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Abstract

This paper considers the many-to-many version of the stable marriage problem where each man and woman has a strict
preference ordering on the members of the opposite sex that he or she considers acceptable. Further, each man and woman wishes
to be matched to as many acceptable partners as possible, up to his or her specified quota. In this setup, a polynomial time algorithm
for finding a stable matching that minimizes the sum of partner ranks across all men and women is provided. It is argued that this
sum can be used as an optimality criterion for minimizing total dissatisfaction if the preferences over partner-combinations satisfy
a no-complementarities condition. The results in this paper extend those already known for the one-to-one version of the problem.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The stable assignment problem, first described by Gale and Shapley [4] as the stable marriage problem, involves
an equal number of men and women each seeking one partner of the opposite sex. Each person ranks all members of
the opposite sex in strict order of preference. A matching is defined to be stable if no man and woman prefers each
other to a current partner. Gale and Shapley showed the existence of at least one stable matching for any instance
of the problem by giving an algorithm for finding it. An introductory discussion of the problem is given by Polya
et al. [7] and an elaborate study is presented by Knuth [11]. Variants of this problem have been studied by Gusfield
and Irving [6] amongst others, including cases where the orderings are over partial lists or contain ties. It is known
that a stable matching can be found in each of these cases individually in polynomial time (Gale and Sotomayor [5],
Gusfield and Irving [6]). However in the case of simultaneous occurrence of incomplete lists and ties, the problem
becomes NP-hard (Iwama et al. [10]).

While the search version of the problem is shown to be polynomially solvable in most situations, the problem of
counting the number of possible stable matchings for a given problem instance is exponential. A useful concept
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relevant in this context is that of #P-completeness (see Valiant [20,21]). Irving and Leather [8] showed that the
corresponding enumeration problem is #P-complete.

McVitie and Wilson [13] pointed out that the algorithm by Gale and Shapley [4], in which men propose to women,
generates a male-optimal solution in which every man gets the best partner he can in any possible stable matching
and every woman gets the worst partner she can in any stable matching. They suggested an egalitarian measure of
optimality under which the sum of the ranks of partners for all men and women was to be minimized. Irving et al. [9]
provided an efficient algorithm to find a stable matching satisfying the optimality criterion of McVitie and Wilson [13].

The present work extends the work of Irving and Leather [8] and Irving et al. [9] to the many-to-many version
of the problem, where each man or woman may have multiple partners. Such a situation may arise in the context of
matching hospitals with doctors (consultants), buyers with sellers and similar other cases.

In a general many-to-many matching problem, a person may have preferences defined over subsets of the members
of the opposite set. The literature on many-to-many and one-to-many stable matching problems can be grouped into
two categories based on the assumptions placed on the preference function of a person over the members of the
opposite set.

One approach, coming from the economics domain, assumes that each person (or firm) specifies a strict preference
ordering defined on all possible subsets of the set of acceptable partners (or workers). Further, workers and firms may
regard each other as substitutes, that is, if a worker is a desirable employee to a firm amongst a subset of workers, then
he/she continues to be so even amongst a less desirable subset of workers. Under these two assumptions, many results
developed for the one-to-one stable matching have been shown to have their counterparts for one-to-many (Roth and
Sotomayor [18]) and many-to-many situations (Roth [17], Sotomayor [19], Martinez et al. [12] and Alkan [2,1]). The
substitutable preferences model, however, has a computational limitation due to exponential nature of the preference
function which puts a lower bound on what any algorithm can achieve.

The other approach comes from the computer science domain and is closely related to the original stable marriage
formulation of the problem by Gale and Shapley [4]. Here, each man or woman has an upper limit on the number of
partners that he or she may be assigned and specifies a preference ordering only on the individuals of the opposite
sex that he or she considers acceptable and not on all possible combinations of them. This approach is simpler,
computationally attractive and well suited for situations where it is feasible to rank only the individual items. Taking
this approach, Baiou and Balinski [3] showed the existence of male and female optimal assignments under strict
preference orderings and provided characterizations for them. However, they did not address the issues relating to
complexity of enumeration of the stable marriages. Furthermore, determining the stable matchings under an equitable
measure of optimality remains an open problem.

In this paper, we work with the second approach to the many-to-many stable matching problem and generalize
the notion of optimality proposed for one-to-one matching by McVitie and Wilson [13]. We show that the optimality
criterion makes sense provided that we include a no-complementarities condition for preferences on combinations
of partners. Although this may seem to resemble the first approach, it differs significantly in not requiring the
specification of preference functions of exponential size and makes do with only preference ordering on individuals
of the opposite set. We then generalize the methodology described by Irving and Leather [8] and Irving et al. [9]
and show the existence of the corresponding results for the many-to-many stable marriage problem. In particular,
we obtain a polynomial time algorithm for finding an optimal assignment and show how all the stable matchings
for the problem can be enumerated. The algorithm and the other results are generic and are not dependent upon the
no-complementarities assumption. In addition to the results themselves, the paper also reveals a novel methodology
(which we call meta-rotations, extending the concept of rotations by Irving and Leather [8]), which is a generic
technique with potential use in solving search problems.

In the next section, we formally describe our model of the multiple partner stable marriage problem. Subsequently,
we introduce our optimality criterion and provide the conditions and justification for its usefulness. We then propose a
methodology for search space reduction and show that it leads to a polynomial time algorithm for finding an ‘optimal’
matching. Finally, some concluding remarks are presented.

2. Multiple partner stable marriage model

Let M = {m1, . . . , m|M |} and F = { f1, . . . , f|F |} respectively denote the sets of |M | males and |F | females. Every
person has a strict preference order over those members of the opposite sex that he or she considers acceptable. Let Lm
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be the preference list of male m with the most preferred partner being the first in the list. Similarly, L f represents the
preference ordering of female f . Incomplete lists are allowed so that |Lm | ≤ |F |, ∀m ∈ M and |L f | ≤ |M |, ∀ f ∈ F .
Each person also has a quota on the total number of partners with which he or she may be matched. Furthermore, a
person prefers to be matched to a person in its preference list than to be matched to fewer than the number of persons
specified by his or her quota. Let qm and q f denote the respective quotas of male m and female f . The many to many
stable marriage problem can thus be specified by P = (M, F, L M , L F , QM , QF ) where L M and L F respectively
denote the |M | × 1 and |N | × 1 vectors of male and female preference lists, and QM and QF represent the |M | × 1
and |N | × 1 vectors of male and female quotas respectively.

