f(I).

Then, by Theorem 2.2, Jl(L) = Dand A'(L) = b. By Lemma 1.13 and Lemma 1.9
we then obtain A(2) = b. To finish the proof of Jl(2) = D, by Lemma 1.9 it is

enough to prove D ~ Jl( {I~ : p E §}).
For an infinite set a S;;;w the set Pa = {s E <w2 : (Vi E (doms) \ a) s(i) = O}

is a perfect tree. Then Jpa = {x S;;;w : Ix n al < w} and I~a = n-1(Jpa) = {x S;;;

<w2: Ixnn-1(a)1 < w} S;;;I)a' Let:T be a system offinite-to-one functions

f : <w2 --+ w of size Jl({I~ : P E §}) satisfying the condition in definition of

Jl( {I~ : p E §}). Then for every a E [w]W there is f E :T such that f(I~J = [w]<w

and hence (Voon E w) n-1(a) n f-l({n}) =I- 0. For f E :T we define mt = 0,

m:+1 = min{m E w : (Vk ~ n) n"f-l({m}) n n"f-l({m{}) = 0}, hf(n) =
maxU{n"f-l({m}) : m ~ m{n}. We show that {hf : f E :T} is a dominating
family in Ww and hence d ~ I:TI. Let h E Ww be strictly increasing. Then
a = rng(h) is an infinite subset of wand hence there is f E :T and k E w such that

(Vn ;::::k) n-1(rng(h)) n f-l({n}) =I- 0. Then for n ;::::k, hf(n) dominates at least

n + I different values of rng(h) (from each set n" f -1({m{}) for k ~ i ~2n at

least one value) and hence hf(n) ;::::h(n). This proves that D ~ Jl( {I~ : p E §}). -1

THEOREM 2.6. ~(Lo) = ~(L) = b.
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PROOF. It is enough to prove that b :s: K(.40) because K(.40) :s: K(.4) :s: A(.4) =
b. Let N be a matrix of size < b. Let C S;; UN be a maximal family such that
nCo is infinite for all Co E [C]<w. Let B be the closure of C on finite intersections.
Hence, if A EN then either IA n BI :s: lor for every x E A there is y E B such that
x ny is finite. Let I be the ideal generated by {w \ x : x E B}. I is the union of less
than b meager hereditary sets Ix = {y S;; w : Iy n x I < w} for x E B. Therefore,
by Corollary 2.3, I is meager. But IA \ II :s: 1 for all A E N. This proves that
b :s: K(.40)' -1

§3. Small hereditary sets. For a given system B S;; [w]W we say that a set I S;;

.9'(w) is B-small if for every x E I there is b E B such that Ix n bl < w. If B
is closed on finite modifications of its elements, then we can require x n b = 0 in
the definition of a small set. Notice that the closure of a B-small set on subsets is

again a B -small set. The largest B -small set with respect to the inclusion is the set
IB-small= {x S;; w : (:3b E B) Ib n xl < w}. We say that I S;; .9'(w) is y-small if
there is a set B S;; [w]W of size :s: y such that I is B -small.

LEMMA3.1. A B-small set is meager whenever IBI < b.

PROOF. Let I be a (hereditary) B -small set. Let fh E (w W )Fin for b E B be such
thatf-l({n})nb i- 0foreveryn E w. Since IBI < b, thereisf E (WW)FinSuch
thatfh::;j f forallb E B. Thenf(I) S;; [w]<w and hence I is meager. -1

EXAMPLE3.2. (1) Let A be an almost disjoint family of subsets of wand let
I(A) = {x S;;w: (:3X E [A]<W) x S;;*UX}. TheidealI(A) isw-small. To see this
take any set B E [A]w.

(2) There is a meager hereditary set I which is not y-small for y < 2w. Let
I = {x S;; <w2 : (Voon E w) n2 \ x i- 0}. Let us assume that B S;; [<w2]Wis such
that (Vx E I)(:3b E B) Ix n bl < w. For f E w2let XI = {ffn : nEw}. As
<w2 \ x I E I there is b E B such that b S;;* xI' As {xI: f E W2} is almost disjoint
it follows that IB I = 2W•

(3) There is a meager ideal I which is not w-small. Let {an : nEw} be a partition
of w such that Ian I = n for all n and let! = {x S;; w : (:3k)(Vn) Ix n an I :s: k}. Let
B S;; [w]W be countable. There is a disjoint system {Cb : b E B} S;; [wr such that
Cb S;; {k : b n ak i- 0}. Set x = {min(b n ad : b E Band k E Cb}. Then x E I
because Ix n akl :s: 1 for all k, but Ix n bl = w for all b E B.

