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GOOD SEQUENCES FOR SACKS FORCING
MIROSLAV REPICKY

ABSTRACT. We introduce an w-closed partially ordered set ]P’; ooq and prove
that if it is k-distributive then Sacks forcing is (k, ¢,w)-distributive. Moreover,
we prove that PFA implies that ]P’;;0 od is c¢-distributive. We consider also some
related partial orders, examine regularity properties for them, and find complete
embeddings of the corresponding complete Boolean algebras.

1. Introduction

In [6] the authors proved that under Martin’s axiom the least cardinal to
which Sacks forcing S collapses the continuum is the additivity of Marczewski
ideal and Martin’s axiom does not prevent from collapsing of the continuum
by S. Namely, it is consistent with Martin’s axiom that ¢ > w, and ¢ is collapsed
to w, . The collapse of the continuum can be expressed via (&, ¢, ¢)-distributivity
of S. We use the definition of the three-parameter distributivity from [1] and
define

sh(\,P) = min{x: P is nowhere (x, ¢, A)-distributive} .

If 9 = ¢, then sh(A,S) = sh(c,S) for all w; < A < ¢ because there are no small
uncountable antichains in S, see [8]. It is well known that sh(w,S) > w;. We
introduce an w-closed partially ordered set Py, 4 and prove that sh(w, ]P’é‘ood) <
sh(w,S) and, under PFA, sh(2,P; ;) = ¢ = w,. We consider also some other
related partial orders, examine certain regularity properties for them and prove
the existence of complete embeddings for the corresponding complete Boolean
algebras.

If (P,<) is a partial ordering, then p,q € P are said to be compatible, if
there is r € P such that r < p and r < ¢q. If p, ¢ are not compatible we say
that they are incompatible and write p L q. A set A C P is predense if for every
p € P there is ¢ € A compatible with p. A set A C P is predense below r € P
if for every p < r there is ¢ € A compatible with p.
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A Boolean algebra is (k, u, A)-distributive if for every system of maximal
antichains {A,: o < k} with each |A | < p there is a maximal antichain
A € B such that for each p € A and each o < &, |[{g € A :p L q}| < A
This definition can be applied to any “reasonable” partial ordering P which,
in particular, can be viewed as a dense subset of the complete Boolean algebra
r.o.(P). It is clear that the meaning of distributivity can change when passing
to a dense subset but this is not the case when P has a dense subset of size < u.
This is one of the reasons why we consider only (x, ¢, u)-distributivity for partial
orderings of size c.

We denote Seq = <“2 (the set of finite sequences of 0’s and 1’s) and Seq® =
Seq \{0}. We say that a set p C Seq is a perfect tree if (i) p # @, (ii) sfk € p
for every s € p and k € w, and (iii) for every s € p there is a splitting node
t € p above s, ie., a t O s such that both {70 and ¢t™1 belong to p.

If p is a perfect tree and s € p, then also (p), ={t € p:sCtort Cs}is
a perfect tree. Let S denote the set of all perfect trees in Seq ordered by p < ¢
if and only if p C ¢q. For p € S let stemp be the minimal splitting node of
and inductively let us define

split’(p) = {stemp},
split**(p) = U{stem((p)sq.): s € splitk(p) and i€ {0,1}},

split(p) = U split*(p) = {s€p:s70€p and s"1€p}.
kEw

For p,qg € S and n € w we say that p < ¢ if p < ¢ and split”(p) = split"(g).

Let us recall that perfect trees correspond to perfect subsets of “2 via the
equality [p] = {z € “2: (Vn) z|n € p} and Seq determines a basis of clopen
sets in “2 consisting of [s] = {z € “2: s C z} for s € Seq.

Let P, Q be partially ordered sets. A mapping i: P — @ is a complete
embedding (see [7]) if

(1) (vp,p' € P) p' <p—i(p') <ilp),

(2) (Yp,p' € P) p' Lp—i(p) Li(p),

(3) (VvgeQ)(Bpe P)(vp' <p) i(p') Lgq.
A function 7: Q — P is normal (see [3]) if

(1) (Vg,4' €Q) ¢' < g—m(¢) <m(q),

(2) 7“Q is dense in P,

(3) #“{p € Q: p < q} is dense below w(q).

Let us recall that for every partially ordered set P there is a canonical em-

bedding into a complete Boolean algebra r.o.(P), i.e., an ordering preserving
mapping e: P — r.0.(P)\ {0}, such that e“P is dense in r.0.(P) and p,q € P
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are compatible if and only if e(p), e(q) are compatible (see [4]). If P is a sepa-
rative partially ordered set (i.e., for p £ g there is 7 < p incompatible with ¢),
then the embedding e is one-to-one and hence P can be identified with a dense
subset of r.0.(P).

Every complete embedding of Boolean algebras is a complete embedding
in the above sense and the projection of a complete Boolean algebra on its
subalgebra is a normal function. Conversely, if there is a complete embedding
i: P — Q or if there is a normal function 7: Q — P, then r.0.(P) is (isomorphic
to) a complete subalgebra of r.o0.(Q). In such case we write P < Q. If P X Q
and @ =< P, then we write P = Q.

The main motivation for writing the present paper was a result in [6] saying
that under Martin’s axiom Miller forcing (i.e., superperfect tree forcing) does not
collapse cardinals. In the proof of this result good sequences for Miller forcing
were introduced and the crucial fact in the proof was that the ordering of good
sequences is c¢-closed under Martin’s axiom. In the present paper we show that
there is an analogy between Sacks forcing and Miller forcing. We introduce good
sequences for Sacks forcing, prove that an ordering of good sequences is w-closed
and under PFA it is ¢-closed, and we show that it has an effect on distributivity
properties of Sacks forcing. At the same time we consider several related forcing
notions, prove regularity properties for them, and prove the existence of complete
embeddings between some of them.

2. Good sequences

We say that a function f: Seq™ — Seq™ is a good sequence if s C f(s) for
every s € Seq”. This notion is motivated by good sequences for superperfect
trees in [6]. For a good sequence f and s € Seq let us define inductively

Se(f) = {s},
SE+L(f) = {f(s7%): s € S* and i€ {0,1}},
S,(f) = sk -
k€Ew
With a good sequence f we associate the sequence of perfect trees (p,(f): s €
Seq) where p,(f) is the unique tree with split (ps (f )) = S,(f). We consider the
following orderings of good sequences defined by
f<g if (Vs €Seq) p,(f) <p,(9),
f<rg if (Vs € Seq) p,(f) <p,(9),
f < g if (Yt € Seq) (Vs € S,(f)) p,(f) <p,(9),
f <*g if (Vt € Seq) (Vs € S,(f)) p,(f) = p,(9)-
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Clearly, f < g implies f <* g and this implies f <** g, and f <* g implies
f <**g. The transitivity of < and <* is straightforward. To see that <** is
transitive let us assume that f <**g and g <** h. Let ¢t € Seq be given. There is
n € w such that p,(f) < p,(g) for all uw € S}(f). For every u € SP(f) let m,, €
w be such that p,(g) < p,(h) for all v € S™+(g) and let m = max{m,: u €
S2(f)}. Then if s € Sf(f) with k¥ < n+ m, then there are u € S}(f) and
v € S™«(f) such that v C s. As p,(f) < p,(9), p,(f) < p,(9) < p,(h). As

s € S,(f) it follows that p (f) < p,(9) < p,(h). A similar proof shows that
<* is transitive and that

f<*g and g<*™f ifandonlyif f<*g and g<*f.

