Analysis 29, 17-27 (2009) / DOI 10.1524/anly.2009.1001
© Oldenbourg Wissenschaftsverlag, Minchen 2009

Approximate continuity and topological
Boolean algebras

Jan Haluska, Ondrej Hutnik

Received: December 11, 2007; Revised: April 29, 2008

Summary: In this paper we describe a net limit method for constructing topologies on given
Boolean algebras. If functions in this limit procedure are monotone and approximately continuous
in a generalized sense, then the obtained process is recursive.

1 Introduction

For monotone ring topologies on Boolean rings, see cf. [15]. As convenient, we identify
a monotone ring topology on a Boolean ring X with the 0-neighborhood system U be-
longing to it. Then N(U) = [y <y U is the closure of {0} with respect to U. In paper [15],
H. Weber established an isomorphism between the lattice Ms(X) of all s-bounded mono-
tone ring topologies (or, FN-topologies) on a Boolean ring X and a suitable uniform
completion of 2. Recall that the monotone ring topology U is called s-bounded if every
disjoint sequence in X converges to 0 with respect to U. It follows that Ms(X) itself
is a complete Boolean algebra. Using these facts he studied s-bounded monotone ring
topologies and topological Boolean rings.

In [7] and [8], the first author studied some special monotone ring topologies (given
by systems of seminorms) continuous in a generalized sense, and gave a condition which
is sufficient and necessary for that the pointwise (net) convergence of measurable function
in locally convex spaces implies the convergence in semivariation.

The aim of this paper is to study net limit methods for constructing new topologies
on given topological Boolean algebras. We show that if functions in this limit procedure
are monotone and approximately continuous in a generalized sense, then we can obtain
a recursive process.
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2 Elementary non-limit algorithms of creating
monotone ring topologies

Non-additive set functions, as for example outer measures, semi-variations of vector
measures, appeared naturally earlier in the classical measure theory concerning countable
additive set functions or more general finitely additive set functions. Most of the naturally
arising non-additive set functions satisfy some subadditivity conditions which fairly well
recompense the lack of additivity. Much attention is paid there to develop a theory of
submeasures.

If X is a (Boolean) ring on the real line R, then by a submeasure on ~ we mean a set
function v : © — [0, co) satisfying the following conditions:

1) v =0;
(2) iIfE,F € X and E C F, then v(E) < v(F);
(3) if E, F € =, then v(E Vv F) < v(E) + v(F).

The chief motivation for developing a theory of submeasures is that the submeasures
are used as a convenient tool in investigating some properties of measures, especially
those which can be expressed in terms of continuity with respect to the Fréchet—Nikodym
topology (FN-topology, for short). The reader is referred to [4]-[6], and [9] for a more
detailed discussion of FN-topologies, submeasures, etc. For miscelaneous reasons, some
additional properties of continuity (or exhaustivity) are sometimes added to the prop-
erty (1) when defining the notion of a submeasure (and/or other generalizations, e.g.
a Dobrakov submeasure, cf. [2], and a semimeasure, cf. [3]). There are also many papers
where authors consider various generalized settings (e.g. [7, 8, 11], and [15]).

In the following examples we describe some elementary (non-limit) algorithms of
creating monotone ring topologies.

Example 2.1 Let (R, X, 1) be the Lebesgue measure space. If f is a A-integrable func-
tion, then the set function v+ given by

Vf(E)=/|f|d)\, Eey,
E

is a measure, and hence a submeasure. Put N(A) = {E € ; A(E) = 0}, and N(Uf) =
{E € X;vi(E) = 0}, where f is A-integrable. Clearly, N(A) ¢ N(U¢) for every A-
integrable f.

Example 2.2 If (R, Z) is a measurable space, f is a measurable function, then the set
function

vi(E) =sup|f(|, EeZ,
teE

is a submeasure on .
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Example 2.3 The proof of the following assertion is based on the triangle inequality in
R", n € f (the set of all natural numbers). If vy, vy, ..., vy, are submeasures on X, then
the set function

v(E) =

n
Y V(E), Eex,
i=1

is a submeasure, and N(v) = (iL; N(vi).

Example 2.4 If f : R — R s a Lebesgue measurable function, § a positive real number,
and p a submeasure on X, then the set function vs, ¢ given by

vs, f(E) = n({te E; | ()] = 6}), EeX,
is a submeasure.

