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Summary: In this paper we describe a net limit method for constructing topologies on given
Boolean algebras. If functions in this limit procedure are monotone and approximately continuous
in a generalized sense, then the obtained process is recursive.

1 Introduction
For monotone ring topologies on Boolean rings, see cf. [15]. As convenient, we identify
a monotone ring topology on a Boolean ring � with the 0-neighborhood system U be-
longing to it. Then N(U) = ⋂

U∈UU is the closure of {0} with respect to U. In paper [15],
H. Weber established an isomorphism between the latticeMs(�) of all s-bounded mono-
tone ring topologies (or, FN-topologies) on a Boolean ring � and a suitable uniform
completion of �. Recall that the monotone ring topology U is called s-bounded if every
disjoint sequence in � converges to 0 with respect to U. It follows that Ms(�) itself
is a complete Boolean algebra. Using these facts he studied s-bounded monotone ring
topologies and topological Boolean rings.

In [7] and [8], the first author studied some special monotone ring topologies (given
by systems of seminorms) continuous in a generalized sense, and gave a condition which
is sufficient and necessary for that the pointwise (net) convergence of measurable function
in locally convex spaces implies the convergence in semivariation.

The aim of this paper is to study net limit methods for constructing new topologies
on given topological Boolean algebras. We show that if functions in this limit procedure
are monotone and approximately continuous in a generalized sense, then we can obtain
a recursive process.

Mathematics subject classification (2000): Primary: 28A10, 28A25, 28A60
Key words and phrases: Submeasure, approximately continuous functions, net convergence of functions, topo-
logical Boolean algebras



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

18 Haluška -- Hutnı́k

2 Elementary non-limit algorithms of creating
monotone ring topologies

Non-additive set functions, as for example outer measures, semi-variations of vector
measures, appeared naturally earlier in the classical measure theory concerning countable
additive set functions or more general finitely additive set functions. Most of the naturally
arising non-additive set functions satisfy some subadditivity conditions which fairly well
recompense the lack of additivity. Much attention is paid there to develop a theory of
submeasures.

If � is a (Boolean) ring on the real line R, then by a submeasure on � we mean a set
function ν : � → [0,∞) satisfying the following conditions:

(1) ν(∅) = 0;

(2) if E, F ∈ � and E ⊂ F, then ν(E) ≤ ν(F);

(3) if E, F ∈ �, then ν(E ∨ F) ≤ ν(E) + ν(F).

The chief motivation for developing a theory of submeasures is that the submeasures
are used as a convenient tool in investigating some properties of measures, especially
those which can be expressed in terms of continuity with respect to the Fréchet–Nikodym
topology (FN-topology, for short). The reader is referred to [4]–[6], and [9] for a more
detailed discussion of FN-topologies, submeasures, etc. For miscelaneous reasons, some
additional properties of continuity (or exhaustivity) are sometimes added to the prop-
erty (1) when defining the notion of a submeasure (and/or other generalizations, e.g.
a Dobrakov submeasure, cf. [2], and a semimeasure, cf. [3]). There are also many papers
where authors consider various generalized settings (e.g. [7, 8, 11], and [15]).

In the following examples we describe some elementary (non-limit) algorithms of
creating monotone ring topologies.

Example 2.1 Let (R,�, λ) be the Lebesgue measure space. If f is a λ-integrable func-
tion, then the set function ν f given by

ν f (E) =
∫

E
| f | dλ, E ∈ �,

is a measure, and hence a submeasure. Put N(λ) = {E ∈ �; λ(E) = 0}, and N(U f ) =
{E ∈ �; ν f (E) = 0}, where f is λ-integrable. Clearly, N(λ) ⊂ N(U f ) for every λ-
integrable f .

Example 2.2 If (R,�) is a measurable space, f is a measurable function, then the set
function

ν f (E) = sup
t∈E

| f(t)|, E ∈ �,

is a submeasure on �.
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Approximate continuity and topological Boolean algebras 19

Example 2.3 The proof of the following assertion is based on the triangle inequality in
R

n , n ∈ � (the set of all natural numbers). If ν1, ν2, . . . , νn , are submeasures on �, then
the set function

ν(E) =
√√√√ n∑

i=1

ν2
i (E), E ∈ �,

is a submeasure, and N(ν) = ⋂n
i=1 N(νi ).