Let P,,,q be the set of all good sequences and let Py 4, Py 4, and Pyg 4 denote

the partially ordered sets (Py,,4, <), (Pyooar <*)s (Pyoodr <), respectively.

For FC P o0d and f,ge P, let us define

good
f <rg if (Vh € F)(Vt € Seq)(V®s € S,(h)) p,(k) < p,(9),
f=]-'g iffS_rg and gS}‘f'

Then

f<rgef <oap 9, F<Mgef<ipe f<gef=ph9,
and the above proof of transitivity of <** shows that if g <** h then g < {5} h
for all f <**g,ie., g S {f€Pyooa: f<**g} h.
LEMMA 2.1. Let f,g € P, 4.
(1) f <g ifand only if (Vs € Seq)(Vi € {0,1}) f(s™i) € S,(g).
(2) The following conditions are equivalent:
(a) f<g
(b) There exists f' € P4 Such that f =" f<g.
(c) (v*°s € Seq)(Vi € {0,1}) f(s7%) € S,(g).
(3) The following conditions are equivalent:

(a) f<™g
b) There exists f' € such that f <* f' <g.
ood

(c) (Vt € Seq)(V>=s € S,(f))(Vie {0,1}) f(s7i) € S,(g)-

Proof. (1) is by an easy induction since p,(f) < p,(g9) if and only if
S™(f) C S,(g) for every n € w.
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(2) The implications (b)—(a)—(c)—(a) are obvious. For (a)—(b) let us

assume that f <*g and let us set
i [ (579 i p(f) < p,(9),
fi(s7i) = . .
g(s™i) otherwise.

Then f =* f' and f'(s7i) € S,(g) for all s € Seq. So, by (1), f' <g.

(3) We use the same arguments as for (2). For the implication (a)— (b), if
f <**g and t € Seq, then for all but finitely many s € S,(f), p,(f) < p,(9)

and hence f(s7i) = f'(s™). Consequently, p,(f) = p,(f’) for all but finitely
many s € S,(f). O

LEMMA 2.2.
(1) Let (g,: s € Seq) be a sequence of perfect trees such that stemgq, = s

for every s. There exists h € P, ., such that for every s there exists
r, C s such that p (h) < (g, ),. Moreover, for f € P, 4 we have:

goo
(a) If (Vs € Seq) q, <p,(f), then h< f. .
(b) If (V*°s € Seq) (‘v’t Cs, s€ split(qt)) (¢,)s <p,(f), then h <* f.

(c) If (vt € Seq)(V™°s € split(g,)) (q,), < p,(f), then h <** f.

(2) Let Sty = = {s: there is a perfect tree q, C p,(f) Np,(g) with s =
stem(q )} Then f, g are <-compatible (<*-compatible, <**-compat-
ible, resp.) if and only if S; , = Seq (Seq\S; , is finite, (V¢ € Seq)
(3s € S;,) tCs, resp.).

(3) For a finite set A C P, 4 and g € P, 4 let S, = {s: {p,(f): f €
A} is predense below p,(g) in S} If A is <-predense ( <*-predense,
<**-predense, resp.) below g, then S, , = Seq (Seq\SA’g is finite, (Vt €
Seq)(3s € 5, ,) t C s, resp.).

Proof. (1) There are perfect trees q; < g, so that the sets split(q}) \ {s},
s € Seq, are pairwise disjoint. To see this, let (s :n € w) = Seq and on nth step
of the inductive construction let us choose disjoint sets split™ (g’ 5:) C spht(qs ),
i < n, which are disjoint from |J split? (g;,)- Now let r, C s be a minimal such

ji<n—1

that s € split(g, ) and let h(s™0) and h(s"1) be minimal splitting nodes
of ¢, above 570 and s™1, respectively. By the disjointness property of ¢,
s € Seq, it follows that for every splitting node u of qq’ns, r, = 7,. Hence

u

py(h) = (q;,), < (g,,),- Inthecase (a), if ¢, < p, (f),then s is a splitting node

of p, (f),s0p,(f)= (p”(f))s and hence p,(h) < p,(f). In the case (b), by the
assumption, (g, ), < p,(f ) for all but finitely many s € Seq, and consequently,

h <* f. In the case (c), by the assumption, (V¢ € Seq)(V*s € split((q;t)t)
(4,), < p,(f) and hence h <** f (as (split(q;t))t = S,(h) and (q;.), = p,(h)).
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(2) It is enough to prove only the “if” part of the equivalences. For each
s€S;, let g, Cp,(f)Np,(g) be a perfect tree with stem s. For s € Seq and
i € {0,1} choose t,; € S;, such that s7¢ C t,, and for s € Seq\S;, let
9 =q,,Yq,, Let h € P,,.q be obtained by applymg assertion (1) to the
system (g,: s € Seq). Then the assumption of the corresponding assertion (a),
(b), or (c) is satisfied both for f and for g and so h is a lover bound for f and g
in the corresponding ordering.

(3) For s € Seq\S, , there is t, € S (g) such that for some i,, s7i, C¢
and [t,)N U [p,(f)] =0. Let us define h < g by
feA

8

t, if sESeq\SA’g and i=1,,

g(s™i) otherwise.

i) ={

Now, if s € §;, for some f € A, then the values h(s™0) and h(s™1) are not
obtamed by the first rule and hence s € Sy, Therefore |J S;, €S, ,
the assertion follows by (2). fea D

Remark 2.3. The characterization for <**-compatibility in Lemma 2.2 (2) can
be weakened by replacing Sy, by the set S} = {s € Seq: p,(f) and p,(g) are
compatlble} because S; , is cofinal in Seq if and only if S’ is. However, it is
not possible to do this replacement in the characterizations for <-compatibility
and <*-compatibility.

Proof. To see the second assertion of the remark let us define for s™¢ €
Seqt,

s7071 if i=0and1¢rng(s),

f(sTi)=5"1"4, g(s™1i) = { e ¢ mg(s)

s

171 otherwise.