Example 2.5 Let (X, E) be a measurable space, u : & — [0, oo] be a submeasure,
and f be a non-negative measurable function on (X, E). The set functionvs : E — X
defined by

oo
Uf(E):/ w(ENFydx, Ee€Eg,
0

where Fy = {t; f(t) > x} for any x > 0, is a submeasure on E (as it follows from
its structural properties, cf. [12]). The integral used in definition of v is known as the
Choquet integral of f on E with respect to u, cf. [14].

Example 2.6 Let u be a submeasure on . Let F be a set of all non-decreasing Lebesgue
measurable real functions f onR, suchthat f(0) = 0andx > y > Oimplies f(x)— f(y) <
f(x — y). Then the set function

vi(E) = f(u(E)), Ee€Z,
is a submeasure. Indeed, if E, F € =, and x = u(E) + w(F), y = u(F), then

ui(Ev F) = f(W(EvV F)) < f(w(E) + n(F)) = f(x)
< fx=y) + f(y) = f(w(E)) + f(u(F))
= vi(E) + vi(F).

If, moreover, f is differentiable, then 0 < f/(y) < f/(0) for every y € R. For instance,
f(-) = arctan(-) is an example of such function. Indeed, for X, y € R such that x > y > 0,
it holds
X—Yy
arctan(x) — arctan(y) = arctan <1 n xy) < arctan(x — y).

The submeasure arctan(u(-)) in the last example gives the same ring topology on X
as the submeasure 1, because the function arctan is continuous. A linear combination of
submeasures (if it is a submeasure) yields a new ring topology on X if the components in
it are linearly independent. To obtain new ring topologies on %, nonlinear operations, or
noncontinuous functions, or a limit process can be used when creating new submeasures
from given ones.
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3 Submeasures with function parameters

By a net (with values in a set S) we mean a function from a directed partially ordered set
Qto S Anet {a,}ueq is eventually in a set A iff there is an element wgp € 2 such that if
w € Qand w > wp, then a,, € A. Also other terminology about nets (the notion of the
subnet, etc.) is used in the standard sense, cf. [10].

Let F be an (additive) I-group, cf.[1], of Lebesgue measurable functions on R
equipped with the following system of gauges

[ flle =suplf(t)], EeX fekF,
teE

such that for every f, g € Fand E € X it holds
Ifl<lgl=IIflle < lgle.
Shortly, we say that Fisan (l, || - ||)-group.

Definition 3.1 Wesaythataclass S = {v¢; f € F} of submeasureson X is parametriz-
ed byan (, | - |)-group F of real functionson R if it satisfies the following conditions:

(@ vi € Srimpliesv_t € Srandv¢(E) = v_{(E);
(b) vi e Srandvg € Sy impliesvf, g € Sy and
vitg(E) < vi(E) + vg(E)
forevery f,ge Fand E € X.
If, moreover, there exists a submeasure y on T such that

(©) vi(E) < y(E) - | f|lg for every openfiniteinterval E € X, then we say that S is
y-parametrized by F on X.

Remark 3.2 Note that if y(E) = 0, then v (E) = 0 for every f, such that || f||g < oc.
Thus, N(y) € N(v¥).

Example 3.3 Let 0 < « be an ordinal number.

(i) Let(R, X, 1) bethe Lebesgue measure space. If Fisan (I, ||-||)-group of all Lebesgue
integrable functions of the «-th Baire class, then the class S = {v¢; f € F} of
submeasures of the form

vi(E) =

/fdk}, EeX, felr
E

is A-parametrized by F.

(i) If F is the space of all functions of the «-th Baire class and A is the Borel measure,
then the class Sy = {v¢; f € F} of submeasures

vi(BE) =u(te B [f(H] =6}, EeX, feF

is p-parametrized by F, where u(E) = infacs eca A(A)
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Denote by S; the class of all y-parametrized submeasures on ¥ by an (I, || - |))-
group F. Clearly, S;’: C Sz. Note to Definition 3.1 (c) that although both y and | f|.
are submeasures, their product need not be a submeasure as the following easy example
shows.

Example 3.4 Let E = [1,3], F = [2,4], WE) = »(F) = 2, [Iflle = IflF = 4,
WEVF) =3, || flleve = 6. Then WE v F) - || fllevr = 18, but () - I fllg + ¥(F) -
I llF = 16.

