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GOOD SEQUENCES FOR SACKS FORCING

MIROSLAV REPICKY

ABSTRACT. We introduce an w-closed partially ordered set ~ood and prove
that if it is K:-distributive then Sacks forcing is (K:,c,w) -distributive. Moreover,
we prove that PFA implies that ~ood is c-distributive. We consider also some
related partial orders, examine regularity properties for them, and find complete
embeddings of the corresponding complete Boolean algebras.

1. Introduction

In [6] the authors proved that under Martin's axiom the least cardinal to
which Sacks forcing § collapses the continuum is the additivity of Marczewski
ideal and Martin's axiom does not prevent from collapsing of the continuum
by §. Namely, it is consistent with Martin's axiom that c > wl and c is collapsed
to wl . The collapse of the continuum can be expressed via (I\:, C, C)-distributivity
of §. We use the definition of the three-parameter distributivity from [1] and
define

sh( A, IF) = min {1\:: IF is nowhere (I\:, C, A)-distributive} .

If () = c, then sh( A, §) = sh( c, §) for all wl :S A :S c because there are no small
uncountable antichains in §, see [8]. It is well known that sh(w, §) 2:: wl. We

introduce an w-closed partially ordered set rrn;oodand prove that sh(w,rrn;ood) :S

sh(w, §) and, under PFA, sh(2, rrn;ood)= c = w2• We consider also some other
related partial orders, examine certain regularity properties for them and prove
the existence of complete embed dings for the corresponding complete Boolean
algebras.

If (P,:S) is a partial ordering, then p, q E P are said to be£ompatible, if
there is r E P such that r :S p and r :S q. If p, q are not compatible we say
that they are incompatible and write p ..1q. A set A ~ P is predense if for every
pEP there is q E A compatible with p. A set A ~ P is predense below r E P
if for every p :S r there is q E A compatible with p.
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A Boolean algebra is (1\':, J.L, A)-distributive if for every system of maximal
antichains {Aa: Q < I\':} with each IAal ~ J.L there is a maximal antichain
A E B such that for each pEA and each Q < 1\':, I{q E Aa: p l- q}J < A.
This definition can be applied to any "reasonable" partial ordering P which,
in particular, can be viewed as a dense subset of the complete Boolean algebra
r. o.(P). It is clear that the meaning of distributivity can change when passing
to a dense subset but this is not the case when P has a dense subset of size ~ J.L.

This is one of the reasons why we consider only (I\':, C, J.L )-distributivity for partial
orderings of size c.

We denote Seq = <w2 (the set of finite sequences of a's and 1's) and Seq+ =
Seq\ {0}. We say that a set p ~ Seq is a perfect tree if (i) p :j:. 0, (ii) s Ik E P

for every s E p and k E w, and (iii) for every s E p there is a splitting node
t E P above s, i.e., a t ::2 s such that both t~a and t~ 1 belong to p.

If p is a perfect tree and s E p, then also (p) s = {t E p: s ~ t or t ~ s} is
a perfect tree. Let § denote the set of all perfect trees in Seq ordered by p ~ q

if and only if p ~ q. For p E § let stem p be the minimal splitting node of "p

and inductively let us define

splitO(p)= {stemp},

splitk+1(p) = U{ stem((p)S~i): s E splitk(p) and i E {a, I}},

split(p) = U splitk(p) = {s E p: s~a E p and s~l E p}.
kEw

For p, q E § and nEw we say that p ~n q if p ~ q and splitn(p) = splitn(q).
Let us recall that perfect trees correspond to perfect subsets of W2 via the

equality [P] = {x E W2: (Vn) x In E p} and Seq determines a basis of clopen
sets in w2 consisting of [s] = {x E W2: s ~ x} for s E Seq.

Let P, Q be partially ordered sets. A mapping i: P -+ Q is a complete

embedding (see [7]) if

(1) (Vp,p' E P) p' ~ p -+ i(p') ~ i(p),

(2) (Vp, p' E P) p' 1- p -+ i(p') 1- i(p) ,

(3) (Vq E Q)(3p E P)(Vp' ~ p) i(p') l- q.

A function 7r: Q -+ P is normal (see [3]) if

(1) (Vq, q' E Q) q' ~ q -+ 7r(q') ~ 7r(q),

(2) 7r"Q is dense in P,
(3) 7r"{p E Q: p ~ q} is dense below 7r(q).

Let us recall that for every partially ordered set P there is a canonical em­
bedding into a complete Boolean algebra r. o.(P), i.e., an ordering preserving
mapping e: P -+ LO.(P) \ {a}, such that e"P is dense in r.o.(P) and p,q E P
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are compatible if and only if e(p), e(q) are compatible (see [4]). If P is a sepa­
rative partially ordered set (i.e., for p i q there is r :S p incompatible with q),
then the embedding e is one-to-one and hence P can be identified with a dense
subset of r. o.(P).

Every complete embedding of Boolean algebras is a complete embedding
in the above sense and the projection of a complete Boolean algebra on its
subalgebra is a normal function. Conversely, if there is a complete embedding
i: P -t Q or if there is a normal function 7r: Q -t P, then r. o. (P) is (isomorphic
to) a complete subalgebra of r. o. (Q). In such case we write P ~ Q. If P ~ Q
and Q ~ P, then we write P ~ Q.

The main motivation for writing the present paper was a result in [6] saying
that under Martin's axiom Miller forcing (i.e., superperfect tree forcing) does not
collapse cardinals. In the proof of this result good sequences for Miller forcing
were introduced and the crucial fact in the proof was that the ordering of good
sequences is ,-closed under Martin's axiom. In the present paper we show that
there is an analogy between Sacks forcing and Miller forcing. We iptroduce good
sequences for Sacks forcing, prove that an ordering of good sequences is w-closed
and under PFA it is ,-closed, and we show that it has an effect on distributivity
properties of Sacks forcing. At the same time we consider several related forcing
notions, prove regularity properties for them, and prove the existence of complete
embeddings between some of them.

2. Good sequences

We say that a function f: Seq+ -t Seq+ is a good sequence if s ~ f (s) for
every s E Seq+ . This notion is motivated by good sequences for superperfect
trees in [6]. For a good sequence f and s E Seq let us define inductively

S~(f) = {s},

S:+1(f) = {J(s~i): s E S: and i E {G,I}} ,

Ss(f) = U S:(f).
kEw

With a good sequence f we associate the sequence of perfect trees (Ps(f): s E

Seq) where Ps(f) is the unique tree with split(Ps(f)) = Ss(f). We consider the
following orderings of good sequences defined by

f :S 9 if ("Is E Seq) Ps(f) :S Ps(g) ,

f :S*9 if ("100 s E Seq) Ps(f) :S Ps(g) ,

f :S**9 if ("It E Seq) (VOOs E St(f)) Ps(f) :S ps(g),

f:Sx 9 if ("It E Seq) (VOOs E St(f)) Ps(f) = Ps(g)·
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Clearly, I ::; 9 implies I ::;* 9 and this implies I ::;** g, and I ::;x 9 implies
I ::;** g. The transitivity of ::; and ::;* is straightforward. To see that ::;** is
transitive let us assume that I ::;** 9 and 9 ::;** h. Let t E Seq be given. There is
nEw such that Pu(J) ::; Pu(g) for all u E S;-(J). For every u E S;-(J) let mu E
w be such that Pv(g) ::; Pv(h) for all v E S;:" (g) and let m = max{ mu: u E

S;- (J) }. Then if s E S; (J) with k ::; n + m, then there are u E S;- (J) and
v E S;:"(J) such that v ~ s. As Pu(J) ::; pu(g), Pv(J) ::; Pv(g) ::; Pv(h). As
s E Sv(J) it follows that Ps(J) ::; Ps(g) ::; Ps(h). A similar proof shows that
<x is transitive and that

1::;** 9 and 9 ::;** I if and only if I ::;x 9 and g::;x I.