Then p,(f) and p,(g) are compatible for all s, namely, p,(f) ﬂps( ) 2
Py~1~1(f) forall s. Butif h € P, 4 then for every s of the form s =07 ...7 0,
]

87070 € p,(f) \ p,(9) and hence if p (k) < p,(f), then p,(h) £ p,(g).

THEOREM 2.4. P z00d and ]P;ood are separative partially ordered sets.

Proof. Let f19 € Pyoq andlet §= {s €Seq: p,(f) £ p,(9)}. For P 200d ?
Po0q> and Pys  we assume that S # 0, |S| = w, and |SNS,(f)| = w for some

t € Seq, respectively. For each s € S let us fix v(s) € S,(f)\ S,(g) and let us
define h < f by

h(s™i) = { v(s) if s€S and s7i Cw(s),
s U= f(s) otherwise.
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It is obvious that for every s € S there is no perfect tree ¢, C p,(h)Np,(g) with
stem(q,) = s. Therefore h and g are incompatible (in the appropriate sense).
0

Remark 2.5. Piood 18 not separative.

Proof. Let p C Seq be a perfect tree with stem(p) = @ such that [p] is
nowhere dense in “2. For each s € Seq choose t, D s such that ¢, ¢ p. Let
us define f,g € P, 4 so that pe(f) = p, f(s7i) =t,~,, if s € p\ split(p),
and f(s7i) = s71, otherwise, and g(s™i) =t _~,, if s € p, and g(s7i) = 574,
otherwise. Then [p,(f)] = [p,(g)] = [s] for all s € Seq\p and p,(f) £ p,(g) for
all s € Sy(f). Hence f £**g. If h <** f is arbitrary, then p (h) < p,(f) for all
s from some dense set S in (Seq, D). As S\p is again dense, by Lemma 2.2 (2),
h and g are compatible. O

LEMMA 2.6.
(1) The set Py = {h € P,,q: h is a one-to-one function} is dense in Pqoa

(2) Theset P, = {f € P oq: Seq\rng(f) is infinite } is open dense both

in Pgood and in P;ood.

Proof. (1) For f € P, 4 define h(s™i) € S,(f) by induction on |s| so
that s74 C h(s™1) and k(s %) # h(t) for all t C s. Clearly, h < f and h € P,.

(2) Let f € P, 4 be arbitrary. By (1) thereis f' < f such that f' € P,. Let
g(s™0) = f/(f(s749)™0) for s7i € Seq™. Then {f'(f'(s™i)"1): s7i € Seq'}
is an infinite subset of Seq\rng(g). Therefore g € P, and g < f' < f. If
f € P, and g < f then as rng(g) C rng(f), g € P,. We have proved that P, is
open dense in lP’good. Similarly, if f € P, and g <* f, then by Lemma 2.1,
rng(g) \ rng(f) is finite and consequently, g € P, . Therefore, P, is open dense

in IP;ood, too. O

Let P|p = {q € P: q < p} for a partially ordered set P and p € P.

00

LEMMA 2.7. Let us assume that f € P, and let T = Seq\rng(f). There is
a function H: {g € P, 4: 9 <*f } - T(Pgood) with the following properties:

ood *

(1) The restriction H[{g € P,,,q: 9 < f} is an isomorphism between
IEDgood [f and T(]Pgood)'

(2) For g,,g9, <*f the following conditions hold:
(a) g, =* g, if and only if H(g,) =* H(g,), where H(g,) =* H(g,)
means that H(g,)(t)(s™i) = H(g,)(t)(s™i) for all but finitely many
pairs (t,574) € T x Seq™.
(b) 9, <" g, if and only if H(g,) <* H(g,), where H(g,) <* H(g,)
means that (Vt € T) H(g,)(t) <* H(g,)(t) and (V*°t e T) H(g,)(t) <
H(gy)(t).
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Proof. For ¢t € T let ¢;,: Seq — 5,(f) be the bijection defined by
(p_f,t(m) =t, ‘Pf,t(s i) = f(%"f t(s) 0.
For g <*f let H(g): T — P,,,4 be defined by

goo

H(g)(t)(s™i) = {f’”(g(ws) 1) i g(ps(s)70) € 8,(F),

7 otherwise.

To see that H(g)(t) € P,,.q notice that either g(gof,t(s)’“i) € S,(f) and then
9(7.4(8)75) 2 £ (7,4(6)™1) = pyo(5™4) and H(g)(0)(s™) = 972 (90 .o(5)79))

2 s71, or, in the opposite case, H(g)(t)(s™i) = st

For g < f, H(g)(t)(s™%) = cpﬁ (g((pf’t(s)"i)) for all s7i € Seq™. Since
p € Py, the system A = <S (f):te T> is a partition of Seq. As A is disjoint, it
follows that H is one-to-one on Py, |f. We show that H restricted to P, .4 |f
is onto T( Pyood)- \

Let (f,:teT) e T(Pgood). As A is a partition we can define a functien
g: Seqt — Seq™ by

9(s7t) =y, (ft(SO;,%(S)Az)) , if teT and se€ 8(f).

For t € T and s € S,(f), g(s™1) € S,(f). Since ft(cp;%(s)"‘i) 2 wzi(s)"i,
9670 2 ¢7,(¢74(5)70) = S(s70). Hence g € Py, g < f and H(g))
(s71) = <pJT’ (g (ps(s)™ i)) = f,(s7%) for all s7% € Seq™.

We claim that if ¢ < f, t € T, and s € S,(f), then wf’t“Sf(H(g)(t)) =

Sk g) for all k& € w. We prove this by induction on k& € w: For £k = 0

‘Pf,t(s)(
both sets in the equality are equal to the singleton {(,o t(s)} and using the
induction hypothesis for k, goft“Sf“’l(H(g) ) = {cpft(H(g)(t)(u i)):u €
SE(H(9)()} = {a(es(W)0): 0p,(w) € SE(y(9)} = S50 (9)-

If g,,9, < f, then using this claim we can see that the following holds:

(vt € T) H(g,)(t) < H(g,)(t) =
(Vt € T)(Vs™i € Seq™) H(g;)(t)(s74) € S, (H(g,)(t)) <=

(Vt € T)(Vs™i € Seqt) g, (gaf,t(s)"i) € S(Pf,t(s)(gz) =
91 < gs -

This finishes the proof of assertion (1).