Example 1. Consider an instance P specified by: |M | = 6, |N | = 6

Lm1 = [ f2, f6, f1, f3, f5, f4] L f1 = [m5, m1, m2, m3, m4, m6]

Lm2 = [ f1, f2, f4, f5, f6, f3] L f2 = [m1, m2, m3, m4, m5]

Lm3 = [ f5, f3, f1, f4, f2, f6] L f3 = [m3, m4, m5, m1, m2, m6]

Lm4 = [ f4, f1, f2, f3, f6, f5] L f4 = [m6, m3, m4, m1, m5, m2]

Lm5 = [ f1, f3, f4, f5, f6] L f5 = [m4, m2, m1, m6, m5, m3]

Lm6 = [ f3, f5, f6, f1, f4] L f6 = [m3, m6, m2, m5, m1, m4]

QM = [2, 3, 1, 2, 1, 3]
T QF = [2, 2, 2, 2, 2, 2]

T .

A male–female pair, (m, f ) is considered a feasible pair if m and f are in each other’s preference lists. That is,
m ∈ L f and f ∈ Lm . A matching is defined to be a set of feasible male–female pairs {(m, f )} such that ∀m ∈ M, m
appears in at most qm pairs and ∀ f ∈ F, f appears in at most q f pairs. A matching γ is said to be stable if any
feasible pair (m, f ) /∈ γ implies that at least one of the two persons, m or f is matched to its full quota of partners
all of whom he or she considers better. This implies that for any stable matching γ , there cannot be any unmatched
feasible pair (m, f ) that can be paired with both m and f becoming better off. Let γm denote the set of partners of
male m under the stable matching γ . The partners of female f are denoted by γ f .

Let Γ denote the set of all stable matchings γ for a given instance of the multiple partner stable matching problem
P = (M, F, L M , L F , QM , QF ). Accordingly, Γm is the set of all possible sets of partners γm that the male m can have
in different stable matchings in Γ . For a female f , Γ f is similarly defined. Given an instance of the many-to-many
stable matching problem, γ M

m defines the set of females assigned to male m in the male-optimal stable matching.

3. Notion of optimality

The optimality criterion for one-to-one matching (by McVitie and Wilson [13] and Irving et al. [9]) stipulates that
the sum of ranks of partners for all males and females be minimized, as every person unambiguously prefers a partner
of lower rank over a partner of higher rank. In a multiple partner context, things get complicated because a person’s
rankings of individuals alone may not be sufficient to determine his or her preference orderings over combinations
of them. For example, (i) a person who wants up to two matches need not be indifferent to the partner combinations
(1, 6), (2, 5) and (3, 4) (where the numbers denote the partners’ ranks in the person’s preference list), (ii) he or she
may actually prefer (1, 6) over (2, 4) due to an overbearing preference for the partner ranked 1 even though (1, 6)

has a greater sum of ranks than (2, 4), and (iii) the person may prefer (2, 6) over (2, 5) if partners ranked 2 and 6 are
complementary and their combination is of greater value to him/her than the combination (2, 5).

Out of the three complications presented in the above illustration, the first two can be avoided using weighted
preference lists. However, such an approach would come at a significant cost because (i) an individual needs
to compute mutually consistent weights that capture his or her preference ordering over all acceptable partner-
combinations, and (ii) the weights need to be normalized across individuals because the optimality criterion would
consider the sum of weights across all individuals in the matching.

We show that the many-to-many stable matching has the necessary structure to explicitly rule out the above
complications if a no-complementarities condition is imposed on preference orderings of males and females over
combinations of partners. The no-complementarities condition (for males) states: given two sets of partners, A1 and A2
(A1, A2 ⊂ F), if a male m prefers A1 at least as much as A2, and m strictly prefers f1 over f2 ( f1, f2 ∈ F \(A1∪ A2)),
then m strictly prefers A1 ∪ { f1} over A2 ∪ { f2}. This assumption is similar to the substitutability assumption widely
used in the literature (For example: Roth [17] and Martinez et al. [12]) and can be derived from it. The assumption
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is intuitive and is plausible in most situations except those where specific partners may be strong complements of
one-another.

Given a set of partners γm in a stable matching γ , we define the dissatisfaction score DS(γm) of male m to be the
sum of position numbers (or ranks) in its preference list Lm for the members in γm . DS(γm) =

∑
f ∈γm

Rm( f ) where
Rm( f ) is the rank given by male m to the female f . The dissatisfaction score DS(γ f ) for a female f is similarly
defined. The dissatisfaction score of a matching γ is defined as the sum of the dissatisfaction scores of all persons
involved. We show that the dissatisfaction score as defined above and the no-complementarities condition stated earlier
impose a strict ordering on a person’s preferences over all possible set of partners that he or she may have in any stable
marriage for any given instance of the problem P = (M, F, L M , L F , QM , QF ).

First, we note some useful properties of the many-to-many stable marriage problem (due to Baiou and Balinski [3]).
The results below are stated for males. They are also true for females due to the symmetrical nature of the problem.

Property 1. A male m ∈ M is assigned the same number of partners, NP (m), in all stable matchings. Further, if
NP (m) < qm , then m has the same set of partners in all stable matchings.

Property 2. Suppose γ and γ ∗ are stable matchings that assign different sets of partners to a male m. Then there is
one (say γ ) such that if (m, f ) ∈ γ and (m, f ∗) ∈ γ ∗

\ γ , then Rm( f ) < Rm( f ∗).

A useful corollary of Property 2 is that if a person is assigned different sets of partners in different stable matchings,
then his or her least preferred partner in each of them must be different. Let the function min specify the least preferred
partner of a person amongst his or her given set of partners. Accordingly, min(γm) and min(γ f ) specify the least
preferred partners of male m and female f in the stable matching γ .

