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Abstract. A Lebesgue-type integration theory in complete bornolog-
ical locally convex topological vector spaces was introduced by the first
author in [17]. In this paper we continue developing this integration
technique and formulate and prove some theorems on integrable func-
tions as well as some convergence theorems. An example of Dobrakov
integral in non-metrizable complete bornological locally convex spaces
is given.

1 Introduction

We can observe that theories containing a certain compatible collection of basic
theorems, a calculus, lie in the focus of the present measure and integration
investigations. This calculus makes possible and determines further applications
of the integral in a particular branch of mathematics.

In a series of papers I. Dobrakov developed a Lebesgue-type integration
theory which deals with the L(X,Y)-valued measure σ-additive in the strong
operator topology in the Banach spaces. Among them the papers [9] and [10]
are fundamental. It is well-known that the Dobrakov integral yields a greater
class of integrable functions than the also well-known (Lebesgue-type) integral
of R. G. Bartle, cf. [1], considering the same measure and set systems, cf. [9].
The Dobrakov integral is defined in Banach spaces. There are also some possible
generalizations of this integral, e.g. to locally convex spaces, cf. [22], [25], or [4],
[5], [6]. A definition of a Bartle-type integral in complete bornological locally
convex topological vector spaces in the sense of Hogbe-Nlend [19] may be found
in [3].

There is a natural tendency to generalize integrations from Banach spaces
to ”higher floors”. For instance, there is a question how to construct a theory of
integration in locally convex spaces which are non-metrizable. The bornological
character of the bilinear integration theory developed in [22] shows the fitness
of developing a bilinear integration theory in the context of bornological convex
vector spaces.

One of the equivalent definitions of the complete bornological locally convex
topological vector spaces (C. B. L. C. S., for short) is to define these spaces
as the inductive limits of Banach spaces. Therefore there is a natural question
whether the Dobrakov integral in C. B. L. C. S. may be defined as a finite
sum of Dobrakov integrals in various Banach spaces, the choice of which may
depend on the function which we integrate. In [13, 14, 15, 16] we may find an

1Mathematics Subject Classification (2000): Primary 46G10; Secondary 06F20
Key words and phrases: Inductive limit of Banach spaces, Dobrakov integral, Locally convex
spaces, Bornology, Sequential convergence.
Acknowledgement. This paper was supported by Grants VEGA 2/5065/05 and APVT-51-
006904.

1



integration technique which generalizes the Dobrakov integration theory to C.
B. L. C. S. and in [17] it is shown that such an integral may be constructed. The
sense of this seemingly complicated theory is that, at the present, this is the
only integration theory which completely generalizes the Dobrakov integration
to a class of non-metrizable locally convex topological vector spaces. A suitable
class of operator measures in C. B. L. C. S. which allow such a generalization
is a class of all σ-additive bornological measures. For lattices of set functions
connected with an operator valued measure in C. B. L. C. S., see [15], and for
convergences of measurable functions in C. B. L. C. S., see [14]. The construction
and existence of product measures in C. B. L. C. S. in connection with this
integration technique is given in [2].

The aim of this paper is to continue developing the integration technique
introduced in [17] and investigate some theorems on integrable functions for this
integral. Some convergence theorems will also be proved and basic properties
of the integral stated. An example of Dobrakov-type integral in C. B. L. C. S.
is given.

2 Preliminaries

In order to state our results, we give a brief development of a theory of integra-
tion in C. B. L. C. S. and collect the needed definitions and results from [13],
[14], [15] and [17].

2.1 Complete bornological locally convex spaces

The description of the theory of C. B. L. C. S. may be found in [19], [20] and [21].
Let X,Y be two C. B. L. C. S. over the field K of real R or complex numbers

C, equipped with the bornologies BX,BY, respectively. Recall that a (separa-
ble) Banach disk in X is a set which is closed, absolutely convex and the linear
span of which is a (separable) Banach space. Let us denote by U the set of all
Banach disks U in X such that U ∈ BX. So, the space X is an inductive limit
of Banach spaces XU , U ∈ U ,

X = injlim
U∈U

XU ,

cf. [20], where XU is a K-linear span of U ∈ U and the family U is directed
by inclusion and forms the basis of bornology BX (analogously for Y and W).
The basis U in the inductive limit need not be unambiguous and, in particular,
it may be chosen such that XU , U ∈ U , are separable.

We say that the basis U of the bornology BX has the vacuum vector 2

U0 ∈ U , if U0 ⊂ U for every U ∈ U . Let the bases U , W be chosen to consist
of all BX-, BY-bounded Banach disks in X, Y, with marked elements U0 ∈ U ,
U0 6= {0}, W0 ∈ W , W0 6= {0}, respectively.

Since XU , U ∈ U , in the definition of C. B. L. C. S. is a Banach space, it
is enough to deal with sequences instead of nets and therefore we introduce the
following bornological convergence in the sense of Mackey. Let U be a basis of
bornology BX. We say that a sequence of elements xn ∈ X, n ∈ N, U-converges

2in literature we can find also as terms as the ground state or marked element or mother
wavelet depending on the context
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(or, equivalently, converges bornologically with respect to the bornology BX)
to x ∈ X, if there exists U ∈ U such that for every ε > 0 there exists n0 ∈ N

such that (xn − x) ∈ U for every n ≥ n0. We write x = U-limn→∞ xn. To be
more precise, we will sometimes call this the U -convergence of elements from X
to show explicitly which U ∈ U we have in the mind.

Remark 2.1 A classical bornology consists of all sets which are bounded in
the von Neumann sense, i.e. for a locally convex topological vector space X
equipped with a family of seminorms Q, the set B is bounded (or belongs to the
von Neumann bornology) if and only if for every q ∈ Q there exists a constant
Cq such that q(x) ≤ Cq for every x ∈ B.

2.2 Operator spaces

On U the lattice operations are defined as follows. For U1, U2 ∈ U we have:
U1∧U2 = U1∩U2, and U1∨U2 = acs(U1∪U2), where acs denotes the topological
closure of the absolutely convex span of the set. Analogously for W . For
(U1,W1), (U2,W2) ∈ U ×W, we write (U1,W1) ≪ (U2,W2) if and only if U1 ⊂
U2, and W1 ⊃W2.

We use Φ to denote the class of all functions U → W with order < defined as
follows: for ϕ, ψ ∈ Φ we write ϕ < ψ whenever ϕ(U) ⊂ ψ(U) for every U ∈ U .

Denote by L(X,Y) the space of all continuous linear operators L : X →
Y. We suppose L(X,Y) ⊂ Φ. The bornologies BX, BY are supposed to
be stronger than the corresponding von Neumann bornologies, i.e. the vector
operations on the space L(X,Y) are compatible with the topologies, and the
bornological convergence implies the topological convergence. Note that in the
terminology [21] the space L(X,Y) (as an inductive limit of seminormed spaces)
is a bornological convex vector space. For a more detail explanation of the
structure of L(X,Y), when both X, Y are C. B. L. C. S., cf. [15]. For the
topological and bornological methods of functional analysis in connection with
operators, cf. [26].

2.3 Basic set structures

Let T 6= ∅ be a set. Denote by 2T the potential set of the set T and by ∆ ⊂ 2T

a δ-ring of sets. If A is a system of subsets of the set T , then σ(A) denotes
the σ-algebra generated by the system A. Denote by Σ = σ(∆). We use χE to
denote the characteristic function of the set E. By pU : X → [0,∞] we denote
the Minkowski functional of the set U ∈ U (if U does not absorb x ∈ X, we
put pU (x) = ∞.). Similarly, pW denotes the Minkowski functional of the set
W ∈ W .

