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CARDINAL INVARIANTS AND THE COLLAPSE
OF THE CONTINUUM BY SACKS FORCING

MIROSLAV REPICKY

Abstract. We study cardinal invariants of systems of meager hereditary families of subsets of @ con-
nected with the collapse of the continuum by Sacks forcing S and we obtain a cardinal invariant b, such
that S collapses the continuum to b, and h < b, < b. Applying the Baumgartner-Dordal theorem

on preservation of eventually narrow sequences we obtain the consistency of b = b, < b. We define
two relations <5 and <} on the set (“@) i, of finite-to-one functions which are Tukey equivalent to the
eventual dominance relation of functions such that if # C (“w)Fi, is <} -unbounded, well-ordered by <},
and not < -dominating, then there is a nonmeager p-ideal. The existence of such a system & follows from
Martin’s axiom. This is an analogue of the results of [3], [9, 10] for increasing functions.

§0. Introduction. The question when Sacks forcing S collapses cardinals arose
after the proof of Baumgartner and Laver [4] that adding w, Sacks reals by countable
support iteration to a model of CH one gets a model in which Sacks forcing collapses
the continuum to ;. Rostanowski and Shelah [12] proved that Sacks forcing
collapses the continuum to the dominating number ? which was a confirmation of
the hypothesis of Carlson and Laver [5]. Shortly after Peter Simon [13] proved
the collapse of the continuum by S to the unbounded number b (see also [11,
Theorem 3.1 (1)] for a simplification of the proof). On the other hand, Judah,
Miller and Shelah [8] proved the consistency of Martin’s axiom together with the
collapse of the continuum by Sacks forcing to w;. This indicates that the previously
mentioned results on the collapse of cardinals by Sacks forcing are far from the
complete answer. In connection with Martin’s axiom we can ask about (definable)
cardinal invariants to which Sacks forcing collapses the continuum and which are
equal to the continuum under Martin’s axiom. From another point of view we can
ask about a simple principle violating Martin’s axiom which implies the collapse of
the continuum by Sacks forcing to w;.

In the present paper we continue this study. In Section 1 to every perfect tree
p C <“2—condition of the Sacks forcing S—we associate several hereditary meager
families of subsets of w. These families are naturally connected with various ways
of measurement of rapidity of branching in perfect trees. This way we obtain
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several natural systems # of hereditary meager sets I C % (w) and we introduce
several cardinal invariants for them which are monotone with respect to a pre-
ordering < of #’s. Later in Section 2 it is shown that some of these cardinal
invariants characterize the unbounded number b or the dominating number 9. The
most important cardinal from them is £(#). It is shown that x(#) > b for many
families # where b is the distributivity number of #(w)/Fin, but there is a system
X ={1 1} : p € S} of meager ideals for which «(#) is exactly the cardinal to which
S collapses the continuum (Theorem 1.11). This is the substance of the above
mentioned Simon’s proof.

In Section 3 the following property of hereditary sets is isolated and studied: A set
I C P(w)is said to be w-small if there is a countable set B C [w]® such that for every
x € I thereis b € B such that|x Nb] < w. For the family .#,, of w»-small hereditary
subsets of Z(w), the cardinal x(.#,) has the form b, which can be considered
as a generalization of the distributivity number § = ;. By monotonicity of the
cardinal invariant x(#), we have h < h,, < b and by applying the preservation
theorem of Baumgartner and Dordal for eventually narrow sequences in a finite
support iterated forcing we obtain the consistency of §,, < b (Theorem 3.6). It
follows that b, is an upper bound for the collapse of the continuum by S which is
consistently strictly smaller than b.

Baumgartner and Dordal [3] have proved that under Martin’s axiom there exists
a well-ordered family of increasing functions which is not a dominating family.
This result was used in [9, 10] for a construction of a nonmeager p-ideal. Finite-
to-one functions can be in some sense considered as a generalization of increasing
functions. The advantage of this generalization is that the domain and range of
functions need not be ordered. Section 4 deals with an analogue of these results for
finite-to-one functions although the results are expressed in an equivalent language
using partitions of e into finite sets.

Our notation is standard and it is more or less compatible with that of [2, 6, 7].

§1. Meager hereditary families. A reeisaset p C <“2suchthat (1) € p, (2) if
tepands Ct,thens € p,and (3) s~0€ pors™1 € pforeverys € p. Atree p
is perfect if for every s € p thereist € <®2suchthats C¢,t70€ p,and ™1 € p
(ie., tisasplittingnode of p). If pisatreeand s € p,then(p); = {re p:t Csor
s C t}is a tree. We denote the set of splitting nodes and the set of levels containing
splitting nodes for a given tree p by

sp(p) ={s€p:s0ecpands”1 € p},
br(p) = {n € w : sp(p) N"2 # 0}.
For a tree p and a set @ C w the tree p[a] C p is defined by induction (see [13]):

1. 6 € pla].
2. If s € pla] and |s| = n, then s70 € p[a] if and only if s~0 € p, and
s™1 ¢ plalifandonlyif s™1 € pandn € a or s™0 ¢ p.
Clearly, p[a] is a maximal tree ¢ C p with br(g) C a.
Trees provide countable coding of closed sets in “2, namely, for every closed
set 4 in ©2 there is a unique tree p C <*2 such that 4 = [p] where [p] = {x €
®2 : (Vn € w) xn € p}. The projection of a set 4 C 2 by a C w is the set
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Ala = {x[a : x € A} which is a subset of “2. Sometimes it is easier to manipulate
with trees than with closed sets. We shall denote by S the set of all perfect trees
p C <2 ordered by inclusion.

The next lemma summarizes some properties of the defined operations.

LemMa 1.1. Let p, q be trees and a, b be subsets of w.

br(p) C a if and only if pla] = p.

a C b implies pla] C p[b]. In particular, pla] C p = plw].

plallb] = pla N b] = pla] N p[b].

plal N q[b] € (p N gq)la N bY; if pla] N q[b] is a tree, then the equality holds.

plalu p[b] € pla L b]

If br(p) C a, then the projection of [p] to [p]la is one-to-one.

If p is a perfect tree and br(p) C a U b, then there is a perfect tree ¢ C p such

thatbr(q) C a or br(q) C b.

8. If p is a perfect tree and sp(p) C ¢ U d for some c,d C <®2, then there is
a perfect tree ¢ C p such thatsp(q) C c orsp(q) C d.

9. If A C “2is perfect, a € [w]?”, and Ala is uncountable, then there is a perfect
set B C A such that the projection of B onto Bl(a \ n) is one-to-one for all |
neaw.

Nk WD~

Proor. Assertions (1)—(5) follow from definitions.

(6) Let x, y € [p] be distinct and let n be minimal such that x(n) # y(n). Then
x[n = y[n is a splitting node of p and hence n € a. Therefore x[a # yla.