The Properties 1 and 2 stated above and the no-complementarities condition lead us to the following important
result (stated for males):

Theorem 1. Suppose γm and γ ∗
m are two distinct sets of partners of the male m under the stable matchings γ and γ ∗

respectively. Then, (i) DS(γm) 6= DS(γ ∗
m), and (ii) If DS(γm) < DS(γ ∗

m) then m prefers γm over γ ∗
m and vice versa.

Proof. By Property 1, m must be matched to the same number of females in all stable matchings. Without loss of
generality, Property 2 allows us to assume that Rm(min(γm)) < Rm(min(γ ∗

m)) (implying that min(γ ∗
m) is to the right

of min(γm) in male m’s preference list Lm). Each female in Lm to the right of min(γm) corresponds to at most one set
of partners for m (amongst which it is the least preferred partner).

We consider the first female to the right of min(γm) in Lm which is the least preferred partner of m in some stable
marriage, say γ ∗∗

∈ Γ . By Property 2, we note that any female f ∈ γ ∗∗
m \ γm must be to the right of any female

f ′
∈ γm in Lm . Further, since |γm | = |γ ∗∗

m |, each such female f is a replacement of some other female f ′
∈ γm which

was to the left of f in the preference list Lm . Each replacement of f ′ with f leads to an increase in the dissatisfaction
score of m so that DS(γm) < DS(γ ∗∗

m ). Further, the no-complementarities assumption applied successively to each
such replacement implies that m strictly prefers γm over γ ∗∗

m .
If γ ∗∗

m is identical to γ ∗
m , it completes the proof. Else continue the above step until γ ∗∗

m = γ ∗
m . �

Theorem 1 is significant because it shows that we can obtain a strict preference ordering over all possible sets
of acceptable stable marriage partners for any person by specifying only the preference orderings on individuals
and imposing a no-complementarities assumption on the preferences over combinations. This obviates the need for
preference functions which apriori specify the orderings over all possible subsets of members of the opposite sex
which would be of exponential size. We can now use the terms better or worse unambiguously to compare any two
sets of stable marriage partners of a person and we can do so by comparing either the least preferred partners or the
dissatisfaction scores.

Theorem 1 allows us to propose that the minimization of the sum of dissatisfaction scores across all persons can
be used as an egalitarian measure of optimality for the many-to-many stable marriage problem which is specified
by P = (M, F, L M , L F , QM , QF ) for which the preferences over combinations of partners additionally satisfy the
no-complementarities condition. Formally,

Minimize γ∈Γ :

∑
m∈M

DS(γm) +

∑
f ∈F

DS(γ f ). (1)
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The optimality criterion can also be restated in terms of matched pairs using the definition of the dissatisfaction score.

Minimize γ∈Γ :

∑
(m, f )∈γ

[Rm( f ) + R f (m)]. (2)

We note that the above optimality measure is also the natural generalization of the one proposed for the one-to-
one marriage problem by McVitie and Wilson [13] for which a polynomial time algorithm was provided by Irving
et al. [9].

The treatment of optimality using dissatisfaction score can be generalized to include weighted ranks which allows
persons to specify their preferences more accurately, though with the disadvantages discussed earlier. The results
presented in this paper are also true for the weighted rank preferences. The only requirement is that the preference
orderings on individuals be strict. We will henceforth refer only to the case with unity weights for simplicity of
exposition.

4. Reduction of search space

Irving and Leather [8] and Irving et al. [9] describe a methodology for the single partner stable marriage problem
in which starting with the male-optimal solution, all the stable matchings can be generated by successive elimination
of what they call rotations. They conclude that the enumeration problem is #P-complete and provide a polynomial
time algorithm for finding a matching which satisfies the egalitarian optimality criterion.

The basis of their methodology lies in the process by which the rotations get exposed and eliminated. A rotation is
a cycle comprising r male–female pairs (mi , fi ) such that fi is mi ’s current match and fi+1 (i + 1 is taken modulo r )
is the second in mi ’s current list. Since every individual is matched to only one partner, it is convenient to eliminate
all females to the left to the current match of a male and all males to the right of the current match of a female from
the male-optimal solution. (By definition of the male-optimal solution, these cannot occur in any stable matching.)
This step is sufficient to ensure that at least one rotation gets exposed as long as the female-optimal solution is not
reached. The exposed rotation is then eliminated (mi gets paired with fi+1) and the process continued till all rotations
are eliminated.

Let us examine what happens when we try to directly apply the above methodology to the many-to-many context
— it is known (due to Baiou and Balinski [3]) that the corresponding male-optimal stable matching γ M always exists
and can be found in O(n2) steps. Similar to its one-to-one counterpart, γ M has the property that there is no other
stable matching in which any of the males is better off (has a lower dissatisfaction score) or any of the females worse
off (has a greater dissatisfaction score).

Example 2. For the problem instance in Example 1, the male-optimal solution is: γ M
= {(m1, f2), (m1, f6),

(m2, f1), (m2, f2), (m2, f4), (m3, f5), (m4, f4), (m4, f3), (m5, f1), (m6, f3), (m6, f5), (m6, f6)}.

Beyond the male-optimal solution, applying the methodology to the many-to-many case is far from straightforward.
Consider γ M : a male m may be matched to multiple and non-contiguous females in its preference list Lm . The status
of the females (not matched to m) in Lm who fall between the matched ones in Lm is not immediately clear. Indeed,
we show later that all such females can be deleted from the list Lm from further consideration; on the other hand the
males not matched to a female f but who are lying between the matched ones in L f need to be retained as they can
occur in stable marriages yet to be identified. This illustrates why the pruning (or elimination) step is tricky — not
removing the necessary entries may result in no rotations being exposed while unnecessary deletion may lead to some
stable marriages not being found.

Another problem is in defining a meaningful rotation. In the single partner case, a male getting matched to its
second-most-preferred partner constitutes logical atomic progress from the male-optimal towards the female-optimal
solution. In the multiple partner setup, such a progress may be possible in multiple ways — a subset of a male’s
current partners may be swapped with another subset such that the dissatisfaction score of the male increases by one.
It is easy to see that the number of such choices is exponential.

