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Abstract. In this paper, we describe regular languages with an
essential difference between their nondeterministic message complexity
and the size of their minimal nondeterministic finite automata. This
solves an open problem posed by Hromkovi¢ [2]. We also define a
two-way message complexity and we show that the two-way message
complexity of a regular language L provides a lower bound on the size
of the minimal two-way deterministic finite automaton for L. We find
specific regular languages with an exponential gap between these two
complexity measures and we also do the same for the nondeterministic

case.

1 Introduction

The communication complexity of two-party protocols is well-established
as a successful method for proving lower bounds on several fundamental
complexity measures of sequential and parallel computations. In this paper,
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we study how to use communication protocols to prove lower bounds on the
size of minimal finite automata.

It is well-known that the one-way communication complexity of a regular
language L provides a direct lower bound on the logarithm of the number
of states of the minimal finite automaton recognizing L [1, 2]. In order
to establish a closer relation between communication complexity and finite
automata, Hromkovi¢ and Schnitger [4]a introduced a uniform model of two-
party communication protocols. They defined the message complexity of
a regular language L as the number of distinct messages used by the optimal
one-way uniform communication protocol recognizing L and they showed
that the message complexity of L provides a lower bound on the size of
the minimal finite automaton for L. This relation was extended to the
nondeteriinistic case by Hromkovi¢ [2].

This, then, is the method for proving lower bounds on the size of minimal
deterministic and nondeterministic finite automata and until now it has been
the best method known for this purpose. It has been shown to be very
successful in the deterministic case, in which the message complexity of
a regular language L is exactly equal to the size of the minimal deterministic
finite automaton for L [4, 2].

The aim of this paper is to show that this method has weaknesses in
the cases of nondeterministic finite automata and of two-way (deterministic
and nondeterministic) finite automata. We give specific regular languages for
which the difference between their nondeterministic message complexity and
the size of their minimal nondeterministic automata is exponential. Further,
using two-way uniform protocols we define the two-way message complexity
of a regular language L. We show that it provides a lower bound on the
size of the minimal two-way finite automaton for L but that the difference
between these two complexity measures may be exponential. The same holds
for the nondeterministic case, too.

The paper is organized as follows. Section 2 contains the definitions
of a nondeterministic and two-way message complexity. In Section 3, we
give specific regular languages with an exponential difference between their
nondeterministic message complexity and the size of their minimal nondeter-
ministic finite automata. In Section 4, we study the relation between the
two-way message complexity and two-way finite automata.

2 Definitions

To define one-way uniform nondeterministic protocols we follow [2]. Infor-
mally, a one-way uniform nondeterministic protocol P over an alphabet ¥
accepting a regular language L C X* can be described as follows. The first
computer (Cr) receives the first part z of an input zy € £* and the second
one (Cyr) receives the rest y. The first computer looks at its input = and
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nondeterministically sends binary messages to the second one. The second
computer must then decide whether the input zy is in L or not (see [2] for
details). The message complezity of the protocol P is the number of distinct
messages that can be sent by the first computer. The protocol P accepts
a regular language L over the alphabet % if for all z,y € £* there is an
accepting computation of P on zy if and only if zy € L. The nondetermin-
istic message complexity of L is the message complexity of the best one-way
uniform nondeterministic protocol accepting L.

A two-way uniform deterministic protocol P accepting a regular language
L over an alphabet ¥ can be informally described as follows. The first
computer (Cf) receives the first part = of an input zy € X* and the second
one (Cpy) receives the rest y. Then they can communicate, i.e. exchange
binary messages, until one of them knows whether the input zy is in L or
not. The messages exchanged are not stored by the computers, i.e. the
next message sent by a computer is a function of its input and the preceding
message received from the other computer. The two-way message complexity
of the protocol P is the number of distinct messages exchanged between
the two computers. The two-way message complezity of the language L is
the two-way 1message complexity of the best two-way uniform deterministic
protocol P accepting L. Now, let us formalize these informal definitions of
two-way uniform protocols.

Definition 1 Let X be an alphabet and let L C ¥*. A two-way uniform
protocol over ¥ is a pair P = (®, ), where:

®,p: 5% x {0,1}* — {0,1}* U{0,T}

are functions which have the prefiz freeness property (i.e. ®(z,c¢) is not a
proper prefiz of ®(z',c); the same for ).

A computation of P on an input zy € X* is a string ¢ = c13¢8$. ..
Scp8cky1, where k >0, ¢1,...,¢, € {0,1}*, k41 € {0,1} and such that:

(i) cr = @(z, A),
(i) if 1 is odd, then ¢y = ¢(y,c),
(i) if l is even, then ¢y = ®(z,¢;).