Assertion (2a) follows immediately by definition of the function H because
in the definition of H(g,) and H(g,) for g;,g, <* f the second rule is applied
only finitely many times. To see (2b) let g,, 92 <* f. There is g5 < f such that
H(g,) = H(g}) and hence g}, =*g,. Then, using Lemma 2.1 (2),
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9179, 99, <0, (391 <95) 9, ="9d, & 3Fg. < f) g, ="9, < g,

@ (39 < f) H(g,) =" H(gy) < H(gz) & H(g;) <" H(gy). -
LEMMA 2.8. Let B and C be complete Boolean algebras such that sat(B) =
sat(C) and let D = {b € B: B|b~ C} be a dense subset of B. Then B ~ C
and B, C are homogeneous.

Proof. Let a € B\ {0} be arbitrary. Let us choose a maximal antichain
X C D such that for every b € X either bAa =0 or b < a. For every be X
there is a maximal antichain X, C D below b such that |X,| = |X| because
B|b~ C and sat(B) < sat(C). Let Y = |J{X,: b<a}. Then Y is a maximal
antichain below a, Y C D, and |Y| = |X|. Let f be an arbitrary one-to-one
function from Y onto X and for every b € Y let e,: B|b — B|f(b) be an
isomorphism of complete Boolean algebras. Then the function h: Bla — B
defined by h(z) = \V{e,(c Ab): b€ Y} for z < a, is a complete 1somorphlsm
Therefore, B is homogeneous and the 1somorph1sm B ~ C follows, too. n

THEOREM 2.9. The complete Boolean algebras r.o.(P, 00d) and t.0.( goc,d)
are homogeneous and P, 4 ~ (( P, 0a)” , <), P good ~ ((Pyo0a)?s <*) -

Proof. Immediately by Lemmas (2.6), (2.7), and (2.8). d

In Corollary 4.2 we show that Boolean algebra r.o.(
too.

Pyood) is homogeneous,

3. Amoeba for S and for lP’good

Amoeba Sacks partial ordering A(S) is the set S X w ordered by (p,n) <
(g,m) if and only if p < ¢, n > m, and pN™2 = gN™2 (see, e.g., [6]). Forcing
with it produces a perfect set of Sacks reals.

A partially ordered set (P, <) satisfies axiom A (see [2]) if there exist partial
orderings <,,, n € w, of P such that

(1) p<, ¢ if and only if p < g;

(2) if p<,,,q,then p< gq;

(3) if A C P is a maximal antichain, p € P, and n € w, then (3¢ <, p)

(3A’ € [A]=¥) A’ is predense below g;
(4) if p,y, <, p, for all n € w, then there is ¢ € P such that ¢ < p,
(usually ¢ <, p,, is required) for all n.

For (p,n) € A(S) and m > n let F(p,n,m) ={S CpN™2: Sin =pnN"2}

and for S € F(p,n,m) let p5 = J{(p),: t € S}. Then (p°,m) < (p,n).
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LEMMA 3.1. The family A= {(p®,m): S € F(p,n, m)} is a finite maximal
antichain below (p,n).

Proof. For different S, S, € F(p,n,m), pS*N™2= S, # S, = pS2 n™2.
Therefore A is an antichain. To prove that A is maximal below (p,n) let (r, k) <
(p,n) be arbitrary with k > m. Then (r, k) < (r,m) < (p™" 2,m) € A. O

The next theorem is well known and we include it here because its proof is
much easier to read than the analogous proof of Theorem 3.4.

THEOREM 3.2. A(S) satisfles axiom A.
Proof. Let us define

(p,n) <o (g;m) if and only if (p,n) < (q,m),
(p,n) <py1 (g, m) if and only if (p,n) < (g,m), m =n, and

(Vs € pn™2) split®((p),) = split*((g),)

Conditions (1), (2), and (4) of axiom A are clearly satisfied. It is enough to prove

(3") if D C A(S) is an open dense set, (p,n) € A(S), and m € w, then there
is (g,n) <,, (p,n) and a countable set D’ C D predense below (g,n).

To prove (3') we construct (p;,n;) € A(S) by induction on j € w so that
(i) pp=p,n<nyg<n; <...,
(i) (Vs € pn™2) split™((p),) C <02,
(iii) (Vs €p;yy N"2) split((p;,,),) N <"+12#£0,
(iv) (pj+1’nj) < (pjsmy),
(v) (Y(r,n;) < (85,4,n;)) (rn;) ¢ D whenever S € F(p;,,,n,n;)) and
(Pf41om) € D-

Let us choose n; > n so that (ii) holds. Let us assume that p., n; have been
constructed and we find p; ., and n,,,. Let {S;: 7 <k} be an enumeration of
F(pj,n,nj). By induction on i < k we define p,; € S as follows: p, , = p;, and
for i <k, if there is (r,n;) < (pfﬂ.,nj) such that (r, n;) € D, then let
Piigr=TU U{(pj,i)s: s€ (pj,i n"2)\ Sz'} )

and if there is no such r, then let Pjit1 = Pji- It follows that (pj’i_}_l,nj) <

(pj,i,nj) for i < k, hence, if we set p;,, = p,;, then (iv) holds, and as
F(p;;n,n;) = F(p;,1,mn;), also (v) holds. Now let us find n,,; > n; so

that (iii) holds.
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Let g = p;. By (iii) and (iv) it follows that ¢ is a perfect tree and (g,n,) <
JEW
(pyng). By (ii) then follows that (g,n) <, (p,n). Let us set

D/={(q5’nj)ED: jE€w and S € F(g,n,n;)}.

The set D’ is countable and we claim that it is predense below (g,n). Let
(r,n;) € D be arbitrary such that (r,n;) < (g,n). Let S = rN™2. Then
S € F(g,n,n;) C F(p;,n,n;). As (r,n;) < (qs,nj) < (pf,nj), by (v) it follows
that (ps ,nj) € D and hence (qs ,nj) € D'. As D is open dense this proves

J
that D’ is predense below (g,n) and hence (3’) holds. O

We consider the set A(P,,,q) = P,o0q X w ordered by

(f,n) < (g,m) if and only if (Vs € Seq) (p,(f),n) < (p,(9),m) -

Hence .
(f,n) <(g,m) ifand only if f < g, n>m, and
(Vs™i € Seq™)(|g(s74)| < m — f(570) = g(s71)) .

Let Pégold and A(Pé;old) be the suborders of P, 4 and A(IP’good), respectively,
1-1

formed by one-to-one good sequences. By Lemma 2.6 (1), Peood = Paood -
For (f,n) € A(Pyy0q) and m > n let F(f,n,m) be the family of all functions
@: £m2\ {#} — =™2 such that for every s™i € ™2 the following conditions
hold:
(1) 870 C p(s71).
(2) If |f(s79)| < m, then ¢(s77) = f(s71).
(3) If |¢(s74)| < m, then p(s7i) € 5,(f).
(4) If |p(s73)| = m, then p(s7™i) € p,(f) N™2.
For ¢ € F(f,n,m) let f¥ € P, 4 be defined by

Fe(smi) = { ming{t € 5,(f): p(s7i) Ct} %f |s| <m,
f(s79) if |s|>m.
Now we are going to prove that A(P,,.4) and A(]P’é;old) satisfy axiom A.
We do not know to tell whether Peood itself satisfies axiom A. However, in
Theorem 4.1 (7) we prove that P, , can be embedded into A(]P’é;old). Therefore

Pgood inherits its nice forcing properties and in particular it is proper.

