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Abstract

The number of transitions required by a nondeterministic finite automaton (NFA)
to accept a regular language is a natural measure of the size of a that language.
There has been a significant amount of work on considering the trade-off between
the number of transitions and other descriptional complexity measures for regular
languages. In this paper, we consider the effect of language operations on the number
of transitions required to accept a regular language. This work extends previous work
on descriptional complexity of regular language operations, in particular, under the
measures of deterministic state complexity, nondeterministic state complexity and
regular expression size.

1 Introduction

The examination of the descriptive complexity of operations on the regular languages has
a long history, with a large emphasis being on the deterministic state complexity of an
operation: what is the increase in the sizes of deterministic finite automata (DFA, see
Section 2 for definitions) when a given operation is applied? For a survey of these re-
sults, see Yu [22, 23]. However, recent work has also focused on other measures of the
descriptional complexity of operations on regular languages, most notably the nondeter-
ministic state complexity [5, 9, 10], but also including regular expressions size [6], radius
and nondeterministic radius [3, 5].

Measuring the size of a nondeterministic finite automaton (NFA) by the number of
transitions has received a significant amount of attention in the literature [7, 13, 14, 15,
18, 21]. The rationale for this research is that the number of transitions in an NFA M is
more likely to be the dominant term in an expression of the total storage required for M .
Much of the research using the number of transitions as a descriptional complexity measure
has been concerned with trade-offs in descriptional complexity: for instance, bounds on
the number of transitions in an NFA accepting the same language as a regular expression
of some given size.

In this paper, we examine the change in the number of transitions when applying
operations which preserve regularity, including boolean operations, catenation, Kleene
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closure and reversal. We also investigate morphic operations, where the change in the
number of transitions is a more interesting descriptional complexity problem than in the
case of state complexity. For some of these operations, we can more precisely quantify
the change in the number of transitions by considering refinements on the number of
transitions, including the number of transitions leaving the initial state of an NFA and
the number of transitions entering all final states of an NFA.

2 Preliminary Definitions

For additional background in formal languages and automata theory, please see Rozenberg
and Salomaa [20] or Hopcroft and Ullman [11]. Let Σ be a finite set of symbols, called
letters. Then Σ∗ is the set of all finite sequences of letters from Σ, which are called
words. The empty word ε is the empty sequence of letters. The length of a word w =
w1w2 · · ·wn ∈ Σ∗, where wi ∈ Σ, is n, and is denoted |w|. Given a word w ∈ Σ∗ and
a ∈ Σ, |w|a is the number of occurrences of a in w. A language L is any subset of Σ∗. By
L, we mean Σ∗ − L, the complement of L.

The reversal of a word w = x1x2 · · · xn (xi ∈ Σ), denoted wR, is defined by wR =
xn · · · x2x1. By extension, LR = {xR : x ∈ L}. Let Σ,∆ be alphabets and h : Σ → ∆∗

be a function. Then h can be extended to a morphism h : Σ∗ → ∆∗ via the condition
that h(uv) = h(u)h(v) for all u, v ∈ Σ∗. If L ⊆ Σ∗, then h(L) = {h(x) : x ∈ L} and if
L′ ⊆ ∆∗, h−1(L′) = {x : h(x) ∈ L′}.

An NFA is denoted as M = (Q,Σ, δ, q0, F ) where Q is the finite set of states, Σ is
the input alphabet, q0 ∈ Q is the distinguished start state and F ⊆ Q is the set of final
states. Further, δ ⊆ Q × Σ × Q. Given a word w = w1w2 · · ·wn ∈ Σ∗, where wi ∈ Σ, we
say that w is accepted by M if there exist q1, q2, . . . , qn ∈ Q such that (qi−1, wi, qi) ∈ δ
for all 1 ≤ i ≤ n and qn ∈ F . The language L(M) ⊆ Σ∗ accepted by M is the set of
all words which are accepted by M . An NFA is deterministic (a DFA) if, for all pairs
(q, a) ∈ Q × Σ, there exists at most one q ′ ∈ Q such that (q, a, q′) ∈ δ. A DFA in which
there exists exactly one q′ ∈ Q for each (q, a) ∈ Q × Σ such that (q, a, q ′) ∈ δ is called
complete; a DFA which is not complete is called incomplete.

