On the State Complexity of Complements, Stars, and Reversals of Regular Languages

Galina Jirásková

Mathematical Institute, Slovak Academy of Sciences
Košice, Slovakia

Outline

(1) Basic Notions and Known Results

- Deterministic and Nondeterministic Finite Automata
- State Complexity
- NFA to DFA Conversion: "Magic Numbers"
(2) Main Results
- Nondeterministic State Complexity of Complements
- State Complexity of Stars and Reversals
- Nondeterministic State Complexity of Stars and Reversals
(3) Summary and Open Problems

Deterministic Finite Automata

A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$

- $\delta: Q \times \Sigma \rightarrow Q$
- complete

Definition

The state complexity of a regular language L, $\mathrm{sc}(L)$, is the least number of states in any DFA accepting L.

Example

$$
\begin{aligned}
& L_{\text {even }}=\left\{w \in\{a, b\}^{*} \mid w \text { has an even number of } a \text { 's }\right\} \\
& \operatorname{sc}\left(L_{\text {even }}\right)=2
\end{aligned}
$$

Nondeterministic Finite Automata

An NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$

- $\delta: Q \times \Sigma \rightarrow 2^{Q}$
- ε-free
- single initial state

Definition

The nondeterministic state complexity of a language L, $\operatorname{nsc}(L)$, is the least number of states in any NFA accepting L.

Example

$L_{2}=\left\{w \in\{a, b\}^{*} \mid w\right.$ has an a in the 2 nd position from the end $\}$
textnsc $\left(L_{2}\right)=3$
$\operatorname{nsc}\left(L_{k}\right)=k+1$ and $s c\left(L_{k}\right)=2^{k}$

NFA to DFA Conversion

Theorem (Rabin, Scott 1959)

Every NFA has an equivalent DFA.

- Subset construction: n-state NFA \rightarrow at most 2^{n}-state DFA
- Tight in binary case [Lupanov 1963, Moore 1971, . . .]
- Unary case: at most $F(n) \approx \mathrm{e}^{\sqrt{n \ln n}}$ states [Chrobak 1986]

Example

Figure: A binary NFA which needs 2^{n} deterministic states

NFA to DFA: "Magic Numbers"

Iwama et al., DLT 1997 and MFCS 2000:

- Is there an n-state NFA whose equivalent minimal DFA has α states for each α with $n \leqslant \alpha \leqslant 2^{n}$?
- Possible holes are called "magic numbers".
- The numbers $2^{n}-2^{k}, 2^{n}-2^{k}-1(k \leqslant n / 2)$, and $2^{n}-\ell(\ell \leqslant 2 n$, coprimality) are not magic.

NFA to DFA: "Magic Numbers"

Question

Is there an n-state NFA whose equivalent minimal DFA has exactly α states for each α with $n \leqslant \alpha \leqslant 2^{n}$?

- Yes, alphabet of size 2^{n} [Jirásková, MFCS 2001]
- Yes, alphabet of size $n+2$ [Geffert, DCFS 2005]
- Yes, four-letter alphabet [Jirásek et al., DLT 2007]
- No, for a unary alphabet:
- All numbers from $F(n)$ to 2^{n} are magic [Chrobak 1986]
- A lot of magic numbers from n to $F(n)$ [Geffert, MFCS 2006]

Complements: Nondeterministic State Complexity

> A Similar Question on Complements
> Is there an n-state NFA language L such that every minimal NFA for the language L^{c} has exactly α states for each α with $\log n \leqslant \alpha \leqslant 2^{n}$?

- Yes, alphabet of size 2^{n+1} [Jirásek et al., CIAA 2004]
- Yes, alphabet of size $2 n$ [Szabari, ITAT 2006]

Complements: Five-Letter Case

Theorem

For all n and α with $\log n \leqslant \alpha \leqslant 2^{n}$, there exists a regular language L over a five-letter alphabet such that $\operatorname{nsc}(L)=n$ and $\operatorname{nsc}\left(L^{c}\right)=\alpha$.

Complements: Five-Letter Case

Theorem

For all n and α with $\log n \leqslant \alpha \leqslant 2^{n}$, there exists a regular language L over a five-letter alphabet such that $\operatorname{nsc}(L)=n$ and $\operatorname{nsc}\left(L^{c}\right)=\alpha$.

Sketch of proof.

- Take an n-state NFA with a four-letter alphabet whose equivalent minimal DFA has α states [DLT 2007].
- Add transitions on a new symbol so that the reachable states are the same. Let L be the language accepted by this NFA.
- For each reachable set S, define a pair $\left(x_{S}, y_{S}\right)$ so that (1) $x_{S} y_{S} \in L^{c}$ for each S;
(2) if $S \neq T$, then $x_{S} y_{T} \notin L^{c}$ or $x_{T} y_{S} \notin L^{c}$.

Complements: Example

Example

The case of $n=6$ and $\alpha=24$:

Figure: A 6-state NFA which needs 24 deterministic states [DLT 2007].