(7) is a special case of (8) for ¢ = |J,c,"2and d = |, "2

(8) If sp(p) C ¢ Ud, then either there is s € p such that sp((p);) C ¢, or
sp((p)s) Nd # O for all s € p. In the former case let ¢ = (p); and then sp(q) C c.
In the latter case let us choose inductively t; € sp(p) Nd for s € <2 so that
ti C ty~; fori € {0,1} and let ¢ be the perfect tree with sp(q) = {¢; : s € <®2}.
Then sp(q) C d.

(9) Let {k, : n € w} beanincreasing enumeration of @ and leta, = {k; : j > n}.
By induction we define a system of perfect sets B; C A for s € <%2 so that

(i) Bs~o, By~1 are disjoint subsets of By, the diameter of By is < 27" for s € "2,
B@ =4, and
(i) {Bsla,:s € ™2} is a disjoint system of uncountable subsets of %2.

Let us assume that B, for s € "2 have been constructed. By (ii), for every s € "2
we can fix i; € {0,1} such that B, = {x € B,la, : x(k,) = is} is uncountable
and let C; = B!la,1. Let us choose perfect sets C%, C! C C; so that the system
{Ci:s e"2andi € {0,1}} is disjoint and let B,~; be a perfect subset of the set
{x € By : x!any1 € C!} of diameter < 2-(+D),

By (i) the system {B; : s € <“2} is a fusion sequence and hence the set B =
Myew Usens Bs is perfect and B C 4. We claim that the projection of B onto B/a,
is one-to-one for each n. To see this let x, y € B be distinct and #» € . There are
m > n and distinct 5,5, € "2 suchthatx € B, and y € By,. Then x[a, # yla,
because, by (ii), Bs, [am N By, [am = 0. 4

ReMARK 1.2. These remarks are concerned with assertions of Lemma 1.1.
(1) The assumption that p[a]Ngq[b] is a tree in (4) is necessary for the inclusion D
and cannot be omitted. Namely, there are p, ¢, a, b (here, p, ¢ must be distinct,
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by (2)) such that pla] N g[b] C (pNg)lanNb]: Let p = <2, g = (<2),
a=b =0\ {0}. Then pla] = (<*2) q). g1b] = ¢ = (<2)1). pla] N plb] = {B} is
not a tree and (p N ¢)[a N b] = q[b] = (<°2)yy.

(2) In the inclusion (5), the equality p[a] U p[b] = pla U b] does not hold in
general: There are p, a, b such that p[a U b] contains a perfect tree while neither
pla] nor p[b] contains a perfect tree: Let a, b be any infinite disjoint subsets of @
such that w \ (¢ Ub) is infinite, 0 € a,and 1 € b. Let p be the set of all s € <®2 such
that s(i) = 0 wheneveri € a Ub, i # 0, and s(0) = 0 or s(1) = 0. Then p[a], p[b]
do not contain perfect subtrees while p[a U b] contains the perfect tree (<2) ;1.

(3) In the inclusion [p[a]]la C [p]la the equality does not hold in general. In
fact, there are a perfect tree p and a € [w]® such that [p]la = ?2 and |[g[a]]] = 1
for every tree ¢ C p: To see this take infinite ¢ C w such that 0 ¢ a and w \ a is
infinite and let p be the set of all s € <®2 such that s(i) = s(i — 1) for every positive
i € (doms)Na.

Afamily I C P(X)isanidealonaset X if (1)0 € I and X ¢ I, (2) I is hereditary
(which means that @ € T whenever a C b forsome b € I), and (3) aUb € I for
everya,b € 1. A

Let I be a hereditary set on w, let f : w — w, and let a C w. Let us denote

fh={xCow:fUx)el}, fFAD)={xCo:fxcl},
Ila={xel:xC"a}

where @ C* b means that a \ b is finite.

Notice that f(J) and I|a are hereditary families and they are ideals whenever
I is anideal. Also, f~'(f(I)) C Iand f(f~1(I)) = I. If I is an ideal on w, then
[w]<® C f(I)if and only if f~1({n}) € I forevery n € w.

A function f : @ — w is finite-to-one if £ ~1({n}) is finite for every n € . We
shall denote by (“w)Fi, the family of finite-to-one functions.

The topology on %(w) has a clopen base consisting of sets [s] = {x C w :
xNdoms = {i : s(i) = 1}} fors € <*2, i.e,, #(w) is homeomorphic to the Cantor
space “2 via characteristic functions.

LeMMA 1.3. Let I C P(w) be a hereditary family. The following conditions are
equivalent:

1. I is a meager subset of #(w).

2. There is a disjoint sequence of finite sets {an}ne, such thatJ, ., a, ¢ I for all
x € [w]®. ,

3. There is an increasing sequence of natural numbers {k,}52, with ko = 0 such
that |, [kn. kni1) € 1 for all x € [w]®.

4. There is a finite-to-one f : w — w such that f (I) C [w]<®.

ProOF. (2) — (1) Let us assume that (Vx € [@]?) U, @ ¢ I. Equivalently,
I'NMyew Upsnly € @t am € y} = 0 because I is hereditary. However, this
condition says that 7 is disjoint from a G5 dense set and hence I is meager.

The implication (3) — (2) is trivial and for implications (3) — (4) and (4) — (2)
it is enough to apply f ~1({n}) = [kn.kns1) and a, = f~1({n}), respectively.

(1) — (3) If I is meager, then I C | J; ., Fx for some nowhere dense sets Fj such
that Fi, C Fy, for all k € w. For k € w let h(k) be the least m > k for which
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there is a nonconstant function ¢, : [k,m) — 2 such that [s U gg ] N Fr = 0
for all s € ¥2. By induction let us define kg = 0, kpr1 = A(k,), and let @, = {i €
lkn.kn+1) © Pk (i) = 1}. Then {a,}22, is an infinite disjoint family of finite
nonempty sets and Fy, is disjoint from the set 4, = {x C w : x N [kn, kns1) = an}
because for every x € 4, thereis s € 2 such that x € [s U ¢, 1,,,]. Let x € [0]?
and k € o be arbitrary. There is n € x with k, > k. Hence, a = | J;¢, a; is in 4,
and a ¢ Fy because Fi C Fy,. It follows that | J,., a, ¢ I for all x € [w]”. As
an C [kn, kny1) and I is hereditary, condition (3) holds, too. -

Now we define some hereditary families via the structure of perfect sets. Let p
be a perfect tree. In the next definitions the variable ¢ varies on perfect trees:

Jp={x Co:|[pllx| L o}, (1.1)
I, ={x € <*2: (v C p) splq) £ x}, (1.2)
I!={xCw:(¥qC p)br(g) ¢ x}, (1.3)
I; = {x Co:|[px]l <o}, (14)
Is = {x C<°2: (vp € 5) sp(p) & x}. (15)
NWD, = {x C <“2: x Nsp(p) is nowhere dense in (p, D)} (1.6)

Let 7 : <*2 — w be the finite-to-one function defined by z(s) = |s|. We define

1) =n""(J,). (1.7

Clearly, J, and NWD,, are ideals. By (7) and (8) of Lemma 1.1, I} and /, > are
ideals. It follows that 7 [(,’ is an ideal, too. Iy = I pl for p = <©2 and hence I is an
ideal. By Remark 1.2 (2), / ;’ need not be an ideal but it is a hereditary family. Notice
that 7(Js) = [w]<® and for p = <92, J, = I? = I, = [@]<* and I} = [<*2]<*.