Let Pgood be the set of all good sequences and let lP'good'p;ood' and P;~od denote
the partially ordered sets (Pgood'::;)' (Pgood, ::;*), (Pgood' ::;**), respectively.

For F ~ Pgood and I, 9 E Pgood let us define

I ::;F 9 if (Vh E F)(Vt E Seq) (VOOsE St(h)) Ps(h) ::; Ps(g),

I =F 9 if I ::;F 9 and 9 ::;F I·

Then

I ~* 9 -¢:? I ::;{id} g, I ::;** 9 -¢:? I ::;{f} g, I::; x 9 -¢:? I ={f} g,

and the above proof of transitivity of ::;** shows that if 9 ::;** h then 9 ::;{f} h
for all I ::;**g, i.e., 9 ::;{fEPgOOd: f'S**g} h.

LEMMA 2.1. Let I,g E Pgood'

(1) I::;g if and only if (VsESeq)(ViE{O,l}) l(s~i)ESs(g).

(2) The following conditions are equivalent:

(a)I::;*g·

(b) There exists I' E Pgood such that I =* l' ::;g.

(c) (VOOsE Seq) (Vi E {O,l}) I(s~i) E Ss(g).

(3) The following conditions are equivalent:

(a) I::;**g.

(b) There exists l' E Pgood such that I ::;x I' ::; g.

(c) (Vt E Seq) (Voos E St(J))(Vi E {O,I}) I(s~i) E Ss(g).

Proof. (1) is by an easy induction since Ps(J) ::; Ps(g) if and only if
S;(J) ~ Ss(g) for every nEw.
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(2) The implications (b)-+(a)-+(c)-+(a) are obvious. For (a)-+(b) let us
assume that f ::;* 9 and let us set

!,(s~i) = {f(S~i) if Ps(J) ::; Ps(g),g( s~i) otherwise.

Then f =* !' and f'(s~i) E 8s(g) for all s E Seq. So, by (1), !' ::;g.

(3) We use the same arguments as for (2). For the implication (a)-+(b), if
f ::;** 9 and t E Seq, then for all but finitely many s E 8t(J), Ps(J) ::; Ps(g)

and hence f(s~i) = f'(s~i). Consequently, Ps(J) = Ps(J') for all but finitely
many s E 8t(J). D

LEMMA 2.2.

(1) Let (qs: s E Seq) be a sequence of perfect trees such that stem qs = s
for every s. There exists h E Pgood such that for every s there exists

rs ~ s such that Ps(h) ::; (qrJs' Moreover, for f E Pgood we have:

(a) If (Vs E Seq) qs ::; Ps(J) , then h::; f.

(b) If (VoosE Seq)(Vt ~ s, s E split(qt)) (qt)s ::;Ps(J), then h::;* f.

(c) If (Vt E Seq)(voos E split (qt)) (qt) s ::; Ps (J), then h ::;** f·

(2) Let 8f,g = {s: there is a perfect tree qs ~ Ps(J) n Ps(g) with s =
stem(qs)}' Then f, 9 are ::;-compatible (::;* -compatible, ::;**-compat­

ible, resp.) if and only if 8f,g = Seq (Seq \8 f,g is finite, ('<It E Seq)
(3s E 8f,g) t ~ s, resp.).

(3) For a finite set A ~ Pgood and 9 E Pgood let 8A,g = {s: {Ps (J): f E

A} is predense below Ps(g) in §}. If A is ::;-predense (::;*-predense,

::;** -predense, resp.) below g, then 8A,g = Seq (Seq \8 A,g is finite, (Vt E

Seq)(3s E 8A,g) t ~ s, resp.).

Proof. (1) There are perfect trees q~ ::; qs so that the sets split(q~) \ {s},

s E Seq, are pairwise disjoint. To see this, let (sn: nEw) = Seq and on nth step
of the inductive construction let us choose disjoint sets splitn-i (q~i) ~ split (qSi)'

i < n, which are disjoint from U splitj (q~. ). Now let rs ~ s be a minimal such
j<n-l '

that s E split(q~J and let h(s~O) and h(s~1) be minimal splitting nodes
of q' above s~O and s~1, respectively. By the disjointness property of qs' ,r.
S E Seq, it follows that for every splitting node u of q~., r u = r s' Hence
Ps(h) = (q~Js ::; (qrJs' In the case (a), if qr. ::; Pr. (J), then s is a splitting node
of PrJJ) , so Ps(J) = (PrJJ)t and hence Ps(h)::; Ps(J)· In the case (b), by the
assumption, (qrJs ::; Ps(J) for all but finitely many s E Seq, and consequently,
h ::;* f. In the case (c), by the assumption, ('<It E Seq)(Voos E split((q~.)t)
(q~Js ::; Ps(J) and hence h ::;** f (as (split(q~J)t = 8t(h) and (q~.)s = Ps(h)).
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(2) It is enough to prove only the "if" part of the equivalences. For each
s E 8f,g let qs ~ p s (f) n p s (g) be a perfect tree with stem s. For s E Seq and
i E {O,I} choose ts,i E 8f,g such that s~i ~ ts,i and for s E Seq \8f,g let
qs = qt.,o U qt.,! . Let h E Pgood be obtained by applying assertion (1) to the
system (qs: s E Seq). Then the assumption of the corresponding assertion (a),
(b), or (c) is satisfied both for f and for 9 and so h is a lover bound for f and 9
in the corresponding ordering.

(3) For s E Seq\8A,g there is ts E 8s(g) such that for some is' s~is ~ ts

and [ts] n U [Ps(f)] = 0. Let us define h::; 9 by
fEA

( ~') {ts if s E Seq\8Ag and
h s z = '

g(s~i) otherwise.

Now, if s E 8f,h for some f E A, then the values h(s~O) and h(s~l) are not,
obtained by the first rule and hence s E 8A • Therefore U 8f h ~ 8A a"nd,9 "g

the assertion follows by (2). fEA 0

Remark 2.3. The characterization for ::;** -compatibility in Lemma 2.2 (2) can
be weakened by replacing 8f,g by the set 81,g = {s E Seq: Ps(f) and Ps(g) are
compatible} because 8f,g is cofinal in Seq if and only if 81,g is. However, it is
not possible to do this replacement in the characterizations for ::;-compatibility
and ::;* -compatibility.

Proof. To see the second assertion of the remark let us define for s~i E

Seq+,

(s~i) = {S~O~l if i = 0 and 1 ~ rng(s),9 ~.~. th .s Z Z 0 erWlse.