Example 2.4 If f : R→ R is a Lebesgue measurable function, δ a positive real number,
and μ a submeasure on �, then the set function νδ, f given by

νδ, f (E) = μ({t ∈ E; | f(t)| ≥ δ}), E ∈ �,

is a submeasure.

Example 2.5 Let (X,�) be a measurable space, μ : � → [0,∞] be a submeasure,
and f be a non-negative measurable function on (X,�). The set function ν f : � → X
defined by

ν f (E) =
∫ ∞

0
μ(E ∩ Fx) dx, E ∈ �,

where Fx = {t; f(t) ≥ x} for any x > 0, is a submeasure on � (as it follows from
its structural properties, cf. [12]). The integral used in definition of ν f is known as the
Choquet integral of f on E with respect to μ, cf. [14].

Example 2.6 Let μ be a submeasure on �. LetF be a set of all non-decreasing Lebesgue
measurable real functions f onR, such that f(0) = 0 and x ≥ y ≥ 0 implies f(x)− f(y) ≤
f(x − y). Then the set function

ν f (E) = f(μ(E)), E ∈ �,

is a submeasure. Indeed, if E, F ∈ �, and x = μ(E) + μ(F), y = μ(F), then

μ f (E ∨ F) = f(μ(E ∨ F)) ≤ f(μ(E) + μ(F)) = f(x)

≤ f(x − y) + f(y) = f(μ(E)) + f(μ(F))

= ν f (E) + ν f (F).

If, moreover, f is differentiable, then 0 ≤ f ′(y) ≤ f ′(0) for every y ∈ R. For instance,
f(·) = arctan(·) is an example of such function. Indeed, for x, y ∈ R such that x > y ≥ 0,
it holds

arctan(x) − arctan(y) = arctan

(
x − y

1 + xy

)
≤ arctan(x − y).

The submeasure arctan(μ(·)) in the last example gives the same ring topology on �

as the submeasure μ, because the function arctan is continuous. A linear combination of
submeasures (if it is a submeasure) yields a new ring topology on � if the components in
it are linearly independent. To obtain new ring topologies on �, nonlinear operations, or
noncontinuous functions, or a limit process can be used when creating new submeasures
from given ones.
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20 Haluška -- Hutnı́k

3 Submeasures with function parameters
By a net (with values in a set S) we mean a function from a directed partially ordered set
� to S. A net {aω}ω∈� is eventually in a set A iff there is an element ω0 ∈ � such that if
ω ∈ � and ω ≥ ω0, then aω ∈ A. Also other terminology about nets (the notion of the
subnet, etc.) is used in the standard sense, cf. [10].

Let F be an (additive) l-group, cf. [1], of Lebesgue measurable functions on R
equipped with the following system of gauges

‖ f ‖E = sup
t∈E

| f(t)|, E ∈ �, f ∈ F,

such that for every f, g ∈ F and E ∈ � it holds

| f | ≤ |g| ⇒ ‖ f ‖E ≤ ‖g‖E .

Shortly, we say that F is an (l, ‖ · ‖)-group.

Definition 3.1 We say that a class SF = {ν f ; f ∈ F} of submeasures on � is parametriz-
ed by an (l, ‖ · ‖)-group F of real functions on R if it satisfies the following conditions:

(a) ν f ∈ SF implies ν− f ∈ SF and ν f (E) = ν− f (E);

(b) ν f ∈ SF and νg ∈ SF implies ν f +g ∈ SF and

ν f +g(E) ≤ ν f (E) + νg(E)

for every f, g ∈ F and E ∈ �.

If, moreover, there exists a submeasure γ on � such that

(c) ν f (E) ≤ γ(E) · ‖ f ‖E for every open finite interval E ∈ �, then we say that SF is
γ -parametrized by F on �.

Remark 3.2 Note that if γ(E) = 0, then ν f (E) = 0 for every f , such that ‖ f ‖E < ∞.
Thus, N(γ) ⊂ N(ν f ).

Example 3.3 Let 0 < α be an ordinal number.

(i) Let (R,�, λ)be the Lebesgue measure space. IfF is an (l, ‖·‖)-group of all Lebesgue
integrable functions of the α-th Baire class, then the class SF = {ν f ; f ∈ F} of
submeasures of the form

ν f (E) =
∣∣∣∣
∫

E
f dλ

∣∣∣∣ , E ∈ �, f ∈ F,

is λ-parametrized by F .