By Lemma 1.1 (9) it follows that

Jp ={x C w: (Vg C p) the restriction [¢][x is not one-to-one}. (1.1)

LemMa 1.4, n(I)) = J, Cn(l;) =1} C 1} andI) C 1) C NWD,.

PrOOF. By (1.1') and Lemma 1.1 (6) we have J, C I2. The equality n(I}) = I2
is by the equivalence br(g) C x if and only if sp(q) C n~!(x) for x C w. By
Lemma 1.1 (1) we have

I} ={x Cw:(vq C p) llg[x]l| < w} (1.3")
and therefore 17 C I. The inclusion J, C =(I}) implies I) = n='(J,) C I}. We
prove I, C NWD,,.

If x C <®2and x ¢ NWD,, then there is 5o € x Nsp(p) such that forevery s € p

with so C s thereis s’ € x Nsp(p) with s C s’. This enables an inductive definition
of a perfect tree ¢ C p with stem sy such that sp(q) C x and hence x ¢ I 1}. -

In general, the inclusions in Lemma 1.4 are strict. For example, by (1.3’) and
Remark 1.2 (3), J, is usually distinct from I7.

Lemma 1.5. J,p, I, I2, I; are meager in P(w), and 119’ NWD,, are meager in
P(<92).
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ProoF. By Lemma 1.4 it is enough to prove that / 1? and NWD),, are meager. Let
fp € ®w be such that for every s € p with |s| = f,(n) there exists a splitting node
t D sin p with |¢t| < f,(n + 1). The sets a, = [fp(n), fp(n + 1)) forn € w are
pairwise disjoint and for every x € [w]® we have | ), an ¢ [, 3 because p[lJ, ¢, @]
is a perfect tree. This proves that / 1% is meager. To prove that NWD,, is meager take
for a, the rth splitting level of p. =

We will prove in Lemma 3.4 that all these hereditary sets belong to a smaller class
than the class of meager hereditary sets.

By next lemma every ideal / 1‘,) is isomorphic to some J, where the isomorphism is
given by a fixed bijection from <“2 onto w.

LEMMA 1.6. For every p € S and every f € (“w)Fin there is q € S such that
J q = f —I(J p)'

PROOF. Set g = {s € <®2: (3t € p) s C f ot} where (f o t)(k) = t(f(k)).
Then [q] = {f o x : x € [p]} and [q]la = {(f[a) o y : y € [p]]/“a} for every
a C w. As the composition operation is one-to-one it follows that a € J, if and

only if f“a € J,. -
LeMMA 1.7. S is isomorphic to a dense subset of P(<°2)/Is.
PROOF. Let [x]s denote the equivalence class determined by the set x C <“2
modulo the ideal Is. The mapping ¢ : S — P(<?2)/Is defined by ¢(p) = [sp(p)ls
is a dense embedding. -

ReMARK 1.8. Let B be an almost disjoint family on @ of size 2. If I is
a hereditary meager subset of #(w) and f is a finite-to-one function such that
fI) C[w]<®, then 4 = {f~!(x) : x € B} is almost disjoint family of size 2 and
A NI = . Therefore meager ideals are not c.c.c..

Fora Cwand 4 C #(w)bya L Awemean [anb| < wforallb € 4. If
I C #(w) is a hereditary set, then @ 1 I if and only if [a]* N T = (. A matrix is
a set of maximal almost disjoint families on w.

Now we introduce some cardinal invariants for subsets # of the system

M ={I C P(w) : I is a hereditary meager set}.

For arbitrary # C .# we define
k(Z) = min{|/| : & is amatrix and (VI € #)(F4 € &) |4\ I| = 2%},
&' (#)=min{|F|+ || : F C (“©)Fin, ¥ is a matrix, and

(VI eZ)3f € F)3P4 e ) |4\ fU)]=2"},
MZ) =min{|F| +|¥|: F C (°0)Fin, ¥ is a matrix, and

VIex)3f ceF)BacUH)a Ll fI)},
AM(FZ)=min{|F|: F C (“0)mand (VI ¢ Z)3f € F)Fa € [w]®)a L f(I)}.
u(Z)=min{|F|: F C (“w)rmand VI e Z)Bf e F)w L f(I)}.

Sometimes it will be useful to consider the system .#(Q) of meager hereditary
subsets of 22( Q) for an infinite countable set Q. It is easy to rewrite the definitions of
the above cardinals in this more general context by means of finite-to-one functions
f:Q — o (fork’, 4, /', u) and by means of almost disjoint families on Q (for k).
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Let Q and Q' be any countable infinite sets and let # C .#(Q) and #' C #(Q').
We define # < #’ if and only if there is a finite-to-one function 4 : @ — Q' such
that (VI € #)3I' e #') h(I) C I' where h(I) = {x C Q' : h~Yx) € I'}.

LeMMA 1.9. The defined cardinal invariants are monotone with respect to the rela-
tion <. Hence, # < %' implies 3(#) < O(#') for O € {k,x", A, A, u}.

Proor. Without loss of generality let 0 = Q' = w. If f,h € (°0)Fn, @ C o,
and 4,1,J C P(w), then the following holds:

1. a e h(I)ifand onlyif h—'(a) € I.

2. A is almost disjoint if and only if {#~!(a) : a € A} is almost disjoint.

3. ho f € (°w)Fin, Where (ho f)(n) = f(h(n)).

4. I C Jimplies f(I) C f(J).

For monotonicity of x apply (1) and (2) and for monotonicity of &'(#), A(#),
N(#), u(#) apply (3) and (4). =

Using relation < from Lemma 1.9 the inclusions of Lemma 1.4 can be rephrased
as follows:

LemMa 1.10.

L{):peSy=<{l,:peS}x{I;:peS}={I}:pes}.

2.{I):peSy={J,:peS}=<{I}:peS}.

3. {I}: peS} < {NWD, : p e S}. .

A matrix in S is a system & of antichains in S. & is a shattering matrix if
every element of S is compatible with continuum many elements of some antichain
A € ; ¥ is a weakly shattering matrix if every element of S is compatible with
continuum many elements of | &; & is a base matrix if | & is dense in S. The
least cardinal to which Sacks forcing collapses the continuum we denote by sh(S).
The cardinal sh(S) is equal to the minimal size of a shattering matrix in S, to the
minimal size of a weakly shattering matrix, and to the minimal size of a base matrix.
Moreover, sh(S) < cf 2% (see e.g., [11]).

