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Deterministic Finite Automata

bb b

q2q qa
0 1

a

a

A DFA M = (Q,Σ, δ, q0,F )

δ : Q × Σ → Q

complete

Definition

The state complexity of a regular language L, sc(L),
is the least number of states in any DFA accepting L.

Example

Leven = {w ∈ {a, b}∗ | w has an even number of a’s}
sc(Leven) = 2
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Nondeterministic Finite Automata

q1q qa
0 2

a,b

a,b

An NFA N = (Q,Σ, δ, q0,F )

δ : Q × Σ → 2Q

ε-free

single initial state

Definition

The nondeterministic state complexity of a language L, nsc(L),
is the least number of states in any NFA accepting L.

Example

L2 = {w ∈ {a, b}∗ | w has an a in the 2nd position from the end}
textnsc(L2) = 3
nsc(Lk) = k + 1 and sc(Lk) = 2k
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NFA to DFA Conversion

Theorem (Rabin, Scott 1959)

Every NFA has an equivalent DFA.

Subset construction: n-state NFA → at most 2n-state DFA

Tight in binary case [Lupanov 1963, Moore 1971, . . .]

Unary case: at most F (n) ≈ e
√

n ln n states [Chrobak 1986]

Example

1 2 3 4
a a,b a,b a,b

n
a

a

. . .

b
a

b

Figure: A binary NFA which needs 2n deterministic states
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NFA to DFA: “Magic Numbers”

Iwama et al., DLT 1997 and MFCS 2000:

Is there an n-state NFA whose equivalent minimal DFA
has α states for each α with n 6 α 6 2n?

Possible holes are called “magic numbers”.

The numbers 2n − 2k , 2n − 2k − 1 (k 6 n/2),
and 2n − ℓ (ℓ 6 2n, coprimality) are not magic.
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NFA to DFA: “Magic Numbers”

Question

Is there an n-state NFA whose equivalent minimal DFA
has exactly α states for each α with n 6 α 6 2n?

Yes, alphabet of size 2n [Jirásková, MFCS 2001]

Yes, alphabet of size n + 2 [Geffert, DCFS 2005]

Yes, four-letter alphabet [Jirásek et al., DLT 2007]

No, for a unary alphabet:

All numbers from F (n) to 2n are magic [Chrobak 1986]
A lot of magic numbers from n to F (n) [Geffert, MFCS 2006]
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Complements: Nondeterministic State Complexity

A Similar Question on Complements

Is there an n-state NFA language L
such that every minimal NFA for the language Lc

has exactly α states for each α with log n 6 α 6 2n?

Yes, alphabet of size 2n+1 [Jirásek et al., CIAA 2004]

Yes, alphabet of size 2n [Szabari, ITAT 2006]
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Complements: Five-Letter Case

Theorem

For all n and α with log n 6 α 6 2n,
there exists a regular language L over a five-letter alphabet
such that nsc(L) = n and nsc(Lc ) = α.
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Complements: Five-Letter Case

Theorem

For all n and α with log n 6 α 6 2n,
there exists a regular language L over a five-letter alphabet
such that nsc(L) = n and nsc(Lc ) = α.

Sketch of proof.

Take an n-state NFA with a four-letter alphabet
whose equivalent minimal DFA has α states [DLT 2007].

Add transitions on a new symbol so that the reachable states
are the same. Let L be the language accepted by this NFA.

For each reachable set S , define a pair (xS , yS) so that
(1) xSyS ∈ Lc for each S ;
(2) if S 6= T , then xSyT /∈ Lc or xT yS /∈ Lc .
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Example

The case of n = 6 and α = 24:

a,b

1

5

b

2 3
a

a

0 4

a,b
a,b

a,b

a,b,c a,b,ca,b,c,da,c
a,b

Figure: A 6-state NFA which needs 24 deterministic states [DLT 2007].
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Example

The case of n = 6 and α = 24:

a,b
fa,b,

fa,b,
fa,b,

fa,b,

fa,b,c,d,fa,c, a,b,c, f a,b,c, f
1

5

b

2 3
a

a

f

0 4

Figure: A 6-state NFA M over {a, b, c , d , f } with nsc(L(M)c) = 24 .
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Complements: Binary Case

Theorem

For all n and α with 3 log n 6 α 6 2n/3,
there exists a binary regular language L
such that nsc(L) = n and nsc(Lc ) = α.
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Complements: Binary Case

Theorem

For all n and α with 3 log n 6 α 6 2n/3,
there exists a binary regular language L
such that nsc(L) = n and nsc(Lc ) = α.