For every (U,W ) ∈ U × W denote by m̂U,W : Σ → [0,∞] a (U,W )-semi-
variation of a charge (= finitely additive measure) m : ∆ → L(X,Y) given
by

m̂U,W (E) = sup pW

(

I
∑

i=1

m(E ∩ Ei)xi

)

, E ∈ Σ,

where the supremum is taken over all finite sets {xi ∈ U ; i = 1, 2, . . . , I} and
all disjoint sets {Ei ∈ ∆; i = 1, 2, . . . , I}. It is well-known that m̂U,W is a
submeasure, i.e. a monotone, subadditive set function with m̂U,W (∅) = 0 for
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every (U,W ) ∈ U ×W. The family m̂U ,W = {m̂U,W ; (U,W ) ∈ U ×W} is said
to be the (U ,W)-semivariation of m.

Denote by ∆U,W ⊂ ∆ the largest δ-ring of sets E ∈ ∆, such that m̂U,W (E) <
∞. Observe that if (U1,W1), (U2,W2) ∈ U ×W such that (U2,W2) ≪ (U1,W1),
then ∆U1,W1 ⊂ ∆U2,W2 and therefore σ(∆U1,W1) ⊂ σ(∆U2,W2). Denote by
∆U ,W = {∆U,W ⊂ ∆; (U,W ) ∈ U ×W}.

Remark 2.2 It is technically convenient to extend the definition of (U,W )-
semivariation m̂U,W to an arbitrary subset F of T as follows:

m̂∗
U,W (F ) = inf

E∈Σ,F⊂E
m̂U,W (E).

For every (U,W ) ∈ U ×W, denote by ‖m‖U,W : Σ → [0,∞] a scalar (U,W )-
semivariation of a charge m : ∆ → L(X,Y) defined as

‖m‖U,W (E) = sup

∥

∥

∥

∥

∥

I
∑

i=1

λim(E ∩ Ei)

∥

∥

∥

∥

∥

U,W

, E ∈ Σ,

where ‖L‖U,W = supx∈U pW (L(x)) and the supremum is taken over all finite sets
of scalars {λi ∈ K; |λi| ≤ 1, i = 1, 2, . . . , I} and all disjoint sets {Ei ∈ ∆; i =
1, 2, . . . , I}. The scalar (U,W )-semivariation ‖m‖U,W is also a submeasure.
Denote by ‖m‖U ,W = {‖m‖U,W ; (U,W ) ∈ U ×W}.

For every W ∈ W , denote by |µ|W : Σ → [0,∞] a W -semivariation of a
charge µ : Σ → Y given by

|µ|W (E) = sup pW

(

I
∑

i=1

λiµ(E ∩ Ei)

)

, E ∈ Σ,

where the supremum is taken over all finite sets of scalars {λi ∈ K; |λi| ≤ 1, i =
1, 2, . . . , I} and all disjoint sets {Ei ∈ ∆; i = 1, 2, . . . , I}. The W -semivariation
|µ|W is also a submeasure. Denote by µW = {µW ; W ∈ W}.

2.4 Basic convergences of functions

In the theory of integration in Banach spaces we suppose the generalizations of
the classical notions, such as almost everywhere convergence, almost uniform
convergence, and convergence in measure or semivariation of measurable func-
tions and relations among them as commonly well-known, cf. [9]. All this theory
may be generalized to C. B. L. C. S. as follows.

Let βU ,W be a lattice of submeasures βU,W : Σ → [0,∞], (U,W ) ∈ U ×W,
where

βU2,W2 ∧ βU3,W3 = βU2∧U3,W2∨W3 ,

βU2,W2 ∨ βU3,W3 = βU2∨U3,W2∧W3 ,

for (U2,W2), (U3,W3) ∈ U ×W, (e.g. βU ,W = m̂U ,W , or ‖m‖U ,W).
Denote by O(βU,W ) = {N ∈ Σ; βU,W (N) = 0, (U,W ) ∈ U ×W}. The set

N ∈ Σ is called βU ,W -null if there exists a couple (U,W ) ∈ U ×W, such that
βU,W (N) = 0. We say that an assertion holds βU ,W-almost everywhere, shortly
βU ,W-a.e., if it holds everywhere except in a βU ,W-null set. A set E ∈ Σ is said
to be of finite submeasure βU ,W if there exists a couple (U,W ) ∈ U ×W, such
that βU,W (E) <∞.
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Definition 2.3 Let E ∈ Σ and R ∈ U , (U,W ) ∈ U × W. We say that a
sequence fn : T → X, n ∈ N, of functions (R,E)-converges βU,W -a.e. to a
function f : T → X if limn→∞ pR(fn(t) − f(t)) = 0 for every t ∈ E \N , where
N ∈ O(βU,W ).

We say that a sequence fn : T → X, n ∈ N, of functions (U , E)-converges
βU ,W-a.e. to a function f : T → X if there exist R ∈ U , (U,W ) ∈ U ×W, such
that the sequence fn, n ∈ N, of functions (R,E)-converges βU,W -a.e. to f . We
write f = U-limn→∞ fn βU ,W-a.e.

If E = T , then we will simply say that the sequence R-converges βU,W -a.e.,
resp. U-converges βU ,W-a.e.

Definition 2.4 Let E ∈ Σ andR ∈ U , (U,W ) ∈ U×W. We say that a sequence
of functions fn : T → X, n ∈ N, (R,E)-converges uniformly to a function
f : T → X, if limn→∞ ‖fn − f‖E,R = 0, where ‖f‖E,R = supt∈E pR(f(t)).

We say that a sequence fn : T → X, n ∈ N, of functions (R,E)-converges
βU,W -almost uniformly to a function f : T → X if for every ε > 0 there exists
a set N ∈ Σ, such that βU,W (N) < ε and the sequence fn, n ∈ N, of functions
(R,E \N)-converges uniformly to f .

We say that a sequence fn : T → X, n ∈ N, of functions (U , E)-converges
βU ,W-almost uniformly to a function f : T → X, if there exist R ∈ U , (U,W ) ∈
U ×W , such that the sequence fn, n ∈ N, of functions (R,E)-converges βU,W -
almost uniformly to f .

If E = T , then we will simply say that the sequence of functions R-converges
uniformly, resp. R-converges βU,W -almost uniformly, resp. U-converges βU ,W -
almost uniformly.

Definition 2.5 Let E ∈ Σ and R ∈ U , (U,W ) ∈ U × W. We say that a
sequence fn : T → X, n ∈ N, of functions m̂U,W -(R,E)-converges to a function
f : T → X, if for every ε > 0, δ > 0 there exists n(ε, δ) ∈ N, such that for every
n ≥ n(ε, δ), n ∈ N, holds: m̂∗

U,W ({t ∈ E; pR(fn(t) − f(t)) ≥ δ}) < ε.
We say that a sequence fn : T → X, n ∈ N, of functions m̂U ,W-(U , E)-

converges to a function f : T → X if there exist R ∈ U , (U,W ) ∈ U ×W, such
that the sequence fn, n ∈ N, of functions m̂U,W -(R,E)-converges to f .

If E = T , then we will simply say that the sequence of functions m̂U,W -R-
converges, resp. m̂U ,W-U-converges.

For a more detail explanation of described convergences of functions in C.
B. L. C. S. and relations among them, cf. [14].

2.5 Measure structures

For (U,W ) ∈ U ×W we say that a charge m is of σ-finite (U,W )-semivariation
if there exist sets En ∈ ∆U,W , n ∈ N, such that T =

⋃∞
n=1 En. For ϕ ∈ Φ, we

say that a charge m is of σϕ-finite (U ,W)-semivariation if for every U ∈ U , the
charge m is of σ-finite (U,ϕ(U))-semivariation.

Definition 2.6 We say that a charge m is of σ-finite (U ,W)-semivariation if
there exists a function ϕ ∈ Φ such that for every U ∈ U the charge is of σϕ-finite
(U ,W)-semivariation.
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In what follows we suppose the charge m is of σ-finite (U ,W)-semivariation.
To be more exact we will sometimes specify that a charge m is of σϕ-finite
(U ,W)-semivariation to indicate that ϕ is that function in Definition 2.6 which
provides the σ-finiteness of the (U ,W)-semivariation of m.