We start with an auxiliary lemma.
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LEMMA 3.3.
(1) (f#,m) <(f,n) for every ¢ € F(f,n,m).

(2) The family A= {(f?,m): ¢ € F(f,n,m)} is a finite maximal antichain
below (f,n) in A(Pyy0q)-

Proof. (1) By definition, f¥(s™i) € S (f) for all s € Seqt and so
fF<g.If |f(s79)| <n, then p(s7¢) = f(s7i) and hence f¥(s7%) = f(s74).

(2) Let p;(s78) # @o(s7%) for some s7i € S™2, ¢, 0, € F(f,n,m).
Now, either ¢,(s7i), @,(s7%) are not compatible, then f¥:(s73), f¥2(s7%)
are not compatible in Seq, so there is no perfect tree ¢ C p,(f¥*)Np,(f¥?) with
s = stemgq, and hence f¥*, f¥2 are not compatible in P, 4. Or, ,(s71),
,(s71) are compatible and without loss of generality let ¢, (s7%) C @ (s71).
Then [p,(s79)| <m, fe1(s70) = @,(s71) C p,y(s71) C f¥2(s7i), and clearly,
(f#*,m), (f#2,m) are not compatible in A(P,,,4)-

To prove that A is maximal below (f,n) let (g,k) < (f,n) be arbitrary
with k > m. Let ¢: ™2\ {8} — <™2 be defined by ¢(s7i) = g(s7i)[m.
Then ¢ € F(f,n,m) and (g,k) < (g,m) < (f*,m) € A. =

THEOREM 3.4. A(P,,,4) and A(Pégold) satisfy axiom A.

Proof. Let us define

(fin) <o (9,m) if and only if (f,n) < (g,m),
(fyn) <pyq (g,m) if and only if (f,n) < (g,m), m =n, and

(Vs™i € SFH12) f(s74) = g(s74).

Verification of conditions (1), (2), and (4) of axiom A is the same for A(P,,,4)
and A(Pé;old .
Conditions (1) and (2) of axiom A are clearly satisfied.

(4) Let us assume that (fy,;,m,,) <; (fi,n;)- Then ng , = n; > ng,
and |f,;(s79)| < n, if and only if |f,(s7%)| < n, and f,_,(s7%) = f,(s79).
Let us define f(s74) = f;(s7¢) if |s74] = j + 1. We show that (f,n;) <4y,
(frg1:Mppq) forall k € w. Let s7i € Seq™ be arbitrary, |s7i| = j+1.If j > k,
then as (fj+17nj+1) <kl (fk+17nk+1)1 f(s71) :_fj+1(sﬁi) € ‘Ss(fk+1)§ if j.S
k, then as (fiy1,mq1) Sjp1 (Fyp i), F(876) = f4(570) = [y (s71).
Finally, if |f;,,(s7¢)| < n; and |74 = j + 1, then [f;,,(s7¢)| < n; and
f(s74) = fj+1(5ﬁi) = fl(s’\i) = fk+1(3Ai)-

(3) for A(P,,,q): We prove that if D C A(P,,,4) is open dense, (f,n) €
A(Py0q), and m € w, then there is (g,n) <, ., (f,n) and a countable D' C D
predense below (g,n).

112



GOOD SEQUENCES FOR SACKS FORCING

We construct (f;,n;) € A(P,,.q) by induction on j € w so that
(i) fo=f,m<ny<n <....
(i) (Vs™ie€ SmH12) |f(s79)| < ng.
(iif) (Vs7i € SmH12) |f; (570 <mjy,y.
(iV) (fj+1anj+1) < (fjanj)'
(v) (Y(h,n;) < (ff1omy)) (hyn;) ¢ D whenever ¢ € F(f;,;,n,n;) and
(ffy1my) € D.
We choose n,, so that (ii) holds. Let us assume that f., n. have been constructed

and we find f;,, and n,,,.Let {¢;: | <k} be an enumeration of F(f;,n,n;).
By induction on ! < k we define f;; € P, 4. We set f;, = f,. If there is

h,n.) € D such that (h,n,) < (f¥',n,) then let
J J PR |

, h(s™i)  if |h(s7i)| > n,,
fj,l-{-l(shz) = { —~ . !
f;1(s74) otberwise,
and if there is no such h then let fiip1 = fjy- Let us set fj+1 = f;r and let
n;;; > n; be such that (iil) holds. As (f;;,;,n;) < (f;,,n,) for all I <k,
(iv) bolds and as F(f;,n,n;) = F(fj11om n].) also (v) holds. Hence all condi-
tions (i)—(v) hold.

Let us define g(s™%) = f;(s™%) where [ is minimal such that |f;(s7%)| < n;.
We claim that (g,n;) < (f;;n;) for all j € w. To prove this let us fix j € w,
s7i € Seqt and let ! be minimal such that |f,(s™9)| < n;. If |f,(s71)| < n;,
then [ < j and as (f;,n;) < (fi,ny), f;(s71) = fi(s7i) = g(s79). If fy(s74) >
n;, then I > j, f; < f; and hence g(s™7) € S,(f;)-

By (ii) then follows that (g,n) <,,,; (f,n). Let us set

D = {(g“’,nj) €D:j€w and ¢ € F(g,n,nj)}.
The set D’ is countable and we claim that it is predense below (g, n).

Let (h,n;) € D be arbitrary such that (h,n;) < (g,n). Let : =2\ {0} —
<ni2 be defined by p(s7i) = h(s™1) In;. Then ¢ € F(g,n,n;) = F(f;,n,n;).
As (h,n;) < (9% n;) < (ff,n;), by (v) it follows that (f{,n;) € D and hence
(g%, nj) € D'. As D is open dense this proves that D’ is predense below (g,n).

e(3) fcI)Jr tA(]P’;;old): Let D C A(]P’é;old) be predense, (f,n) € A(Pé;old , and
m € w. Le

E={zec A(IP’good): z refines an element of D or z is incompatible
with all elements of A(]P’;;Old)} .