A key contribution of this paper is to define a generalized concept of rotation and show how they can be exposed
and eliminated. This is achieved through the definitions that follow.



322 V. Bansal et al. / Theoretical Computer Science 379 (2007) 317–328

Definition 1 (Initial Pruning). Given the male-optimal solution γ M of an instance P , the initial pruning step consists
of: (a) removing the females f /∈ γ M

m from each male list Lm for which Rm( f ) < Rm(min(γ M
m )), (b) removing the

males m /∈ γ M
f from a female list L f for which R f (m) > R f (min(γ M

f )), (c) removing f from m’s list if the (so
far) reduced list of f does not contain m, and (d) removing m from f ’s list if the (so far) reduced list of m does not
contain f .

Next, we introduce the concept of a meta-rotation, which is a many-to-many generalization of the concept of a
rotation. The definition of a meta-rotation is motivated by the observation that if a person becomes better off or
worse off, his or her least preferred partner (or min) must change.

Definition 2 (Meta-Rotation). Given a problem instance P , a meta-rotation ρ is defined as an ordered sequence of
feasible male–female pairs {(m0, f0), . . . , (mi , fi ), . . . , (mr−1, fr−1)}, r ≥ 2 such that f(i+1) modulo r = smin(γ M

mi
)

and mi = min(γ M
fi

). Here, smin(γ M
mi

) denotes the female to the immediate right of min(γ M
mi

) in Lmi . Such a meta-
rotation is said to be exposed in P relative to its male-optimal stable matching, γ M .

Definition 3 (Meta-Rotation Elimination). A meta-rotation ρ exposed in P , is said to be eliminated when for each
(mi , fi ) ∈ ρ, mi gets matched to f(i+1) modulo r in place of fi and for each female fi , its preference list L fi is
modified to delete all males to the right of its new least preferred partner, and the preference lists of the males are
correspondingly modified to remove females that are no longer their partners in feasible pairs.

Definition 4 (R-instance). A problem instance P̂ = (M, F, L̂ M , L̂ F , QM , QF ) is defined to be a reduced instance
(or R-instance) of the problem instance P = (M, F, L M , L F , QM , QF ) if it is obtained either by applying Initial
Pruning on P or by the Elimination of a Meta-rotation from another R-instance P̂∗ of P .

Example 3. Application of initial pruning to the problem instance P in Example 1 yields the R-instance P̂ with the
following male and female lists (the matched pairs corresponding to the male-optimal solution in Example 2 are in
boldface):

L̂m1 = [f2, f6, f1, f3, f5, f4] L̂ f1 = [m5, m1, m2]

L̂m2 = [f1, f2, f4, f5, f6, f3] L̂ f2 = [m1, m2]

L̂m3 = [f5, f3, f4, f6] L̂ f3 = [m3, m4, m5, m1, m2, m6]

L̂m4 = [f4, f3, f5] L̂ f4 = [m6, m3, m4, m1, m5, m2, ]

L̂m5 = [f1, f3, f4, f5, f6] L̂ f5 = [m4, m2, m1, m6, m5, m3]

L̂m6 = [f3, f5, f6, f4] L̂ f6 = [m3, m6, m2, m5, m1].

The meta-rotation ρ1 = {(m3, f5), (m6, f3), (m2, f4)} is exposed in P̂ .

Note that every R-instance P̂ of P is a stable marriage problem instance in its own right and therefore has meta-
rotations defined on it unless the male optimal matching coincides with the female optimal matching. Since the
preference lists in P̂ are a subset of those in P , it is clear from the definition of stability that a stable matching in P ,
if it can be defined in P̂ , will also be stable in P̂ .

With the help of the foregoing definitions, we can now show that if we start with the male-optimal stable matching
γ M of P and successively identify and eliminate the meta-rotations, we would finally reach the female-optimal stable
matching γ F of P . If the process is carried out exhaustively for all possible sequences of meta-rotation eliminations,
it would generate all possible stable marriages for the problem instance P .

We now obtain the intermediate results required for the purpose. We start by showing that the male–female pairs
eliminated by initial pruning do not occur in any stable matching.

Lemma 1. The sets of all possible stable matchings for the R-instance obtained by initial pruning of P is the same
as Γ , set of stable matchings for P.

Proof. For step (a) of initial pruning, we note by Property 2 that if (m, f ) ∈ γ \ γ M , then Rm( f ) > Rm(min(γ M
m )).

Therefore, a female f which is not paired with m in γ M and is to the left of min(γ M
m ) cannot be paired with m in any

stable matching. For males deleted from a female f ’s list in (b), we note that they are preferred less by f than her
least preferred partner in her worst possible set of partners and hence cannot be paired with f in any stable matching.
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Steps (c) and (d) only remove infeasible pairs. We have thus shown that pairs removed from consideration by initial
pruning cannot occur in any stable matching for the problem instance P . Therefore, all stable matchings of P can also
be found in P̂ . Further, removal of some pairs cannot introduce any new stable matching. Hence the result. �

Next, we show that every R-instance of P has a corresponding male-optimal stable matching which is also a stable
matching for original instance P .

Lemma 2. An R-instance P̂ of the stable marriage problem P has a male-optimal stable matching γ̂ M in which each
male m is matched to the first NP (m) females in his list L̂m and the least preferred partner for each female f is the
right-most in her list L̂ f . Further, γ̂ M

∈ Γ , the set of stable matchings for P.

Proof. The proof is by induction. We note that an R-instance P̂ can be generated from P by initial pruning and then
by successive meta-rotation eliminations. For the R-instance of P obtained by initial pruning, Lemma 1 implies that
the male-optimal stable matching γ M for P is indeed the required male-optimal stable matching of the R-instance.