These examples show that if I is y-small and f finite-to-one, then f (I') S;; I does
not imply that I' is y-small even if I = [w ]<W.

LEMMA3.3. Iff E (Ww)FinandIisB-small,thenf(I)isf(B)-smallandf-l(I)

is f-l(B)-small, where f(B) = {f"b : bE B} and f-1(B) = {f-l(b) : bE B}.
Hence, I is y-small if and only if f-l(I) is y-small because I = f(f-l(I)) and
B = f(f-l(B)). -1

The following lemma strengthens Lemma 1.5.

LEMMA3.4. Jp, IJ, I), If;, IJ, andNWDp arew-smallhereditary setsfor all p E §.

PROOF. By Lemma 1.4 and Lemma 3.3 it is enough to prove that NWDp and IJ
are w-small. For s E p let bs = {t E sp(p) : s S;; t}. If x E NWDp then there
is s E p such that x n bs = 0 and hence the sequence {bs : s E p} witnesses that
NWD p is w-small.
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Now we prove that I} is co-small. Let us choose a perfect tree q ~ p such that
(i) Isp(q) n n21 :S 1 for all n E co and (ii) for every s E q, s~o E q if and only if

s~o E p. By (ii), q[x] ~ p[x] for x ~ co and hence I} ~ Il- Therefore it is enough

to prove that Il is co-small. For s E q let bs be the set of all n ~ Is I for which there
is a splitting node t E sp(q) n n2 on the leftmost branch in q going through s. Let
as assume that a set x ~ co has nonempty intersections with all sets bs, s E q. Let

{St : t E <CO2}~ br(q) be such that IS01Ex n b0 and ISt-d Ex n bSt-i for t E <CO2

and i E {O, I}. Let r be the perfect tree for which sp(r) = {St : t E <CO2}. Then

r ~ q[ x] and hence x (j. Il. This proves that Il is co-small. -1

For y < 2co let LY denote the family of y-small hereditary subsets of 91(co ). Let
us denote

~Y = min{IS4f1 : S4fis a matrix, and (VB E [[co]COf:':Y)(3A E S4f)
I{x E A: (Vb E B) Ib nxl = co}1 = 2CO},

~~= min{IS4f1 : S4fis a matrix, and (VB E [[co]COp;Y)

LAE,W I{x E A: (Vb E B) Ib nxl = co}1 = 2CO}.

LEMMA3.5. Let y < 2co•

1. y < ~~:S ~Y'

2. ~ = ~l :S ~Y = ",(LY) :S bfor I :S y < b. In particular, SUPy<b ~Y = b.

3. sh(§) :S "'( {NWDp : p E §}) :S ~co.

4. ~Y = ~~whenever 1 < 2Y :S 2co.

PROOF. (1) For a matrix S4fof size y take B with IBI :S y such that IB n AI = 1

for all A E S4f.Then IA \ IB-smal11 :S I for A E S4f.
(2) Ify < b, then by Lemma 3.1, ~Y = ",(LY) :S ",(L) = b.

(3) By Lemma 3.4, "'( {NWDp : p E §}) :S ",(LCO) = ~co.

(4) Let S4fbe a matrix on co of size ~~ such that LAE,W IA \ IB-smal1I = 2COfor
every B ~ [co]COof size :S y. As 2Y :S 2co, we can assign in a one-to-one way to
every B E [[co]COp;ya pair (xB,AB) such that XB E AB E S4fand XB (j. IB-small. By
Lemma 3.1, Remark 1.8, and the discussion at the beginning of this section, for
every such B there is an almost disjoint family XB ~ [XBr of size 2co such that
XB nIB-small = 0. Now, A' = U{XB : AB = A} is almost disjoint for every A E S4f

and the matrix {A' : A E S4f}proves the inequality ~Y :S ~~. -1

Let P = {(s,f) E <coco X COco: sand f are strictly increasing}. P is ordered
by (s,f) :S (t,g) if S ~ t, (Vn E co) f(n) ~ g(n) and (Vn E dom(s) \ dom(t))

s(n) > g(n). Let Pa be the result of the finite-support iteration oflength a where

PP+1 ~ Pp * Qp where Qp is P defined in VPP.

A sequence (ae, : ~ < A) of subsets of co is an eventually splitting sequence if
(Va E [co]CO)(3~ < A)(Vl1 > ~) la n a'll = la - a'll = co. A sequence (ae, : ~ < A) of
subsets of co is eventually narrow if (Va E [co]CO)(3~ < A)(Vl1 > ~) la - a'll = co.