Complements: Example

Example

The case of $n=6$ and $\alpha=24$:

Figure: A 6-state NFA M over $\{a, b, c, d, f\}$ with $\operatorname{nsc}\left(L(M)^{c}\right)=24$.

Complements: Binary Case

Theorem

For all n and α with $3 \log n \leqslant \alpha \leqslant 2^{n / 3}$, there exists a binary regular language L such that $\operatorname{nsc}(L)=n$ and $\operatorname{nsc}\left(L^{c}\right)=\alpha$.

Complements: Binary Case

Theorem

For all n and α with $3 \log n \leqslant \alpha \leqslant 2^{n / 3}$, there exists a binary regular language L such that $\operatorname{nsc}(L)=n$ and $\operatorname{nsc}\left(L^{c}\right)=\alpha$.

Example

- needs $3+2^{5}+2^{3}+2^{2}$ deterministic states

Magic Numbers: Binary Case

Corollary

All numbers from n to $2^{n / 3}$ are non-magic for NFA to DFA conversion in a binary case.

Non-Magic Numbers in Binary Case

Stars: State Complexity

Stars: State Complexity

Theorem

For all n and α with $1 \leqslant \alpha \leqslant \frac{3}{4} \cdot 2^{n}$, there exists a regular language (over an exponential alphabet) such that $\operatorname{sc}(L)=n$ and $\operatorname{sc}\left(L^{*}\right)=\alpha$.

Stars: State Complexity

Theorem

For all n and α with $1 \leqslant \alpha \leqslant \frac{3}{4} \cdot 2^{n}$, there exists a regular language (over an exponential alphabet) such that $\operatorname{sc}(L)=n$ and $\operatorname{sc}\left(L^{*}\right)=\alpha$.

Proof idea

- A binary DFA for $\alpha=\frac{3}{4} \cdot 2^{n}$
[Yu et al. 1984]

Stars: State Complexity

Theorem

For all n and α with $1 \leqslant \alpha \leqslant \frac{3}{4} \cdot 2^{n}$, there exists a regular language (over an exponential alphabet) such that $\operatorname{sc}(L)=n$ and $\operatorname{sc}\left(L^{*}\right)=\alpha$.

Stars: State Complexity

Theorem

For all n and α with $1 \leqslant \alpha \leqslant \frac{3}{4} \cdot 2^{n}$, there exists a regular language (over an exponential alphabet) such that $\operatorname{sc}(L)=n$ and $\operatorname{sc}\left(L^{*}\right)=\alpha$.

Proof idea

- The worst case DFA on k states
- Two more symbols for $\alpha=n-k+\frac{3}{4} \cdot 2^{k}$

Stars: State Complexity

Theorem

For all n and α with $1 \leqslant \alpha \leqslant \frac{3}{4} \cdot 2^{n}$, there exists a regular language (over an exponential alphabet) such that $\operatorname{sc}(L)=n$ and $\operatorname{sc}\left(L^{*}\right)=\alpha$.

Proof idea

- The worst case DFA on k states
- Two more symbols for

$$
\alpha=n-k+\frac{3}{4} \cdot 2^{k}
$$

- Add m more symbols for $\alpha=n-k+\frac{3}{4} \cdot 2^{k}+m$

ytixelpmoC etatS :slasreveR

Reversals: State Complexity

Reversals: State Complexity

Theorem

For all n and α with $\log n \leqslant \alpha \leqslant 2^{n}$, there exists a regular language (over an exponential alphabet) such that $\mathrm{sc}(L)=n$ and $\operatorname{sc}\left(L^{R}\right)=\alpha$.

Reversals: State Complexity

Theorem

For all n and α with $\log n \leqslant \alpha \leqslant 2^{n}$,
there exists a regular language (over an exponential alphabet) such that $\mathrm{sc}(L)=n$ and $\operatorname{sc}\left(L^{R}\right)=\alpha$.

Example

Figure: An NFA for the reversal; $S=\{0,1,2\}$

Stars and Reversals: Nondeterministic State Complexity

Theorem

For all n and α with $1 \leqslant \alpha \leqslant n+1$, there exists a binary regular language such that $\operatorname{nsc}(L)=n$ and $\operatorname{nsc}\left(L^{*}\right)=\alpha$.

Theorem

For all n and α with $\alpha \in\{n-1, n, n+1\}$, there exists a binary regular language such that $\operatorname{nsc}(L)=n$ and $\operatorname{nsc}\left(L^{R}\right)=\alpha$.

Summary and Open Problems

Our Results

	sc	Alphabet	nsc	Alphabet
L^{c}	$\{n\}$	arbitrary	$\log n . .2^{n}$	5
L^{*}	$1 . . \frac{3}{4} \cdot 2^{n}$	2^{n}	$1 . . n+1$	2
L^{R}	$\log n . .2^{n}$	2^{n}	$\{n-1, n, n+1\}$	2

Open Problems

- Complements over smaller alphabets (unary case)
- Stars and reversals over a fixed alphabet

Thank You for Your Attention

と
う
ご
ざ
い
ま
す