Then Ps(f) and Ps(g) are compatible for all s, namely, Ps(f) n Ps(g) ;;2

Ps~l~l (f) for all s. But if hE Pgood then for every s of the form s = o~ ... ~ 0,
s~o~o E Ps(f) \ Ps(g) and hence if ps(h) ::; Ps(f), then Ps(h) i Ps(g)· 0

THEOREM 2.4. lP'good and ~ood are separative partially ordered sets.

Proof. Let f,g E Pgood and let 8 = {s E Seq: Ps(f) i Ps(g)}· For lP'good'
~ood' and ~~od we assume that 8 =1= 0, 181= w, and 18n8t(f)1 = w for some
t E Seq, respectively. For each s E 8 let us fix v(s) E 8s(f) \ 8s(g) and let us
define h ::; f by
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It is obvious that for every 8 E 8 there is no perfect tree qs ~ Ps(h) nps(g) with
stem( qs) = 8. Therefore hand 9 are incompatible (in the appropriate sense).

o

Remark 2.5. ~~od is not separative.

Proof. Let p ~ Seq be a perfect tree with stem(p) = 0 such that [P] is
nowhere dense in W2. For each 8 E Seq choose ts 2 8 such that ts ~ p. Let
us define 1, 9 E Pgood so that P0(J) = p, 1(8~i) = ts~i' if 8 E P \ split(p),
and 1(8~i) = 8~i, otherwise, and g(8~i) = ts~i' if 8 E p, and g(8~i) = 8~i,
otherwise. Then [Ps(J)] = [Ps(g)] = [8] for all 8 E Seq \p and Ps(J) i Ps(g) for
all 8 E 80(J)· Hence 1i** g. If h ~** 1is arbitrary, then Ps(h) ~ Ps(J) for all
8 from some dense set 8 in (Seq, 2). As 8\p is again dense, by Lemma 2.2 (2),
hand 9 are compatible. 0

LEMMA 2.6.

(1) The set Po = {h E Pgood: h is a one-ta-one function} is dense in JP>gq,od"

(2) The set PI = {J E Pgood: Seq \ rng(J) is infinite} is open dense both

in Pgood and in ~ood'

Proof. (1) For 1E Pgood define h(8~i) E 8s(J) by induction on 181 so
that 8~i ~ h(8~i) and h(8~i) -::/=- h(t) for all t ~ 8. Clearly, h ~ 1 and hE Po'

(2) Let 1E Pgood be arbitrary. By (1) there is l' ~1such that l' E Po' Let
g(8~i) = 1'(J'(8~i)~O) for 8~i E Seq+. Then {J'(J'(8~i)~1): 8~i E Seq+}
is an infinite subset of Seq \ rng(g). Therefore 9 E PI and 9 ~ I' ~ 1. If
1E PI and 9 ~ 1then as rng(g) ~ rng(J), 9 E PI' We have proved that PI is

open dense in JP>good' Similarly, if 1 E PI and 9 ~* 1, then by Lemma 2.1,
rng(g) \ rng(J) is finite and consequently, 9 E PI' Therefore, PI is open dense
in ~ood' too. 0

Let Pip = {q E P: q ~ p} for a partially ordered set P and pEP.

LEMMA 2.7. Let us assume that 1E Po and let T = Seq \ rng(J). There is
a function H: {g E Pgood: 9 ~* J} -+ T (Pgood) with the following properties:

(1) The restriction Hf{g E Pgood: 9 ~ J} is an isomorphism between

JP>good 11 and T (JP>good) .

(2) For gl' g2 ~* 1 the following conditions hold:
(a) gl =* g2 if and only if H(gl) =* H(g2)' where H(gl) =* H(g2)

means that H(gl)(t)(8~i) = H(g2)(t)(8~i) for all but finitely many
pairs (t, 8~i) E T x Seq+ .

(b) gl ~* g2 if and only if H(gl) ~* H(g2)' where H(gl) ~* H(g2)
means that (Vt E T) H(gl)(t) ~* H(g2)(t) and (Voot E T) H(gl)(t) ~
H(g2)(t) .
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Proof. For t E T let 'Pf,t: Seq --t St (f) be the bijection defined by
'Pf,t(0) = t, 'Pj,t(s~i) = 1('Pf,t(s)~i).

For 9 ~* I let H(g): T --t Pgood be defined by

H(g)(t)(s~i) = { 'PZ~ (g('Pf,t(s)~i)) if g('Pf:t(s)~i) E St(f),s z otherwIse.

To see that H(g)(t) E Pgood notice that either g('Pf,t(s)~i) E St(f) and then
g('Pf,t(s)~i) ~ 1('Pf,t(s)~i) = 'Pf,t(s~i) and H(g)(t)(s~i) = 'Pf,~ (g('Pf,t(s)~i))
~ s~i, or, in the opposite case, H(g)(t)(s~i) = s~i.

For 9 ~ I, H(g)(t)(s~i) = 'Pf,~ (g('Pf,t(s)~i)) for all s~i E Seq+. Since
p E Po, the system A = (St (f): t E T) isa partition of Seq. As A is disjoint, it
followsthat H is one-to-one on JIDgood II.We show that H restricted to JIDgood II
is onto T (JIDgood) •

Let (ft: t E T) E T(Pgood)' As A is a partition we can define a function
g: Seq+ --t Seq+ by

g(s~i) = 'Pf,t(Jt('Pj,~(s)~i)), if t E T and s E St(f) .

For t E T and s E St(f), g(s~i) E St(f)· Since It('Pf,~(s)~i) ~ 'Pj,~(s)~i,

g(s~i) ~ 'Pf,t('Pf,~(s)~i) = I(s~i). Hence 9 E Pgood, 9 ~ I and H(g)(t)

(s~i) = 'Pf,~(g('Pf,t(s)~i)) = It(s~i) for all s~i E Seq+.

We claim that if 9 ~ I, t E T, and s E St(f), then 'Pf,t"S:(H(g)(t)) =
S;J.t(s)(g) for all k E w. We prove this by induction on k E w: For k = 0
both sets in the equality are equal to the singleton {'P f,t (s) }, and using the
induction hypothesis for k, 'Pj,t"S:+I(H(g)(t)) = {'Pf,t(H(g)(t)(u~i)): u E

S:(H(g)(t))} = {g('Pf,t(u)~i): 'Pf,t(u) E S;J,t(s)(g)} = S~;~(s)(g)·
If gl' g2 ~ I, then using this claim we can see that the following holds:

(Vt E T) H(gl)(t) ~ H(g2)(t) {==}

(Vt E T)(Vs~i E Seq+) H(gl)(t)(s~i) E Ss(H(g2)(t)) {==}

(Vt E T)(Vs~i E Seq+) gl ('Pf,t(s)~i) E ScpJ.t(s)(g2) {==}
gl ~ g2'

This finishes the proof of assertion (1).
Assertion (2a) follows immediately by definition of the function H because

in the definition of H (gl) and H (g2) for gl' g2 ~ * I the second rule is applied
only finitely many times. To see (2b) let gl' g2 ~* I· There is g~ ~ I such that
H(g2) = H(g~) and hence g~ =* g2' Then, using Lemma 2.1 (2),

108



GOOD SEQUENCES FOR SACKS FORCING

gl :::;*g2 ¢} gl :::;*g; ¢} (3g~ :::;g;) gl =* g~ ¢} (3g~ :::;f) gl =* g~ :::;g;

¢} (3g~ :::;f) H(gl) =* H(g~) :::;H(g;) ¢} H(gl) :::;* H(g2) . 0
LEMMA 2.8. Let Band C be complete Boolean algebras such that sat(B) =
sat(C) and let D = {b E B: Bib ~ C} be a dense subset of B. Then B ~ C
and B, C are homogeneous.