Lemma 2.7 [cf. [17], Lemma 2.2] Let ϕ, ψ ∈ Φ such that ϕ < ψ. If a charge
m is of σϕ-finite (U ,W)-semivariation, then m is also σψ-finite (U ,W)-semi-
variation.

If U ∈ U , ϕ ∈ Φ, and σF (∆U,ϕ(U)) is the smallest local σ-ring of all sets
of σ-finite (U,ϕ(U))-semivariation (i.e. the following implication is true: if
A ∈ ∆U,ϕ(U), B ∈ σF (∆U,ϕ(U)), then A ∩ B ∈ ∆U,ϕ(U)), and OF (m̂U,ϕ(U)) =
O(m̂U,ϕ(U)), where OF (m̂U,ϕ(U)) = {N ∈ σF (∆U,ϕ(U)); m̂U,ϕ(U)(N) = 0}.

Lemma 2.8 [cf. [17], Lemma 2.3] Let ϕ ∈ Φ. If a charge m is of σϕ-finite
(U ,W)-semivariation, then Σ = σF (∆U,ϕ(U)) for every U ∈ U .

Let W ∈ W . We say that a charge µ : Σ → Y is a (W,σ)-additive vector
measure, if µ is a YW -valued (countable additive) vector measure.

Definition 2.9 We say that a charge µ : Σ → Y is a (W , σ)-additive vector
measure, if there exists W ∈ W such that µ is a (W,σ)-additive vector measure.

Note that if W ∈ W and µ : Σ → Y is a (W,σ)-additive vector measure,
then µ is a (W1, σ)-additive vector measure whenever W ⊂W1, W1 ∈ W .

We say that a charge µ : Σ → Y is a (W , σ)-continuous measure if there
exists W0 ∈ W , such that En ⊃ En+1, En ∈ Σ, n ∈ N, pW0(µ(E1))) < ∞,
⋂∞
n=1En = ∅ implies

lim
n→∞

pW0(µ(En)) = 0. (1)

Note that (1) holds for every W ⊃W0, W ∈ W .

Lemma 2.10 If µ is a (W , σ)-additive measure, then µ is a (W , σ)-continuous
measure.

Proof. Since µ is a (W , σ)-additive measure, then there exists W+ ∈ W , such
that µ is a (W+, σ)-additive measure. Also the measure µ is (W,σ)-additive for
every W ⊃W+, W ∈ W .

Let En ⊃ En+1, En ∈ Σ, n ∈ N, such that
⋂∞
n=1En = ∅ and pW∗

(µ(E1)) <
∞ for some W∗ ∈ W . Then pW (µ(E1)) <∞ for every W ⊃W∗, W ∈ W .

Put W0 = W+ ∨W∗. Show that (1) holds. Denote by Fn = En \ En+1,
n ∈ N. By the (W,σ)-additivity of µ we have

0 = lim
n→∞

pW0

(

µ(E1) − µ

(

n
⋃

i=1

Fi

))

= lim
n→∞

pW0(µ(En+1).

2

Let W ∈ W and let νn : Σ → Y, n ∈ N, be a sequence of (W,σ)-additive
vector measures. If for every ε > 0, E ∈ Σ with pW (νn(E)) < ∞, and Ei ∈ Σ,
Ei ∩ Ej = ∅, i 6= j, i, j ∈ N, there exists J0 ∈ N such that for every J ≥ J0,

pW

(

νn

(

∞
⋃

i=J+1

Ei ∩ E

))

< ε
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uniformly for every n ∈ N, then we say that the sequence of measures νn, n ∈ N,
is uniformly (W,σ)-additive on Σ.

Note that if a sequence νn, n ∈ N, of measures is uniformly (W,σ)-additive
on Σ for W ∈ W , then the sequence νn, n ∈ N, of measures is uniformly
(W1, σ)-additive on Σ whenever W1 ⊃W , W1 ∈ W .

Definition 2.11 We say that the family of measures νn : Σ → Y, n ∈ N, is
uniformly (W , σ)-additive on Σ, if there exists W ∈ W such that the family of
measures νn, n ∈ N, is uniformly (W,σ)-additive on Σ.

The following definition generalizes the notion of the σ-additivity of an op-
erator valued measure in the strong operator topology in Banach spaces, cf. [9],
to C. B. L. C. S.

Definition 2.12 Let ϕ ∈ Φ. We say that a charge m : ∆ → L(X,Y) is a
σϕ-additive measure if m is of σϕ-finite (U ,W)-semivariation, and for every
A ∈ ∆U,ϕ(U), the charge m(A∩ ·)x : Σ → Y is a (ϕ(U), σ)-additive measure for
every x ∈ XU , U ∈ U . We say that a charge m : ∆ → L(X,Y) is a σ-additive
(bornological) measure if there exists ϕ ∈ Φ, such that m is a σϕ-additive
measure.

In what follows a charge m is supposed to be σ-additive bornological mea-
sure. If ϕ < ψ, ϕ, ψ ∈ Φ, and a charge m : ∆ → L(X,Y) is a σϕ-additive
measure, then m is a σψ-additive measure. Indeed, the fact that m is of σψ-
finite (U ,W)-semivariation follows from Lemma 2.7. The assertion that for
every A ∈ ∆U,W , the charge m(A∩·)x : Σ → Y is a (ψ(U), σ)-additive measure
for every x ∈ XU , is implied from the inequality pψ(U)(y) ≤ pϕ(U)(y), y ∈ Y.

2.6 An integral in C. B. L. C. S.

We use M∆,U to denote the space of all (∆,U)-measurable functions, i.e. the
largest vector space of functions f : T → X with the property: there exists
R ∈ U , such that for every U ∈ U , U ⊃ R, and δ > 0 the set {t ∈ T ; pU (f(t)) ≥
δ} ∈ Σ. In what follows we deal only with (∆,U)-measurable functions. Note
that in this m̂∗

U,W = m̂U,W for every (U,W ) ∈ U ×W in Definition 2.5.

Definition 2.13 A function f : T → X is called ∆-simple if f(T ) is a finite set
and f−1(x) ∈ ∆ for every x ∈ X \ {0}. Let S denote the space of all ∆-simple
functions.

For (U,W ) ∈ U × W, a function f : T → X is said to be ∆U,W -simple if

f =
∑I

i=1 xiχEi
, where xi ∈ XU , Ei ∈ ∆U,W , such that Ei ∩ Ej = ∅, for i 6= j,

i, j = 1, 2, . . . , I. The space of all ∆U,W -simple functions is denoted by SU,W .
A function f ∈ S is said to be ∆U ,W -simple if there exists a couple (U,W ) ∈

U ×W , such that f ∈ SU,W . The space of all ∆U ,W-simple functions is denoted
by SU ,W .

For every E ∈ Σ and f ∈ SU,W , (U,W ) ∈ U ×W, we define the integral by

the formula
∫

E
f dm =

∑I
i=1 m(E ∩ Ei)xi, where f =

∑I
i=1 xiχEi

, xi ∈ XU ,
Ei ∈ ∆U,W , Ei ∩ Ej = ∅, i 6= j, i, j = 1, 2, . . . , I. Note that for the function
f ∈ SU,W the integral

∫

· f dm is a (W,σ)-additive measure on Σ.
The following result is a version of the classical Vitali-Hahn-Saks-Nikodym

theorem in our setting, cf. [8].
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Theorem 2.14 Let γn : Σ → Y, n ∈ N, be (W , σ)-additive measures and
let W-limn→∞ γn(E) = γ(E) exists in Y for each E ∈ Σ. Then γn, n ∈ N,
are uniformly (W , σ)-additive measures on Σ, and consequently, γ is a (W , σ)-
additive measure on Σ.