Let us note that we use the word matrix in two different meanings, one as a matrix
in S and the other as a matrix in #(w)/Fin. We assume that the reader will guess
the intended meaning from the context of the occurrence.

The motivation for introducing the above cardinals comes from Simon’s proof
of the fact that Sacks forcing collapses the continuum to b (see [13, 11]). Let us
note that this proof corresponds to the system of meager hereditary sets # = {I ;,’ :
p € S} and its basic idea is behind the proof of the inequalities sh(S) < x({; :
p € S}) < b. The first inequality is a consequence of the next theorem and the
second is proved later by Theorem 2.5 or Theorem 2.6.

TueoreM 1.11. h < k({J, : p € S}) and s({I, : p € S}) = sh(S).

Proor. Let & be a matrix of size < §. There is a € [w]® such that (V4 € &)
(b € A) a C* b. Let p = {s € <®2 : (Vi € (doms) \ a) s(i) = 0}. Then
Jy={x € Plw):|xNa| < w}and |4\ J,| =1 for every A € &. This proves
thath < k({J,: p € S}).

Let & be a matrix satisfying the condition in the definition of k({1 ; :p €S}
(note that the underlying set for antichains and hereditary families is the countable
set <“2 instead of ). Then S = |J 4, S4 where Sy = {p € S: |4\ I;| = 2°}. For
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every A € &, since |[S4| < ¢, we can fix a one-to-one function 74 : S4 — A4 such
that w,4(p) ¢ I}. Now for every p € S4 let us fix a perfect tree p4(p) C p such that
sp(p4(p)) € ma(p). Then B4 = {p4(p) : p € S,4} is an antichain in S refining S,
and hence {B, : 4 € &} is a base matrix. It follows that sh(S) < ({I, : p € S}).

Now we prove s({I, : p € S}) < sh(S). Let & = {B, : a < sh(S)} be
a shattering matrix for S. By [8, Lemma 1.1] or [11, Theorem 2.4] every antichain B,
can be refined to a maximal antichain B, so that {[p]: p € B, } is a disjoint family
of sets. Then 4, = {sp(p) : p € B.} is an almost disjoint family of subsets of <2
for all @ < sh(S). Let p € S be arbitrary. As &’ is a shattering matrix for S
there is a such that p is compatible with continuum many elements of B,. Then
|Aa \ T I}I = 2% because p,q € S are compatible if and only if sp(q) ¢ I, 1}. =

For some estimations we will need the following property of b.

LEMMA 1.12. Let F C (°w)Fin and |F| < b. There is an increasing sequence of
natural numbers {ny }32, such that

(Vf.g € F)(¥V°n € )Tk € ») f7'({n}) C g7 (Ink. me+2))-

Proor. For f,g € F let hyy(n) = min{m € o : (Vk € o) f~1({k}) N
g in) # 0 — f1({k}) C g~'(m)} (recall that n = {0,1,..., n—1}). Let
h € °w eventually dominates the system of functions {hs, : f,g € &} and let
h(n) > n for all n. Let us define no = 0 and ngo1 = h(ny). Now, if f,g € &, then
for all but finitely many »# € , if k is minimal such that £ ~'({n}) Ng~!(nx41) # 0,
then f~'({n}) C g Mhsg(ms1)) C g7 (h(m11)) = g7 '(mes2), and hence,
f7H{n}) C g7 ma2) \ g7 () = g7 [nw, mesa)). "

Lemma 1.13. V({I?: p € S}) > b.

PrOOF. Let & be a family of finite-to-one functions f : <*2 — @ and |#| < b.
We find p € Ssuch that (Vf € F)(Va € [w]*)(3b € [a]) b € f(I)).

By Lemma 1.12 there is an increasing sequence {7y } 32, such that

(Vf € F)(v°n € 0)Gk € w) f7H({n}) € n 7 ([mk, ne+2)) (1.8)

where z(s) = |s| for s € <®2. By induction let us define a perfect tree p C <“2 so0
that the following two conditions are satisfied:

1. For every k € w there is at most one s € p such that n, < |s| < ngyo and

s71 e p.

2. s71 € pif and only if s is a splitting node of p.

We show that p has the required properties. Let f € & and a € [w]® be given.
By (1.8) and by refining a if necessary we can assume that for every i € a there is
k(i) € wsothat f~'({i}) € 77 ([m). nr(s)12)) and the intervals [my ;). ne)42) for
i € a are pairwise disjoint. For i € a let us fix 5; € p so that ny;) < [si] < )42
and so that s; € sp(p) whenever possible. For i € a and y € [p] the following
conditions hold:

3. y(n(s;)) = lifand only if 5; € sp(p) and s; C y.

4. yl(z“f~1({i})) # 0if and only if y(n(s;)) = 1.

Using Ko6nig’s lemma we can find an infinite set » C a and x € “2 such that
siNx CsjNxfori< jandi, j€b. Then, by (3) and (4) we get

5. (3®i € b) y(n“f~1({i})) # Oif and only if y = x.
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It follows that [p]fz*f ~!(b) is countable. Therefore £ ~!(b) € z~!(J,) and hence
be f(I)). =

REMARK 1.14. Notice that definitions of A'(#) and u(#) were obtained from
definition of A(#) by removing &. By removing & from A(#) in order to obtain
a definition of an invariant, a need to look for a matrix & of minimal size having
the property

VIe#)JaceUHf)a L1

arrives. However, there is no such & if # contains an I such that (Va € [w]?)
(3b € [a]®) b € I (for example the ideal I = I has this property). In particular,
there is no such & whenever {/ 1(,’ : p € S} =X # (see the proof of Lemma 1.13).

LemMma 1.15. If {11(1) P ES X H, thenw(¥#) = 6'(#) < MF) =1(#) <
u(x).

Proor. If & satisfies the condition for (%), then & satisfies also the condition
for ' (#) for & = {id,} containing only the identity on w. Therefore x’'(#) <
k(#). For the inverse inequality it is enough to observe that if A4 is an almost -
disjoint family and f € (“®)fin, then 4’ = {f ~}(a) : a € A4} is almost disjoint
and |4\ f(I)] =|4"\I|foreveryI.

Let (¥, %) be a witness for A(#). For 4 € & let A’ be a refinement of 4 such
that [{b € 4’ : b C* a}| =2%foralla € 4. Let &' = {4’ : A € ¥}. Then
(F,%') is a witness for &'(#). Therefore &' (F#) < A(F).

Applying a base matrix of %(w)/Fin of size  in definition of A(#) we can see
that 2/(#) < A(#) < 2 (#) +b. Ash < band V' (#) > b, the equalities hold.

The inequality A'(#) < u(#) is trivial. =

In the next section we prove that A(#) = b and u(#) = 0.