Proof. Let a E B \ {O} be arbitrary. Let us choose a maximal antichain
X ~ D such that for every bE X either b 1\ a = 0 or b:::; a. For every bE X
there is a maximal antichain Xb ~ D below b such that IXbl = IXI because
BI b ~ C and sat(B) :::;sat(C). Let Y = U{Xb: b:::; a}. Then Y is a maximal
antichain below a, Y ~ D, and IYI = IXI. Let f be an arbitrary one-to-one
function from Y onto X and for every bEY let eb: Bib --+ B I f (b) be an
isomorphism of complete Boolean algebras. Then the function h: B I a --+ B,
defined by h(x) = V {eb(x 1\ b): bEY} for x :::;a, is a complete isomorphis~.
Therefore, B is homogeneous and the isomorphism B ~ C follows, too. '0
THEOREM 2.9. The complete Boolean algebras r. o.(lP'good)and r. o'(~ood)
are homogeneous and lP'good:::;j < (Pgood)W,:::;), ~ood :::;j < (Pgood)W,:::;*).

Proof. Immediately by Lemmas (2.6), (2.7), and (2.8). 0

In Corollary 4.2 we show that Boolean algebra r. o'(~~od) is homogeneous,
too.

3. Amoeba for § and for IPgood

Amoeba Sacks partial ordering A(§) is the set § x w ordered by (p, n) :::;
(q, m) if and only if p :::;q, n ~ m, and p nm2 = q n m2 (see, e.g., [6]). Forcing
with it produces a perfect set of Sacks reals.

A partially ordered set (P,:::;) satisfies axiom A (see [2])if there exist partial
orderings :::;n' nEw, of P such that

(1) p:::;o q if and only if p :::; q;

(2) if p :::;n+l q, then P:::;n q;

(3) if A ~ P is a maximal antichain, pEP, and nEw, then (3q:::;n p)
(3A' E [A]~W) A' is predense below q;

(4) if PnH :::;n Pn for all nEw, then there is q E P such that q :::;Pn

(usually q :::;nPn is required) for all n.
For (p, n) E A(§) and m ~ n let F(p, n, m) = {S ~ P n m2: Sfn = P n n2}

and for S E F(p, n, m) let pS = U{ (p)t: t E S}. Then (pS, m) :::;(p, n).
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LEMMA 3.1. Tbe family A = {(pS, m): 8 E F(p, n, m)} is a finite maximal
anticbain below (p, n) .

Proof. For different 81,82 E F(p, n, m), pSI n m2 = 81 # 82 = pS2 n m2.
Therefore A is an antichain. To prove that A is maximal below (p, n) let (r, k) ~
(p,n) be arbitrary with k 2: m. Then (r,k) ~ (r,m) ~ (prnm2,m) EA. 0

The next theorem is well known and we include it here because its proof is
much easier to read than the analogous proof of Theorem 3.4.

THEOREM 3.2. A(§) satisfies axiom A.

Proof. Let us define

(p, n) ~o (q, m) if and only if (p, n) ~ (q, m),

(p, n) ~k+1 (q, m) if and only if (p, n) ~ (q, m), m = n, and

(Vs E p n n2) splitk ((p)s) = splitk ((q)J.

Conditions (1), (2), and (4) of axiom A are clearly satisfied. It is enough to prove

(3') if D ~ A(§) is an open dense set, (p, n) E A(§), and mEw, then there
is (q, n) ~m (p, n) and a countable set D' ~ D predense below (q, n).

To prove (3') we construct (Pj' nj) E A(§) by induction on j E w so that
(i) Po = p, n < no < n1 < ... ,

(ii) (Vs E p n n2) splitm((p)s) ~ <n02,

(iii) (Vs E Pj+1 n nj2) split((Pj+1)s) n <nH12 # 0,

(iv) (Pj+1,nj) ~ (pj,nj),

(v) (V(r,nj) ~ (p;+1,nj)) (r,nj) rt D whenever 8 E F(Pj+1,n,nj)) and
(p;+l,nj) rt D.

Let us choose no > n so that (ii) holds. Let us assume that Pj' nj have been
constructed and we find Pj+1 and nj+1. Let {8i: i < k} be an enumeration of
F(pj' n, nj). By induction on i ~k we define Pj,i E § as follows:Pj,O = Pj' and
for i < k, ifthere is (r,nj) ~ (pfi,nj) such that (r,nj) ED, then let

and if there is no such r, then let Pj,i+1 = Pj,i· It follows that (Pj,i+1,nj) ~

(Pj,i,nj) for i < k, hence, if we set Pj+1 = Pj,k' then (iv) holds, and as
F(pj' n, nj) = F(Pj+1' n, nj), also (v) holds. Now let us find nj+1 > nj so
that (iii) holds.
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Let q =.n Pj' By (iii) and (iv) it followsthat q is a perfect tree and (q, no) ~
JEw

(p, no)' By (ii) then follows that (q, n) ~m (p, n). Let us set

D'= {(qS,nj) ED: jEw and SEF(q,n,nj)}.

The set D' is countable and we claim that it is predense below (q, n). Let
(r,nj) ED be arbitrary such that (r,nj) ~ (q,n). Let S = rnnj2. Then
S E F(q,n,nj) ~ F(pj,n,nj). As (r,nj) ~ (qS,nj) ~ (pJ,nj), by (v) it follows
that (PJ, n j) E D and hence (qS, n j) E D'. As D is open dense this proves
that D' is predense below (q, n) and hence (3') holds. 0

We consider the set A(JP>good) = Pgood X w ordered by

(f,n) ~ (g,m) if and only if (Vs E Seq) (ps(f),n) ~ (ps(g),m) .

Hence

(f, n) ~ (g, m) if and only if I ~g, n ~ m, and

(Vs~i E Seq+)(lg(s~i)1 < m -+ I(s~i) = g(s~i)).

Let ~';-;d and A(JP>~';-old) be the suborders of JP>good and A(JP>good)' respectively,
formed by one-to-one good sequences. By Lemma 2.6 (1), JP>~';-;d ~ JP>good'

For (f, n) E A(JP>good) and m 2: n let F(f, n, m) be the family of all functions
'P: ~m2 \ {0} -+ ~m2 such that for every s~i E ~m2 the following conditions
hold:

(1) s~i ~ 'P(s~i).

(2) If I/(s~i)1 < n, then 'P(s~i) = I(s~i).

(3) If 1'P(s~i)1< m, then 'P(s~i) E Ss(f).

(4) If 1'P(s~i)1= m, then 'P(s~i) E Ps(f) n m2.