Let P̂∗ be an R-instance of P which satisfies Lemma 2. Therefore, γ̂ ∗M
∈ Γ . Consider an R-instance P̂∗∗ obtained

by eliminating an exposed meta-rotation ρ from P̂∗. Clearly each female f ’s least preferred partner occurs last in her
list L̂∗∗

f by the definition of meta-rotation elimination. A male m who is not in the meta-rotation ρ continues to

be matched to the first NP (m) females in his list L̂∗∗
m . A male m who is a part of ρ ends up pairing with the female

immediately to the right of his least preferred match in lieu of a female whom he preferred more. The latter is removed
from his list. Thus, m continues to be matched to the first NP (m) females in his new list L̂∗∗

m .
Note that the number of partners of each male and female does not change in a meta-rotation elimination. Therefore,

the newly updated set of matched pairs obtained by eliminating ρ continues to be a matching for P . We next show
that it constitutes a stable matching for the R-instance P̂ , obtained by initial pruning of P .

For contradiction, suppose that it does not constitute a stable matching for P̂ . Then there exists a pair (m, f ) not in
this matching where m ∈ L̂ f and f ∈ L̂m and m and f prefer each other over their respective least preferred partners
in this matching. Consider the male m. Since his current partners occupy the first NP (m) positions in his current
list L̂∗∗

m , therefore, f must have been deleted from his old list L̂m in a meta-rotation elimination step. At that time,
f considered m worse than its least preferred partner. Since meta-rotation eliminations can only improve the least
preferred partners of females, f must consider m worse than its current least preferred partner. This contradicts our
assumption. Therefore, the matching (say γ̂ ∗∗) is a stable matching for P̂ . By Lemma 1, it is also a stable matching
for P . Further, since γ̂ ∗∗ is contained within the preference lists of P̂∗∗, it is also a stable matching for P̂∗∗. Note
that it is also the required male optimal stable matching γ̂ M for P̂∗∗ since each male m is matched to its first NP (m)

partners in its list L̂∗∗
m . �

Example 4. Lemma 2 is easily verified in Example 3 by observation. The male-optimal stable matching (shown in
boldface) for the R-instance obtained by initial pruning corresponds to the male optimal stable matching for P .

Further elimination of meta-rotation ρ1 = {(m3, f5), (m6, f3), (m2, f4)} from the R-instance in Example 3
gives an R-instance for which the male optimal solution γ̂ M is: {(m1, f2), (m1, f6), (m2, f1), (m2, f2), (m2, f5),
(m3, f3), (m4, f4), (m4, f3), (m5, f1), (m6, f5), (m6, f6), (m6, f4)}. It can be checked that this also constitutes a
stable matching for P .

We will now show that if there is a stable matching for P in which a male is worse off than in the male-optimal stable
matching corresponding to an R-instance of P , then there must exist a meta-rotation exposed in that R-instance.

Lemma 3. If m and f are deleted from each other’s preference lists on the elimination of meta-rotation ρ exposed
in P̂ relative to its male-optimal stable matching γ̂ M , and (m, f ) /∈ γ̂ M , then (m, f ) cannot occur in any stable
matching γ of P.

Proof. Suppose (m, f ) /∈ γ̂ M . Then let m1 be the least preferred partner of f after eliminating ρ from P̂ . Then, f
prefers m1 to m. Let f1 be the least preferred partner of m in γ̂ M . Clearly, f 6= f1. If Rm( f ) < Rm( f1) then by
Property 2, (m, f ) cannot belong to any stable marriage of P . On the other hand, if Rm( f ) > Rm( f1), then if (m, f )

is a pair in some stable matching γ of P , then both m and f are better off in the stable matching γ̂ M than they are in
γ which cannot be true. �
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At this stage, it is useful to state an important property of the multiple partner stable marriage problem (due to Baiou
and Balinski [3]).

Property 3. Suppose γ and γ ∗ are stable matchings that assign different sets of partners to a male m. Then,
{Rm(min(γm)) < Rm(min(γ ∗

m))} ⇒ {R f (min(γ f )) > R f (min(γ ∗

f ))} for all f such that (m, f ) ∈ (γ \ γ ∗)
⋃

(γ ∗
\ γ ).

Property 3 leads to the conclusion that if any pair (m, f ) ∈ γ, for some stable matching γ ∈ Γ , it is not possible for
both m and f to be simultaneously worse off (or simultaneously better off) in any stable matching γ ′ ((m, f ) /∈ γ ′)
than they are in γ .

Lemma 4. Given an R-instance P̂ of the stable marriage problem P, with its male-optimal stable matching γ̂ M , if
there is a male m for whom Rm(min(γ̂ M

m )) < Rm(min(γm)) for some stable marriage γ ∈ Γ of P, then there is at
least one meta-rotation exposed in P̂.

Proof. Suppose that there is a male m for whom Rm(min(γ̂ M
m )) < Rm(min(γm)) for some stable marriage γ ∈ Γ of

P . We construct a sequence {(mi , fi )} as follows: Let m0 = m. By Lemma 1 and Lemma 3, no females to the right of
min(γ̂ M

m0
) which can be paired with m0 in some stable matching get deleted during initial pruning and meta-rotation

elimination, therefore, m0 is worse off in γ implies that smin(γ̂ M
m0

) is defined in L̂m0 . Let f1 = smin(γ̂ M
m0

). In γ , m0
either gets matched to f1 or to someone further right in his list. In the former case, f1 becomes better off in γ because
m0 is to the left of her least preferred partner in γ̂ M . In the latter case, f1 must be matched to its full quota of partners,
each of whom she prefers over m0 otherwise the matching γ would not be stable. In this case too, f1 becomes better
off in γ than in γ̂ M .

Now, f1 is better off in γ implies that R f1(min(γ f1)) < R f1(min(γ̂ M
f1

)). Let m1 = min(γ̂ M
f1

). Clearly, (m1, f1) /∈ γ

as all of f1’s partners in γ are preferred by her over m1. Since f1 is better off in γ , and (m1, f1) are partners in γ̂ M

which by Lemma 2 is a stable matching of P , therefore, m1 must be worse off in γ using Property 3.
We continue to build the chain where fi+1 = smin(γ̂ M

mi
) and mi = min(γ̂ M

fi
). We cannot progress indefinitely, so

the sequence {(mi , fi )} must cycle. Thus, we have constructively shown the existence of a meta-rotation in P̂ (relative
to the matching γ̂ M ). �

We can designate this meta-rotation as the meta-rotation generated in P̂ by a male m which gets a worse set of partners
in the new stable matching after eliminating the meta-rotation.