(ii) If F is the space of all functions of the α-th Baire class and λ is the Borel measure,
then the class SF = {ν f ; f ∈ F} of submeasures

ν f (E) = μ({t ∈ E; | f(t)| ≥ δ}), E ∈ �, f ∈ F,

is μ-parametrized by F , where μ(E) = infA∈�,E⊂A λ(A)
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Denote by Sγ
F the class of all γ -parametrized submeasures on � by an (l, ‖ · ‖)-

group F . Clearly, Sγ
F ⊂ SF . Note to Definition 3.1 (c) that although both γ and ‖ f ‖·

are submeasures, their product need not be a submeasure as the following easy example
shows.

Example 3.4 Let E = [1, 3], F = [2, 4], γ(E) = γ(F) = 2, ‖ f ‖E = ‖ f ‖F = 4,
γ(E ∨ F) = 3, ‖ f ‖E∨F = 6. Then γ(E ∨ F) · ‖ f ‖E∨F = 18, but γ(E) · ‖ f ‖E + γ(F) ·
‖ f ‖F = 16.

The following lemma shows a limit process of creating new submeasures. Its proof is
easy and therefore omitted. The second statement follows immediately from the mono-
tonicity of the considered set functions. However, we do not solve the question on
existence of a limit on this place. A sufficient condition for the existence of a limit will
be given in Theorem 3.9.

Lemma 3.5 Let {ν(ω)}ω∈� be a net of submeasures on �. If a limit

ν(E) = lim
ω∈�

ν(ω)(E)

exists for every E ∈ �, then ν is a submeasure on �, and moreover, ν(ω), ω ∈ �, are
uniformly continuous.

For a more sophisticated method of creating new submeasures (and new ring topolo-
gies on �) we need the following few notions.

Definition 3.6 Let F1,F2 be two (l, ‖ · ‖)-groups of Lebesgue measurable functions on
R, and let β be a submeasure on �. A net of functions { fω}ω∈� ∈ F1 β-converges to
a function f ∈ F2 if for every δ > 0,

lim
ω∈�

β({t ∈ R; | fω(t) − f(t)| ≥ δ}) = 0.

Definition 3.7 Let γ be a submeasure on �. A net of submeasures {ν(ω)}ω∈� is γ -equi-
continuous if for every ε > 0 there exists an open finite interval E ∈ � and κ > 0 such
that α(E) < κ and the net {ν(ω)(R \ E)}ω∈� is eventually in the interval [0; ε).

Definition 3.8 Let β be a submeasure on �. A net of submeasures {ν(ω)}ω∈� is uniformly
absolutely β-continuous if for every ε > 0 there exist η > 0, such that for every A ∈ �,
with β(A) < η, the net {ν(ω)(A)}ω∈� is eventually in the interval [0; ε).

Now we state the main theorem describing the limit procedure of creating new
submeasures.

Theorem 3.9 Let γ, β be submeasures on �. Let F1,F2, be two (l, ‖ · ‖)-groups of
Lebesgue measurable functions onR, and let a net of functions { fω}ω∈� ∈ F1 β-converge
to a function f ∈ F2. If is a net of submeasures {ν fω}ω∈� ∈ Sγ

F1
is

(i) uniformly absolutely β-continuous, and

(ii) γ -equicontinuous,
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22 Haluška -- Hutnı́k

then the limit

ν f (F) = lim
ω∈�

ν fω(F), (3.1)

exists for every F ∈ � and ν f (·) is a submeasure on �.

Proof: Let F ∈ �. If the limit ν f (F) exists for every F ∈ �, then it is a submeasure on
� by Lemma 3.5. Show that ν f (F) exists.

Since R is complete, it is enough to show that for every ε > 0 there exists ωε ∈ �,
such that for every ω,ω′ ≥ ωε, there is |ν fω(F) − ν fω′ (F)| < ε.

By (ii) the net of submeasures {ν fω}ω∈� is γ -equicontinuous. So, for a given ε > 0
there exist an open interval E ∈ �, κ > 0 and ω2 ∈ � such that γ(E) < κ and for every
ω ≥ ω2, ω ∈ �, there is

ν fω(R \ E) < ε. (3.2)

By Definition 3.1(b) we have that

ν fω(E ∧ F) ≤ ν fω− fω′ (E ∧ F) + ν fω′ (E ∧ F).