A computation ¢ = c18¢$.. . $cpScpy is called accepting (rejecting) if
¢k+1 = 1 (0). We say that e protocol P accepts a language L if for all
T,y € ¥* the computation of P on the word xy is accepting iff xy € L.

The two-way message complexity of the protocol P is:

2me(P) = |{®(z,c) | = € T*,c € {0,1}*} U {p(y,c) | y € B*,c €
{0,1}*},

t.e. the number of distinct messages used by the protocol P.
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The two-way message complexity of a language L is:

2me(L) = min{2me(P) | P is a two-way uniform protocol accepting L}.

Definition 2 Let M = (Q, %, 6, g0, F') be a (nondeterministic, two-way) fi-
nite automaton recognizing a regular language L over the alphabet . The
size of the automaton M is the number of its states (i.e. |Q|). A (nondeter-
manistic, two-way) finite automaton M is called minimal for L if it recognizes
L with the minimal number of states.

3 Nondeterministic Message Complexity Versus
Nondeterministic Finite Automata

Hromkovi¢ [2] showed that the nondeterministic message complexity of a
regular language L provides a lower bound on the size of the minimal non-
deterministic finite automaton for L.

Klauck and Schnitger [5] showed that there are regular languages with
an essential difference between the nondeterministic message complexity and
the size of the minimal nondeterministic finite automaton.

In this section, we give specific regular languages whose nondeterministic
message complexity is much smaller then the size of their minimal nonde-
terministic finite automata. For an even integer k, let:

Ap ={zy € {0,1}* | |z| = |y| = k,z # y or 2 = ww}
be the regular language over the alphabet {0, 1} that contains words of length
2k with different halves or having equal halfs of the first half of the word.

Theorem 1 The nondeterministic message complezity of Ay is O(k2).

Proof. 1t is sufficient to show that there exists a one-way uniform non-
deterministic protocol Py over the alphabet {0,1} accepting A; with the
message complexity O(k?). Let us informally describe it. The computation
of the protocol Py on a word zy € {0,1}* is as follows.

(i) If z = X then C submits the message “I have no bit”. In this case,
Crr accepts (rejects) if y € Ay, (y ¢ Ag).

(ii) If |z| > 2k then C; submits the message “I have more than 2k bits”
and Cyy rejects the input zy.

(iii) If 1 < |z| < k then Cr nondeterministically sends the messages (|z/, 1,
z;),i = 1,...,|z|. Because computer Cr; has the information about
the length of 2 and the 7 — th bit of z, it accepts if |y| + |z| = 2k and
the corresponding bit of y is different from ;, or |y|+ || = 2k and the
last & bits of y can be written in the form ww. Otherwise, it rejects.
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(iv) If & < |z| < 2k, then (7 nondeterministically sends the messages
(|z|,%,2z3),t = 1,...,k and the message whether the first & bits of z
can be written in the form ww or not. With this information C;; can
again accept or reject the input zy.

It is not difficult to see that Py is a one-way uniform nondeterministic pro-
tocol over the alphabet {0,1} accepting Ay with the message complexity
O(k?). O

Theorem 2 Any nondeterministic finite automaton recognizing the language
Ay has at least 28/¢ states.

Proof. Let M = (Q,{0,1},4, g0, F) be a nondeterministic finite automa-
ton recognizing the language Ay. For any two different words u,v € {0, 1}*/2
the words uuuu and vvvv belong to A and so there are accepting compu-
tations of the automaton M on these words. Let gg,q1,¢9,...,q0; be an
accepting computation of M on uuwu and qg,p1,p2,-..,psr be an accept-
ing computation of M on vvwv (g;,p; € Q). We claim that the 3-tuple
(9x/2> 9k» 93x/2) is different from the 3-tuple (pg/2, Pr, D3k /o). If we assume the
contrary, that gx/o = pr/2, gk = Pk, and gsg/2 = pag/e, then go, q1,. .., qr2 =

Pk/2:Pkj2+15- -+ Pk = ks k415 --+» 93k/2 = DP3k/2>P3k/2+1>--- P2k 1S an ac-
cepting computation of M on the word uvuv which does not belong to the

language Ay, a contradiction. So, we have proved that (g /25 Qk> G3k/2) 7
(pkﬂ,pk,pskﬂ). This implies that [Q|® is at least 2%/2 (the number of all
words of length k/2) and so the number of states of M is at least 25/6. O

Corollary 1 For any language Ay, considered above, there is an exponential
difference between the nondeterministic message complezity of Ay, and the
size of the minimal nondeterministic finite automnaton for Ay.

