On the State Complexity of Complements, Stars, and Reversals of Regular Languages

Galina Jirásková

æ

Outline

Basic Notions and Known Results

- Deterministic and Nondeterministic Finite Automata
- State Complexity
- NFA to DFA Conversion: "Magic Numbers"

2 Main Results

- Nondeterministic State Complexity of Complements
- State Complexity of Stars and Reversals
- Nondeterministic State Complexity of Stars and Reversals

10 C

Deterministic and Nondeterministic Finite Automata

Deterministic Finite Automata

A DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

•
$$\delta: Q \times \Sigma \to Q$$

complete

Definition

The state complexity of a regular language L, sc(L), is the least number of states in any DFA accepting L.

Example

$$L_{even} = \{w \in \{a, b\}^* \mid w \text{ has an even number of } a's\}$$
sc $(L_{even}) = 2$

d

SQ C

Deterministic and Nondeterministic Finite Automata

Nondeterministic Finite Automata

An NFA $N = (Q, \Sigma, \delta, q_0, F)$

- $\delta: Q \times \Sigma \to 2^Q$
- e-free
- single initial state

Definition

The nondeterministic state complexity of a language L, nsc(L), is the least number of states in any NFA accepting L.

Example

$$L_2 = \{w \in \{a, b\}^* \mid w \text{ has an } a \text{ in the 2nd position from the end} \}$$
$$textnsc(L_2) = 3$$
$$nsc(L_k) = k + 1 \text{ and } sc(L_k) = 2^k$$

< A >

1

∍

NFA to DFA Conversion

Theorem (Rabin, Scott 1959)

Every NFA has an equivalent DFA.

- Subset construction: *n*-state NFA \rightarrow at most 2^{*n*}-state DFA
- Tight in binary case [Lupanov 1963, Moore 1971, ...]
- Unary case: at most $F(n) \approx e^{\sqrt{n \ln n}}$ states [Chrobak 1986]

NFA to DFA Conversion: "Magic Numbers"

NFA to DFA: "Magic Numbers"

Iwama et al., DLT 1997 and MFCS 2000:

- Is there an n-state NFA whose equivalent minimal DFA has α states for each α with $n \leq \alpha \leq 2^n$?
- Possible holes are called "magic numbers".
- The numbers $2^n 2^k$, $2^n 2^k 1$ ($k \le n/2$), and $2^n - \ell$ ($\ell \leq 2n$, coprimality) are not magic.

NFA to DFA Conversion: "Magic Numbers"

NFA to DFA: "Magic Numbers"

Question

Is there an n-state NFA whose equivalent minimal DFA has exactly α states for each α with $n \leq \alpha \leq 2^n$?

- Yes, alphabet of size 2ⁿ [Jirásková, MFCS 2001]
- Yes, alphabet of size n + 2 [Geffert, DCFS 2005]
- Yes, four-letter alphabet [Jirásek et al., DLT 2007]
- No, for a unary alphabet:
 - All numbers from F(n) to 2^n are magic [Chrobak 1986]
 - A lot of magic numbers from n to F(n) [Geffert, MFCS 2006]

< 同 > < 三 > < 三 >

Deterministic and Nondeterministic Finite Automata NFA to DFA Conversion: "Magic Numbers"

Complements: Nondeterministic State Complexity

A Similar Question on Complements

Is there an *n*-state NFA language *L* such that every minimal NFA for the language L^c has exactly α states for each α with log $n \leq \alpha \leq 2^n$?

- Yes, alphabet of size 2ⁿ⁺¹ [Jirásek et al., CIAA 2004]
- Yes, alphabet of size 2n [Szabari, ITAT 2006]

SQ C

Nondeterministic State Complexity of Complements

Complements: Five-Letter Case

Theorem

For all n and α with log $n \leq \alpha \leq 2^n$, there exists a regular language L over a five-letter alphabet such that nsc(L) = n and $nsc(L^c) = \alpha$.

r 🔁

- < ⊒ >

Nondeterministic State Complexity of Complements State Complexity of Stars and Reversals Nondeterministic State Complexity of Stars and Reversals

Complements: Five-Letter Case

Theorem

For all *n* and α with log $n \leq \alpha \leq 2^n$, there exists a regular language *L* over a five-letter alphabet such that $\operatorname{nsc}(L) = n$ and $\operatorname{nsc}(L^c) = \alpha$.

Sketch of proof.