For 'P E F(f, n, m) let II{) E Pgood be defined by

"'( ~') {minc{t E Ss(f): 'P(s~i) ~ t} if Isl < m,
tr s 2 = -

I(s~i) if Isl 2: m.

Now we are going to prove that A(JP>good) and A(~';-old) satisfy axiom A.
We do not know to tell whether JP>good itself satisfies axiom A. However, in
Theorem 4.1 (7) we prove that JP>good can be embedded into A(~';-;d)' Therefore
JP>good inherits its nice forcing properties and in particular it is proper.

We start with an auxiliary lemma.
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LEMMA 3.3.

(1) (J'P,m)::; (J,n) for every 'P E F(J,n,m).

(2) The family A = {(f'P, m): 'P E F(J, n, m)} is a finite maximal antichain

below (J, n) in A(JP>good)'

Proof. (1) By definition, f'P(s~i) E Ss(J) for all s~i E Seq+ and so
f::; g. If If(s~i)1 < n, then 'P(s~i) = f(s~i) and hence f'P(s~i) = f(s~i).

(2) Let 'PI (s~i) -I- 'P2 (s~i) for some s~i E ~m2, 'PI' 'P2 E F(J, n, m).

Now, either 'Pl(s~i), 'P2(s~i) are not compatible, then f'Pl(S~i), f'P2(S~i)

are not compatible in Seq, so there is no perfect tree q ~ PS(J'Pl) npS(J'P2) with
s = stem q, and hence f'Pl, f'P2 are not compatible in JP>good' Or, 'PI (s~i),

'P2(s~i) are compatible and without loss of generality let 'PI (s~i) £; 'P2(s~i).

Then l'Pl(s~i)1 < m, f'Pl(S~i) = 'Pl(s~i) £; 'P2(s~i) ~ f'P2(S~i), and clearly,
(J'Pl, m), (J'P2, m) are not compatible in A(JP>good) .

To prove that A is maximal below (J, n) let (g, k) ::; (J, n) be arbitrary
with k ~ m. Let 'P: ~m2 \ {0} -+ ~m2 be defined by 'P(s~i) = g(s~i) rm.
Then 'P E F(J,n,m) and (g,k)::; (g,m)::; (J'P,m) EA. D

THEOREM 3.4. A(JP>good) and A(JP>~;;-old)satisfy axiom A.

Proof. Let us define

(J, n) ::;0 (g, m) if and only if (J, n) ::; (g, m),

(J, n) ::;k+1 (g, m) if and only if (J, n) ::; (g, m), m = n, and

(Vs~i E 9+12) f(s~i) = g(s~i).

Verification of conditions (1), (2), and (4) of axiom A is the same for A(JP>good)

and A(JP>~;;-old)'

Conditions (1) and (2) of axiom A are clearly satisfied.

(4) Let us assume that (Jk+l,nk+l) ::;k (Jk,nk)· Then nk+1 = n1 ~ no,

and Ifk+l(s~i)1 < n1 if and only if Ifl(s~i)1 < n1 and fk+1(s~i) = fl(s~i).

Let us define f(s~i) = fj(s~i) if Is~il = j + 1. We show that (J, n1) ::;k+l

(Jk+1' nk+1) for all k E w. Let s~i E Seq+ be arbitrary, Is~il = j +1. If j > k,

then as (Jj+l,nj+1) ::;k+1 (Jk+l,nk+1)' f(s~i) = fj+l(S~i) E Ss(Jk+1); if j::;
k, then as (Jk+pnk+1) ::;j+l (Jj+1,nj+l)' f(s~i) = fj+1(s~i) = fk+1(s~i).

Finally, if Ifk+l(S~i)1 < n1 and Is~il = j + 1, then Ifj+1(s~i)1 < n1 and
f(s~i) = fj+l (s~i) = f1 (s~i) = fk+1 (s~i).

(3) for A(JP>good): We prove that if D ~ A(JP>good) is open dense, (J, n) E
A(JP>good)' and mEw, then there is (g, n) ::;m+1 (J, n) and a countable D' ~ D
predense below (g, n) .
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We construct (fj' nj) E A(JlDgood) by induction on j E w so that
(i) fo = f, m < no < n1 < ' ,, ,

(ii) (Vs~i E :SmH2) If(s~i)1 < no'

("') (W~' <n'+12) If ('-"')1111 vS z E - J j+1 S Z < nj+1'

(iv) (fjH,njH) ~ (fj,nj).

(v) (V(h,nj) ~ (f1H,nj)) (h,nj) tJ. D whenever cp E F(fjH,n,nj) and
(f1+1> nj) tJ. D.

We choose no so that (ii) holds. Let us assume that fj, nj have been constructed
and we find fjH and njH, Let {CP1:I < k} be an enumeration of F(fj' n, nj),
By induction on I ~ k we define fj,l E Pgood' We set ho = fj' If there is

(h, nj) ED such that (h, nj) ~ Ut.:, nj) then let

( ,-..") _ { h(s~i) if Ih(s~i)1 ~ nj ,
f'l+l s Z -

J, f'l(s~i) otherwise,J, ,
and if there is no such h then. let fj,H1 = fj,l' Let us set fj+1 = fj,k and let
nJ+1 > nj be such that (iii) holds, As (fj,IH' nj) ~ (fj,l' nj) for all I < k,

(iv) holds and as F(fj,n,nj) = F(fj+1,n,n) also (v) holds. Hence all condi­
tions (i)-(v) hold.

Let us define g(s~i) = fl(s'-"i) where I is minimal such that Ifl(s~i)1 < nl,

We claim that (g, nj) ~ (fj' nj) for all j E w, To prove this let us fix j E w,

s'-"i E Seq+ and let I be minimal such that If I (s'-"i)I < nl, If If I(s'-"i) I < nj,

then I ~ j and as (fj' nj) ~ (fll nl), fj(s'-"i) = fl(s'-"i) = g(s~i), If fl(s~i) ~

nj, then I > j, fl ~ fj and hence g(s'-"i) E Ss(fj) ,

By (ii) then follows that (g, n) ~mH (f, n). Let us set

D' = {(g'P,nj) ED: j E wand cPE F(g,n,nj)},

The set D' is countable and we claim that it is predense below (g, n).

Let (h,nj) E D be arbitrary such that (h,nj) ~ (g,n), Let cp: :Snj2\ {0}-+
:Snj2 be defined by cp(s~i) = h(s~iHnj' Then cp E F(g,n,nj) = F(fj,n,nj).

As (h,nj) ~ (g'P,nj) ~ (f1,nj), by (v) it follows that (f1,nj) ED and hence
(g'P, n j) E D' , As D is open dense this proves that D' is predense below (g, n) ,

(3) for A(JID~~old):Let D ~ A(JID~~old)be predense, (f, n) E A(JID~~old)'and
mEw.Let

E = {x E A(JlDgood): x refines an element of D or x is incompatible

with all elements of A(~~old)} ,

E is open dense in A(JlDgood)' Hence we can find (g, n) ~m (f, n) and a countable

predense set E' ~ E below (g, n), We can find 9 E JID~~old' Now we define
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a countable set D' ~ D by choosing one element above each element of E' if it

exists. It is easy to verify that D' is predense below (g, n) in A(IP'~~old)' 0

For a filter G on A(lP'good) let Pc denote the relation

Pc = {(s,t) E (Seq+?: (3(f,n) E G) I/(s)1 < nand I(s) = t}.