The following lemma shows a limit process of creating new submeasures. Its proof is
easy and therefore omitted. The second statement follows immediately from the mono-
tonicity of the considered set functions. However, we do not solve the question on
existence of a limit on this place. A sufficient condition for the existence of a limit will
be given in Theorem 3.9.

Lemma 3.5 Let {v(,)}weq bea net of submeasureson . If alimit
V(E) = lim v, (E)
we

exists for every E € X, then v is a submeasure on X, and moreover, v, » € Q, are
uniformly continuous.

For a more sophisticated method of creating new submeasures (and new ring topolo-
gies on ) we need the following few notions.

Definition 3.6 Let 71, 7 betwo (I, || - ||)-groups of Lebesgue measurable functions on
R, and let B be a submeasure on X. A net of functions { f,},cq € F1 B-converges to
afunction f € 7 if for every § > 0,

lim ({t € R; | fo () — f(O] = &) =0.

Definition 3.7 Let y be a submeasure on X. A net of submeasures {v(,)}weq IS y-equi-
continuous if for every ¢ > 0 there exists an open finite interval E € ¥ and « > 0 such
that «(E) < « and the net {v,) (R \ E)}weq iseventually in theinterval [0; ¢).

Definition 3.8 Let 8 beasubmeasureon X. A net of submeasures {v(,, }weq is uniformly
absolutely g-continuous if for every e > 0 there exist n > 0, such that for every A € X,
with B(A) < 7, thenet {v,) (A)}weq iseventually in theinterval [O; €).

Now we state the main theorem describing the limit procedure of creating new
submeasures.

Theorem 3.9 Let y, B be submeasures on . Let Fi, F», be two (, || - ||)-groups of
Lebesgue measurablefunctionson R, and let a net of functions{ f,,},cq € F1 B-converge
toafunction f € 7. Ifisa net of submeasures {v¢, },ecq € S}l is

(i) uniformly absolutely B-continuous, and

(i) y-equicontinuous,
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then the limit

vi(F) = limvs, (F), (3.1
weR

existsfor every F € X and v+ () isa submeasureon X.

Proof: Let F € X. If the limit v (F) exists for every F € X, then it is a submeasure on
> by Lemma 3.5. Show that v (F) exists.

Since R is complete, it is enough to show that for every ¢ > 0 there exists w, € €,
such that for every w, o’ > w,, thereiis v, (F) — v, (F)] <e.

By (ii) the net of submeasures {v¢,}.eq IS y-equicontinuous. So, for a given ¢ > 0
there exist an open interval E € ¥, k > 0 and wp €  such that y(E) < « and for every
w > w2, w € Q, there is

vi,(R\ E) <e. (3.2
By Definition 3.1(b) we have that
vi,(EAF) < vi—f, (EAF) +vi, (EAF).
This implies
i, (EAF) —vi (EAF)| <vf,—1 (EAF). (3.3
By (3.3), monotonicity, and subadditivity of v, and v , we get

e, (F) —vs,, (F)]
< i, (FAM®R\E) +ve,(FAE)+vi, (FAMR\E)) —vs, (FAE)
< i, (F AR\ B+ [ve, (FA RN E)I + [ve,—1, (EAF).

Clearly, FA (R\ E) C R\ E. By (3.2),
[vi,(F) —vt (F)l <2¢ +vf,—1 (EAF)
for every w, ' > wy. By Definition 3.1(c) we obtain
vi,—f, (EAF) <vi,—1,(E) <WE) - fo— fulle <« lIfo— fulle.

Then for a given ¢ > 0 there exists § = ¢/k > 0, such that

| fo — forlle <8 implies vi,—5 (EAF) <e. (3.4)
Put G = {t e R; | f,(t) — fuy (D] < 8}. From subadditivity of v, ¢ , we have

vi,—f,(FAE) <vi,—t , (FAEAG) +vi,—5, (FAE)\G). (3.5)

By (3.4) and (3.5) we get

[vi,(F) —vi (F)] <3e+vi,—1,(EAF)\G). (3.6)



Approximate continuity and topological Boolean algebras 23

The net of functions {f,},cq B-converges to f. Denote by xa the characteristic
function of the set A € X. Since B is a monotone set function, the net of functions
{fuxalocq B-convergesto fxa as well, where A € X. Therefore, for every n > 0 there
exists w1 € € such that for every w > w1, w € €,

Blt € A; [ fu® — fur (D] = 8) <. (3.7)

From uniform absolute S-continuity of the net of submeasures {v+, },ecq We have that
for every ¢ > 0 there exist n > 0 and w3 € 2 such that for every o > w3, w € ,

AeX, B(A) <n implies vi, (A <e. (3.8)
Further, if ve (A) < &, wherew € Q, A € X, then
vi,—f,(A) <vi,(A) +vi (A <2 (3.9)

for every o, ' > w3.