Theorem 2.15 [cf. [17], Theorem 3.8] Let m be a σ-additive measure and f ∈
M∆,U . If there exists a sequence fn ∈ SU ,W , n ∈ N, of functions, such that

(a) U-limn→∞ fn = f m̂U ,W-a.e.,

(b) the integrals
∫

·
fn dm, n ∈ N, are uniformly (W , σ)-additive measures on

Σ,

then the limit ν(E, f) = W-limn→∞

∫

E
fn dm exists uniformly in E ∈ Σ.

Definition 2.16 A function f ∈ M∆,U is said to be ∆U ,W -integrable if there
exists a sequence fn ∈ SU ,W , n ∈ N, of functions, such that

(a) U-limn→∞ fn = f m̂U ,W-a.e.,

(b)
∫

·
fn dm, n ∈ N, are uniformly (W , σ)-additive measures on Σ.

Let IU ,W,∆ denote the family of all ∆U ,W-integrable functions. Then the inte-
gral of a function f ∈ IU ,W,∆ on a set E ∈ Σ is defined by the equality

yE =

∫

E

f dm = W- lim
n→∞

∫

E

fn dm.

Theorem 2.17 [cf. [17], Theorem 4.2] Let ν(E, f) =
∫

E
f dm, E ∈ Σ and

f ∈ IU ,W,∆. Then ν(·, f) : Σ → Y is a (W , σ)-additive measure.

The following theorem gives a criterium of integrability of a (∆,U)-measurable
function.

Theorem 2.18 [cf. [17], Theorem 4.3] A function f ∈ M∆,U is ∆U ,W -integrable
if and only if there exists a sequence fn ∈ SU ,W , n ∈ N, of functions such that

(a) (U , E)-converges m̂U ,W-a.e. to f , and

(b) the limit W- limn→∞

∫

E
fn dm = ν(E) exists for every E ∈ Σ.

In this case
∫

E
f dm = W-limn→∞

∫

E
fn dm for every set E ∈ Σ and this limit

is uniform on Σ.

For (U,W ) ∈ U × W denote by IU,W the set of all Dobrakov’s integrable
functions with respect to Banach spaces XU , YW . Observe that the space of
all integrable functions is constructed as a union of the net

IU ,W,∆ =
⋃

(U,W )∈U×W

IU,W .

Observe that the family N (m̂U ,W) (a collection of all m̂U ,W-null sets) connects
the whole theory of the integration by the notions of the type ”U ,W-almost
everywhere” through the rows of the integrable functions IU ,W,∆ into the one
unit. In [16], Lemma 3.13, it is proved that N (m̂U ,W) is an ideal of subsets
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of Σ. So, the ideal N (m̂U ,W) gives a new quality to the theory of integration
in the bornological spaces, which we do not observe in the classical case or in
the integration in Banach spaces where the structure of null set has no sense.
Moreover, in every previous theorem we can consider generally the set from the
N (m̂U ,W) in the assertions of the type ”m̂U,W -almost everywhere” for (U,W ) ∈
U ×W .

3 Theorems on integrable functions

Lemma 3.1 Let (U,W ) ∈ U ×W. Then

m̂U,W (E) = sup

{

pW

(∫

E

f dm

)

; f ∈ SU,W , ‖f‖E,U ≤ 1

}

for every set E ∈ σ(∆U,W ). Hence for every f ∈ SU,W and every set E ∈
σ(∆U,W ) the inequality

pW

(∫

E

f dm

)

≤ ‖f‖E,U · m̂U,W (E)

holds.

The proof is trivial and therefore omitted. Note that the assertion of Lemma 3.1
holds also when replacing ∆U,W -simple functions by ∆U,W -integrable functions
as it is proved in [18]. The following result is a useful one.

Theorem 3.2 If f is a ∆U ,W -integrable function and ϕ is a bounded scalar
(∆,U)-measurable function, then ϕ f is a ∆U ,W -integrable function.

Proof. By Definition 2.16 there exists U ∈ U , (R,S) ∈ U ×W, and M ∈ Σ
such that m̂R,S(M) = 0 and limn→∞ pU (fn(t) − f(t)) = 0 for every t ∈ T \M .
Without loss of generality suppose that the sequence fn, n ∈ N, of functions
U -converges to f . Since m is a σϕ1-additive measure for some ϕ1 ∈ Φ, for
U there exists W1 ∈ W such that ϕ1(U) = W1. By definition, there exists
W2 ∈ W such that the integrals

∫

·
fn dm, n ∈ N, are uniformly (W2, σ)-additive

measures on Σ. Put ϕ(U) = W = W1 ∨ W2. Then the integrals
∫

·
fn dm,

n ∈ N, are uniformly (W,σ)-additive measures on Σ and the measure m is also
of ϕ-finite (U ,W)-semivariation.

Without loss of generality suppose |ϕ(t)| ≤ 1 for every t ∈ T and choose
the scalar ∆U,W -simple functions ϕn, n ∈ N, converging on the whole T to ϕ,
for which ‖ϕn‖T,U ≤ 1 for every n ∈ N. Then ϕn fn, n ∈ N, is a sequence of
∆U,W -simple functions U -converging m̂U,W -a.e. to the function ϕ f . From the
definition of the scalar (U,W )-semivariation we get the inequality

∥

∥

∥

∥

∫

·

ϕnfn dm

∥

∥

∥

∥

U,W

(E) ≤

∥

∥

∥

∥

∫

·

fn dm

∥

∥

∥

∥

U,W

(E)

for every set E ∈ Σ and every n ∈ N.
Since the integrals

∫

· fn dm, n ∈ N, are uniformly (W,σ)-additive measures
on Σ, from the Hahn-Banach theorem and definition of the scalar (U,W )-
semivariation we immediately obtain the uniform continuity of ‖

∫

·
fn dm‖U,W (·).

9



So, the integrals
∫

·
ϕnfn dm, n ∈ N, are uniformly σ-additive YW -valued meas-

ures on Σ. This completes the proof of the integrability of the function ϕ f . 2

Remark 3.3 For the sake of brevity we will continue proving each ongoing
theorem only using a couple (U,W ) ∈ U × W because the case (U1,W1),
(U2,W2) ∈ U × W such that U1 6= U2 or W1 6= W2 may be reduced to this
case putting U = U1 ∨ U2 and W = ϕ(U), where ϕ(U) = ϕ1(U) ∨W1 ∨W2,
ϕ ∈ Φ, and ϕ1 ∈ Φ is such that T is of σϕ1 -finite (U,ϕ1(U))-semivariation.

Theorem 3.4 Let A ∈ ∆U ,W and f : T → X be a U-bounded (∆,U)-measurable
function. If there exists a sequence of ∆U ,W-simple functions fn, n = 1, 2, . . .,
m̂U ,W-U-converging to the function fχA, then fχA ∈ IU ,W .

Proof. Let (U,W ) ∈ U × W. For each k = 1, 2, . . ., take an nk such that
m̂U,W (Ak) < 2−k where

Ak =

{

t ∈ A; pU (fnk
(t) − f(t)) >

1

2k

}

.

Put Bk =
⋃∞
i=k Ai for k = 1, 2, . . ., and let B =

⋂∞
k=1 Bk. Then by σ-

subadditivity of the (U,W )-semivariation m̂U,W we have that B ∈ O(m̂U,W )
and therefore

∫

E
fχB dm = 0 for each E ∈ Σ.