- Take an *n*-state NFA with a four-letter alphabet whose equivalent minimal DFA has α states [DLT 2007].
- Add transitions on a new symbol so that the reachable states are the same. Let *L* be the language accepted by this NFA.
- For each reachable set S, define a pair (x_S, y_S) so that
 (1) x_Sy_S ∈ L^c for each S;
 - (2) if $S \neq T$, then $x_S y_T \notin L^c$ or $x_T y_S \notin L^c$.

nan

Nondeterministic State Complexity of Complements

Complements: Example

Example

< A

nac

∍

Nondeterministic State Complexity of Complements

Complements: Example

Example

< A >

÷

5990

∍

Nondeterministic State Complexity of Complements

Complements: Binary Case

Theorem

For all n and α with $3 \log n \leq \alpha \leq 2^{n/3}$, there exists a binary regular language L such that nsc(L) = n and $nsc(L^c) = \alpha$.

A 🕨

500

Nondeterministic State Complexity of Complements State Complexity of Stars and Reversals Nondeterministic State Complexity of Stars and Reversals

Complements: Binary Case

Theorem

For all n and α with $3 \log n \le \alpha \le 2^{n/3}$, there exists a binary regular language L such that $\operatorname{nsc}(L) = n$ and $\operatorname{nsc}(L^c) = \alpha$.

Galina Jirásková On the State Complexity of Complements, Stars, and Reversals

Nondeterministic State Complexity of Complements

Magic Numbers: Binary Case

Corollary

All numbers from n to $2^{n/3}$ are non-magic for NFA to DFA conversion in a binary case.

< **-□** ► < **=** ► <

1

State Complexity of Stars and Reversals

Stars: State Complexity

< A > - E 1

₹

5990

State Complexity of Stars and Reversals

Stars: State Complexity

Theorem

For all n and α with $1 \leq \alpha \leq \frac{3}{4} \cdot 2^n$, there exists a regular language (over an exponential alphabet) such that sc(L) = n and $sc(L^*) = \alpha$.

d T

State Complexity of Stars and Reversals

Stars: State Complexity

Theorem

For all n and α with $1 \leq \alpha \leq \frac{3}{4} \cdot 2^n$, there exists a regular language (over an exponential alphabet) such that sc(L) = n and $sc(L^*) = \alpha$.

A >

< ∃ >

SQ C

State Complexity of Stars and Reversals

Stars: State Complexity

Theorem

For all n and α with $1 \leq \alpha \leq \frac{3}{4} \cdot 2^n$, there exists a regular language (over an exponential alphabet) such that sc(L) = n and $sc(L^*) = \alpha$.

A 🕨

SQ C

State Complexity of Stars and Reversals

Stars: State Complexity

Theorem

For all n and α with $1 \leq \alpha \leq \frac{3}{4} \cdot 2^n$, there exists a regular language (over an exponential alphabet) such that sc(L) = n and $sc(L^*) = \alpha$.

< 🗇 🕨

∍

Nondeterministic State Complexity of Complements State Complexity of Stars and Reversals Nondeterministic State Complexity of Stars and Reversals

Stars: State Complexity

Theorem

For all n and α with $1 \leq \alpha \leq \frac{3}{4} \cdot 2^n$, there exists a regular language (over an exponential alphabet) such that sc(L) = n and $sc(L^*) = \alpha$.

Galina Jirásková On the State Complexity of Complements, Stars, and Reversals

State Complexity of Stars and Reversals

ytixelpmoC etatS :slasreveR

A > - < ≣ > 3

₹

5990

State Complexity of Stars and Reversals

Reversals: State Complexity

A > < E 3

₹

5990

State Complexity of Stars and Reversals

Reversals: State Complexity

Theorem

For all n and α with log $n \leq \alpha \leq 2^n$, there exists a regular language (over an exponential alphabet) such that sc(L) = n and $sc(L^R) = \alpha$.

____>

State Complexity of Stars and Reversals

Reversals: State Complexity

Theorem

For all n and α with log $n \leq \alpha \leq 2^n$, there exists a regular language (over an exponential alphabet) such that sc(L) = n and $sc(L^R) = \alpha$.

< AP > < Ξ

SQ C

Nondeterministic State Complexity of Stars and Reversals

Stars and Reversals: Nondeterministic State Complexity

Theorem

For all n and α with $1 \leq \alpha \leq n+1$. there exists a binary regular language such that nsc(L) = n and $nsc(L^*) = \alpha$.

Theorem

For all n and α with $\alpha \in \{n-1, n, n+1\}$, there exists a binary regular language such that nsc(L) = n and $nsc(L^R) = \alpha$.

A.

500

Summary and Open Problems

Our Results

	SC	Alphabet	nsc	Alphabet
L ^c	{ <i>n</i> }	arbitrary	log <i>n</i> 2 ^{<i>n</i>}	5
L*	$1 \frac{3}{4} \cdot 2^n$	2 ⁿ	1 n+1	2
L ^R	log <i>n</i> 2 ^{<i>n</i>}	2 ⁿ	${n-1, n, n+1}$	2

Open Problems

- Complements over smaller alphabets (unary case)
- Stars and reversals over a fixed alphabet

A.

ð > < E 5990

.⊒ . ▶ Ē