Recall that a state q is useful if q is reachable from the start state and there exists a
final state which is reachable from q. In this paper, we only consider NFAs where all states
are useful. Unless otherwise mentioned, by an NFA we mean an automaton without ε-
transitions. The state complexity of a regular language is the minimal number of states in
any DFA accepting L. Similarly, the nondeterministic state complexity of a language L is
the minimal number of states in any NFA accepting L. The state complexity (respectively,
nondeterministic state complexity) of a regular language L is denoted as sc(L) (resp.,
nsc(L)).

We now define the transition complexity of a regular language:

Definition 2.1 Let L be a regular language. The (nondeterministic) transition complexity
of L, tc(L), is the smallest number of transitions of any NFA that recognizes L.

We also require the following notation to discuss additional properties of transition
complexity of regular languages. For any regular language L ⊆ Σ∗, let

M(L) = {M = (Q,Σ, δ, q0, F ) : M is an NFA, L(M) = L and |δ| = tc(L)}.
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Thus, M(L) is the set of all NFAs accepting L which have the minimal number of transi-
tions. We call any M ∈ M(L) a transition-minimal NFA for L.

3 Transition Complexity of Boolean Operations

We first examine the transition complexity of the operations of union, intersection and
complementation. To precisely discuss the transition complexity of union, we require some
additional notation. Let L be a regular language and let s(L) = minM∈M(L){|δ ∩ ({q0} ×
Σ × Q)|}. That is, s(L) is the minimal number of transitions leaving the start state of M
for any transition-minimal NFA M accepting L.

Theorem 3.1 Let L1, L2 be regular languages with tc(Li) = ni and s(Li) = si. Then
tc(L1 ∪ L2) ≤ n1 + n2 + s1 + s2.

Proof. Let Mi = (Qi,Σ, δi, qi, Fi) be a transition-minimal NFAs with si transitions
leaving qi for i = 1, 2. Let M = (Q1 ∪ Q2 ∪ {q0},Σ, δ, q0, F ) be the NFA defined by

δ = δ1 ∪ δ2 ∪ {(q0, a, q) : (q ∈ Q1 and (q1, a, q) ∈ δ1) or (q ∈ Q2 and (q2, a, q) ∈ δ2)}

and F defined by F = F1 ∪ F2 if ε /∈ L1 ∪ L2 and F = F1 ∪ F2 ∪ {q0} otherwise. Thus, q0

has the union of the transitions leaving q1 and q2. Therefore, M can either simulate M1

or M2 and L(M) = L1 ∪ L2. Further, M has n1 + n2 + s1 + s2 transitions.

Corollary 3.2 Let L1, L2 ⊆ Σ∗ be regular languages with tc(Li) = ni. Then tc(L1∪L2) ≤
2(n1 + n2).

We now consider whether the bound in Theorem 3.1 is tight:

Lemma 3.3 For all n1, n2 ≥ 1, there exist regular languages L1, L2 such that tc(Li) = ni,
and tc(L1 ∪ L2) ≥ n1 + n2 + s(L1) + s(L2).

Proof. Let n1, n2 ≥ 1. Let L1 = (an1)∗ and L2 = (bn2)∗ where a, b are distinct letters.
Then we can verify that tc(Li) = ni: each requires ni states by a counting argument (see,
e.g., Holzer and Kutrib [10, Lemma 3]), and must also contain a cycle, so each must also
have ni transitions. Note that s(Li) = 1.

Now, consider any NFA M accepting L1 ∪L2. It is known that M requires n1 +n2 +1
states [10, Thm. 5]. Further, n1+n2 of these states must be reachable from the start state,
which requires n1+n2 transitions. However, since L1∪L2 is infinite, we additionally require
that there is one further transition to create a cycle. Assume without loss of generality
that this transition is labelled a. Then we note that if these were the only transitions in
M , every sufficiently long word in L1 ∪L2 would contain an occurrence of a, since it must
pass through the cycle. However, this is a contradiction. Thus, we require at least one
more transition, for a total of n1 + n2 + 2 transitions. This establishes the result.

The case of intersection is interesting, as it requires us to consider the labels of the
transitions:
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Theorem 3.4 Let L1, L2 ⊆ Σ∗ be regular languages with tc(L1) = n and tc(L2) = m.
Further, let Σ = {a1, . . . , ak}, n = n1 + · · · + nk and m = m1 + · · · + mk where ni

(resp., mi) is the number of transitions labelled by ai in some fixed transition-minimal
NFA accepting L1 (resp., L2). Then tc(L1 ∩ L2) ≤

∑k
i=1 mini.