§2. Some characterizations of b and 0. In general, a binary relation is a triple of
sets A = (4_,4,,A) where 4 C A_ x A,;inthecase when A_ = A, = X we
represent the binary relation A as a pair (X, 4).

Let b(A) and 9(A) denote the minimal cardinality of an unbounded family and
of a dominating family for a relation A, respectively, i.e.,

b(A) =min{|Z|: Z C A_and (Vy € 4,)(3z € Z) -A(z, )},
9(A) =min{|Z|: Z C A, and (Vx € 4_)(3z € Z) A(x,2)}.

A morphism between relations A and B is a pair of functions ¢ : A_ — B_ and
¢+ : By — A such that

(Va € 4-)(Vb € B.) B(p-(a),b) — A(a. 9+ (b)).

If there is a morphism between A and B, then b(B) < b(A) and 2(A) < ?(B).

For the existence of a morphism between A and B it is sufficient to have a function
¢_ : A_ — B_ such that for every bounded set X C B_ theinverse image ¢~ (X) is
a bounded subset of A_ (let usrecall that X C B_ isboundedif thereis y € B, such
that B(x, y) forevery x € X). We shall call such a function ¢_ a Tukey embedding
(then ¢, (b) € A, can be defined as a bound of the set o~ ({x € B_ : B(x,5)})



720 MIROSLAV REPICKY

for b € B;). The relations A and B are said to be Tukey equivalent if there are
Tukey embeddings from A to B and from B to A.

For more details on morphisms and Tukey embeddings see [1].

Let Prin denote the family of all partitions of w into nonempty finite sets. Here,
by a partition we mean a disjoint family of sets covering « not containing the
empty set. By technical reasons we represent these partitions as countable infinite
sequences of sets. The indexing sets for these partitions can be arbitrary infinite
countable sets (in most of the considered cases they are infinite subsets of w).

For a,b € Ppin and v € “w, y > 1, we define

a <% b if and only if (v*°n)(3*™k) ai C ba,
a <¢ b if and only if (V*°(n,k)) b, & ak

where 3"k means that there are » many k.

All relations = with y > 1 are transitive and the relation =<} is moreover
reflexive.

Every f € (°w)Fin defines a partition { f ~!({n}) : n € mg(f)} € Prin together
with its indexing: This representation of elements of g, we use to define the
corresponding relations on (“w)g;, which we denote by the same symbol <%, i.e.,
for f,g € (Yw)rin and for y > 1 or y = 0 we define

f =, gifandonly if {f ' ({n}) : n € mg(f)} <5, {7 ({n}) : n € mg(g)}.

We will need the following transformations between partitions and increasing
functions: For a strictly increasing function f € “w such that f(0) > 0 let
c(f) = {eaf)}2, be a partition of w into intervals defined by ¢o(f) = [0, £(0))
and c,41(f) = [f(n), f(n +1)). Conversely, for a € Pr;, we define a strictly
increasing function ¢(a) € “w by ¢(a)(n) = min{k > p(a)(n — 1) : (3i) a; C
[¢(a)(n — 1),k)} where we set p(a)(—1) = 0. Then a < c(p(a)) and p(c(f)) =
f.

Lemma 2.1. The following conditions hold:

1. a =} bandb =<7 c implies a =<5 c.

2. a =5 bimplies a <j b.

3. Ifa =1 b, then (v°n) p(a)(n) < (b)(2n).

4. If f.h € “w are strictly increasing, f(0) > 0, h(0) > 0, and c(f) =}, c(h),

then (V*°n) f(n) < h(2n).

Proor. (1) and (2) are trivial.

(3) Assume that @ <} b, i.e., there is mg such that (Vm > my)(3k) ax C by,. Let
ny = 1+ maxJ,,,, bm. Since no < ¢(b)(no — 1) we have (vn > 0)(Im > my)
bm C cnin,(0(b)). It follows that ¢ (a)(n) < @(b)(n+no) for all n and hence (V*°n)
wla)(n) < p(a)(2n).

(4) The case y > 1 follows by (3) because p(c(f)) = f and @(c(h)) = h. Tt
remains to prove the case ¥ = 0. Assume that f, 4 are strictly increasing and
c(f) =5 c(h), ie, (Vo(nk) € o x w) [A(k),h(k + 1)) € [f(n), f(n+1)). It
follows that (v*°n) |tngh N [f(n), f(n + 1))| < 1 and so there is np such that
f(n) < h(n + ny) for all n. Consequently, (V*°n) f(n) < h(2n). -

THEOREM 2.2. ((°@)Fin, <},) is Tukey equivalent to (*w, <*) for every y > 1 and
for w = 0. Consequently, b = b((°®w)in, X;,) and d = 2((*@)Fin, <},)-
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Proor. We find Tukey embeddings a : (“w, <*) — (Prin, -_<’,;,) and
B (‘@Fina ﬁ:;,) - (ww, <*).

For f € ®w let f'(n) = max{f (k) : k <n}+n+1and weset a(f) = c(f’).
Assume that & C Py, is j;‘,-bounded, i.e., there is a € Pgy, such that b =y a
forallb € . As a Xf c(p(a)), by Lemma 2.1 (1), b < c(p(a)) forallb € 7.
Therefore c(f') <3 c(p(a)) forall f € a~'(F). Then, by Lemma 2.1 (4}, (V°°n)
f(n) < f'(n) < p(a)(2n). Therefore a~1(F) is bounded in (®w, <*).

Set f = . Let & C “w be <*-bounded by a strictly increasing function 4 € “w
such that A(n) > nforalln. For y € “w, w > 1 let us define by induction £*(0) = 0
and A*(n + 1) = h(h*(n) 4+ w(n)). We prove that $~1(F) is bounded by c(h*) in
(%in, j;;/) .

Leta € B~YF) = ¢~ 1(F). There is m such that p(a)(k) < h(k) forallk > m.
Let ny be such that £*(ny) > @(a)(m). Given n > ng let k be minimal such that
h*(n) < ¢(a)(k). Then m < k < h*(n) because k — 1 < p(a)(k — 1) < h*(n).
Hence [p(a)(k), p(a)(k + w(n))) C [h*(n), h*(n + 1)) because p(a)(k + w(n)) <
h(h*(n)+y(n)) = h*(n+1). Therefore a <} c(p(a)) <X}, c(h*)andsoa =<, c(h*)
for all a € f~1(F). The case y = 0 follows by Lemma 2.1 (2) from the case
v =2 -

Let us recall that the additivity add(#) and the cofinality cof (#) of a family
of sets & are the minimal size of an unbounded family and the minimal size of
a dominating family, respectively, in the partially ordered set (¥, C).

COROLLARY 2.3. add(#) = b and cof (#) = .

Proor. For a € Py let I(a) = {x C w : (Y®n) a, \ x # 0}. By Lemma 1.3,
I € # if and only if there is a € Pri, such that I C I(a). We show that for
a,b € Prin, I(a) C I(b) if and only if a <} b. Then the equalities add(.#) = b
and cof (#) = 0 follow by Theorem 2.2.