For each k = 1, 2, . . ., put f ′k = fnk
χA\Bk

. Then f ′k, k = 1, 2, . . ., is a sequence
of ∆U,W -simple functions U -converging on the whole T to the function fχA\B

and at the same time ‖f ′k‖T,U ≤ ‖f‖T,U + 1 for each k = 1, 2, . . .. Further, for
each set E ∈ Σ and each k1, k2 ∈ N such that k1 ≤ k2 the following inequalities
hold

pW

(∫

E

f ′k1 dm −

∫

E

f ′k2 dm

)

≤ pW

(

∫

E∩(A\Bk1
)

(f ′k1 − f ′k2) dm

)

+ pW

(

∫

E∩Bk1

f ′k1 dm

)

+ pW

(

∫

E∩Bk1

f ′k2 dm

)

≤
1

2k1−2
· (m̂U,W (A) + ‖f‖T,U + 1).

By the assumption of the theorem we have m̂U,W (A) + ‖f‖T,U < ∞ and since
YW is complete, then from the above inequalities the existence of the limit
W -limk→∞

∫

E
f ′k dm = ν(E) ∈ YW follows for each E ∈ Σ. From here the

integrability of fχA\B and consequently of fχA follows by Theorem 2.18. 2

Definition 3.5 We say that a charge m : ∆ → L(X,Y) is of continuous
(U ,W)-semivariation if for every couple (U,W ) ∈ U ×W,

En ⊃ En+1, En ∈ Σ, n ∈ N, m̂U,W (E1) <∞,

∞
⋂

n=1

En = ∅ ⇒ m̂U,W (En) ց 0.

Theorem 3.6 Let a charge m be of continuous (U ,W)-semivariation. If A ∈
∆U ,W and f : T → X is a U-bounded (∆,U)-measurable function, then fχA ∈
IU ,W .

10



Proof. Let (U,W ) ∈ U × W and let us consider a sequence fn, n ∈ N, of
∆U,W -simple functions, such that the sequence fnχA, n ∈ N, U -converges on
the whole space T to the function fχA and ‖fn‖A,U ≤ ‖f‖A,U for every n ∈ N.
Since A ∈ ∆U,W , then the inequality

pW

(∫

E

fnχA dm

)

≤ ‖f‖A,U · m̂U,W (A ∩ E), n ∈ N, E ∈ Σ,

and the fact that m is of continuous (U,W )-semivariation imply the uniform
(W,σ)-additivity of integrals

∫

· fnχA dm, n ∈ N, on Σ. This proves the theorem.
2

Note that without the assumption m is of continuous (U ,W)-semivariation
the previous theorem does not hold even in the case when a charge m : ∆ →
L(X,Y) is σ-additive in the equibornology of the space L(X,Y) (i.e., if for
every (U,W ) ∈ U × W the restriction mU,W (E)x = m(E)x, E ∈ ∆U,W , of a
charge m to the set system ∆U,W is a σ-additive vector measure in the uniform
topology of the space L(XU ,YW )). Immediately we have the following

Theorem 3.7 Suppose that m is not of continuous (U ,W)-semivariation. Then
there exists a set A ∈ ∆U ,W and a U-bounded function f : T → X such that the
function fχA is not ∆U ,W -integrable.

Proof. Let (U,W ) ∈ U×W. By assumption of theorem there exists an ε > 0, a
set A ∈ ∆U,W and a sequence of pairwise disjoint sets En ∈ ∆U,W , n = 1, 2, . . .,
such that m̂U,W (A∩En) > ε for each n = 1, 2, . . .. According to Lemma 3.1 for
each n = 1, 2, . . ., there is a ∆U,W -simple function fn with

sup
t∈A∩En

pU (fn(t)) ≤ 1

such that

pW

(∫

A∩En

fn dm

)

> ε.

Put f =
∑∞

n=1 fnχEn
. Clearly, f is a U -bounded function. According to The-

orem 2.17 the indefinite integral E →
∫

E
f dm of a ∆U,W -integrable function f

for E ∈ Σ is a (W,σ)-additive vector measure on Σ, and therefore the function
fχA cannot be ∆U,W -integrable. 2

4 Convergence theorems

In this part of paper we prove some convergence theorems for our integral (in-
cluding fundamental theorem on interchange of limit and the integral, see The-
orem 4.4) and we give a characterization of the set of all integrable functions
IU ,W,∆, see Corollary 4.5. The following lemma will be useful, cf. [9].

Lemma 4.1 If a sequence fn ∈ M∆,U , n = 1, 2, . . ., of functions m̂U ,W-U-
converges to a function f ∈ M∆,U on every set E ∈ ∆, then there exists a
subsequence fnk

, k = 1, 2, . . ., of fn U-converging m̂U ,W-a.e. on the whole T to
the function f .

11



Proof. Let (U,W ) ∈ U ×W. Let f0 = f and take a set B ∈ Σ, B ∈ O(m̂U,W ),
such that fnχT\B, n = 0, 1, 2, . . ., are ∆U,W -measurable. Let N(f) = {t ∈
T ; f(t) 6= 0} and put

F =

∞
⋃

n=0

(T \B) ∩N(fn).

Clearly, F ∈ σ(∆U,W ). Choose an increasing sequence Fk ⊂ ∆U,W , k = 1, 2, . . .,
such that F =

⋃∞
k=1 Fk. By assumption and by [9], § 1.2, there exist a subse-

quence f1,i, i = 1, 2, . . ., of fn, a set A1 ∈ σ(∆U,W ) ∩ F1, A1 ∈ O(m̂U,W ) and a
∆U,W ∩(F1\A1)-measurable function g such that f1,i U -converges m̂U,W -almost
uniformly to g in F1. Adapting proofs of Theorem 22.B and 22.C in [12] we
conclude that f = g m̂U,W -a.e. in F1 and consequently, there exists A′

1 ⊂ F1,
A′

1 ∈ O(m̂U,W ) with A1 ∈ σ(∆U,W ), such that f1,i U -converges on F1 \A′
1 to f .

Repeating the argument with the subsequence f1,i, i = 1, 2, . . ., we get a
subsequence f2,i, i = 1, 2, . . ., of f1,i, and a set A′

2 ⊂ F2, A
′
2 ∈ O(m̂U,W ) with

A2 ∈ σ(∆U,W ), such that f2,i U -converges on F2 \ N ′
2 to f . Repeating this

process n-times we obtain a subsequence fn,i, i = 1, 2, . . ., of fn−1,i, and a set
A′
n ⊂ Fn, A

′
n ∈ O(m̂U,W ) with An ∈ σ(∆U,W ), such that fn,i U -converges on

Fn \ A′
n to f . Put A =

⋃∞
n=1A

′
n. Then clearly A ∈ σ(∆U,W ), A ∈ O(m̂U,W )

and the sequence fn,n, n = 1, 2, . . ., U -converges on F \A to f . Since T = F ∪B
and (B ∪A) ∈ O(m̂U,W ), the assertion of lemma follows. 2

Theorem 4.2 Let f be a (∆,U)-measurable function and let the sequence fn,
n ∈ N, of ∆U ,W-integrable functions m̂U ,W-U-converge to f on every set E ∈ ∆.
Then the following conditions are equivalent:

(i) for every set E ∈ Σ there exists a limit

W- lim
n→∞

∫

E

fn dm = ν(E) ∈ Y;

(ii) the integrals
∫

·
fn dm, n ∈ N, are uniformly (W , σ)-additive measures on

Σ;

(iii) the limit W-limn→∞

∫

E
fn dm = ν(E) exists in Y uniformly with respect

to E ∈ Σ.

If anyone of these conditions holds, then the function f is ∆U ,W-integrable with
∫

E
fdm = W-limn→∞

∫

E
fn dm for every set E ∈ Σ and this limit is uniform

on E ∈ Σ. Moreover, ν : Σ → Y is a (W , σ)-additive measure.

Proof. The fact that the set functions
∫

·
fn dm, n ∈ N, are (W , σ)-additive on

Σ is obvious for ∆U ,W -simple functions fn, n ∈ N. By Theorem 2.17 the same
is true for ∆U ,W -integrable functions fn, n ∈ N. Then by Theorem 2.14 (i)⇒(ii)
and obviously (iii)⇒(i).