Lemma 5. If {(m0, f0), . . . , (mr−1, fr−1)}, r ≥ 2 is a meta-rotation exposed in some R-instance P̂ of P relative
to its male-optimal matching γ̂ M and in some stable matching γ ∈ Γ , Rmk (min(γmk )) > Rmk (min(γ̂ M

mk
)) for a

particular male mk , then for each male mi , i ∈ 0 . . . r − 1 in the meta-rotation, Rmi (min(γmi )) > Rmi (min(γ̂ M
mi

)).

Proof. On the lines of the proof for Lemma 4, we note that if mk becomes worse off in γ than in γ̂ , then the female
f(k+1) modulo r should become better off. Continuing further, this should make the male m(k+1) modulo r worse off. The
Lemma 5 therefore follows. �

Corollary 1. If {(m0, f0), . . . , (mr−1, fr−1)}, r ≥ 2 is a meta-rotation exposed in some R-instance P̂ of P relative to
its male-optimal matching γ̂ M and in some stable matching γ ∈ Γ , R fk (min(γ fk )) < R fk (min(γ̂ M

fk
)) for a particular

female fk , then for each female fi , i ∈ 0 . . . r − 1 in the meta-rotation, R fi (min(γ fi )) < R fi (min(γ̂ M
fi

)). �

We are now in a position to show that every stable marriage for the problem instance P can be obtained as the
male-optimal solution for some R-instance P̂ of P .

Theorem 2. Given a stable matching γ0 ∈ Γ for P, γ0 is identical to the male-optimal stable matching γ̂ M for some
R-instance P̂ of P.

Proof. Consider the R-instance P̂ obtained by applying initial pruning to P . If γ0 = γ M then by Lemma 1, γ0 = γ̂ M

also. Therefore, P̂ is the required R-instance.
Suppose γ0 6= γ̂ M . This implies that there is at least one male m which is worse off in γ0 than in γ̂ M . By Lemma 4,

there exists a meta-rotation ρ exposed in P̂ . We also note (by proof methodology of Lemma 4) that ρ can be generated
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by starting from m so that m is included in the meta-rotation. We can eliminate ρ from P̂ to yield a new R-instance P̂∗.
By Lemma 5, we note that in any stable matching γ ∈ Γ (including γ0), in which Rm(min(γm)) > Rm(min(γ̂m

M
),

the least preferred partner of every male included in ρ must also be worse than in γ̂ M . By Lemma 3, a meta-rotation
elimination does not remove any female right of the least preferred partner of a male from his list unless they cannot be
paired in any stable marriage, therefore, it is ensured that for any male mi ∈ M , Rmi (min(γ̂ M∗

mi
)) ≤ Rmi (min(γ0 mi ))

which states that mi prefers its least preferred partner in γ M∗ at least as much as the least preferred partner in γ0.
Suppose now, Rmi (min(γ̂ M∗

mi
)) = Rmi (min(γ0 mi )) for all mi ∈ M . By Lemma 2, we know that γ̂ M∗

∈ Γ , the set
of stable matchings for P . Since the least preferred partners uniquely define a person’s set of partners, it follows that
γ̂ M∗

= γ0 and P̂∗ is the required R-instance.
Otherwise, there is at least one male m′ which is worse off in γ0 than in γ̂ M∗. We can again apply Lemma 4 to find

a meta-rotation exposed in P̂∗. This process terminated only when we get a R-instance such that for any mi ∈ M ,
Rmi (min(γ̂ M∗

mi
)) = Rmi (min(γ0 mi )). At that point, the male-optimal stable matching for the R-instance is identical

to γ0. �

Therefore, every stable matching γ ∈ Γ for P can be obtained by successive application of meta-rotation eliminations
on the R-instance obtained by initial pruning of P . Since the male-optimal stable matching γ̂ M is unique for a given
R-instance P̂ , we have also established a one-to-one correspondence between the stable matchings γ for P and the
R-instances P̂ of P .

Example 5. In Example 3, the elimination of meta-rotation ρ1 = {(m3, f5), (m6, f3), (m2, f4)} leads to the
meta-rotation ρ2 = {(m1, f6), (m2, f1)} becoming exposed. Elimination of ρ2 gives the female-optimal solution
γ F

= {(m1, f2), (m1, f1), (m2, f2), (m2, f5), (m2, f6), (m3, f3), (m4, f4), (m4, f3), (m5, f1), (m6, f5), (m6, f6),
(m6, f4)}.

Define Ω to be the set of meta-rotations for the problem instance P . ρ ∈ Ω if and only if ρ is a meta-rotation
exposed in some R-instance P̂ of the problem instance P . We will now define a partial order on the set Ω . For that,
we need one additional result which is stated below.

Lemma 6. No pair (m, f ), m ∈ M, f ∈ F can belong to two different meta-rotations ρ1, ρ2 ∈ Ω .

Proof. Suppose that the pair (m, f ) belongs to meta-rotations ρ1 and ρ2. Since ρ1 6= ρ2, there is a pair (m′, f ′) that
belongs to ρ1 and not ρ2.

Let P̂ be the R-instance in which ρ2 is exposed and let γ̂ M be the corresponding male-optimal stable matching in
P̂ . If m1 = min(γ̂ M

f ′ ) it implies R f ′(m′) ≤ R f ′(m1). For if R f ′(m1) < R f ′(m′) then elimination of ρ1 would force
R f (min(γ̂ M

f )) < R f (m) by Corollary 1.