4 Two-Way Message Complexity Versus
Two-Way Finite Automata

In this section, we show that the two-way message complexity of a regular
language L provides a lower bound on the size of the minimal two-way
deterministic automaton for L. We also find specific regular languages with
the exponential difference between these two complexity measures. These
results hold in the nondeterministic case, too.

Theorem 3 For any regular language L over an alphabet 3, the two-way
message complezity of L is not greater than the size of the minimal two-way
deterministic automaton for L.
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Proof. Let M = (Q, X, 4, go, F') be a minimal 2dfa for L. It is sufficient
to prove that there is a two-way uniform deterministic protocol P accepting
L with at most |Q)| messages. The computation of the protocol P on an
input zy € I* can be informally described as follows. The first computer
looks at its input z and simulates the work of M on z until the last symbol
of z is read by M and the step to the right has to be made by M. In this
case, the first computer sends a message coding the state of M to the second
computer. Then the second computer can simulate M on its input y until
the first symbol of y is read by M and the step to the left has to be made
by M. In this case, the second computer sends the message that codes the
state of M to the first computer. Further, the communication between these
two computers proceeds in the same way.It is not difficult to see that P
is a two-way uniform deterministic protocol accepting L with the message
complexity |Q)|. O

In the following part of this section we give examples of regular languages
with the essential difference between their two-way message complexity and
the size of their minimal two-way deterministic automata.

Lemma 1 For an integer k, let By = {1¥} be the unary language that con-
tains the only word (of length k). Any two-way deterministic finite automa-
ton for By has at least k stales.

Proof. Assume to the contrary that M = (Q, {1}, 4, qo, F) is a 2dfa for
By, that has fewer than k states. Since 1¥ € By, the automaton M accepts
the word 1*. Let us consider the sequence of states which M enters when
computing on 1¥. Denote by ¢; (i = 1,2,...,k) the state that M enters on
the move which takes M to the i+ 1st cell for the first time (before reaching
this cell M may move its head back and forth on cells 1 through 7 many
times). Since M has less than k states, there exist ¢ < j such that ¢; = g;-

more than k is also accepting, which is a contradiction. =]

Lemma 2 Let C}, = {Ikk“i} be the unary language that contains the only
word of length k¥ — 1. There is a two-way uniform deterministic protocol Py
accepting Cy, and using O(k?) messages.

Proof. The protocol P;, over the alphabet {1} can be informally de-
scribed as follows. Let zy € £* be an input word. If |z| > k* or |y| > kS
a constant number of messages is sufficient for the computers C; and Crr
to reject the input. In the other case (i.e. |z| < k* and |y| < k¥) both
computers can unambiguously write the length of their inputs in the form:
Cr ¢ [ml =ag + a1k + agk? + ...+ ak_lkk'_l,

Crr : |y| = bo + brk + bak® + ... + b1 KF,
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where a;,b; € {0,1,...,k—1}. Note that |z|+|y| = k* -1 if a;+ b, =k —1
for all ¢ = 0,1,...,k — 1. So, Cr will successively send a subscript ¢ and
the value of the coefficient a; (starting with ag) and Cj; will check whether
a; + b = k — 1. O(k?) messages are sufficient for them to accept or reject
the input zy (the number of the coefficients a; is k and their values are from
the set {0,1,2,...,k—1}). ]

By the two lemimata above, for the language C}, = {lkk_l} it holds, that
there is a two-way uniform deterministic protocol accepting Cp with the
message complexity O(k?), while any two-way deterministic finite automaton
recognizing Cj, = Byx_; has at least k¥ —1 states. So, there is an exponential
difference between the two-way message complexity of Cj and the size of the
minimal two-way deterministic automaton for Cy.

The two-way nondeterministic message complexity of regular languages
can be defined simply by allowing ® and g in the definition 2.1 to be relations
on X* x {0,1}* x ({0,1}* U{0,1}), as opposed to functions. Theorem 3 and
Lemma 1 can be proved for the nondeterministic case, too. So, we get that
the two-way nondeterministic message complexity of a regular language L
provides a lower bound on the size of the minimal two-way nondeterministic
automaton for L. But for the language C}, the difference between these two
complexity measures is exponential.

The languages considered in this section were over the alphabet {1}.
Similar considerations can be made for the regular languages {(Ol)kk_l} over
the alphabet {0,1} or the regular languages { {abc]kk‘l} over the alphabet
{a,b,c}.
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