Put A= (E A F)\ G and take w, € 2, such that w, > max{w1, w2, w3}. Then (3.6),
(3.7), (3.8), and (3.9) imply that for every F € X and ¢ > 0 there exists w. € 2 such that
for every w > w., w € Q, there is

v, (F) — vt (F)| < Se.
Hence the existence of limit is proved. ]

Remark 3.10 It is clear that the family (v (-)} v {vs,(-); w € Q} isuniformly absolutely
B-continuous and y-equicontinuous. Also, it may be easily verified that for a fixed directed
set 2 the limit (3.1) does not depend on the choice of net of functions { f,},cq € F1.

4  Approximate continuity and recursive process

For B a submeasure on X the following concept of B-approximate continuity is a gener-
alization of the notion of approximate continuity, cf. [13], to submeasures.

Definition 4.1 Let 8 : ¥ — [0, co) be a submeasure. A g-density of aset F € ¥ at
t € R, written D,’i(t), islimB(E v F)/B(E) provided the limit exists. Here the limit is
taken over intervals E, t € E, and B(E) approaching 0. A point t isa point of g-density
of F ifDﬁ (t) = 1. Afunction f : R — R issaid to be g-approximately continuous at t if
t isapoint of 8-density of aset F and f iscontinuousat t with respect to F. A function f
is B-approximately continuous in (a, b), wherea, b € R, a < b, if f is 8-approximately
continuousat eacht € (a, b).

In the sequel of this paper we suppose that a submeasure g satisfies the following
Lebesgue density property (LD-property, for short): g-almost every point of any measur-
able set M C R is a point of g-density of M (e.g. 8 is Lebesgue measure on R, cf. [13,
§ 6.1, p. 150, Lebesgue density theorem]).
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Theorem 4.2 Let 8 beasubmeasureon ¥ satisfying LD-property. Let F bea spaceof all
B-approximately continuous Lebesgue measurable functions on R. If a net of monotone
real functions {f,},cq B-convergesto f € F on a finite interval (a, b), a < b, then
the net of functions { f,},cq B-a.e. convergesto f in each point of the g-approximate
continuity of f.

Proof: Let {f,},cq be a net of nondecreasing functions, and ty € (a, b) be a point of
B-approximate continuity of f.

Suppose the contrary, i.e. a net { f,,(tp) }weq does not B-converge to f(tp). Then there
exists n > 0 such that

limsup|f,(to) — f(to)| > n.

o w>w

Define the following index sets:

QF = {we @ f,(t) = fto) + 1},

2, = {we Q; fu(to) < f(to) —nl,

Q, =QruQ;
Observe that $2 and €2, are cofinal. Therefore either 2 and ©;F, or 2 and 2, are cofinal.
Suppose that 2 and S2;7F are cofinal. Then the net { fw}wesz; is a subnet of the net { f,} weq.

Since tp is a point of the B-approximate continuity of f, there existsa set F C (a, b)

such that tg is the point of its 8-density and f | is continuous at to, i.e. there exists § > 0
such that for all t € F we have

| fulto) — f(to)| < g

whenever 0 <t — ty < 8. By definition of Q;)F we get

fo () = f(t) = fo(to) — () = fo(to) +n— (1) =

N

foreveryt e Fandw € Q,;“ Clearly,
(to.to+ & AFC ) {t € (@ b): [ f, ) — f(t)| > g}
weQ;
Since to is the point of g-density of F, then 8((to, to + ) A F) > 0. By the monotonicity
of B,

int B ({t e @by:ifu®— fO1 > 7}) = AlCto,to+9) A F) > 0.

weYy,

but it denies the g-convergence of the net of functions { f,,},cq to f.
Analogously we proceed in the case Q and €2, cofinal sets. |

Since any measurable function is g-approximatively continuous, cf. [13], from The-
orem 4.2 we have
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Corollary 4.3 Let 8 beasubmeasureon T satisfying LD-property and let F bea space of
all B-approximately continuousLebesgue measurablefunctionson R. If a net of monotone
functions { f,,},cq B-convergesto f € F on afiniteinterval (a, b), a < b, then the net
of functions { f,},cq B-a.e. convergesto f on (a, b).