Let us consider the following open dense subsets of A(lP'good):

Dn = {(f,m) E A(lP'good): (Vs E <n2) I/(s)1 < m}, nEw.

Easily it can be verified that Pc E Pgood if and only if G is a {D n: n E

w}-generic filter on A(lP'good)' If Pc E IP'good'then (pc,m) ::; (f,m) for every
(f,m) E G.

LEMMA 3.5. If E ~ Pgood is predense in ~ood' then the set

D(E) = {(f,n) E A(lP'good); (3h E E)(Vk ~ n)(Vs E k2) Ps(f) ::; Ps(h)} ,

is open dense in A(lP'good)'

Proof. Let (g, m) E A(lP'good)' There is h E E which is ::;*-compatible
with g. Let IE Pgood and n ~ m be such that Ps(f) ::; Ps(g) and Ps(f) ::; Ps(h)

whenever Isl ~ n. Let f' E Pgood be defined by

'( ~') {9(S~i) if Isl < n,
I s z =

I(s~i) otherwise.

Then, similarly as in Lemma 2.1 (2), 1=* f' ::;g, and moreover, (f', n) E D(E)
where (f',n)::; (g,n)::; (g,m). 0

THEOREM 3.6. MAK(A(lP'good)) implies sh(2'~ood) > /'i,. Consequently,
PFA implies sh(2, ~ood) = C = w2·

Proof. Let as assume that MAK(A(IP'good)) holds. Let {Ea: a < /'i,} be
a family of open dense sets in ~ood' We prove that n Ea =I- 0.

a<K

By Lemma 3.5 for each a < /'i, the set D(Ea) is open dense in A(lP'good)'

Let G be a {Dn: nEw} U {D(Ea): a < /'i,}-generic filter on A(lP'good)' Then
Pc E IP'goodand for every a < /'i,there is (fa' ma) E G n D(Ea) and ha E Ea

such that (VOOs) Ps(fa) ::; Ps(ha). Then (pc,ma) ::; (fa' ma) and hence Pc ::;

la ::;* ha for each a < /'i,.It follows that Pc E n Ea'
a<K

A(lP'good) is proper by Theorem 3.4 and PFA is a generalization of Martin's
axiom for proper partial orderings, but it implies c = w2 (by Todorcevic-Ve­
lickoviC's Theorem, see [5]). So, the second assertion follows. 0
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4. Good sequences and complete embeddings

In this section we prove the existence of several complete embeddings between
considered forcing notions. We did not try to investigate quotients of complete
Boolean algebras concerned in the embeddings.

For f E Pgood let F(f) = U{lPs(f)]: 8 E Seq}. F(f) is an F(T set and
F(f) n [8] is uncountable for every 8 E Seq. Let JF be the family of all F(T sets
F ~ W2 such that Fn [8] is uncountable for every 8 E Seq. The set JF is ordered
by inclusion ~. Clearly, F(f) E JF for every f E Pgood'

THEOREM 4.1.

(1) ~ood ~ lP'good .

(2) ~ood ~ A(lP'good) .

(3) § ~ §w ~ lP'good .

(4) §w ~ A(lP'good)'

(5) § ~ A(§) ~ A(lP'good) .

(6) A(§) ~ A(lP'~;;-old)'

(7) lP'good ~ A(~;;-old) .

(8) ~:od~ JF.

Proof. (1) We prove that the function id: lP'good -+ ~ood is a normal
function. Clearly it is monotone and surjective. It remains to verify the density
condition for it, i.e., we have to prove that if 9 :S;* f then there is h :s; f such
that h :S;*g. By Lemma 2.1 (2) there is h E Pgood such that 9 =* h :s; f and
hence h :S;* g.

(2) The function <p(f, n) = f is a normal function from A(lP'good) onto ~ood'

(3) The first inequality is trivial. We prove the second. For a perfect tree P and
8 E P let (p)S = {t E Seq: 8~t E pl. Let (8k: k E w) be a sequence of pairwise
incompatible elements of Seq. Let us define a normal function <p: lP'good -+ §w

by <p(f) = ((psk(f)rkO: k E w).

(4) We use the notation from (3) and define <p(f,n) = (((Psk(f))t)SkO:

k E w) where tk E Psk(f) n n2 is the leftmost element of Psk(f) n n2 in the
lexicographical ordering, (f,n) E A(JP>good)' The function <p: A(lP'good) -+ §w is
normal.

(5-6) The function 11": A(§) -+ § defined by 1I"(p,n) = (p)s where 8 is the
leftmost element of P n n2 in the lexicographical ordering of n2 is normal. For
A(§) ~ A(JP>good) and A(§) ~ A(lP'~;;-old) notice that <p(f, n) = (P0(f), n) is
a normal function in both cases.

(7) We define a normal function <p: A (lP'~;;-;d) -+ lP'good . For (f, n) E A (JP>~;;-old)
we consider the sets

Af,n = {8~i E Seq+: If(8~i)1 < n} ,

Bf,n = {8~i E Seq+: 181< n and If(8~i)1 :::::n}.
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As f is one-to-one, IAJ,nl :S IBJ,nl for every nEw. Moreover, it is possible
to define one-to-one mappings rpJ,n: AJ,n --+ BJ,n in a uniform way so that the
following three conditions are satisfied:

(i) If rpJ,n (s~i) = t~ j, then s~i ~ t E 8s (f).

(ii) If (h, m) :S (f, n) and s~i E AJ n' then h(rph m(s~i)) E 8 ( ( 0)) (f)., , J 'Pt,n s~t

(iii) If nAJ,n = hi Ah,n' then rpJ,n = rph,n'
The construction can be carried out by induction on nEw.

Now let us define

( )( ~') {f(rpJ n(s~i)) if s~i E AJ n'
rpfns2=' ,

, f(s~i) otherwise.

By the uniformity of functions rpJ n for (f, n) E A(lP'l-ld) it follows that rp is, goo

monotone. As rp(f, n) :S f, the range of rp is dense in lP'good' Let 9 :Srp(f, n)
be one-to-one and let '

{ f(s~i) if s~i E AJ,n'

h(s~i) = g(t~j) if s~i E BJ,n and rpJ,n(t~j) = s~i,

g(s~i) otherwise.

We show that (h, n) :S (f, n). There are three cases:

(a) If s~i E AJ,n' then h(s~i) = f(s~i).

(b) If h(s~i) = g(s~i), then h(s~i) = g(s~i) E 8s (rp(f, n)) ~ 8s(f).

(c) If h(s~i) = g(t~j), where rpJ,n(t~j) = s~i for some t E AJ,n' then

as 9 :S rp(f, n), h(s~i) = g(t~j) E 8J( (t~J')) (rp(f, n)) = 8J('P (t~JO)) (f) =8 0 (f) C 8 (f) 'Pt,n t,nJ(S~t) - S .