This implies

|ν fω(E ∧ F) − ν fω′ (E ∧ F)| ≤ ν fω− fω′ (E ∧ F). (3.3)

By (3.3), monotonicity, and subadditivity of ν fω and ν fω′ we get

|ν fω(F) − ν fω′ (F)|
≤ |ν fω(F ∧ (R \ E)) + ν fω(F ∧ E) + ν fω′ (F ∧ (R \ E)) − ν fω′ (F ∧ E)|
≤ |ν fω(F ∧ (R \ E))| + |ν fω′ (F ∧ (R \ E))| + |ν fω− fω′ (E ∧ F)|.

Clearly, F ∧ (R \ E) ⊂ R \ E. By (3.2),

|ν fω(F) − ν fω′ (F)| ≤ 2ε + ν fω− fω′ (E ∧ F)

for every ω,ω′ ≥ ω2. By Definition 3.1(c) we obtain

ν fω− fω′ (E ∧ F) ≤ ν fω− fω′ (E) ≤ γ(E) · ‖ fω − fω′ ‖E < κ · ‖ fω − fω′ ‖E .

Then for a given ε > 0 there exists δ = ε/κ > 0, such that

‖ fω − fω′ ‖E < δ implies ν fω− fω′ (E ∧ F) < ε. (3.4)

Put G = {t ∈ R; | fω(t) − fω′ (t)| < δ}. From subadditivity of ν fω− fω′ we have

ν fω− fω′ (F ∧ E) ≤ ν fω− fω′ (F ∧ E ∧ G) + ν fω− fω′ ((F ∧ E) \ G). (3.5)

By (3.4) and (3.5) we get

|ν fω(F) − ν fω′ (F)| ≤ 3ε + ν fω− fω′ ((E ∧ F) \ G). (3.6)
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The net of functions { fω}ω∈� β-converges to f . Denote by χA the characteristic
function of the set A ∈ �. Since β is a monotone set function, the net of functions
{ fωχA}ω∈� β-converges to fχA as well, where A ∈ �. Therefore, for every η > 0 there
exists ω1 ∈ � such that for every ω ≥ ω1, ω ∈ �,

β{t ∈ A; | fω(t) − fω′ (t)| ≥ δ} < η. (3.7)

From uniform absolute β-continuity of the net of submeasures {ν fω}ω∈� we have that
for every ε > 0 there exist η > 0 and ω3 ∈ � such that for every ω ≥ ω3, ω ∈ �,

A ∈ �, β(A) < η implies ν fω(A) < ε. (3.8)

Further, if ν fω(A) < ε, where ω ∈ �, A ∈ �, then

ν fω− fω′ (A) ≤ ν fω(A) + ν fω′ (A) < 2ε (3.9)

for every ω,ω′ ≥ ω3.
Put A = (E ∧ F) \ G and take ωε ∈ �, such that ωε ≥ max{ω1, ω2, ω3}. Then (3.6),

(3.7), (3.8), and (3.9) imply that for every F ∈ � and ε > 0 there exists ωε ∈ � such that
for every ω ≥ ωε, ω ∈ �, there is

|ν fω(F) − ν fω′ (F)| < 5ε.

Hence the existence of limit is proved. �

Remark 3.10 It is clear that the family {ν f (·)}∨{ν fω(·); ω ∈ �} is uniformly absolutely
β-continuous and γ -equicontinuous. Also, it may be easily verified that for a fixed directed
set � the limit (3.1) does not depend on the choice of net of functions { fω}ω∈� ∈ F1.

4 Approximate continuity and recursive process
For β a submeasure on � the following concept of β-approximate continuity is a gener-
alization of the notion of approximate continuity, cf. [13], to submeasures.

Definition 4.1 Let β : � → [0,∞) be a submeasure. A β-density of a set F ∈ � at
t ∈ R, written Dβ

F(t), is lim β(E ∨ F)/β(E) provided the limit exists. Here the limit is
taken over intervals E, t ∈ E, and β(E) approaching 0. A point t is a point of β-density
of F if Dβ

F(t) = 1. A function f : R→ R is said to be β-approximately continuous at t if
t is a point of β-density of a set F and f is continuous at t with respect to F. A function f
is β-approximately continuous in (a, b), where a, b ∈ R, a < b, if f is β-approximately
continuous at each t ∈ (a, b).