Example

1

s5 s3 s2

a,b a,b a,b a,b
5 4 3 2

a a a

a a

a,b a,b a,b
b b b

needs 3 + 25 + 23 + 22

deterministic states
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Magic Numbers: Binary Case

Corollary

All numbers from n to 2n/3 are non-magic
for NFA to DFA conversion in a binary case.

Non-Magic Numbers in Binary Case

n−122 n1/3
2 n/3 2 n2 n− 4nn

Geffert DCFS 2005

DLT 2008

Matsuura, Saito DCFS 2008
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Stars: State Complexity

Theorem

For all n and α with 1 6 α 6
3
4
· 2n,

there exists a regular language (over an exponential alphabet)
such that sc(L) = n and sc(L∗) = α.
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Stars: State Complexity

Theorem

For all n and α with 1 6 α 6
3
4
· 2n,

there exists a regular language (over an exponential alphabet)
such that sc(L) = n and sc(L∗) = α.

Proof idea

1 2
a,b a,ba

ab b

n. . .

A binary DFA for
α = 3

4
· 2n

[Yu et al. 1984]
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Stars: State Complexity

Theorem

For all n and α with 1 6 α 6
3
4
· 2n,

there exists a regular language (over an exponential alphabet)
such that sc(L) = n and sc(L∗) = α.

Proof idea

1 2
a,b a,ba

ab b

k. . .

The worst case example
on k states
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Stars: State Complexity

Theorem

For all n and α with 1 6 α 6
3
4
· 2n,

there exists a regular language (over an exponential alphabet)
such that sc(L) = n and sc(L∗) = α.

Proof idea

1 2
a,b a,ba

n

k

k+1 k+2

c

ddd

d

ab b

. . .

. . .

The worst case DFA
on k states

Two more symbols for
α = n − k + 3

4
· 2k
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Stars: State Complexity

Theorem

For all n and α with 1 6 α 6
3
4
· 2n,

there exists a regular language (over an exponential alphabet)
such that sc(L) = n and sc(L∗) = α.

Proof idea

1 2
a,b a,ba

n

k

k+1 k+2

c

ddd

a b

. . .

. . .

df
f

f

b

1
1

1

The worst case DFA
on k states

Two more symbols for
α = n − k + 3

4
· 2k

Add m more symbols for
α = n − k + 3

4
· 2k + m
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Reversals: State Complexity

Theorem

For all n and α with log n 6 α 6 2n,
there exists a regular language (over an exponential alphabet)
such that sc(L) = n and sc(LR) = α.
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Reversals: State Complexity

Theorem

For all n and α with log n 6 α 6 2n,
there exists a regular language (over an exponential alphabet)
such that sc(L) = n and sc(LR) = α.

Example

a2a1 a3 a4

bs
bs

bs

bs

bs

1 2 3 40

Figure: An NFA for the reversal; S = {0, 1, 2}
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Stars and Reversals: Nondeterministic State Complexity

Theorem

For all n and α with 1 6 α 6 n + 1,
there exists a binary regular language
such that nsc(L) = n and nsc(L∗) = α.

Theorem

For all n and α with α ∈ {n − 1, n, n + 1},
there exists a binary regular language
such that nsc(L) = n and nsc(LR) = α.
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Summary and Open Problems

Our Results

sc Alphabet nsc Alphabet

Lc {n} arbitrary log n .. 2n 5
L∗ 1 .. 3

4
· 2n 2n 1 .. n + 1 2

LR log n .. 2n 2n {n − 1, n, n + 1} 2

Open Problems

Complements over smaller alphabets (unary case)

Stars and reversals over a fixed alphabet
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Thank You for Your Attention
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