Proof. Let Mi = (Qi,Σ, δi, qi, Fi) be any transition-minimal NFA accepting Li, for
i = 1, 2. Then consider the standard cross-product construction for an NFA accepting
L1 ∩ L2: let M = (Q1 × Q2,Σ, δ, (q1, q2), F1 × F2), where

δ = {((qi, qj), a, (qk, q`)) : a ∈ Σ, (qi, a, qk) ∈ δ1, (qj , a, q`) ∈ δ2}.

From this, we note that a transition with label ai is present in δ for every ordered pair of
transitions from δ1 and δ2 labelled by ai. Thus, we get exactly nimi such transitions for
each ai. This gives the result.

Thus, the minimal transition complexity of intersection requires us to examine the de-
compositions of n and m as in Theorem 3.4 which minimize

∑k
i=1 nimi. We now prove that

Theorem 3.4 is tight for decompositions in which the number of transitions is balanced:

Lemma 3.5 Let n,m ≥ 1 and Σ = {a, b}. There exist languages L1, L2 ⊆ Σ∗ with
tc(L1) ≤ 2n and tc(L2) ≤ 2m such that tc(L1 ∩ L2) ≥ 2nm.

Proof. Let L1, L2 ⊆ Σ∗ be given by

L1 = {w ∈ Σ∗ : |w|a ≡ 0 (mod n)}, L2 = {w ∈ Σ∗ : |w|b ≡ 0 (mod m)}.

Note that L1 can be accepted by an NFA with n states, n transitions labelled a and
n transitions labelled b. Similarly, L2 can be accepted by an NFA with m states, m
transitions labelled a and m transitions labelled b.

Let M = (Q,Σ, δ, q0, F ) be any NFA for L1 ∩ L2. Let B(i, j) ⊆ Q be the set of states
that can be reached by some word w where |w|a ≡ i (mod n) and |w|b ≡ j (mod m). As
all states are useful, the sets B(i, j) and B(i′, j′) must be disjoint for all pairs 1 ≤ i, i′ ≤ n,
1 ≤ j, j′ ≤ m, (i, j) 6= (i′, j′).

Now, consider an arbitrary set B(i, j). There must be some state qi ∈ B(i, j) such
that (qi, a, q′i) where q′i ∈ B(i + 1, j) (where addition is performed modulo m). Similarly,
there must be a transition labelled b from some state in B(i, j) to some state in B(i, j +1)
(again, j+1 is interpreted modulo n). Thus, in total, each B(i, j) must have two transitions
leaving it, and we get 2nm transitions in M . Note that nm transitions are labelled a and
nm are labelled b.

We note also that trivial intersections also achieve the upper bound in Theorem 3.4: if
L1 = {an} ⊆ {a, b}∗ and L2 = {bm} ⊆ {a, b}∗, then L1∩L2 = ∅, and tc(∅) = 0 = n·0+0·m.
Proving that Theorem 3.4 is tight for more complex decompositions of n and m is a topic
for further research. For complementation, we get the following bounds:

Theorem 3.6 Let L ⊆ Σ∗ be a regular language over a k-letter alphabet Σ with tc(L) = n.
Then tc(L) ≤ k2n+1. Further, for all n ≥ 1, there exists a regular language Ln ⊆ {a, b}∗

with tc(Ln) ≤ n and tc(Ln) ≥ 2n/2−5 − 1.
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Proof. If M = (Q,Σ, δ, q0, F ) is an NFA accepting L with n transitions, then |Q| ≤ n+1.
By the subset construction, there exists a DFA M ′ = (2Q,Σ, δ′, q′0, F

′) with at most 2n+1

states accepting L. By exchanging final and non-final states in M ′, we get a DFA accepting
L. This DFA again has at most 2n+1 states and k2n+1 transitions.

For the lower bound, consider the language Lk = {a, b}∗a{a, b}ka{a, b}∗ for k ≥ 1.
Holzer and Kutrib [10] have shown that nsc(Lk) = k while nsc(Lk) = 2k−2. Now, consider
any NFA M accepting Lk, and assume that it has fewer than 2k−2−1 transitions. Since we
can assume that M is initially connected, this means that M has strictly fewer than 2k−2

states, a contradiction. Thus, tc(Lk) ≥ 2k−2−1. Now, we can observe that tc(Lk) ≤ 2k+6.
This gives the result.

It is interesting to note that Jirásková [16] gives a language Ln ⊆ {a, b}∗ (for all
n ≥ 1) which demonstrates a tight lower bound on the blow-up for nondeterministic state
complexity of complementation, i.e., nsc(Ln) = n and nsc(Ln) = 2n. However, the NFA
recognizing Ln has 4n − 4 transitions, which does not imply as strong a result as the
witness languages of Holzer and Kutrib.