In the sequel of this paper we suppose that a submeasure β satisfies the following
Lebesgue density property (LD-property, for short): β-almost every point of any measur-
able set M ⊂ R is a point of β-density of M (e.g. β is Lebesgue measure on R, cf. [13,
§ 6.1, p. 150, Lebesgue density theorem]).
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Theorem 4.2 Let β be a submeasure on � satisfying LD-property. LetF be a space of all
β-approximately continuous Lebesgue measurable functions on R. If a net of monotone
real functions { fω}ω∈� β-converges to f ∈ F on a finite interval (a, b), a < b, then
the net of functions { fω}ω∈� β-a.e. converges to f in each point of the β-approximate
continuity of f .

Proof: Let { fω}ω∈� be a net of nondecreasing functions, and t0 ∈ (a, b) be a point of
β-approximate continuity of f .

Suppose the contrary, i.e. a net { fω(t0)}ω∈� does not β-converge to f(t0). Then there
exists η > 0 such that

lim sup
ω′:ω≥ω′

| fω(t0) − f(t0)| ≥ η.

Define the following index sets:

�+
η = {ω ∈ �; fω(t0) ≥ f(t0) + η},

�−
η = {ω ∈ �; fω(t0) ≤ f(t0) − η},

�η = �+
η ∪ �−

η

Observe that � and �η are cofinal. Therefore either � and �+
η , or � and �−

η are cofinal.
Suppose that � and �+

η are cofinal. Then the net { fω}ω∈�+
η

is a subnet of the net { fω}ω∈�.
Since t0 is a point of the β-approximate continuity of f , there exists a set F ⊂ (a, b)

such that t0 is the point of its β-density and f |F is continuous at t0, i.e. there exists δ > 0
such that for all t ∈ F we have

| fω(t0) − f(t0)| <
η

2

whenever 0 ≤ t − t0 < δ. By definition of �+
η we get

fω(t) − f(t) ≥ fω(t0) − f(t) ≥ fω(t0) + η − f(t) ≥ η

2

for every t ∈ F and ω ∈ �+
η . Clearly,

(t0, t0 + δ) ∧ F ⊂
⋂

ω∈�+
η

{
t ∈ (a, b); | fω(t) − f(t)| >

η

2

}
.

Since t0 is the point of β-density of F, then β((t0, t0 + δ) ∧ F) > 0. By the monotonicity
of β,

inf
ω∈�+

η

β
({

t ∈ (a, b); | fω(t) − f(t)| >
η

2

})
≥ β((t0, t0 + δ) ∧ F) > 0,

but it denies the β-convergence of the net of functions { fω}ω∈� to f .
Analogously we proceed in the case � and �−

η cofinal sets. �

Since any measurable function is β-approximatively continuous, cf. [13], from The-
orem 4.2 we have



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

Approximate continuity and topological Boolean algebras 25

Corollary 4.3 Let β be a submeasure on � satisfying LD-property and letF be a space of
all β-approximately continuousLebesgue measurable functions onR. If a net of monotone
functions { fω}ω∈� β-converges to f ∈ F on a finite interval (a, b), a < b, then the net
of functions { fω}ω∈� β-a.e. converges to f on (a, b).

Theorem 4.4 Let γ, β be submeasures on � satisfying LD-property. Let F1 be an
(l, ‖·‖)-group of Lebesgue measurable functions, andF2 be an (l, ‖·‖)-group of Lebesgue
measurable functions β-approximately continuous on each open finite interval, such that
each f ∈ F2 is a β-limit of a net of monotone functions from F1. If the submeasure ν·(·)
is defined as in Theorem 3.9, then the class SF2 = {ν f (·); f ∈ F2} of submeasures is
γ -parametrized by F2 on �.

Proof: Let F ∈ � and let us verify conditions of Definition 3.1.

(a) The equality ν f (F) = ν− f (F) is trivial.