E isopen dense in A(P,,,). Hence we can find (g,n) <, (f,n) and a countable

predense set E' C E below (g,n). We can find g € Pégold. Now we define
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a countable set D’ C D by choosing one element above each element of E’ if it

exists. It is easy to verify that D’ is predense below (g,n) in A(P;oold O

For a filter G on A(P,,,q) let p; denote the relation

pe = {(s,t) € (Seq™)?: (3(f,n) € G) If(s)l <n and f(s) =t}.

Let us consider the following open dense subsets of A(P,,.q):

D, = {(f,m) € A( Pyood): (Vs € <"2) |f(s)| < m}, neEw.
Easily it can be verified that p, € P, , if and only if G is a {D,: n

goo

w}- generlc filter on A( cood) - If PG € Pyooq, then (pg,m) < (f,m) for every

(f;m) €

LEMMA 3.5. If EC P ood 1S predense in ]P’* od» then the set

D(E) = {(f,n) € A(Pyooq): (3h € E)Vk 2 n)(¥s € *2) p,(f) < p,(R)} -
is open dense in A(P,,.q)-

Proof. Let (g,m) € A( P,o0q). There is h € E which is <*-compatible
with g. Let f € P, .4 and n > m be such that p,(f) < p,(g) and p,(f) < p,(h)
whenever |s| > n. Let f' € P, 4 be defined by
F(5~0) = { g(s™i) if |s| <mn,

f(s7i) otherwise.

Then, similarly as in Lemma 2.1 (2), f =* f’ < g, and moreover, (f’,n) € D(E)
where (f',n) < (g,n) < (g,m). ad

THEOREM 3.6. MA_(A(P ood)) implies sh(2,lP’"éood) > k. Consequently,
PFA implies sh(2, ood) =C=w,.

Proof. Let as assume that MA _(A(P ood)) holds. Let {E,: a < k} be
a family of open dense sets in Py - We prove that (| E_, # 0.

a<k

By Lemma 3.5 for each o < k the set D(E,) is open dense in A(P,,.q)-
Let G bea {D,:n € w}U{D(E,): a < s}-generic filter on A(P,,,q)- Then
Pg € Pyooq and for every a < & there is (f,,m,) € GN D(E,) and h, € E,
such that (v*°s) p,(f,) < p,(h,). Then (pg,m,) < (f,,m,) and hence P <
fo <* b, for each o < k. It follows that pg € ﬂ E,.

a<lKk
A( good) is proper by Theorem 3.4 and PFA is a generalization of Martin’s
axiom for proper partial orderings, but it implies ¢ = w, (by Todoréevi¢-Ve-

lickovi¢’s Theorem, see [5]). So, the second assertion follows. a
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4. Good sequences and complete embeddings

In this section we prove the existence of several complete embeddings between
considered forcing notions. We did not try to investigate quotients of complete
Boolean algebras concerned in the embeddings.

ForfEPOod let F(f) = U{lp,(f)]: s € Seq}. F(f) is an F, set and
F(fynls] is uncountable for every s € Seq. Let F be the family of all F_ sets
F C “2 such that F'N[s] is uncountable for every 5 € Seq. The set I is ordered
by inclusion C. Clearly, F(f) € F for every f € P,

good *
THEOREM 4.1.
(1) good = ]Pgood (5) S = A(S) = A( ood) .
(2) good = A( ood) . (6) A(S) = A(Pgood)
(3) S = Sw good (7) good = A( good
(4) s* = A( good) : - (8) ood ~ e

Proof. (1) We prove that the function id: P, vod Pood is @ normal
function. Clearly it is monotone and surjective. It remams to verlfy the density
condition for it, i.e., we have to prove that if g <* f then there is h < f such
that h <*g. By Lemma 2.1 (2) there is h € Pgooc1 such that g =* h < f and
hence h <*g.

(2) The function ¢(f,n) = f is a normal function from A(P

ood) onto Py

good *

(3) The first inequality is trivial. We prove the second. For a perfect tree p and
s€plet (p)* ={t € Seq: s™t € p}. Let (s,: k € w) be a sequence of pairwise
incompatible elements of Seq. Let us define a normal function ¢: P, good s

70
by o(f) = ((p,, (f))™* ": k€ w).
(4) We use the notation from (3) and define ¢(f,n) = <((psk(f))tk)s’° °
k € w) where t, € p, (f) N ™2 is the leftmost element of p, (f) N™2 in the
lexicographical ordering, (f,n) € A(P,,.q)- The function ¢: A(P,,,4) = S¥ is
normal.

(6—6) The function 7: A(S) — S defined by =n(p,n) = (p), where s is the
leftmost element of p N ™2 in the lexicographical ordering of ™2 is normal. For
A(S) = A(P,p0q) and A(S) = A(PL1) notice that ¢(f,n) = (pg(f),n) is

good
a normal function in both cases.

(7) We define a normal function ¢: A(]P’éoold) Pood -
we consider the sets

Ay, ={s7ieSeq": |f(s7i)| <n},
B, = {s"ie Seqt: |s| < n and |f(s74)| > n}.

For (f,n) € A(PL)
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As f is one-to-one, |4, | < |B; | for every n € w. Moreover, it is possible
to define one-to-one mappings ©¢nt Asn — By, ina uniform way so that the
following three conditions are satisfied:

(i) If ©sn(s71) =177, then s7i Ct € S, (f).
(ii) If (h,m) < (f,n) and s"i € A;,,, then h((ph’m(s”‘i)) € Sf(
(i) If flA;, =hlA, ,, then o, =, .

The construction can be carried out by induction on n € w.
Now let us define

et =

(-

os.n(s71))

f(cpf’n(s’\i)) if s72 ¢ Af,n,
f(s71) otherwise.

By the uniformity of functions ¢, for (f,n) € A(]P’;;Old) it follows that ¢ is
monotone. As ¢(f,n) < f, the range of ¢ is dense in P, 4. Let g < ¢(f,n)
be one-to-one and let )

f(s™i) if s7i€ 4y,
h(s7i) =< g(t™j) if s7i€ By, and ¢, (t7]) =74,
g(s™1i) otherwise.
We show that (h,n) < (f,n). There are three cases:
(a) If s7i € A, ,,, then h(s74) = f(s70).

(b) If h(s™i) = g(s™@), then h(s™7) = g(s™i) € S,(¢(f,n)) C S,(f)-

(c) If h(s™1) = g(t™j), where <pf’n(t’\j) = s71 for some ¢ € A, , then
as g < o(f,n), h(s7i) =g(t™j) € S ) (e(f,n)) =S ()=

Flesn(t™3) Flesa(t™3)
S10n(1) € S,(F). (er.n(t~9) (ernt~D)

Let m > n be such that m > |g(s™1)| for all 73 € B, ,,. We prove that
¢(h,m) < g. Notice that Ap =450 By = By ., and Ah,n UB,, < Ah,m.