For the unary case, we have a tight result due to a powerful result of Mera and
Pighizzini [19]. In this case, we can immediately conclude that for all n ≥ 1 there exists
a unary regular language Ln such that tc(Ln) ≤ n, while tc(Ln) ≥ g(n), where g(n) is
Landau’s function, which satisfies g(n) ∈ eΘ(

√
n lg n). For unary alphabets, this is a tight

bound on the effect of complementation on transition complexity.

4 Transition Complexity of Catenation Operations

To discuss the transition complexity of catenation, we require further notation. Let L be
a regular language and let f(L) = minM∈M(L){|δ ∩ (Q × Σ × F )|}. That is, f(L) is the
minimal number of transitions entering the final states of M for any transition-minimal
NFA M accepting L.

Theorem 4.1 Let L1, L2 be regular languages with tc(Li) = ni for i = 1, 2. Then
tc(L1L2) ≤ n1 + n2 + f(L1).

Proof. First, assume that f(L1) > 0. Let Mi = (Qi,Σ, δi, qi, Fi) be a transition-minimal
NFA for Li (i = 1, 2) with the additional condition that M1 has f(L1) > 0 transitions
entering F1. Let M = (Q1∪Q2,Σ, δ, q1, F ) be the NFA defined by δ = δ1∪δ2∪{(q, a, q2) :
q ∈ Q1, (q, a, qf ) ∈ δ1, qf ∈ F1}. Further, F = F2 if q2 /∈ F2 and F = F2 ∪ F1 if q2 ∈ F2.
From this, we can verify that L(M) = L1L2 and M has n1 + n2 + f(L1) transitions.

If f(L1) = 0, then L1 = {ε} or L1 = ∅. In the first case, L1L2 = L2, and tc(L1L2) ≤ n2.
In the second case, L1L2 = ∅, and tc(L1L2) = 0. Thus, the inequality holds in both cases.

We can make Theorem 4.1 more precise with some additional notation. For any NFA
M , let P = {q ∈ Q : ∃q′ ∈ F such that (q, a, q′) ∈ δ}. That is, P is the set of
prefinal states in M . Then for any transition-minimal NFA M over an alphabet Σ =
{a1, a2, . . . , ak} with f(L) transitions entering the final states, let us write f(L) as

f(L) =
∑

q∈P

k∑

i=1

nq,i (1)
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where nq,i = |{q′ ∈ F : (q, ai, q
′) ∈ δ}|. We note that it is possible that nq,i is greater

than one. We now employ the decomposition of f(L) to prove another upper-bound on
the transition complexity of catenation:

Theorem 4.2 Let L1, L2 ⊆ Σ∗ be regular languages over Σ (|Σ| = k) with tc(Li) = ni for
i = 1, 2. If L1 is accepted by some transition-minimal NFA M where f(L1) is as in (1),
then tc(L1L2) ≤ n1 + n2 +

∑
q∈P

∑k
i=1 min{nq,i, 1}.

Proof. We consider only the case where f(L1) > 0 (the case where f(L1) = 0 remains the
same as in the proof of Theorem 4.1). Let Mi = (Qi,Σ, δi, qi, Fi) be a transition-minimal
NFA for Li (i = 1, 2) with the additional condition that M1 has f(L1) transitions entering
F1. Let M = (Q1 ∪ Q2,Σ, δ, q1, F ) be the NFA defined by δ = δ1 ∪ δ2 ∪ {(q, a, q2) : q ∈
Q1, (q, a, qf ) ∈ δ1, qf ∈ F1}. Further, F = F2 if q2 /∈ F2 and F = F2 ∪ F1 if q2 ∈ F2.

Let qp ∈ P and 1 ≤ i ≤ k. If nq,i > 1, then δ1 (in M , the original NFA accepting
L) has transitions (qp, ai, q

′) and (qp, ai, q
′′) for some q′, q′′ ∈ F1. However, in our original

estimation, we count each of these transitions as contributing one transition to the com-
ponent {(q, a, q2) : (q, a, qf ) ∈ δ, qf ∈ F} of δ (in the NFA M accepting L1L2). However,
only one transition is actually created: it is labelled a and goes from qp to q2. This leads
us to the refined upper bound.