Theorem 4.4 Let y, 8 be submeasures on ¥ satisfying LD-property. Let 71 be an
{, II-IN-group of Lebesgue measurablefunctions, and 7 bean (I, | - ||)-group of Lebesgue
measurable functions B-approximately continuous on each open finiteinterval, such that
each f € 7 isa B-limit of a net of monotone functions from ;. If the submeasurev.(-)
is defined as in Theorem 3.9, then the class S, = {V¢(-); f € F,} of submeasures is
y-parametrized by 7, on .

Proof: Let F € T and let us verify conditions of Definition 3.1.
(@) The equality v (F) = v_¢(F) is trivial.

(b) Let a net of functions {g.}weo € F1 B-converge to g € F», and let vg(F) =
limyeq vg, (F) exist. Then v¢4(F) exists, and from the equality

Dr1g(F) = lim vy, i, (F),

and the obvious inclusion

1)
{t e F: [[fo® + 9] = [fD) + g(t)]‘ > 5}
Cc{teF;[fo® = fO] =8} v{teF; |0 —gb|=3d}, §>0,
we get v g(F) =v¢(F) + vg(F).

(c) Let a net of monotone functions { f,},cq € F1 B-converge to a function f € 7.
Let {vf, Juco be a net of submeasures on %, such that it is uniformly absolutely
B-continuous and y-equicontinuous. We show that for v+ (F) given by (3.1) holds

vi(F) = y(BIfle,
where F = (a,b) fora,be R, a < b.

By Theorem 4.2, the net of functions { f,},co B-a.e. convergesto f on F. Hence,
there exists H € X, such that || f,,||F\n convergesto || f|F\n and B(H) = 0. Then
(!)'ETZW(,)(F \H) < ¥(F)- (!)IGTZ I fwlle\H,

i.e.
vi,(F\H) < y(F)-[[fllr\H.
Butvs(H) = limyeq v, (H).
By uniform absolute g-continuity of a net of submeasures {v¢,},cq We have that
B(H) =0, and w € Q imply v, (H) = 0. Thus,

vi(H) = limv¢, (H)=0.
we
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So,
vi(F) = vi(F\H)+vi(H)=vi(F\H)
y(F) - I fllevn < v(F) - [ Tllg.

This completes the proof. ]

IAIA

Corollary 4.5 Combining Theorems 4.2 and 4.4, we see that we described a recursive
procedure how to create new classes of submeasures from given ones.

Example 4.6 Let0 < « be an ordinal number. Let 71, 7, ..., Fy, ... be the a-th Baire
classes of real functions defined on R. Let M be the class of all uniformly bounded,
approximately continuous, monotone, nonnegative Lebesgue measurable functions on
(0,1). Denote by G, = Fo A M.
Define o 1 £
y(E>={O’ AR
,(0,LH)AE=0
for E € X. Itiseasytoseethaty : ¥ — {0; 1} isasubmeasure. Let 8 = A (the Lebesgue
measure on R). Clearly, B satisfies the LD-property.
Define a (sub)measure v*(-, -) on X, parametrized by G, as follows

VA (E, f) =/ fdh < [ flle - A(E), (4.1)
EA[0,1]

forEe X, f € G,.

Since v*(R \ (0, 1), f(f,‘:?wm,m) =0, f% ¢ g, forevery o, € 1, 0 < «, the family
ve(, fcf,‘:?wk+17_,_), w, € 4, IS a y-equicontinuous sequence of submeasures for every
0 <a,and 0 < k.

Consider the following Souslin tree of functions (i.e. an uncountable tree of countable

height and countable width). The sequence fcf)‘j?wm,_,_ € Gu, 0 < K, we € 1, of functions

pointwise converges to the function fcf,“fllﬁ,ﬁ € Gy, 0 < . The direction in the net of
functions, the described Souslin tree, is given by the pointwise convergence of functions.
From LD-property, the uniform boundedness of functions of M and (4.1), we obtain
that v¥ (-, -), 0 < «, are uniformly absolutely A-continuous.
So, describing a Souslin tree of functions we obtain the isomorphic Souslin tree
ve(-, £l ) of submeasures dominated by the Lebesgue measure on R.

Wy ,Wye4-15-

Ifwedenote NV, = {(v*(-, f); f € G,},thenitisknownthat N, C Ny+1, No # Ngt1.
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