Note that (ae, : ~ < A) is an eventually splitting sequence if and only if the
sequence (be, : ~ < A) is eventually narrow where b2e, = ae, and b2e,+1 = co \ ae,.

THEOREM3.6 (Baumgartner-Dordal [3]). Any eventually narrow sequence remains

eventually narrow in VPa. -1
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For a real r E CO2and a ~ W let a * r = {n : r(n) = I and Lk<n r(k) E a}. If
A ~ 9'(w) thenwedenoteA*r = {a*r: a E A}. Clearly, (anb)*r = (a*y)n(b*r)

and hence if A is an almost disjoint family, then so is A * r.

LEMMA3.7. Ifr E CO2is a Cohen real over V, then Ib n (a * r)1 = Ib \ (a * r)1 = W

for all a, bE [wr n V.
PROOF. ThesetsDm,a,b = {s E <co2: (3n > m)s(n) = l,n E b, and Lk<n s(k) E

a} and Em,b = {s E <co2: (3n > m) nEb and s(n) = O} are open dense in «co2, 2)
for all mEw and a, bE [wr. -1

By the next theorem the inequality l:Jco< b is consistent with ZFC.

THEOREM3.8. Let A be arbitrary regular cardinal number with WI :::; A :::; 2co• Then

Vp• F "l:J= l:Jco= l:J~= WI, b = A, and l:J~= y+ for all w :::; y < b".

PROOF. Let us fix an almost disjoint family A ~ [wr n V of size 2CO= (2CO)v,.

Let r~ E CO2n VPw< be a Cohen real added on the limit stage w~ of the finite-support
iteration. Let us fix a cardinal number y with w :::; y < ,1. By Lemma 3.7, for

every a E A the sequence (a * r~ : ~ < y+) is eventually splitting in VP,+ and
by Theorem 3.6 it is eventually splitting also in V P'. In particular, if a E A and

B E [[w)CO):::;Yn V p., then there is ~ such that (Vb E B) Ib n (a * r~) I = w. Therefore'

L~<y+ I{x E A *'~:(Vb E B) Ib n xl = w}1 = 2COand so l:J~= y+ in VPi.. -1

As max{l:J, sh(§)} :::;l:Jcoit is natural to ask the following:

QUESTION3.9.

1. Is l:Jco:::;cf 2CO?

2. Is max{l:J, sh(§)} = l:Jco?
3. Is l:J= l:Jco?

Clearly, (3) * (2) * (1).

Let us recall that

NWDp = {x ~ <co2: (Vs E sp(p))(3t E sp(p)) s ~ t and x n b, n sp(p) = 0}

for p E § where bs = {t E <co2: s ~ t} for s E <CO2. If p = <CO2,then we simply

write NWD. We know that Is ~ I) ~ NWDp for every p E §. For a sequence
A = (as: s E <CO2) of infinite subsets of wand an ideal I ~ 9'(w) we define
I//A = {a ~ <co2: (3x E I)(Vs E a) Ix nasi = w}. Notice that <CO2r:f- I//A if and
only I is {as : s E <co2}-small. We say that I is a perfectly small ideal if there is
a sequence A such that I//A = NWD. A perfectly small ideal is w-small.

LEMMA3.10. Every ideal I with Is ~ I ~ NWDp is perfectly smallfor all p E §.

PROOF. Let us fix p E § and let {ts : s E <CO2}be the enumeration of sp(p)

such that ts~i ~ ts~i for all s E <CO2and i = 0, 1. Let as = b,s n sp(p) and let
A = (as: s E <CO2).

We first prove that NWD ~ I//A whenever Is ~ I. Let a E NWD. Then also
7i = {s E <co2: (3t E a) s ~ t} is in NWD. Let S be the set of all s E <CO2\ 7i
which are minimal with respect to the inclusion. Then S is a maximal antichain in
«co2,~) and for every sEa there is Sf E S such that s ~ Sf. For every s E S let

us choose an infinite branch Xs ~ p with ts E Xs and let x = USES XS' Clearly,
x E Is ~ I. For every sEa, x n as ~ x n as, = xs' n as, is infinite. Therefore
a E I//A and so NWD ~ I//A.
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Now we prove that NWD ~ I//A. Let a E I//A. Then also a E I//A where
a = {s : (:Jt E a) s ~ t} and let x E I ~ NWDp be such that x n as -=I=- 0 for all
sEa. We claim that a E NWD. Otherwise there exists So such that every s :2 So is
in a. But as x E NWDp, there exists s :2 So such that x n bls n sp(p) = x n as = 0.