Let (U,W ) ∈ U ×W. Let (ii) hold and suppose the contrary, i.e. (ii);(iii).
Then there would exist an ε > 0, a subsequence of natural numbers nk and a
sequence Ek ⊂ Σ, k = 1, 2, . . ., such that

pW

(∫

Ek

fnk
dm −

∫

Ek

f dm

)

≥ ε

12



for k = 1, 2, . . .. On the other hand, by Lemma 4.1 there exists a subsequence
fnkr

, r = 1, 2, . . ., of fnk
such that fnkr

U -converges m̂U,W -a.e. to f in T . Then
there exists r0 such that

pW

(∫

E

fnkr
dm −

∫

E

f dm

)

< ε

for all r ≥ r0 and every E ∈ Σ. This contradiction shows the implication
(ii)⇒(iii). Therefore these conditions are equivalent.

By Lemma 4.1 there exists a subsequence fnk
, k = 1, 2, . . ., of fn such that

fnk
U -converges m̂U,W -a.e. to f in T . Then f is ∆U,W -integrable and

∫

E

f dm = W - lim
k→∞

∫

E

fnk
dm = W - lim

n→∞

∫

E

fn dm

for E ∈ Σ. By (iii) the limit is uniform on Σ. The last statement follows from
Theorem 2.14. 2

The following theorem answers the question on enlargement procedure to
the space IU ,W,∆.

Theorem 4.3 If a sequence fn ∈ IU ,W,∆ of functions U-converges m̂U ,W-a.e.
to a function f ∈ M∆,U and the integrals

∫

· fn dm, n ∈ N, are uniformly (W , σ)-
additive measures on Σ, then f ∈ IU ,W,∆ and

∫

E

f dm = W- lim
n→∞

∫

E

fn dm

for every set E ∈ Σ and this limit is uniform on Σ.

Proof. By Theorem 2.15 for each set E ∈ Σ there exists the limit

W- lim
n→∞

∫

E

fn dm = ν(E)

and this limit is uniform on Σ. Therefore it is enough to prove that for (U,W ) ∈
U ×W the function f is ∆U,W -integrable and that ν(E) =

∫

E
f dm for every set

E ∈ Σ.
Since f is a ∆U,W -measurable function, take a sequence hn, n ∈ N, of ∆U,W -

simple functions U -converging to f on the whole T . Consider the sequence
K = {f1,h1, f2,h2, . . . , fn,hn, . . .} and put

F =

∞
⋃

n=1

{

t ∈ T ; pU (fn(t)) + pU (hn(t)) > 0
}

.

Using notation from [9], Theorem 1, there exists a set N ∈ σ(∆U,W ), N ⊂
F , and a nondecreasing sequence of the sets Fj,k ∈ ∆U,W , j, k ∈ N, with
⋃∞
j=1

⋃∞
k=1 Fj,k = F \N , such that

∫

E

fnχN dm =

∫

E

hnχN dm = 0

13



for every E ∈ Σ and n ∈ N, and, moreover, the sequence K converges U -
uniformly to the function f on every set Fj,k, j, k ∈ N. Choose a subsequence
nj,k, j, k ∈ N, such that for every couple (j, k) there is

‖hnj,k
− fnj,k

‖Fj,k,U · m̂U,W (Fj,k) <
1

2jk
.

Put gj,k = hnj,k
χN + hnj,k

χFj,k
for every (j, k). Then gj,k, j, k ∈ N, is a

sequence of ∆U,W -simple functions U -converging m̂U,W -a.e. on the whole T to
the function f for every j ∈ N. Then for every k ∈ N and every set E ∈ Σ there
holds

pW



ν(E) −

∫

E

J
∑

j=1

gj,k dm



 ≤ pW





J
∑

j=1

∫

E∩Fj,k

(gj,k − fnj,k
) dm





+ pW





J
∑

j=1

∫

E∩(F\N\Fj,k)

fnj,k
dm





+ pW

(

ν(E) −

∫

E

fnj,k
dm

)

.

Consequently by Lemma 3.1 and definition of W -semivariation we have

pW



ν(E) −

∫

E

J
∑

j=1

gj,k dm



 ≤
J
∑

j=1

‖hnj,k
− fnj,k

‖Fj,k,U · m̂U,W (Fj,k)

+

J
∑

j=1

∣

∣

∣

∣

∫

·

fnj,k
dm

∣

∣

∣

∣

W

(F \N \ Fj,k)

+ pW

(

ν(E) −

∫

E

fnj,k
dm

)

.

Let ε > 0 and choose k0 ∈ N such that 1
2jk0

< ε
3 , j = 1, 2, . . . , J . Since

ν(E) = W -limk→∞

∫

E
fnj,k

dm uniformly with respect to E ∈ Σ for every j ∈ N,
we may choose k1 ≥ k0 such that

pW

(

ν(E) −

∫

E

fnj,k
dm

)

<
ε

3
, j = 1, 2, . . . , J,

for all k ≥ k1 and for all E ∈ Σ. Thus choosing k ≥ k1 we have

‖hnj,k
− fnj,k

‖Fj,k,U · m̂U,W (Fj,k) <
ε

3
, j = 1, 2, . . . , J, (2)

and

pW

(

ν(E) −

∫

E

fnj,k
dm

)

<
ε

3
, j = 1, 2, . . . , J, (3)

for all E ∈ Σ. Since
∫

· fn dm, n = 1, 2, . . ., are uniformly (W,σ)-additive mea-
sures on Σ, then its W -semivariations |

∫

·
fn dm|W are uniformly continuous

on Σ and since also (F \ N \ Fj,k) ց ∅, then there exists k2 ≥ k1 such that
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∣

∣

∫

·
fn dm

∣

∣

W
(F \N \ Fj,k) <

ε
3 , j = 1, 2, . . . , J, for all k ≥ k2 and for all n ∈ N.

Thus, in particular,

∣

∣

∣

∣

∫

·

fnj,k
dm

∣

∣

∣

∣

W

(F \N \ Fj,k) <
ε

3
, j = 1, 2, . . . , J, (4)

for k ≥ k2. Consequently, from (2), (3) and (4) we obtain

pW



ν(E) −

∫

E

J
∑

j=1

gj,k dm



 < ε

for k ≥ k2 and E ∈ Σ. From it follows that W -limk→∞

∫

E
gk dm = ν(E)

for every E ∈ Σ. So by Theorem 2.18 the function f is ∆U,W -integrable and
∫

E
f dm = ν(E) for every E ∈ Σ. The proof is complete. 2

From the definition of ∆U ,W-integrable functions and from the previous the-
orem we immediately have that the set IU ,W,∆ is the smallest set of functions
containing SU ,W for which Theorem 4.3 is valid.

Theorem 4.4 (on interchange of limit and integral) If a sequence fn ∈
IU ,W,∆, n ∈ N, of functions U-converges m̂U ,W-a.e. to a function f ∈ M∆,U ,
and for every set E ∈ Σ there exists a limit W-limn→∞

∫

E
fn dm, then

(a) f ∈ IU ,W,∆;

(b)
∫

E
f dm = W-limn→∞

∫

E
fn dm for every set E ∈ Σ; and

(c) the limit W-limn→∞

∫

E
fn dm =

∫

E
f dm exists in Y uniformly with re-

spect to E ∈ Σ.

Proof. The assertion follows directly from Theorem 4.3 and Theorem 2.14.
2

Corollary 4.5 From Theorem 2.18 and Theorem 4.4 we immediately obtain
the following characterization of the sets of all integrable functions IU ,W,∆:
it is a smallest class of functions which contains the set SU ,W and for which
Theorem 4.4 holds.