Let P̂∗ be the R-instance and γ̂ M∗ be the corresponding stable matching obtained after eliminating ρ2.
If (m1, f ′) ∈ ρ2 and given that (m′, f ′) /∈ ρ2, then m1 6= m′, and therefore, R f ′(m′) < R f ′(m1). Since (m, f ) ∈ ρ2

and P̂∗ arises from the elimination of ρ2, f will be better-off in P̂∗ than in γ̂ M i.e. R f (min(γ̂ M∗

f )) < R f (m).
Lemma 3 points out the presence of m′ in f ′’s list. Furthermore this presence is not affected by the elimination of
ρ2. Hence, R f ′(m′) ≤ R f ′(min(γ̂ M∗

f ′ )). Therefore, the pairs (m, f ), (m′, f ′) of ρ1 and the R-instance P̂∗ contradict
Corollary 1 because f gets better off but f ′ does not.

In the other case, when (m1, f ′) /∈ ρ2 then elimination of ρ2 does not affect the presence of m1 in f ′’s list. Hence,
f gets worse-off i.e. R f (min(γ̂ M∗

f )) < R f (m) and R f ′(m1) < R f ′(min(γ̂ M∗

f ′ )). Proceeding exactly as in the previous
case we have a contradiction of Corollary 1. �

When a meta-rotation ρ′ must be eliminated before a meta-rotation ρ is exposed in some R-instance P̂ then we
say that ρ′ < ρ or ρ′ is a predecessor of ρ. Since all meta-rotations are generated by successive elimination of meta-
rotations from the R-instance obtained by initial pruning of P , it can be seen that the reflexive transitive closure ≤ of
the predecessor relation establishes a partial order on the set Ω . We call this as the meta-rotation poset Ψ , ≤. A closed
subset A in Ψ , ≤ is a subset of Ψ , ≤ such that ∀ ρ ∈ A, ρ′ < ρ ⇒ ρ′

∈ A.

Example 6. In Example 5, Ω = {ρ1, ρ2}. Meta-rotation ρ1 is a predecessor of ρ2. There are two closed subsets,
A1 = {ρ1} and A2 = {ρ1, ρ2}.
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We can now state the final result. This generalizes the corresponding result for one-to-one stable matchings by
Irving and Leather [8].

Theorem 3. There is a one-to-one correspondence between the stable matchings of a given problem instance P and
the closed subsets of the meta-rotation poset Ψ , ≤ defined over its set of meta-rotations Ω .

Proof. Given a closed subset A of Ψ , ≤, we can eliminate all the meta-rotations present in A since all the predecessors
of those meta-rotations are also in A. This yields an R-instance P̂ . By Lemma 2, the male-optimal stable matching
of P̂ is a stable matching for P . Given two different closed subsets A1 6= A2, we would get two different stable
matchings. This follows from Lemma 6 whereby different meta-rotations eliminate different pairs and so any two
R-instances, P̂ 6= P̂∗ can only be obtained by eliminating two different sets of meta-rotations. Hence, each closed
subset corresponds to a unique stable matching.

Given a stable matching γ ∈ Γ , by Theorem 2, γ = γ̂ M for some R-instance P̂ of P . The set of meta-rotations
that are eliminated to get any R-instance P̂ must be closed because if ρ1 < ρ2, then ρ1 must be eliminated before ρ2
can become exposed. Hence, γ corresponds to a closed subset of Ψ , ≤. Also, by Lemma 2, a stable matching γ ∗

6= γ

would correspond to a different R-instance and therefore by Lemma 6, a different closed set of meta-rotations. �

5. An efficient algorithm for ‘optimal’ stable matching

The problem of finding an ‘optimal’ stable matching now boils down to constructing the meta-rotation poset and
finding its closed subset that minimizes the sum of the dis-satisfaction scores.

A directed acyclic graph corresponding to the meta-rotation poset Ψ , ≤ can be constructed using the predecessor
relationship defined on the meta-rotations. The vertices of this graph correspond to meta-rotations and directed edges
are added as described below.

Consider a meta-rotation ρ exposed in the R-instance P̂ . If (mi , fi ) ∈ ρ then the male mi must be the last in the
current list of the female fi otherwise ρ cannot be exposed. Consider the first male m to the right of mi in L fi such
that (m, fi ) is a member of some other meta-rotation (say ρ∗). From the definition of meta-rotation elimination, it
follows that eliminating ρ∗ would make mi the last in the list of fi . We create a directed edge from ρ∗ to ρ.

Similarly, for the male lists, consider the male optimal stable matching γ̂ M for an R-instance P̂ . Let (mi , fi ) ∈ ρ

where ρ is a meta-rotation exposed in P̂ . Let f1 = min(γ̂ M
mi

) and f2 = smin(γ̂ M
mi

). Eliminating all females f for whom
Rmi ( f1) < Rmi ( f ) < Rmi ( f2) will make f1 and f2 contiguous in the list of mi . Note that the pairs (mi , f ) with f as
defined above would not occur in any stable matching and the meta-rotations that cause them to be eliminated from
the list of mi are predecessors of ρ. We create a directed edge from each such meta-rotation to the meta-rotation ρ.

It is easy to verify that the resulting directed acyclic graph has the property that if ρ1 is predecessor of ρ2, then
there is a directed path from ρ1 to ρ2. To see this, consider the situation when ρ1 is exposed (at this time, ρ2 is not
not exposed because ρ1 is yet to be eliminated). Since ρ2 is not exposed, our construction would imply at least one
directed edge into ρ2. Consider the set of all directed edges into ρ2. It must be the case that either one of these edges is
from ρ1 or else ρ1 must be predecessor of at least one of the meta-rotations that has a directed edge (path) to ρ2 (else
one can eliminate all these edges without eliminating ρ1). Proceeding thus, we have a directed path from ρ1 to ρ2.
The graph therefore preserves all the closed subsets of the meta-rotation poset Ψ , ≤ and thus contains all the stable
matchings for the problem.