Corollary 4.3 Let L1, L2 ⊆ Σ∗ be regular languages with tc(Li) = ni. Then tc(L1L2) ≤
2n1 + n2.

We can now consider lower bounds on the transition complexity of catenation:

Lemma 4.4 For all n1, n2 ≥ 1, there exist regular languages L1, L2 such that tc(Li) = ni,
and tc(L1L2) ≥ n1 + n2 + f(L1).

Proof. Let L1 = (an1)∗ and L2 = (bn2)∗. Then note that tc(Li) = ni and f(L1) = 1.
Now, consider L1L2 = (an1)∗(bn2)∗. Clearly, we require n1 +n2 transitions for the distinct
loops accepting (an1)∗ and (bn2)∗. Further, since the state sets for these loops must be
disjoint (otherwise a word of the form a+b+a+ could be accepted) one additional transition
must connect these two loops, for a total of n1 + n2 + 1 transitions.

The situation for the transition complexity of Kleene closure is slightly more complex,
since the measures f(L) and s(L) are not necessarily minimized by the same NFA. Let fs
be defined by

fs(L) = min
M∈M(L)

{|δ ∩ (({q0} × Σ × Q) ∪ (Q × Σ × F )) |}.

Note that fs(L) is the minimum number of transitions leaving the initial state and entering
the final states for any one transition-minimal NFA.

Lemma 4.5 Let Σ be an alphabet with |Σ| = k, and L ⊆ Σ∗ be a regular language with
tc(L) = n.

(a) If ε /∈ L, then tc(L∗) ≤ n + k + fs(L).
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(b) If ε ∈ L, then tc(L∗) ≤ n + f(L).

Proof. We assume that fs(L) > 0, as fs(L) = 0 implies L = ∅ or L = {ε}, which are
easily handled.

Consider case (a) first. Let M = (Q,Σ, δ, q0, F ) be a transition-minimal NFA for L
with a total of fs(L) transitions entering the final states and leaving the initial states. Let
M∗ = (Q∪{q′0},Σ, δ′, q′0, F

′) be the NFA defined by F ′ = F ∪{q′0} and δ′ = δ∪{(q′0, a, q) :
(q0, a, q) ∈ δ} ∪ {(q, a, q′0) : (q, a, qf ) ∈ δ, qf ∈ F} ∪ {(q′0, a, q′0) : (q0, a, qf ) ∈ δ, qf ∈ F}.
Then L(M ∗) = L∗.

For case (b), if ε ∈ L then the state q′0 in the construction of M ∗ is not necessary.
Thus, in this case let M ∗ = (Q,Σ, δ′, q0, F ) be defined by δ′ = δ ∪ {(q, a, q0) : (q, a, qf ) ∈
δ, qf ∈ F}. In this case, L(M ∗) = L∗.

Lemma 4.6 For all n ≥ 0, there exists a regular language Ln ⊆ {a, b}∗ with ε /∈ Ln (resp.,
with ε ∈ Ln) such that tc(Ln) ≤ n and tc(L∗

n) = n + fs(Ln) (resp., tc(L∗
n) = n + f(Ln)).

Proof. First, let’s consider the case when ε /∈ Ln. Let k ≥ 2 and choose Lk = ak−1b(akb)∗.
Then tc(Lk) = k + 1 and fs(Lk) = 2. Let M be a transition-minimal NFA for L∗

k. By
Lemma 4.5, M has at most k + 3 transitions.

Consider an accepting computation of M on the word w = ak−1bakbakb and let qi,
i = 0, . . . , k be the state that M has reached after reading the prefix ak−1bai of w. If
qi = qj for some 0 ≤ i < j ≤ k, then M will accept a word that has a subword ax with
x > k. Since the latter is impossible, all states qi, i = 0, . . . , k are distinct.

Since M is transition-minimal, the following symbol b must take the state qk to q0.
It is easy to verify that otherwise M either accepts illegal words or has more than k + 3
transitions. Thus we have seen that M has a cycle C of length k+1 having k a-transitions
and one b-transition.

Since M accepts the empty word, the initial state p0 of M is a final state. From this
it follows that p0 cannot be part of the cycle C and there must be an a-transition from
p0 to the state q2 in C. Otherwise, M could not accept ak−1b using at most 2 transitions
in addition to the transitions of C. The NFA with transition (p0, a, q2) and the cycle
C cannot accept the word (ak−1b)2 ∈ L∗

k and consequently M needs at least one more
transition.