This contradiction proves that a E NWD and hence NWD ~ I//A. --1

QUESTION3.11. Let 7t' be the set of perfectly small ideals on w. How large is
K(7t')?

§4. A nonmeager p-ideal. 1. E. Baumgartner and P. Dordal [3] assuming Martin's
axiom have proved that there exists a well-ordered unbounded family of increasing
functions which is not a dominating family. In [9, 10] the authors have proved that
if there is a well-ordered unbounded family of increasing functions which is not
a dominating family, then there is a nonmeager p-ideal. In this section we prove
analogical results for .9Fin.

Let us recall that an ideal I ~ .9'(w) is a p-ideal if for every sequence of sets
Xn E I for nEw there is x E I such that Xn ~* x for all n.

Notice that if !T ~ .9Fin is ~i-dominating, then !T is ~o-dominating:, Let
a E .9Fin be such that a ~o b (i.e., (:Joo(n,k)) bn ~ ak) for all b E!T. Set
a~ = a2n U a2n+1' If n is such that (:Jk) bn ~ ak, then (Vk) a£ cJ;.. bn. Therefore
a' ~i b for all bE!T.

THEOREM4.1. Let!T ~ .9Fin be a ~i-unbounded family which is well-ordered
by ~i. Let {an}~o E .9Fin be not ~o-dominated by!T. Then I = {x ~ w : (:Jb E
!T) (Voo k E x )(Vn) bn cJ;.. ad is a nonmeager p-ideal.

PROOF. Assume that I is meager and we obtain a contradiction. Then there is h E
(COW)Finsuch that h(I) ~ [w]<co.Define a' E .9Fin by a~ = U{ak : k E h~l( {m} n.
We prove that!T ~i a'. Let b E !T. Then Xb = {k : (Vn) bn cJ;.. ad E I. Hence
h-1( {m}) \ Xb -=I=- 0 for all but finitely many mEw and let kb,m E h-1( {m}) \Xb. As

kb,mrf-xbthere is n such that bn ~ akb,m~ a~. Hence b ~i a'. This is a contradiction
and hence I is nonmeager. I is a p-ideal because Xb ~* Xb' whenever b, b' E !T and

b ~i b'. --1

THEOREM4.2. If Martin's axiom holds, then there exists!T ~ .9Fin which is a ~i­
unboundedfamily, well-ordered by ~i, and not ~o-dominating.

PROOF. Let DS denote the family of all finite disjoint sequences of finite subsets

ofw. Let us fix a E .9FinandletH = {b E .9Fin: a ~ob} = {b E .9Fin: (:Joo(n,k))
bn ~ ad. We can construct!T ~ H by repeatedly using Lemma 4.3. --1

LEMMA4.3. Assume that Martin's axiom holds. Let !T ~ H be well-ordered by ~i
and let I!TI < 2co. If b E .9Fin, then there exists d E H such that!T ~i d and
d ~ob.

PROOF. Let Q = {(s,A) : s E DS, A E [!T]<CO}be ordered by (s,A) ::::;(s',A')
if s :2 s', A ~ A', and (Vi E dom(s) \ dom(s'))(Vc E A')(:Ju) Cu ~ s(i). Q is (1­

centered. By Lemma 4.4, for every c E !T and k E w the set Dc,k = {(t, A) : c E A,
(:Ji,j ~ k) t(j) ~ ai, (:Ji,j ~ k) bi ~ t(j), andk ~ Urngs} is dense. Let G ~ Q
be a {Dc,k : c E!T, k E w}-generic filter. Let d = U{s : (:JA) (s,A) E G}. Then
d E .9Fin by (1), !T ~i d by (2), d E H by (3), and d ~ob by (4). --1
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LEMMA 4.4. Let A E [H]<co be such that A :sj I lor some I E H. Let b E H,
s E DS, and k E w. There exists t E DS such that

1. s ~ t and k ~ U rng t.
2. (Vi E dom(t) \ dom(s))(Vc E A)(3u) Cu ~ t(i).
3. (3i ~ k)(3j) t(j) ~ ai.
4. (3i ~ k)(3j) bi ~ t(j).

PROOF. We can find i ~ k and j E w such that ai n Urngs = 0, Ij ~ ai, and

(Vc E A)(3u) Cu ~ Ij. Let us denote w = Ij. For each c E gr let us fix i(c) Ew
such that (3u) Cu ~ li(e) and li(e) n (w U Urngs) = 0. Let io ~ k be such that

bio n (w u U rng s) = 0 and let n = dom s. We define t ;2 s with dom t = n + 2 as

follows: t(n) = UeEA li(e) U bio uk \ (w U Urngs) and t(n + 1) = w. -!
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