If 71 ¢ Ay, , then p(h,m)(s7%) = h(s7i) = g(s79).

If s7i€ A, \A4;, and ¢, (s7i) = t7j, then by (i), t € Shis~iy(h)-
Therefore ¢(h,m)(s76) = h(py, n(579) = h(E7]) € Sp~s)(h) € S,(9)-

If s7i € Ay, and @, (s70) =75, @ ,,(s74) = t73, then h(t' ™) =
h(pfn(s71)) = g(s7i). Now, as (h,n) < (f,n), ¢;, = @4, and, by (iii),
h(t™j) € S,(s~i)(h). Therefore p(h,m)(s™i) = h(cph’m(s"i)) = h(t™y) €
Sgs—~a)(R) € S,(g).

(8) We prove that the function F': Pooa — F is a normal function and
a complete embedding as well. To show that F is monotone let us assume that
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f <**g.For t € Seq let n(t) € w besuch that p(f) < p,(g) for all s € STH)(f).
Then

FH=UlDOl=U U I[r@HCF@

t€Seq teSeq seSn () (f)

and hence F is monotone. As F'(id) = “2 it remains to prove that for H € F

and f € P, 4 such that H C F(f) there is A <** f such that F(h) C H.

Given s € Seq, the set [s| N F(f) = U[p,(f)] is uncountable and hence for
t2s

some ¢, 2 s, HN[p, (f)] is uncountable and there is a perfect tree p, C Seq
such that [p,] C HN[p, (f)]. Let ¢, =p, . Up, . for s € Seq and let h be
obtained by applying Lemma 2.2 (1) to the sequence (g,: s € Seq). Then for
every s € Seq there is 7, C s with p,(h) < (g, ), and hence F(h) C H. By
assertion (c) of Lemma 2.2 (1), h <** f. So we have proved that the function F
is normal.

Now we prove that F is a complete embedding. First let us notice that for
f19 € Pyooa» fi g are <**-compatible if and only if F(f) and F(g) are com-
patible in F. The “only if” part of the equivalence is by monotonicity of F'. It
remains to prove the “if” direction. Let f, g be <**-incompatible. By Lemma 2.2
(2) and Remark 2.3 there is ¢t € Seq such that for every s D ¢, perfect trees |
p,(f) and p,(g) are incompatible. It follows that F(f) N F(g) N [t] is count-
able and hence F(f) and F(g) are incompatible in F. It follows that if A is
a maximal antichain in Pg? ;, then {F( NH:fe A} is a maximal antichain in F.
Finally let us notice that for H € F thereis f € P, cood Such that F(f) C H.
Then for every g <** f, F(g) € H. Therefore F is a complete embedding.

O

COROLLARY 4.2. The Boolean algebra r.0.(F) =r1.0.(P;,4) is homogeneous.

Proof. Let D be the family of all sets H C “2 such that there is a disjoint
system of perfect nowhere dense sets (P,: s € Seq) such that H = [J P, and

8

P, C [s] for all s. The set D is a dense subset of F. s€Seq
Let H= |J P, and H' = |J P! be two elements of D and for each s € Seq
s€Seq 8€Seq

let us fix a homeomorphism f,: P, — P,. We claim that the function ¢: F|H —

F|H' defined by ¢(F)= | f,(FNP,) is an isomorphism.
8€Seq

To see this let us notice first that if FF C H and F N [s] is uncountable for
each s € Seq, then the set S = {s € Seq: F'N P, is uncountable} is cofinal
in Seq. If not then there is ¢t € Seq such that |F'N P,| < w for each s D ¢t. As
U{P,: u C t} is nowhere dense, there is s D ¢ such that [s|NU{P,: v C ¢t} = 0.
Then [s]NF = [s|NU{P,: uCtortCu}=I[s)NU{P,:t Cu} andso [s]NF is
countable which is a contradiction. Hence S is cofinal in Seq and consequently

117



MIROSLAV REPICKY
the set o(F) 2 U{f,(FN[P,]: s € S)} is in F|H’. Similarly, if F' € F|H’,
then ¢ 1(F') € F|H, and hence ¢ is an isomorphism.

Now, using Lemma 2.8 it follows that r.o.(F) is homogeneous. O

Remark 4.3. The functions id: P*

* 3. *
. 2ood — Paooa and id: Py q — Pt 4 are not
normal functions.

goo

Proof. We find g € P,,,4 such that the set {f: f <*g¢} (and hence also
the set {f: f < g}) is not dense below g in Pg5 ;. Let p C Seq be a perfect
tree with stem(p) = @ such that [p] is nowhere dense in “2. For s € Seq let
v(s) 2 s be such that v(s) ¢ p if s€pand v(s)=s if s¢ p. Let f,g€ P,

be defined by

ood

stem((p),~;) if s € split(p),
v(s71) otherwise.

Fs ) =v(s™),  gls™) = {
Then F(g) =v2, pm(g) =D, F(f) =w2\[p], and f S**g as

(Vt € Seq) (Vs € St1 (f)) p,(f) = p,(9) = (Seq), .

But there is no h € P,o0q such that h <** f and h <* g because otherwise,
F(h)N[p]#® and F(h) C F(f). . - a

5. Sacks forcing and good sequences

LEMMA 5.1. Let A C S be a maximal antichain in S.

(1) For every f € P,,,q thereis h < f such that for every s € Seq, p,(h) is
compatible with at most two elements of A.

2) If feP and for every s € Seq, p_(f) is compatible with at most
good 8
finitely many elements of A, then every g <** f has the same property.

Proof. (1) Let ¢, < p,(f) be such that stemgq, = s and g, is compatible
with at most two elements of A (set g, = ¢QUgq} where ¢} < (p,(f)),~, refines
an element of A). Let h < f be obtained by applying Lemma 2.2 (1) to the
system (g,: s € Seq). Then p,(h) < (g, ), < g,, for every s € Seq.

(2) Let g <** f and let s € Seq. There is n € w such that p,(g9) < p,(f)
for every t € S7(g). As {p,(g9): t € S?(g)} is a finite predense set below p,(g)
each element of which meets only a finite number of elements of A, then also
p,(g) meets only a finite number of elements of A. O
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THEOREM 5.2. P;ood is w-closed.

Proof. Let f, >* f, >* ... be a decreasing sequence in lP’; od - We find
h € P4 such that h <* f for all k € w. Let {n,}2, be an increasing
sequence of natural numbers such that no =0 and f,(s71) € S,(f,,) Whenever
m <k, |s| > n;,and ¢ € {0,1}. Let h € P, 4 be defined by h(s i) = f,(s71)
if n, < |s] < np ;- Now let m € w be a.rbltrary For every s with |s| > n_,
there is k > m such that n, < |s| < n, and hence h(s71) = f (s7%) € S,(f,, )

Therefore, by Lemma 2.1, h <* f, for all m € w. O
Remark 5.3. P, 4, Poods and F are not w-closed.