Now, consider the case when ε ∈ Ln. Let k ≥ 1. Choose Lk = ε + akb(b2)∗. Now
tc(Lk) = k + 2 and f(Lk) = 1. It can be verified that tc(L∗

k) = k + 3.

We can also deal with the transition complexity of the positive Kleene closure of a
language:

Corollary 4.7 Let L ⊆ Σ∗ be a regular language with tc(L) = n. Then tc(L+) ≤ n+f(L).

Proof. We can verify that the construction of case (b) of Lemma 4.5 also gives a con-
struction for L+.

We note that Lemma 4.5 and Corollary 4.7 can be further refined using the decompo-
sitions of f(L) given by (1).
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5 Transition Complexity of Morphic Operations

Generally, the issue of state complexity of morphism and inverse morphism have not been
examined. This is expected since the constructions for morphism and inverse morphism
appear routine. However, when counting the number of transitions, we find the situation
is somewhat more interesting. We begin with the transition complexity of morphisms:

Theorem 5.1 Let h : ∆∗ → Σ∗ be a morphism and L ⊆ ∆∗ be a regular language. Let
tc(L) = n and ` = max{|h(a)| : a ∈ Σ}. Then tc(h(L)) ≤ `n. Furthermore, for all values
of ` ≥ 1 and n ≥ 1, this bound is reachable.

Proof. Let M = (Q,Σ, δ, q0, F ) be an NFA accepting L with n transitions. Then consider
the NFA M ′ obtained by adding, for each transition (q, a, q ′) ∈ δ, a chain of new states
from q to q′ connected by |h(a)| transitions, which causes M ′ to move from q to q′ on
input h(a). Thus, every transition in M is replaced by at most ` transitions in M ′. This
gives the upper bound.

For the lower bound, for any n ≥ 1 and ` ≥ 1, let ∆ = Σ = {a}, and h(a) = a`.
Further, let L = {an}. Then h(L) = {a`n}. Clearly, L requires n transitions, while h(L)
requires `n, which demonstrates that the upper bound is tight.

For inverse morphism, we find an interesting observation: even though the standard
construction for demonstrating that the regular languages are closed under inverse mor-
phism does not increase the number of states in an NFA, it can increase the number of
transitions.

Theorem 5.2 Let Σ,∆ be alphabets with |∆| = k. If L ⊆ Σ∗ be a regular language with
tc(L) = n, and h : ∆∗ → Σ∗ is a morphism, then tc(h−1(L)) ≤ k(n + 1)2.

Proof. Let M = (Q,Σ, δ, q0, F ) be an NFA for L with n transitions. As tc(L) = n,
we have nsc(L) ≤ n + 1, since we can assume that M is initially connected. Let M ′ =
(Q,∆, δ′, q0, F ) be the NFA defined by (q1, a, q2) ∈ δ′ if and only if there is a path from
q1 to q2 labelled by h(a) in M . This standard construction gives L(M ′) = h−1(L). Now,
consider that M ′ has n + 1 states, and thus has at most k(n + 1)2 transitions. This gives
the result.

Theorem 5.2 applies to any morphism, including those that may map letters to the
empty string. Recall that we say that a morphism h : ∆∗ → Σ∗ is ε-free if h(a) 6= ε for
all a ∈ ∆. We now show a relationship between the transition complexity of morphisms
which are not ε-free and the complexity of what we call their ε-free restrictions.

Let h : ∆∗ → Σ∗ be an arbitrary morphism. Let ∆+,∆ε ⊆ ∆ be defined by ∆+ = {b ∈
∆ : h(b) 6= ε}. and ∆ε = ∆ − ∆+. Further, let h+ = h|∆+

, i.e., the restriction of h to
letters of ∆+.

Lemma 5.3 Let L ⊆ Σ∗ be a regular language, and h : ∆∗ → Σ∗ be a morphism. Then
tc(h−1(L)) ≤ tc(h−1

+ (L)) · (|∆ε| + 1) + |∆ε|.

Proof. Let M+ = (Q,Σ, δ+, q0, F ) be an NFA for h−1
+ (L). If M = (Q,Σ, δ, q0, F ) is

defined by δ = δ+ ∪ {(q, b, q) : q ∈ Q, b ∈ ∆ε}, then note that L(M) = h−1(L). This
holds since M can now read any number of letters b ∈ ∆ε, which are mapped to ε by h,
at any time during the computation. Now, the number of transitions in M is at most
|δ+| + |Q||∆ε|. As |Q| ≤ |δ+| + 1, the result follows.
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6 Transition Complexity of Reversal

The transition complexity of reversal relies on the standard construction: reverse the
transitions and exchange the roles of final and initial states. When counting the number of
transitions, we find again that we need to employ the measure of the number of transitions
entering the final states. However, the transition complexity itself is dependent on the
number of final states: For all regular languages, let F (L) = minM∈M(L){|F | : M =
(Q,Σ, δ, q0, F )}.