The implication a <} b — I(a) C I(b) follows directly by definitions. To prove
the inverse implication let us assume that @ A7 b. Then the set x = {n € w : (Vk)
ai \ by # 0} is infinite. By induction on i € w let us choose n; € x so that the sets
{k : ax N by, # B} for i € w are pairwise disjoint and denote y = ;¢,, bn,. Then
y ¢ 1(b) and y € I(a) because gy \ y # 0 for all k. Therefore I(a) Z I(b). <

THEOREM 2.4. Let #, be the set of all meager ideals on . Then add(#,) = 2 and
cof (M) =27,

ProOF. It is enough to prove that there is a system of 22° meager ideals on
a countable set Q such that no pair of them has a common upper bound in .#;. The
standard construction of an independent system of 22” subsets of a countable set is
the key for the proof: Let Q, = {(n,s) : s € "2} and let Q = Unew @n- Then
|Qn| <wand |Q] = w. Forx Cwandi €2let A,; = {(n,s) € Q:s(xNn)=i}.
Then {4,; : x € #(w) and i € 2} is an independent system of size 2>° on Q,
i€, Ax1 = O\ Axo and for every finite set B C P(w) and ¢ : B — 2 the
intersection (), cp 4y o(x) is infinite. Then for every function f : P(w) — 2 the
system {4, ;) : x € P(w)} generates an ideal on Q which we denote by I;.
Hence, if a € Iy, then there is a finite set B C P (w) such thata C U, cp 4x r(x) =
O\ Nxen Ax1-r(x)- Let no be the least n such that x N n # x’ N n whenever
x,x’ € Band x # x’. Forn > nglet s, : #(n) — 2 be defined by s,(v) = 1— f(v)
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ifv e {xNn:x e B}ands,(v) = 0 otherwise. Then (n,5,) ¢ U,cp 4xr(x)- It
follows that the set {n : O, C a} is finite for every a € I and so the ideals I, are all
meager. If f, f' : #(w) — 2 are distinct, i.e., f{x) # f'(x) for some x € P(w),
then 4, r(x) € Iy and Q \ A, ;(x) = A s/(x) € I/. Therefore Iy and Iy have no
common upper bound in .#. —|
THEOREM 2.5. If {I) : p € S} X # < M, then J(#) = b and u(¥) = 0.

ProOF. Forg € (°w)rinthesetl, = {x C w: (v*°k € mg(g)) g7 ({k})\x # 0}
is a meager hereditary set on w (compare with proof of Corollary 2.3). Notice that
fora € [w]? and f, g € (“w)Ein,

alfll)e (belal”) f71b) ¢,
& (Vb € [a))(3°n € b)(3k € meg(g)) g~ ({k}) < /' ({n})
& (v°n € a)(3k € mg(g)) g7 ({k}) € £ ({n]).

The second equivalence holds because we can find infinite set 5’ C b such that the
sets {k : g~H({k}) N f~1({n}) # 0} for n € b’ are disjoint. Therefore

g 31 femg(f) L fT),
fAige @Qaclw]”)al f(I)

Let F be any system of functions f € (w)Fin such that rng(f) = w. Itis easy
to see that in definitions of cardinals A'(#) and u(#) it is enough to consider such
families. As every meager hereditary set on w is a subset of some I, the last two
equivalences say

F is <X{-dominating & (VI € £)3f € F)w L f(I),
F is <3-unbounded & (VI € £)(3f € F)(Fa € [w]®)a L fI).

Then, by Theorem 2.2, u(#) = dand A/(#) = b. By Lemma 1.13 and Lemma 1.9
we then obtain A(#) = b. To finish the proof of u(#) = 0, by Lemma 1.9 it is
enough to prove o < u({I) : p € S}).

For an infinite set a C w the set p, = {s € <*2: (Vi € (doms) \ a) s(i) = 0}
is a perfect tree. Then J,, = {x Cw : |xNa| < w}and I} =a"(J,) ={x C
@2 |xna7'(a)] < o} C I,. Let F be a system of finite-to-one functions
f 1 <®2 - w of size ,u({II(,’ : p € S}) satisfying the condition in definition of
u({I) : p € S}). Then for every a € [w]® thereis f € & such that f (I ) = [@]<®
and hence (V°n € o) n=(a) N f~'({n}) # 0. For f € F we define m{; =0,
m,{+1 = min{m € o : (Vk < n) n“f({m}) ﬂn“f‘l({m,{}) = 0}, hy(n) =
max | J{r“f{({m}) : m < mzfn}. We show that {h; : f € ¥} is a dominating
family in ®?w and hence d < |#|. Let h € “® be strictly increasing. Then
a = rng(h) is an infinite subset of w and hence thereis f € & and k € w such that
(vn > k) n~(rng(h)) N f~1({n}) # 0. Then for n > k, hy(n) dominates at least
n + 1 different values of rng(k) (from each set 7* f “({m,f })fork <i <2nat
least one value) and hence /47 (n) > h(n). This proves thatd < ,u({II? :p€S}). H

THEOREM 2.6. k(M) = k(#) = b.
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Proor. It is enough to prove that b < k(.#,) because x(Ay) < k(#) < A(A) =
b. Let & be a matrix of size < b. Let C C |J& be a maximal family such that
() Co is infinite for all Cy € [CT<?. Let B be the closure of C on finite intersections.
Hence, if 4 € & then either |4 N B| < 1 or for every x € A thereis y € B such that
x My is finite. Let I be the ideal generated by {w \ x : x € B}. I is the union of less
than b meager hereditary sets I, = {y C w : |y N x| < w} for x € B. Therefore,
by Corollary 2.3, I is meager. But |4\ I| < | for all 4 € &. This proves that
b < K(./lo)‘ -

§3. Small hereditary sets. For a given system B C [w]” we say that a set [ C
P(w) is B-small if for every x € I there is b € B such that [x N b| < w. If B
is closed on finite modifications of its elements, then we can require x Nd = @ in
the definition of a small set. Notice that the closure of a B-small set on subsets is
again a B-small set. The largest B-small set with respect to the inclusion is the set
Ipsman = {x Cw:(3b € B) |bNx| < w}. Wesaythat ] C P(w) is y-small if
there is a set B C [w]® of size < y such that [ is B-small.

LemMma 3.1. 4 B-small set is meager whenever |B| < b.

ProOF. Let I be a (hereditary) B-small set. Let f € (®w)Fin for b € B be such ’
that £ ~'({n}) N b # 0 for every n € w. Since |B| < b, there is f € (“®)Fin such
that f, <7 f forallb € B. Then f(I) C [w]“® and hence I is meager. -

ExampLE 3.2. (1) Let 4 be an almost disjoint family of subsets of w and let
I{(4) = {x Cow: (3X € [4]**) x C* |J X }. The ideal I(4) is w-small. To see this
take any set B € [4]”.