Let m > n be such that m > Ig(s~i)1 for all s~i E Bh n' We prove that
rp(h, m) :S g. Notice that Ah,n = A J,n' Bh,n = B J,n' and Ah:n U Bh,n ~ Ah,m'

If s~i rJ.Ah m' then rp(h, m)(s~i) = h(s~i) = g(s~i).,
If s~i E Ah,m \ AJ,n and rph,m(s~i) = t~j, then by (i), t E 8h(s~i)(h).

Therefore rp(h,m)(s~i) = h(rph,m(s~i)) = h(t~j) E 8h(s~i)(h) ~ 8s(g).

If s~i E AJ nand rpJ n(s~i) = t/~j', rph m(s~i) = t~j, then h(t/~j') =" ,

h(rpJ,n(s~i)) = g(s~i). Now, as (h, n) :S (f, n), rpJ,n = rph,n and, by (iii),
h(t~j) E 8g(S~i)(h). Therefore rp(h, m)(s~i) = h(rph,m(s~i)) = h(t~j) E

8g(S~i)(h) ~ 8s(g)·

(8) We prove that the function F: P;~od --+ IF is a normal function and
a complete embedding as well. To show that F is monotone let us assume that
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1<5,** g. For t E Seq let n(t) E w be such that Ps(J) <5,ps(g) for all s E S~(t)(J).
Then

F(J) = U [Pt(J)] = U U [Ps(J)] <:: F(g)
tESeq tESeq sEsn(t) (I)

and hence F is monotone. As F(id) = w2 it remains to prove that for H E IF

and I E Pgoodsuch that H <:: F(J) there is h <5,**I such that F(h) <:: H.

Given s E Seq, the set [s] n F(J) = U [Pt(J)] is uncountable and hence for
(2s

some ts ;2 s, H n [Pt. (J)] is uncountable and there is a perfect tree P s <:: Seq
such that [Ps] <:: H n [Pt. (J)]. Let qs = Pt.~o U Pt'~l for s E Seq and let h be
obtained by applying Lemma 2.2 (1) to the sequence (qs: s E Seq). Then for
every s E Seq there is Ts <:: s with Ps(h) <5,(qrJs and hence F(h) <:: H. By
assertion (c) of Lemma 2.2 (1), h <5,**I. SOwe have proved that the function F
is normal.

Now we prove that F is a complete embedding. First let us notice that for

I, 9 E Pgood' I, 9 are <5,**-compatible if and only if F(J) and F(g) are com­
patible in IF. The "only if" part of the equivalence is by monotonicity of F. It
remains to prove the "if" direction. Let I, 9 be <5,**-incompatible. By Lemma 2.2
(2) and Remark 2.3 there is t E Seq such that for every s ;2 t, perfect trees
Ps(J) and ps(g) are incompatible. It follows that F(J) n F(g) n [t] is count­
able and hence F(J) and F(g) are incompatible in IF. It follows that if A is

a maximal antichain in IP;~od, then {F(J): I E A} is a maximal antichain in IF.
Finally let us notice that for H E IF there is I E Pgood such that F(J) <:: H.
Then for every 9 <5,**I, F(g) <:: H. Therefore F is a complete embedding.

o

COROLLARY 4.2. The Boolean algebra r. 0.(1F)= r. o.(IP;~od) is homogeneous.

Proof. Let D be the family of all sets H <:: w2 such that there is a disjoint
system of perfect nowhere dense sets (Ps: s E Seq) such that H = U Ps and
Ps <:: [s] for all s. The set D is a dense subset of IF. sESeq

Let H = U Ps and H' = U P; be two elements of D and for each s E Seq
sESeq sESeq

let us fix a homeomorphism Is: Ps -+ Ps. We claim that the function r.p: IFI H -+
IFIH' defined by r.p(F) = U Is(F n Ps) is an isomorphism.

sESeq

To see this let us notice first that if F <:: Hand F n [s] is uncountable for
each s E Seq, then the set S = {s E Seq: F n Ps is uncountable} is cofinal
in Seq. If not then there is t E Seq such that IF n Psi <5,w for each s ;2 t. As
U{Pu: u <:: t} is nowhere dense, there is s;2 t such that [s]nU{pu: u <:: t} = 0.
Then [s]nF = [s]nU{pu: u <:: tor t <:: u} = [s]nU{pu: t <:: u} and so [s]nF is
countable which is a contradiction. Hence S is cofinal in Seq and consequently
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the set <p(F) 2 U{Js(F n [Ps]: S E S)} is in JFIH'. Similarly, if F' E JFIH' ,

then <p-1(F') E JFI H , and hence <p is an isomorphism.

Now, using Lemma 2.8 it follows that r.o.(JF) is homogeneous. 0

Remark 4.3. The functions id: ~ood -+ ~~od and id: IP'good -+ ~~od are not
normal functions.

Proof. We find 9 E Pgood such that the set {J: 1::;* g} (and hence also
the set {J: 1::;g}) is not dense below 9 in ~~od' Let P ~ Seq be a perfect
tree with stem(p) = 0 such that [P] is nowhere dense in W2. For s E Seq let

v(s) 2 s be such that v(s) rt p if s E p and v(s) = s if s rt p. Let l,g E Pgood

be defined by

( ~') {stem(p)S~i) if s E split(p),
9 s z =

v(s~i) otherwise.

Then F(g) = w2, P0(g) = p, F(f) = W2 \ [p], and 1::;** 9 as

("It E Seq) ("Is E S;(f)) Ps(f) = Ps(g) = (Seq)s'

But there is no h E Pgood such that h ::;** 1and h ::;* 9 because otherwise,
F(h) n [P] =I- 0 and F(h) ~ F(f). 0

5. Sacks forcing and good sequences

LEMMA 5.1. Let A ~ § be a maximal antichain in §.

(1) For every 1E Pgood there is h ::; 1such that for every s E Seq, Ps(h) is
compatible with at most two elements of A.

(2) If 1E Pgood and for every s E Seq, Ps(f) is compatible with at most
finitely many elements of A, then every 9 ::;** 1has the same property.

Proof. (1) Let qs ::; Ps(f) be such that stemqs = sand qs is compatible
with at most two elements of A (set qs = q~ U q~ where q~ ::; (Ps(f)t~i refines
an element of A). Let h ::; 1be obtained by applying Lemma 2.2 (1) to the

system (qs: s E Seq). Then ps(h) ::; (qrJs ::; qrs for every s E Seq.

(2) Let 9 ::;** 1and let s E Seq. There is nEw such that Pt(g) ::; Pt(f)

for every t E S~(g). As {Pt(g): t E S~(g)} is a finite predense set below Ps(g)

each element of which meets only a finite number of elements of A, then also
Ps (g) meets only a finite number of elements of A. 0

118



GOOD SEQUENCES FOR SACKS FORCING

THEOREM 5.2. ~ood is w-c1osed.