Theorem 4.4 shows that if the process of Theorem 2.18 is repeated with
sequences of functions in IU ,W,∆ instead of SU ,W we obtain only IU ,W,∆ and no
new (∆,U)-measurable functions are obtained. In other words, we cannot obtain
a larger extension of the integral when repeating the enlargement procedure to
the space IU ,W,∆.

If we reduce situations in [7], [22], [24], and [25] to C. B. L. C. S., we do not
obtain greater classes of integrable functions than our integral yields. However,
it is only our integral that preserves the theorem of interchange of limit and
integral for the class of all integrable functions and hence it can be considered
as the complete generalization of the Dobrakov’s integral theory which cannot
be said about each above noted integrals.

As a consequence of Theorem 4.3 and Theorem 4.4 we may easily obtain the
validity of Theorem 3.4 for general ∆U,W -integrable functions.
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5 Properties of the integral

For the sake of completeness, here we give a more precise proof of Theorem 4.1
from [17] than it is given therein and also a detail proof of Theorem 4.4 therein.

Theorem 5.1 Let h,g ∈ IU ,W,∆ and E ∈ Σ. If h + g = 0, then
∫

E
h dm +

∫

E
g dm = 0.

Proof. Let (U1,W1), (U2,W2), (Uh,Wh), (Ug,Wg) ∈ U × W. We have to
show that if hn,gn, n ∈ N are sequences of ∆U1,W1 -, ∆U2,W2 -simple functions
U1-, U2-converging on T \ NUh,Wh

, T \ NUg,Wg
, where NUh,Wh

∈ O(m̂Uh,Wh
),

NUg,Wg
∈ O(m̂Ug,Wg

), to the functions h,g, such that h + g = 0 and the
integrals

∫

·
hndm,

∫

·
gndm, are uniformly (W1, σ)- and (W2, σ)-additive mea-

sures on Σ, respectively, then the sequence kn = hn + gn, n ∈ N of functions
(U1 ∨ U2)-converges m̂Uh∧Ug,Wh∨Wg

-a.e. to the function k = h + g.
Indeed, let ε > 0 be chosen arbitrarily. Denote by U = U1 ∨ U2, N =

NUh,Wh
∪NUg,Wg

and put

n0 = max{n ∈ N; min{pUk
(hn(t) − h(t)) < ε}; k = 1, 2}.

Then for every t ∈ T \N and n ≥ n0, n ∈ N, we have

pU (hn(t) + gn(t)) = pU (hn(t) − h(t) + gn(t) − g(t) + h(t) + g(t))

≤ pU (hn(t) − h(t)) + pU (gn(t) − g(t)) + pU (h(t) + g(t))

≤ pU1(hn(t) − h(t)) + pU2(gn(t) − g(t)) < 2ε.

Since the measure m is of σ-finite (U ,W)-semivariation, there exists a map
ϕ1 : U 7→ ϕ1(U) with (U,ϕ1(U)) ∈ U × W, such that m is of σϕ1 -finite
(U,ϕ1(U))-semivariation. Then by Lemma 2.7 the measure m is of σϕ-finite
(U,ϕ(U))-semivariation, where ϕ(U) = ϕ1(U) ∨ W1 ∨ W2. Denote by W =
ϕ(U). Then there exist pairwise disjoint sets Aj ∈ ∆U,W , j ∈ N, such that
⋃∞
j=1 Aj = T .

Let E =
⋃∞
i=1 Ei, Ei ∩ Ej = ∅, Ei, Ej ∈ Σ, for i 6= j, i, j ∈ N. Then

pW

(

∫

⋃

∞

i=I+1 Ei

kn dm

)

≤ pW

(

∫

⋃

∞

i=I+1 Ei

hn dm

)

+ pW

(

∫

⋃

∞

i=I+1 Ei

gn dm

)

≤ pW1

(

∫

⋃

∞

i=I+1 Ei

hn dm

)

+ pW2

(

∫

⋃

∞

i=I+1 Ei

gn dm

)

where I, n ∈ N. The above inequality implies that the integrals
∫

·
kn dm, n ∈ N,

are uniformly (W,σ)-additive measures on Σ. Thus, for every ε > 0 there exists
J ∈ N, such that

pW

(

∫

E∩
⋃

∞

j=J+1 Aj

kndm

)

≤ ε

uniformly for every n ∈ N. Denote by Fj,k ∈ ∆U,W , Fj,k ∈ Aj , Fj,k ⊂ Fj,k+1, for
j = 1, 2, . . . , J , k ∈ N, a nondecreasing sequence of sets, such that the sequence
kn, n ∈ N, of functions uniformly (U,Fj,k)-converges to k.
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Then there exists n0 ∈ N, such that for every n ≥ n0, n ∈ N, and p ∈ N

there holds
‖kn − kn+p‖Fj,k,U <

ε

3 ·
∑J
j=1 m̂U,W (Aj)

,

for j = 1, 2, . . . , J , k ∈ N.
Choose the sets Fj,k, k ∈ N, such that for every p ∈ N,

∣

∣

∣

∣

∫

·

kn+pdm

∣

∣

∣

∣

W

(Aj \ Fj,k \N) <
ε

3 · 2j
, j = 1, 2, . . . , J.

Repeating now the proof of Theorem 3.8 in [17] from the inequality (5) on,
replacing formally here fn by kn, n ≥ n0, we obtain that

pW

(∫

E

kndm −

∫

E

kn+pdm

)

< 3ε.

The uniqueness of the integral is proved. 2

Theorem 5.2 (a) The family IU ,W,∆ is a vector space.

(b) For every E ∈ Σ, the map
∫

E
(·) dm : IU ,W,∆ → Y is a linear operator.

Proof. Let λ ∈ K and g,h ∈ IU ,W,∆. We have to show that

(a) λg ∈ IU ,W,∆ and g + h ∈ IU ,W,∆, for all λ ∈ K; and

(b) for every E ∈ Σ there holds:
∫

E
(λg) dm = λ

∫

E
g dm and

∫

E
(g+h) dm =

∫

E
g dm +

∫

E
h dm.

If λ = 0 and g ∈ IU ,W,∆, then 0 · g = 0 ∈ IU ,W,∆ and

∫

E

(0 · g) dm = 0 = 0 ·

∫

E

g dm.

Let λ 6= 0 and g ∈ IU ,W,∆. Then there exists a couple (Ug,Wg) ∈ U ×W,
and a sequence g ∈ SUg,Wg

, n ∈ N, such that

(i) limn→∞ pUg
(gn(t) − g(t)) = 0 m̂U ,W-a.e., and

(ii) limn→∞ pWg

(∫

E
gn dm −

∫

E
g dm

)

= 0, for E ∈ Σ.

We have

pWg

(

λ

∫

E

g dm −

∫

E

(λgn) dm

)

≤ pWg

(

λ

∫

E

g dm − λ

∫

E

gn dm

)

+ pWg

(

λ

∫

E

gn dm −

∫

E

(λgn) dm

)

≤ |λ| · ε. (5)
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So, the sequence λgn, n ∈ N satisfies the definition of the integrable function
for the function λg and λg ∈ IU ,W,∆. By (5) we get

pWg

(

λ

∫

E

g dm −

∫

E

(λgn) dm

)

= pWg

(

λ

∫

E

g dm −

∫

E

(λgn) dm

)

+ pWg

(

λ

∫

E

g dm −

∫

E

(λg) dm

)

≤ pWg

(

λ

∫

E

g dm −

∫

E

(λgn) dm

)

+ pWg

(∫

E

(λgn) dm −

∫

E

(λg) dm

)

≤ |λ| · ε+ pWg

(

λ

∫

E

gn dm −

∫

E

(λg) dm

)

≤ 2|λ| · ε.

Thus,

λ

∫

E

g dm =

∫

E

(λg) dm.