(2) There is a meager hereditary set I which is not y-small for y < 2%, Let
I ={xC<®2:(¥v®n € w) "2\ x # 0}. Let us assume that B C [<“2]” is such
that (Vx € I)(3b € B) [xNb| < w. For f € “2let x; = {fIn:n € w}. As
<©2\xs €I thereisb € Bsuchthath C* x;. As {x, : f € ®2}is almost disjoint
it follows that |B| = 2%.

(3) There is a meager ideal I which is not w-small. Let {a, : n € w} be a partition
of w such that |a,| = nforallnandlet I = {x C w: (3k)(Vn) |x Na,| < k}. Let
B C [w]” be countable. There is a disjoint system {¢; : b € B} C [w]® such that
cy C{k:bnar # 0} Setx = {min(bNay):b € Bandk € ¢y}. Thenx € I
because |x Na| < 1forallk, but |x Nb| =w foralld € B.

These examples show that if T is y-small and f finite-to-one, then f(I’) C I does
not imply that I’ is y-small even if I = [w]<®.

LemMa 3.3. If f € (Pw)rip and I is B-small, then f (I) is f (B)-small and £ ~(I)
is f~Y(B)-small, where f(B) = {f“b:b € B} and f'(B) = {f~!(b) : b € B}.
Hence, I is y-small if and only if f~Y(I) is y-small because I = f(f~YI)) and
B = f(f(B)) 5

The following lemma strengthens Lemma 1.5.

LemMa 34. J,, 11())’ Ipl, Ij, IS, and NWD , are w-small hereditary sets forall p € S.

ProoOF. By Lemma 1.4 and Lemma 3.3 it is enough to prove that NWD, and I If
are w-small. For s € plet b, = {t € sp(p) : s C t}. If x € NWD,, then there
is s € p such that x N b; = 0 and hence the sequence {b; : s € p} witnesses that

NWD,, is -small.
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Now we prove that 1, ; is w-small. Let us choose a perfect tree ¢ C p such that
(i) Isp(g) N"2| < 1 forall » € w and (ii) for every s € g, s™0 € ¢ if and only if
570 € p. By (ii), g[x] C p[x]for x C w and hence I; C I). Therefore it is enough
to prove that Iq3 is co-small. For s € g let b, be the set of all n > |s| for which there
is a splitting node ¢ € sp(g) N "2 on the leftmost branch in ¢ going through s. Let
as assume that a set x C w has nonempty intersections with all sets b;, s € ¢q. Let
{s: 1t € <®2} C br(g) be such that |sg| € x N by and |5;~;| € x N by~; for t € <*2
and i € {0,1}. Let r be the perfect tree for which sp(r) = {s; : ¢ € <®2}. Then
r C g[x] and hence x ¢ Iq-". This proves that Iq3 is w-small. 4

For y < 2% let #7 denote the family of y-small hereditary subsets of #(w). Let
us denote

b, = min{|%/| : & is a matrix, and (VB € [[0]*]57)(34 € ¥)
[{x € 4: (Vb € B) |b N x| = w}| =2°},

h = min{|&%| : & is a matrix, and (VB € [[0]°]<)
Sacw {x €A: (Vb € B) [bNx| = 0} =27}

LemMMaA 3.5, Lety < 2°.

Ly<h, <bh,.

2. h=h1 <bh, =«(A?) <bforl <y<b. Inparticular, sup,_, b, = b.
3. sh(S) < k({NWD, : p € S}) < h,.

4. b, = b whenever 1 < 2? < 2%,

Proor. (1) For a matrix & of size y take B with |B| < y such that [BN 4| =1
forall 4 € &/. Then |4\ Ip.gman| < 1for 4 € &.

(2) If y < b, then by Lemma 3.1, b, = x(#7) < k(#) = b.

(3) By Lemma 3.4, s({NWD,, : p € S}) < (#£°) = by,.

(4) Let & be a matrix on w of size b; such that }° |4 \ Ip.sman| = 2% for
every B C [w]® of size < y. As 2?7 < 2%, we can assign in a one-to-one way to
every B € [[w]?]7 a pair (x5, Ap) such that xp € Ap € & and xp ¢ Ip.gman. By
Lemma 3.1, Remark 1.8, and the discussion at the beginning of this section, for
every such B there is an almost disjoint family Xz C [xp]® of size 2 such that
Xp N Ipsman = 0. Now, 4’ = |J{Xp : Ap = A} is almost disjoint for every 4 € &
and the matrix {4’ : 4 € &/} proves the inequality b, < §),. o

Let P = {(s,f) € <o X ®w : s and f are strictly increasing}. P is ordered

by (s, f) < (t,g)if s D ¢, (Vn € w) f(n) > g(n) and (Vn € dom(s) \ dom(z))

s(n) > g(n) Let P, be the result of the finite-support iteration of length o where
Pgi1 = Pp * Qp where Qp is P defined in V75,

A sequence (a; : & < A) of subsets of w is an eventually splitting sequence if
(Va € [w]*)(3¢E < A)(Vy > &) l[ana,| = |a — a;| = w. A sequence (a¢ : & < A) of
subsets of w is eventually narrow if (Va € [0]?)(3E < A)(Vp > &) la—ayl = w

Note that (a; : & < A) is an eventually splitting sequence if and only if the
sequence (by : & < A) is eventually narrow where by = az and bye 1 = o \ a.

THEOREM 3.6 (Baumgartner-Dordal [3]). Any eventually narrow sequence remains
eventually narrow in V-, =
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Forarealr € ®2anda Cwletaxr={n:r(n)=1land ), rlk) € a}. If
A C P(w) then wedenote Axr = {axr : a € A}. Clearly, (anb)xr = (axr)N(b*r)
and hence if 4 is an almost disjoint family, then so is 4 * r.

LemMa 3.7. If r € ®2isa Cohenreal over V, then |bN(axr)| = b\ (a*r)| =
foralla,b € w]”NV.

ProOF. Thesets Dy, pp = {s € <*2:(In>m)s(n) =1,ne€b,and)_,_, s(k) €
a}and E,p = {s € <®2:(In > m) n € b and s(n) = 0} are open dense in (<*2, D)
forallm € w and a,b € [w]“. -

By the next theorem the inequality b, < b is consistent with ZFC.

THEOREM 3.8. Let A be arbitrary regular cardinal number with w; < A < 2%. Then
VP “h =, =b, =w, b= 4 and b, =y* forallo <y <b”.

PROOF. Let us fix an almost disjoint family 4 C [w]® N V of size 22 = (2@)"%,
Let r; € ®2N VP be a Cohen real added on the limit stage w¢ of the finite-support
iteration. Let us fix a cardinal number y with w < y < A. By Lemma 3.7, for
every a € A the sequence (a * re : £ < y*) is eventually splitting in V% and
by Theorem 3.6 it is eventually splitting also in V72, In particular, if a € 4 and
B € [[w]?1S" N Vi, then there is € such that (Vb € B) [bN(a *r;)| = w. Therefore °
Yy {x€dxre: (Vb€ B) [bNx|=w}|=2"andso b, =y*in VF .