Theorem 6.1 Let L be a regular language. If F (L) = 1 then tc(LR) = tc(L), and
otherwise tc(LR) ≤ tc(L) + f(L).

Proof. Let L be a regular language accepted by a transition-minimal NFA M = (Q,Σ, δ, q0, F ).
Assume first that |F | = 1. Let F = {qf}. Let M ′ = (Q,Σ, δ′, qf , {q0}) be the NFA defined
by δ′ = {(q2, a, q1) : (q1, a, q2) ∈ δ}. Thus, M ′ has all transitions reversed, and accepts
exactly LR. Note that since reversal is an involution, this implies that tc(L) = tc(LR).

Consider now the case where F (L) > 1. Then we may assume that M = (Q,Σ, δ, q0, F )
is a transition-minimal NFA with f(L) transitions entering the final states in F . Let
M ′ = (Q ∪ {q′0},Σ, δ′, q′0, F

′) be the NFA defined by

δ′ = {(q2, a, q1) : (q1, a, q2) ∈ δ} ∪ {(q′0, a, q) : (q, a, qf ) ∈ δ, qf ∈ F}

and F ′ = {q0} if q0 /∈ F and F ′ = {q0, q
′
0} if q0 ∈ F . Again, M ′ has all transitions reversed.

However, we require an additional state q ′0 which allows us to simulate all the final states
in F .

We now consider lower bounds on the results in Theorem 6.1. The case of F (L) = 1
is handled by Theorem 6.1. For the case of F (L) > 1, we have the following result:

Theorem 6.2 For all n ≥ 1 there exists a regular language Ln such that F (Ln) > 1,
tc(Ln) ≤ n and tc(LR

n ) ≥ n + f(Ln).

Proof. Let k ≥ 1 and define Lk = (ak)∗((b2)+ ∪ (c2)+). We claim that

(a) F (Lk) = 2,

(b) f(Lk) = 2,

(c) tc(Lk) ≤ k + 6,

(d) tc(LR
k ) ≥ k + 8.

First, note that the minimal incomplete DFA for Lk has k + 6 transitions, so (c) follows.
Let M be an arbitrary transition-minimal NFA for Lk. It is easy to verify that M must

have a cycle C1 of k a-transitions, a cycle C2 of two b-transitions and a cycle C3 of two
c-transitions. (If the length of C2 or C3 would be a proper multiple of two, condition (c)
could not hold.) Also clearly the cycles C1, C2 and C3 cannot have any states in common.

Since all the cycles must be connected, we need at least two transitions to connect
the cycles and have “used up” all the available k + 6 transitions, which means that there
cannot be any states not belonging to one of the cycles C1, C2 or C3. Thus both C2 and
C3 must have a final state and this gives (a) and (b).
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Finally, we argue that (d) holds. Let M ′ be an arbitrary NFA for LR
k . Again it is easy

to verify that M ′ must have a cycle C of a-transitions, where the length of C is k (or a
multiple of k). Thus it is sufficient to show that M ′ must have at least 8 transitions not
belonging to the cycle C.

Clearly M ′ must have a cycle Cb of b-transitions that has a length that is a multiple
of 2 and the states of Cb are disjoint from the states of C. If the length of Cb is greater
than two, we have four b-transitions.

The other case is that M ′ has states q and p such that there are transitions

(q, b, p) and (p, b, q). (2)

If one of q or p is the initial state of M ′, the automaton M ′ will necessarily accept
words in b+c+ which is impossible. Hence q and p are not the initial state.

Since M ′ must accept the word b2ak, either there must be two b-transitions in addition
to (2), or there must be a b-transition from the initial state to q or p, and an a-transition
from the other of these states to the cycle C.

Thus there must be either four b-transitions or three b-transitions and an a-transition
between cycles Cb and C. Using a completely analogous argument we see that M ′ must
have either four c-transitions or three c-transitions and an a-transition that connects a
c-cycle to the states of C. In all cases the total number of transitions is at least k + 8.