Proof. Forcing with P, , adds a Sacks real and hence r.0.(P,,.q) is not
w-distributive (see [4, Theorem 58]). To show that P5% 4 and F are not w-closed
let us consider f € P, 4 such that [p,(f)] are nowhere dense in “2 for all
s € Seq and for all s, t € Seq,

if sCt,then S,(f)NS,(f)#0 if and only if ¢t € S,(f) * (%)

(see the construction at the beginning of the proof of Lemma 2.2). Let us recall
that F(f) = U [p,(f)]. For n € w and s € Seq let us fix an ¢? € (Seq), \
t€Seq

U{S,(f): t € <"2} and let us define f, € P, 4 by

good

fo(s™0) = { .y if seU{S,():te <2},

f(s71) otherwise.

Then f, = f and f, ., <* f, because for every s € Seq either s € Seq\

U{St(f te <n+12} and then, by (*), p,(f,11) = p,(f,) = p,(f), or other-
wise, as t71} ¢ U{S (f): t € <"*12}, again by (), forall t € S (Fars) \ {s},
P(fni1) = P(fn) = p(f)- At last, as F(f,) = FIO\U{[p(D]: ¢ € <r2},
by (%), it follows that () F(f,) =0 and hence there is a lower bound neither

new

for (f,: n € w) in P& 4 nor for (F(f,):n€w) in F. ad

goo

It is well known that sh(w,S) > w, (see, e.g., [4 proof of Lemma 26.4]). The
following theorem provides an attempt to improve this inequality and to obtain
another lower bound for sh(w,S).
THEOREM 5.4.

(1) wq < Sh(2 good) < Sh(w

(2) sh(2,Boy) < sh(w,S).

(3) sh(w,Pyopq) < sh(w, Py 0q)-

4) sh(w,P . 4) < sh(w,S¥) < sh(w,S).

) < sh(w,S).

good

s+ good
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Proof. (1) The first two inequalities hold by Lemma 5.2 and monotonicity
of the cardinal invariants sh(k,P), respectively.

Let £ < sh(w,P; 4) and let (A,: a < k) be a sequence of maximal an-
tichains in S. We show that for every g € S there is 7 < g such that for every
a < K the set

A,.={p€A,: r is compatible with p}

is finite and hence & < sh(w,S). )

Let ¢ € S be given. Let g € P, 4 be arbitrary such that psterﬁq(g) =gq.
By Lemma 5.1 for every o < « there is a maximal antichain B, in P74 such
that for every f € B, and for every s € Seq the set

A,.;=1{p€A,: p is compatible with p (f)}
is finite. As x < sh(w, IP’Zood) there is ¢’ <* g such that for every a < k the set

B; ={fe€ B,: f is <*-compatible with g’}

~

is finite. Let 85 € S 101 ,(9) = split(q) be such that p, (¢') < p, (9). We show
that r = p, (g’) works.

Clearly, r < q because p, (9) = (¢),,- As B, is predense below ¢’ in P}, ,,
by Lemma 2.2 (3), there is n,, € w such that for |s| > n, theset {p,(f): f € B.}
is predense below p,(¢’) in S. In particular, as the set {ps(g'): s € Spe (g')}
is a finite maximal antichain below r in S, the set {p,(f): f € B/, and
s € ST=(g')} is finite and predense below r. Therefore A, CUA,.;: fe B,
and s € Spo(g')} and so the set A, . is finite for every a < «.

(2) Let £ < sh(2,P55 ) and let (A,: a < k) be a sequence of maximal
antichains in S. We show that for every g € S there is r < ¢ such that for every
a < K the set

A,,={p€A,: r is compatible with p}

is finite and hence x < sh(w, S). ‘ \

Let ¢ € S be given. Let ¢, = (sT07¢) U (s™17¢q) for s € Seq where s™¢q =
{ueSeq: (3t € q) u C st} for s € Seq and ¢q € S. Hence g, is a perfect
tree with stemgq, = s. Let g € P, _, be obtained by applying Lemma 2.2 (1)
to the system (g,: s € Seq). Then for every s € Seq there is r, C s such
that p,(g) < (q,,),- For each a < k and n € w let A% = {s7p: s € "2 and
p€ A,}. Clearly, A7 is a maximal antichain in S for all o < k and n € w. By
Lemma 5.1 the set By, of those f € P, ; for which for every s € Seq, p, (f) is
compatible with only a finite number of elements of A7, is open dense in P}

good *

As k <sh(2,P3 ;) there is g’ <**g such that ¢’ € ({Bj: a < & and n € w}.
There is s € Seq such that p_ (¢') < p,(¢'). We can find s such that |r | < |s

and let n = |r |. Let t € Seq be such that 7"t = s. Then there is r < (g), such
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that p,(¢') = r["r. As p,(g’) meets only a finite number of elements of A7,
A . is finite.

a,r

(3) and (4) follow by Theorem 4.1. a

PROBLEM 5.5.
(1) Is sh(w, Py q) 2wy ?
(2) Is Sh(27 IP,;;od) 2 wl

(3) Is any of the inequalities sh(w,P,,.4) > w, and sh(2, good) > w, con-
sistent with ZFC?

THEOREM 5.6. sh(w,S¥) > w,.

Proof. Let (A, : n € w) be a sequence of maximal antichains in S*. Given
q € S¥ by induction on n € w we define p, = (pn’j: J €w) € S¥ sothat p, =¢
and the following three conditions hold:

(1) pn+1 S pn’ i'e" (V] € CU) pn-l—l,j S pn,j'

(2) (Vi<n) Py, SnPnyj

(8) The set {g € A, : q is compatible with p,_,} is finite.

~

Now, if p is the fusion of the sequence (p,: n € w), then p < ¢ and p meets
only a finite number of members of each antichain A, .

To construct p, ., let S; ={s;,: k < 2"*1} for j < n be an enumeration
of the set {s7i:s € split"(p,, ;) and i € {0, 1}}, the set of successors of the
nth splitting level of p,, ;. Let us define a finite decreasing sequence <pﬁ k <
(27*1)™) of elements of S so that S; C p} . for j < n and for every function
cpkE "(.2"+1) there is k such tlllcat for somenplen A, <(pn,j . 1§ < n)u

mi'Jd=m) <p.Setp,, =p; for k=2 1™ — 1. Clearly, p,,,, meets at
most (2"1)" elements of A,,. O

The same proof shows that §¥ satisfies axiom A.
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