Given a meta-rotation ρ = {(m0, f0), . . . , (mr−1, fr−1)}, r ≥ 2 define its weight wρ in the following manner:
wρ =

∑r−1
i=0 [Rmi ( fi )+ R fi (mi )− Rmi ( fi+1)− R fi (mi−1)] where (i +1) and (i −1) are taken modulo r . The weight

of a closed subset A of the meta-rotation poset Ψ , ≤ is defined to be the sum of weights of the meta-rotations in A.
Note that the weight of a meta-rotation equals the reduction in the dis-satisfaction score as a result of eliminating

the meta-rotation. In other words, if the stable matching γ
′

is obtained by eliminating ρ from the stable matching γ

then DS(γ
′

) = DS(γ ) − wρ .
Let the dissatisfaction score for the male-optimal stable matching γ M be DS0. The dissatisfaction score of the

stable matching obtained by eliminating meta-rotations of a closed subset A = {ρ1 . . . ρk} would therefore equal
DS0 −

∑
i∈1...k wρi . The stable matching corresponding to the maximum weight closed subset would have the least

dissatisfaction score amongst all stable matchings for P .
Putting everything together, a stable matching γ ∗ that minimizes the sum of dissatisfaction scores for the instance

P = (M, F, L M , L F , QM , QF ) can be found in polynomial time by the following steps:
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(1) Obtain the male-optimal stable matching γ M.
(2) Apply initial pruning to P to get an R-instance P̂.
(3) Find a meta-rotation ρ exposed in P̂ (if one exists); eliminate ρ.
(4) Iterate previous step until no such ρ can be found.
(5) Construct the directed acyclic graph for the weighted meta-rotation poset Ψ , ≤.
(6) Identify maximum-weight closed subset A of Ψ , ≤.
(7) Eliminate the meta-rotations of A from the R-instance obtained by initial pruning

of P. The male-optimal stable matching for this R-instance is the required optimal
stable matching γ ∗.

Example 7. In Example 5, w(ρ1) = 8 and w(ρ2) = −2 The maximum weight closed subset is therefore A = {ρ1}.
Therefore, the ‘optimal’ stable matching is: γ = {(m1, f2), (m1, f6), (m2, f1), (m2, f2), (m2, f5), (m3, f3), (m4, f4),
(m4, f3), (m5, f1), (m6, f5), (m6, f6), (m6, f4)}. It is obtained by eliminating ρ1 from the R-instance obtained by
initial pruning of P .

We now determine the complexity of the algorithm. Let n = max(|M |, |F |). Generating the male-optimal matching
(Step 1) takes O(n2) time (Baiou and Balinski [3]). Since ∀ m ∈ M, qm ≤ |F | and ∀ f ∈ F, q f ≤ |M | the initial
pruning (Step 2) requires at most O(|M | ∗ |F |

2
+ |F | ∗ |M |

2) steps which is bounded by O(n3). A meta-rotation,
if exists, can be identified and eliminated in O(n2) steps in an iteration of Step 3. Note that as pointed out earlier, a
pair (m, f ) can occur in only one meta-rotation. Since a meta-rotation must have at least two pairs and there are at
most (|M | ∗ |F |) pairs to be eliminated, the number of iterations of Step 3 is bounded by O(n2). Hence Steps 3 and 4
together take O(n4) steps to eliminate all possible meta-rotations.

The directed acyclic graph for the poset Ψ , ≤ has no more than O(n2) edges because there can be at most n2 distinct
male–female pairs and each pair contributes at most one directed edge to the graph (this edge is from the meta-rotation
that eliminates the pair to another meta-rotation of which the eliminating meta-rotation is a predecessor). To construct
the graph, one can use the meta-rotations to label the pairs (in the male and female lists) left after initial pruning. For
each meta-rotation ρ, label the pairs that are members of ρ, those that are otherwise eliminated by ρ and the females
that are min and smin for each male in the context of ρ. Since the elimination of pairs by meta-rotations is contiguous
in the female lists, the labels can be added in time proportional to number of pairs and therefore in O(n2) time over
all rotations. The graph can then be constructed by a simple scan of the male and female lists. Step 5 therefore takes
O(n2) time.

Once the poset has been constructed and weights assigned, its maximum weight closed subset can be found (Step 6)
in O(n6) time. (The computation of maximum weight closed subset of a weighted poset (or directed acyclic graph) is
a well known problem. See Picard [14], Rhys [16] and Picard and Queyranne [15] for O(n6) solutions using network
flow and related algorithms.) The overall algorithm complexity is thus bounded by O(n6).

Before closing, we examine the complexity of counting the number of stable matchings for a given instance of
the multiple partner stable marriage problem P . Any given matching can be checked for stability in polynomial time
which implies that the enumeration problem is clearly in #P. The problem instance P where qm = 1, ∀ m ∈ M and
q f = 1, ∀ f ∈ F is also an instance of the single partner stable marriage problem which has been shown to be
#P-complete (Irving and Leather [8]). Therefore, determining the number of stable matchings for an instance of the
multiple partner stable marriage problem is also #P-complete.

6. Concluding remarks

In this paper, we considered an egalitarian measure of optimality for the multiple partner stable marriage problem
(with incomplete lists) and provided a sufficient condition under which the criterion could be applied. Further, we
provided a polynomial time algorithm for obtaining a stable matching which satisfied the optimality criterion. By
doing so, we generalized some of the results known for the corresponding one-to-one problem.

The polynomial complexity is significant because the problem of determining the number of all stable matchings
for the problem is #P-complete. In the process of solving the problem at hand, we proposed a novel concept of meta-
rotations which extends the earlier known concept of rotations (Irving and Leather [8]) and makes it useful as a search
space reduction technique for search problems. We also showed that a useful property of the multiple partner stable
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marriage problem is that under a no-complementarities assumption on the preferences over combinations of partners,
specifying the preference ordering over individuals alone is sufficient to ensure that the preferences of males and
females turn out to be strictly ordered over all possible sets of partners that they can get in any stable matching. The
results presented in this paper can accommodate weighted preferences of males and females so that the optimality
criterion is not restrictive.

We note that the methodology to map stable matchings of the many-to-many problem to the antichains of a poset
as well as the polynomial time algorithm to find the matching which minimizes the dissatisfaction score is generic
and does not require the no-complementarities assumption. At the same time, the use of dissatisfaction scores as an
egalitarian measure of optimality makes best sense when the assumption is used.
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