However, we can tighten Theorem 6.1 in general, by appealing again to decomposition
of f(L) as in (1):

Theorem 6.3 Let L be a regular language with F (L) > 1, accepted by some transition-
minimal NFA M where f(L) is as in (1). Then tc(LR) ≤ tc(L)+

∑
q∈P

∑k
i=1 min{1, nq,i}.

Proof. Let L be a regular language accepted by a transition-minimal NFA M = (Q,Σ, δ, q0, F ).
with f(L) transitions entering the final states in F .

Consider the construction M ′ = (Q ∪ {q′0},Σ, δ′, q′0, F
′) defined by

δ′ = {(q2, a, q1) : (q1, a, q2) ∈ δ} ∪ {(q′0, a, q) : (q, a, qf ) ∈ δ, qf ∈ F}

and F = {q0} if q0 /∈ F and F = {q0, q
′
0} if q0 ∈ F .

Let qp ∈ P and 1 ≤ i ≤ k. If nq,i > 1, then δ (in M , the original NFA accepting L) has
transitions (qp, ai, q

′) and (qp, ai, q
′′) for some q′, q′′ ∈ F . However, in our original estima-

tion, we count each of these transitions as contributing one transition to the component
{(q′0, a, q) : (q, a, qf ) ∈ δ, qf ∈ F} of δ′ (in the NFA M ′ accepting LR). Again however,
only one transition is actually created: it goes from q ′0 to qp. This leads us to the refined
upper bound.

The results of Theorem 6.3 can, in general, fail to lead to any advantage over Theo-
rem 6.1, if nq,i = 1 for all q ∈ P and 1 ≤ i ≤ k (this is the case for languages Ln used in
the proof of Theorem 6.2).

7 Open Problems

We note some open problems concerning the transition complexity of language operations
raised here. First, we note that in Section 5, we have given an upper bound of k(n + 1)2
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transitions to recognize the inverse morphic image of a language requiring n transitions.
However, we do not have a matching lower bound given by a morphism h : ∆∗ → Σ∗

and a language L where |∆| and maxa∈∆ |h(a)| do not depend on tc(L) (a lower bound
of kn, where k = |∆| is easily obtained by considering L = {an} and the morphism
h : {b1, . . . , bk}

∗ → {a}∗ which maps h(bi) = a for all 1 ≤ i ≤ k).
We note some additional operations whose descriptional complexities have been con-

sidered in the literature, but which we have not examined here. Jirásková and Okhotin [17]
have considered the cyclic shift of a language: cycle(L) = {xy : x, y ∈ Σ∗, yx ∈ L}. The
state complexity of cycle is 2Θ(n2) and the nondeterministic state complexity is 2n2 +1. If
tc(L) = m, s(L) = s and f(L) = f , the NFA construction of Jirásková and Okhotin gives
an upper bound of 2m2 + mfs + m on the transition complexity of cycle(L).

We also note that the state complexity of the operation 1
2(L) = {x : xy ∈ L, |x| =

|y|} has been considered [2]. The upper bound on the deterministic state complexity is
neO(

√
n lg n) (the nondeterministic state complexity of 1

2 (·) has not been formally studied,
but the standard NFA construction gives a upper bound of n3 states). Further, we have
not considered the case of shuffle [1] or shuffle on trajectories [4].

Further, the interaction between the different measures f(L), s(L) and tc(L) provide
additional research questions concerning the operations we have studied. For instance, is
it true that for all n1, n2, f1 with f1 ≤ n1, there exists a finite alphabet Σ (whose size
does not depend on n1, n2 or f1) and regular languages L1, L2 ⊆ Σ∗ with tc(Li) = ni and
f(L1) = f1 such that tc(L1L2) = n1 + n2 + f1?

8 Conclusions

In this paper, we have examined the transition complexity of several basic operations
on regular languages. Additional measures for giving upper-bounds on the transition
complexity of operations are used, including the number of final states, F (L), the number
of transitions leaving the initial state, s(L), and the number of transitions entering the
final states, f(L), to refine the upper bounds on the effect of operations on transition
complexity. Further, we can often improve the estimates on the worst case behaviour of
the operations by examining a more precise decomposition of f(L).

The lack of a general-purpose tool for proving lower bounds on the number of transi-
tions required to accept a regular language, like the Myhill-Nerode theorem for DFAs and
fooling-set methods for NFAs (see, e.g., Hromkovic̆ [12] or Glaister and Shallit [8]) make
obtaining results about the minimal number of transitions challenging. Additional work
is necessary to develop suitable, general-purpose tools for proving sharp lower bounds on
the number of transitions required to accept a regular language.
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