Proof. Let fo 2:* f1 2:* ... be a decreasing sequence in ~ood' We find
h E Pgood such that h ~* fk for all k E w. Let {nk}k::O be an increasing
sequence of natural numbers such that no = 0 and fk(s""'i) E Ss(fm) whenever
m ~ k, Isl 2: nk, and i E {O, I}. Let hE Pgood be defined by h(s""'i) = fk(s""'i)
if nk ~ 18\ < nk+1' Now let mEw be arbitrary. For every s with 181 2: nm
there is k 2: m such that nk ~ 18\ < nk and hence h(8""'i) = fk(s""'i) E Ss(fm)'

Therefore, by Lemma 2.1, h ~* fm for all mEw. 0

Remark 5.3. Pgood' ~~od' and IF are not w-closed.

Proof. Forcing with Pgood adds a Sacks real and hence r.o.(pgood) is not
w-distributive (see [4, Theorem 58]). To show that ~~od and IF are not w-closed
let us consider f E Pgood such that [Ps(f)] are nowhere dense in w2 for all
8 E Seq and for all s, t E Seq,

(see the construction at the beginning of the proof of Lemma 2.2). Let us recall
that F(f) = U [Pt(f)]. For nEw and 8 E Seq let us fix an t~ E (Seq)s \

tESeq

U{St(f): t E <n2} and let us define fn E Pgood by

( ""'') {t~~i if 8 E U{ St(f): t E <n2} ,
f 8 Z =

n f(8""'i) otherwise.

Then fo = f and fn+l ~x fn because for every 8 E Seq either 8 E Seq \
U{St(f): t E <n+12} and then, by (*), Ps(fn+1) = Ps(fn) = Ps(f), or other­

wise, as t;:i:} tj. U{St(f): t E <n+12}, again by (*), for all t E Ss(fn+1) \ {8},
Pt(fn+1) = Pt(fn) = Pt(f)· At last, as F(fn) = F(f) \ U{[Pt(f)]: t E <n2},
by (*), it follows that n F(fn) = 0 and hence there is a lower bound neither

nEw

for Un: nEw) in ~~od nor for (F (f n): nEw) in IF. 0
It is well known that sh(w, §) 2: WI (see, e.g., [4 proof of Lemma 26.4]). The

following theorem provides an attempt to improve this inequality and to obtain
another lower bound for sh(w, §).

THEOREM 5.4.

(1) wI ~ sh(2, ~ood) ~ sh(w, ~ood) ~ sh(w, §).
(2) sh(2, ~~od) ~ sh(w, §).
(3) sh(w, Pgood) ~ sh(w, ~ood)'

(4) sh(w, Pgood) ~ sh(w, §w) ~ sh(w, §).
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Proof. (1) The first two inequalities hold by Lemma 5.2 and monotonicity
of the cardinal invariants sh(/'i:,JP'), respectively.

Let /'i:< sh(w, P;ood) and let (Aa: 0: < /'i:) be a sequence of maximal an­
tichains in §. We show that for every q E § there is r :S q such that for every
0: < /'i:the set

Aa r = {p E Aa: r is compatible with p},

is finite and hence /'i:< sh(w,§).

Let q E § be given. Let 9 E Pgood be arbitrary such that Pstemq(g) = q.

By Lemma 5.1 for every 0: < /'i:there is a maximal antichain Ba in P;ood such
that for every f E Ba and for every s E Seq the set

A""s,! = {p E Aa: P is compatible with Ps(f)}

is finite. As /'i:< sh(w, P;ood) there is g/ :S* 9 such that for every 0: < /'i:the set

B~ = {J E Ba: f is :S* -compatible with 9'}

is finite. Let So E 8stemq(g) = split(q) be such that Pso(g/) :S Pso(g). We show
that r = Pso (g/) works.

Clear ly, r :S q because p So (g) = (q) So • As B~ is predense below g/ in P;ood ,
by Lemma 2.2 (3), there is n", E w such that for Isl ;:::n", the set {Ps(f): f E B~}

is predense below Ps(g/) in §. In particular, as the set {Ps(g/): s E 8~0"(g/)}

is a finite maximal antichain below r in §, the set {Ps(f): f E B~ and

s E 8~0"(g/)} is finite and predense below r. Therefore A""r ~ U{A""s,!: f E B~
and s E 8;0" (g/)} and so the set A""r is finite for every 0: < /'i:.

(2) Let /'i:< sh(2, P;~od) and let (A",: 0: < /'i:) be a sequence of maximal
antichains in §. We show that for every q E § there is r :S q such that for every
0: < /'i:the set

Aa r = {p E A",: r is compatible with p},

is finite and hence /'i:< sh(w, §).
Let q E § be given. Let qs = (s~O~q) U (s~1~q) for s E Seq where s~q =

{u E Seq: (3t E q) u ~ s~t} for s E Seq and q E §. Hence qs is a perfect
tree with stem qs = s. Let 9 E Pgood be obtained by applying Lemma 2.2 (1)
to the system (qs: s E Seq). Then for every s E Seq there is rs ~ s such
that Ps(g) :S (qrJs' For each 0: < /'i:and nEw let A~ = {s~p: s E n2 and
pEA",}. Clearly, A~ is a maximal antichain in § for all 0: < /'i:and nEw. By
Lemma 5.1 the set B~ of those f E Pgood for which for every s E Seq, Ps(f) is
compatible with only a finite number of elements of A~ is open dense in P;~od .

As /'i:< sh(2, P;~od) there is g/ :S** 9 such that g/ E n{B~: 0: < /'i:and nEw}.
There is s E Seq such that Ps(g/) :S Ps(g/). We can find s such that Irsl < /sl

and let n = Irsl. Let t E Seq be such that rs~t = s. Then there is r:S (q)t such
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that Ps(g') = rs~r. As Ps(g') meets only a finite number of elements of A~,
Ao: r is finite.,

(3) and (4) followby Theorem 4.1. 0

PROBLEM 5.5.

(1) Is sh(w, JP>good) 2:: w1 ?

(2) Is sh(2, ~~od) 2:: w1 ?

(3) Is any of the inequalities sh(w, JP>good) > w1 and sh(2, ~~od) > w1 con­
sistent with ZFC?

THEOREM 5.6. sh(w, §W) 2:: w1.

Proof. Let (An: nEw) be a sequence of maximal antichains in §w. Given
q E §w by induction on nEw we define Pn = (Pn,j: j E w) E §w so that Po = q
and the followingthree conditions hold:

(1) PnH :S Pn' i.e., (V j E w) PnH,j :S Pn,j'

(2) (Vj < n) PnH,j :Sn Pn,j .

(3) The set {q E An: q is compatible with PnH} is finite.
Now, if P is the fusion of the sequence (Pn: nEw), then P :S q and P meets
only a finite number of members of each antichain An'

To construct Pn+l let Sj = {Sj,k: k :S 2n+l} for j < n be an enumeration
of the set {s~i: S E splitn(Pn,j) and i E {O,I}}, the set of successors of the
nth splitting level of Pn,j' Let us define a finite decreasing sequence (p~: k <
(2nH)n) of elements of §w so that Sj ~ P~,j for j < n and for every function
r.p E n(2nH) there is k such that for some P E An' ((p~J')s .: j < n) U, 3,"'(3)

(p~,j: j 2:: n) :S p. Set PnH = P~ for k = (2nH)n - 1. Clearly, Pn+l meets at
most (2n+l)n elements of An' 0

The same proof shows that §w satisfies axiom A.
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