(b) Let a net of functions {gω}ω∈� ∈ F1 β-converge to g ∈ F2, and let νg(F) =
limω∈� νgω(F) exist. Then ν f +g(F) exists, and from the equality

ν f +g(F) = lim
ω∈�

ν fω+gω(F),

and the obvious inclusion{
t ∈ F;

∣∣∣[ fω(t) + gω(t)] − [ f(t) + g(t)]
∣∣∣ ≥ δ

2

}

⊂ {t ∈ F; | fω(t) − f(t)| ≥ δ} ∨ {t ∈ F; |gω(t) − g(t)| ≥ δ}, δ > 0,

we get ν f +g(F) = ν f (F) + νg(F).

(c) Let a net of monotone functions { fω}ω∈� ∈ F1 β-converge to a function f ∈ F2.
Let {ν fω}ω∈� be a net of submeasures on �, such that it is uniformly absolutely
β-continuous and γ -equicontinuous. We show that for ν f (F) given by (3.1) holds

ν f (F) ≤ γ(F)‖ f ‖F ,

where F = (a, b) for a, b ∈ R, a < b.

By Theorem 4.2, the net of functions { fω}ω∈� β-a.e. converges to f on F. Hence,
there exists H ∈ �, such that ‖ fω‖F\H converges to ‖ f ‖F\H and β(H ) = 0. Then

lim
ω∈�

ν fω(F \ H ) ≤ γ(F) · lim
ω∈�

‖ fω‖F\H ,

i.e.
ν fω(F \ H ) ≤ γ(F) · ‖ f ‖F\H .

But ν f (H ) = limω∈� ν fω(H ).

By uniform absolute β-continuity of a net of submeasures {ν fω}ω∈� we have that
β(H ) = 0, and ω ∈ � imply ν fω(H ) = 0. Thus,

ν f (H ) = lim
ω∈�

ν fω(H ) = 0.
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So,

ν f (F) ≤ ν f (F \ H ) + ν f (H ) = ν f (F \ H )

≤ γ(F) · ‖ f ‖F\H ≤ γ(F) · ‖ f ‖F .

This completes the proof. �

Corollary 4.5 Combining Theorems 4.2 and 4.4, we see that we described a recursive
procedure how to create new classes of submeasures from given ones.

Example 4.6 Let 0 < α be an ordinal number. Let F1, F2, . . . ,Fα, . . . be the α-th Baire
classes of real functions defined on R. Let M be the class of all uniformly bounded,
approximately continuous, monotone, nonnegative Lebesgue measurable functions on
(0, 1). Denote by Gα = Fα ∧M.

Define

γ(E) =
{

1, (0, 1) ∧ E �= ∅,

0, (0, 1) ∧ E = ∅
for E ∈ �. It is easy to see that γ : � → {0; 1} is a submeasure. Let β = λ (the Lebesgue
measure on R). Clearly, β satisfies the LD-property.

Define a (sub)measure να(·, ·) on �, parametrized by Gα, as follows

να(E, f ) =
∫

E∧[0,1]
f dλ ≤ ‖ f ‖E · λ(E), (4.1)

for E ∈ �, f ∈ Gα.
Since να(R \ (0, 1), f (α)

ωκ,ωκ+1,...) = 0, f (α)
ω ∈ Gα for every ωκ ∈ �, 0 < κ, the family

να(·, f (α)
ωκ,ωκ+1,...), ωκ ∈ �, is a γ -equicontinuous sequence of submeasures for every

0 < α, and 0 < κ.
Consider the following Souslin tree of functions (i.e. an uncountable tree of countable

height and countable width). The sequence f (α)
ωκ,ωκ+1,... ∈ Gα, 0 < κ, ωκ ∈ �, of functions

pointwise converges to the function f (α+1)
ωκ+1,ωκ+2,... ∈ Gα, 0 < α. The direction in the net of

functions, the described Souslin tree, is given by the pointwise convergence of functions.
From LD-property, the uniform boundedness of functions ofM and (4.1), we obtain

that να(·, ·), 0 < α, are uniformly absolutely λ-continuous.
So, describing a Souslin tree of functions we obtain the isomorphic Souslin tree

να(·, f (α)
ωκ,ωκ+1,...) of submeasures dominated by the Lebesgue measure on R.

If we denoteNα = {να(·, f ); f ∈ Gα}, then it is known thatNα ⊂ Nα+1,Nα �= Nα+1.

Acknowledgements: This paper was supported by Grants VEGA 2/0097/08, APVT-51-
006904 and CNR–SAS project 2007–2009 “Integration in abstract structures”.
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