Similarly, by definition of the integrable function, there exists a couple
(Uh,Wh) ∈ U ×W, and a sequence hn ∈ SUh,Wh

, n ∈ N, such that

(iii) limn→∞ pUh
(hn(t) − h(t)) = 0 m̂U ,W-a.e., and

(iv) limn→∞ pWh

(∫

E
hn dm −

∫

E
h dm

)

= 0, for E ∈ Σ.

Then we have

pWg∨Wh

([∫

E

g dm +

∫

E

h dm

]

−

∫

E

(gn + hn) dm

)

≤ pWg∨Wh

(∫

E

g dm −

∫

E

gn dm

)

+ pWg∨Wh

(∫

E

h dm −

∫

E

hn dm

)

.

So, the sequence (gn − hn) satisfies the definition of the integrable function for
the function (g − h). The proof is complete. 2

6 An example of the integral in C. B. L. C. S.

Put X = D, where D denotes the space of all infinitely many times differentiable
real functions with compact supports on the real line. It is well-known, cf. [23],
that D = injlimn→∞D[−n,+n], where D[−n,+n] = injlimm→∞Dm

[−n,+n], n ∈ N,
are Fréchet spaces for every n ∈ N, and Dm

[−n,+n], n,m ∈ N, is a Banach space

equipped with the norm pn,m(x) = sup |x(k)(ξ)|, where the supremum is taken
over all ξ ∈ [−n,+n], 0 ≤ k ≤ m, and x(k)(ξ) denotes the k-th derivative of the
function x ∈ Dm

[−n,+n] at the point ξ ∈ [−n,+n], 0 ≤ k ≤ m. The space D is

a (von Neumann) bornological locally convex topological non-metrizable vector
space, cf. Remark 2.1. For further reading about D, cf. [23].

Denote by U the set of all U ⊂ D, such that

U =

{

I
∑

i=1

αiei;

I
∑

i=1

|αi| ≤ 1, ei ∈ D, αi ∈ R, i = 1, 2, . . . , I

}

,
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where ei ∈ D, i = 1, 2, . . . , I, are linearly independent functions over R and

e1(t) =

{

e
− 1

(t−1)2 if t ∈ [−1, 1),
0 if t /∈ [−1, 1).

Let U0 = {α e1; |α| ≤ 1}. The family of all sets U ∈ U forms a Banach disk
basis of a bornology on X. Denote by pU the Minkowski functional of the set
U and XU the linear envelope of the set U ∈ U . Clearly, XU is a Banach space
equipped with the norm pU . The inductive limit

X = injlim
U∈U

XU

is an example of a set D equipped with the bornological convergence (which
differs from the usual convergence in D with respect to the metric given by the
system of seminorms pn,m, n,m ∈ N), cf. [16].

Measure Put X = Y and U = W . Consider a measure m(E)x = L(x) ·λ(E),
where x ∈ X and λ is the Lebesgue measure on the real line, E ∈ Σ is a
Lebesgue measurable set and L ∈ L(X,Y) is a continuous linear operator. So,
for every U ∈ U there exists an element W ∈ W , such that L(U) ⊂W . Denote
this function by ϕ : U → W . Take a couple (U,W ) ∈ U ×W, and ϕ : U 7→ W .
Clearly, L(U0) = W0 ⊂ L(U) ⊂ ϕ(U) = W for every U ∈ U .

The set function m(A ∩ ·)x : Σ → Y, x ∈ XU , A ∈ Σ, is a σ-additive
measure in the strong operator topology of the space L(XU ,YW ). Indeed, let
E =

⋃∞
i=1 Ei, where Ei ∩Ej = ∅, Ei, Ej ∈ Σ, for i, j ∈ N, i 6= j. Then

m

(

A ∩
∞
⋃

i=1

Ei

)

x = λ

(

∞
⋃

i=1

(A ∩ Ei)

)

L(x) = L(x)

∞
∑

i=1

λ(A ∩ Ei)

=
∞
∑

i=1

λ(A ∩Ei)L(x) =
∞
∑

i=1

m(A ∩ Ei)x ∈ YW ,

for x ∈ XU .

Null sets Let E ∈ Σ be of finite (U,W )-semivariation (see (6)). Since L(U) ⊂
W and U is a convex set, then the (U,W )-semivariation

m̂U,W (E) = sup pW





J
∑

j=1

m(E ∩ Ej)xj





= sup pW





J
∑

j=1

λ(E ∩Ej)L(xj)





= sup pW



L







J
∑

j=1

λ(E ∩ Ej)

λ(E)
xj









 · λ(E)

≤ λ(E), (6)

where the supremum is taken over all disjoint Ej ∈ Σ and xj ∈ U, j =
1, 2, . . . , J . We see that the σ-ideal N (m̂U,W ) of m̂U,W -null sets is dominated by
the σ-ideal of λ-null sets, i.e. λ(E) = 0, E ∈ ΣU,W (= the family of all sets in Σ
of finite (U,W )-semivariation), (U,W ) ∈ U ×W, W = ϕ(U) ⇒ m̂U,W (E) = 0.
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Simple functions Denote by Xi the family of all functions in D of the type
x =

∑I
i=1 ciei, where ci = const(t) ∈ R, ei ∈ XU , U ∈ U , for i = 1, 2, . . . , I.

Denote by SU,W the family of all functions of the type

f(t) =
J
∑

j=1

xjχEj
=

J
∑

j=1

(

I
∑

i=1

ci,jei

)

χEj
(t) =

I
∑

i=1

αi(t)ei,

where

αi =

J
∑

j=1

ci,jχEj
, (7)

for Ej ∈ ΣU,W , xj ∈ Xi, i = 1, 2, . . . , I, j = 1, 2, . . . , J . We say that SU,W is a
space of ΣU,W -simple functions. Then the integral of f ∈ SU,W is given by

yE =

∫

E

f dm =

J
∑

j=1

m(Ej ∩ E)xj =

J
∑

j=1

λ(Ej ∩ E)L(xj)

=

J
∑

j=1

λ(Ej ∩ E)L

(

I
∑

i=1

ci,jei

)

=

I
∑

i=1





J
∑

j=1

λ(Ej ∩E)ci,j



L(ei)

=

I
∑

i=1

βiL(ei),

where βi =
∑J
j=1 λ(Ej ∩ E)ci,j , i = 1, 2, . . . , I, E ∈ Σ. Observe that Xi ⊂ D,

and
∫

E
f dm ∈ D, E ∈ Σ, for every f ∈ SU,W .

Integral Let for each i = 1, 2, . . . , I, a sequence of functions αi,K : R → R,
K ∈ N, being of the type (7), converges λ-a.e. to a function αi,∞ : R → R, and is
dominated by a Lebesgue integrable function (so, αi,∞ is a Lebesgue integrable

function), i.e. αi,K =
∑JK

jk=1 ci,jkχEjk
,i, where Ejk,i ∈ ΣU,W , for i = 1, 2, . . . , I,

limK→∞ JK = ∞, and jk = 1, 2, . . . , JK . Then fK =
∑I

i=1 αi,Kei, K ∈ N, is a
sequence of ΣU,W -simple functions converging λ-a.e. to the (Dobrakov) ΣU,W -

integrable function f =
∑I
i=1 αi,∞ei and the integral may be computed easily

as follows:

∫

E

f dm =
I
∑

i=1

(

lim
K→∞

∫

E

αi,K dλ

)

L(ei) =
I
∑

i=1

βi,∞L(ei),

where βi,∞ = limK→∞ βi,K .
The described integral is linear, absolutely continuous, and all theorems

of the Dobrakov’s integration theory can be applied. However, the choice of
the Banach spaces XU ,YW depends on the function which we integrate. The
simplicity of this example consists from the fact that the considered operator-
valued measure is dominated by a non-negative real measure. It has implied
the common σ-algebra for every integrable function (the domain of its integral).
Considering the general case, we need an additional assumption concerning a
notion of σ-finiteness of the measure to construct an integral.
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