As max{h, sh(S)} < b,, it is natural to ask the following:

QUESTION 3.9.

1. Is b, < cf 29?7
2. Is max{h,sh(S)} = h,?
3. Ish = hy?

Clearly, (3) = (2) = (1).

Let us recall that
NWD, = {x C <®2: (Vs € sp(p))(3r € sp(p)) s C t and x N b, Nsp(p) = 0}

for p € Swhere by = {r € <®2:5 C 1} for s € <®2. If p = <®2, then we simply
write NWD. We know that Is C II} C NWD, for every p € S. For a sequence
A = {(as; : s € <°2) of infinite subsets of w and an ideal I C P(w) we define
If/A={a C<®2:(3x € I)(Vs € a) |x Nas| = w}. Notice that <®2 ¢ I//A if and
only [ is {a; : s € <“2}-small. We say that I is a perfectly small ideal if there is
a sequence 4 such that I//4 = NWD. A perfectly small ideal is w-small.

LemMa 3.10. Every ideal I with Iy C I C NWD,, is perfectly small for all p € S.

ProoF. Let us fix p € S and let {z; : s € <*2} be the enumeration of sp(p)
such that z,~; C ¢, forall s € <®2and i = 0, 1. Let a; = b, Nsp(p) and let
A= (as:5 €<92).

We first prove that NWD C 1//4 whenever Is C I. Let @ € NWD. Then also
a={s€<®2:(Ite€a)s Ct}isin NWD. Let S be theset of all s € <“2\ @
which are minimal with respect to the inclusion. Then S is a maximal antichain in
(<»2,C) and for every s € a thereis s’ € S such that s C s’. Forevery s € S let
us choose an infinite branch x; C p with #; € x; and let x = [J,¢g x;5. Clearly,
xelgCI. Foreverys € a, xNas C xNag = xg N ay is infinite. Therefore
a € I//4 and so NWD C I//A.
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Now we prove that NWD C I//A. Let a € I//A. Then also @ € I//4A where
a={s:(3rea)s Ctlandlet x € I C NWD, be such that x N a, # 0 for all
s € a. We claim that @ € NWD. Otherwise there exists s¢ such that every s O sp is
ina. Butas x € NWD,, there exists s 2 sq such that x N b, Nsp(p) = xNa, = 0.
This contradiction proves that @ € NWD and hence NWD C I//A. —1

QUESTION 3.11. Let # be the set of perfectly small ideals on w. How large is
k(#)?

§4. A nonmeager p-ideal. J. E. Baumgartner and P. Dordal [3] assuming Martin’s
axiom have proved that there exists a well-ordered unbounded family of increasing
functions which is not a dominating family. In [9, 10] the authors have proved that
if there is a well-ordered unbounded family of increasing functions which is not
a dominating family, then there is a nonmeager p-ideal. In this section we prove
analogical results for Pr;,.

Let us recall that an ideal I C P (w) is a p-ideal if for every sequence of sets
xn € I forn € w there is x € I such that x, C* x for all n.

Notice that if ¥ C Py, is Xj]-dominating, then ¥ is <j-dominating: Let
a € Prin be such that a £ b (ie., (3°(n,k)) by C ax) forall b € F. Set
a, = azy U azntr. If n is such that (3k) b, C ag, then (Vk) a;, € b,. Therefore
a' £t bforallb € #.

THEOREM 4.1. Let & C Prin be a <}-unbounded family which is well-ordered
by <%. Let {an}y € Prin be not <-dominatedby F. Then I = {x Cw :(3b €
F)(V>®k € x)(Vn) b, € ax} is a nonmeager p-ideal.

PrROOF. Assume that I is meager and we obtain a contradiction. Then thereis 2 €
(“)Fin such that £(I) C [w]<®. Define a’ € Py by al, = U{ar : k € h ' ({m})}.
We prove that F <} a’. Letb € . Then x, = {k : (Vn) b, € ar} € I. Hence
h=Y({m})\ x5 # 0 for all but finitely many m € w and let ky, € A= ({m})\ x5. As
kymgx, thereis n such that b, C ay,, C a,,. Hence b <7 a’. This is a contradiction
and hence 7 is nonmeager. I is a p-ideal because x, C* x;» whenever b, b’ € ¥ and
b=tb. =

THEOREM 4.2. If Martin's axiom holds, then there exists & C Prin which is a <}-
unbounded family, well-ordered by =7, and not <j-dominating.

PRrROOF. Let DS denote the family of all finite disjoint sequences of finite subsets
ofw. Letusfixa € Prinandlet H = {b € Prin : a £ b} = {b € Prin : (3°(n.k))
b, C ax}. We can construct & C H by repeatedly using Lemma 4.3. -

LemMMA 4.3. Assume that Martin's axiom holds. Let & C H be well-ordered by <}
and let |F| < 2°. If b € Prin, then there exists d € H such that F =<} d and
d ﬁ(’; b.

Proor. Let Q = {(5s,4) : s € DS, 4 € [F]<*} be ordered by (s, 4) < (s',4')
ifs Ds’,4C A, and (Vi € dom(s) \ dom(s’))(Ve € A")(Fu) ¢, C s(i). Qiso-
centered. By Lemma 4.4, foreveryc € & and k € w theset D, = {(t,4) : ¢ € 4,
(3i,j > k)t(j)Cai, (3i,j > k)b; Ct(j),andk C|Jrngs}isdense. Let G C Q
bea{D.x:c € F, k € w}-generic filter. Letd = |J{s : (34) (s, 4) € G}. Then
d € Prinby (1), F <1 d by (2).d € H by (3),and d £ b by (4). N
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LeEMMA 4.4, Let A € [H]<® be such that A =} f forsome f € H. Letb ¢ H,
s € DS, and k € w. There exists t € DS such that

l. sCtrandk C|Jrmgt.

2. (Vi € dom(¢) \ dom(s))(Ve € 4)(3u) ¢, C t(i).

3. (3 2k)3j)t(j) C ai.

4. (3i 2 k)(3)) bi S 1()).

Proor. We can find i > k and j € w such that a; N Jrngs =0, f; C a;, and
(Ve € A)(Fu) ¢y C f;. Letusdenotew = f;. Foreachc € & letusfixi(c) € w
such that (Ju) ¢, C fy() and fi) N (w U Jrmgs) = 0. Let iy > k be such that
bi, N (wUJrngs) = @ and let n = dom s. We define ¢ D s with domz = n + 2 as
follows: t(n) = U,c  fi() Ubi, Uk \ (wUJmgs) and t(n + 1) = w. -
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