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1. n-dimensional case

Definition 1. Let T be a subset of the set T 6= ∅. Let ϕ : T→ Λ be a function
where Λ is a commutative l-semigroup. The set

(1) RT = {ϕ(τ); τ ∈ T}
is said to be a tone system (in a narrower sense) (cf. [3]).

The tone system in a narrower sense is an image of a partially defined function
with values in an l-semigroup (a non-empty ordered set with an associative binary
operation).

Tone systems were first introduced in School of Pythagoras and later used in
research of partial differential equations and Fourier analysis. Studying the relevant
literature we identify, that the reference denotes a unified theory defining the tone
system in functional terms based on the principles and forms of uncertainty theory,
[3]. We found out that the mathematical theory of tone systems is a baseline for
every type of uncertainty objects (for a unified uncertainty theory, cf. [6]). Psycho-
acoustical properties of tone systems provide a good motivation to study algebras of
symmetric associative aggregation operators related to means and operations over
them. Let us explain the musical motivation.

A set T is a universe of all objects called tones. Since a tone is a fundamental
notion, from the mathematical point of view, there is no need to determine the
precise character of tones, however, there are both psycho-acoustical and natural
scientific imaginations. A subset T ⊂ T is chosen by a musician from the set T to
manifest that the act of sampling is immanent to art (in general). However, the
aim of this paper is not to describe the so-called tone systems in a broader sense
which notion includes the following concepts for a given tone system: the sampling
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algorithm, basic equation/relation, notion of symmetry, and fuzzy measure (cf. [3,
5]). Thus, due to some outside reasons, let us only emphasize that we cannot skip
T and only consider the set T directly. In (1) the function ϕ : T → Λ is called a
pitch function. Hence ϕ(τ) ∈ Λ is a pitch of the tone τ ∈ T. We often have:

Λ = R (the set of all real numbers) or
Z (the set of all integer numbers) or
N (the set of all natural numbers) or
C (the set of all complex numbers) or
Q (the set of all rational numbers) or
or Qp,q (“spirals of the fifths”, the set of all numbers of type pαqβ , where α, β

are rational numbers and p, q are two algebraic numbers) or
FM (the set of all triangular fuzzy numbers).

All the sets have their usual orders.

Example 1. One of the most known and simplest tone systems is 12-tone Equal
Temperament E12 = {( 12

√
2)τ ; τ ∈ T = Z}. Here, Λ = E12 is equipped with the

operation of multiplication and the order induced by R. This tone system reflects
rather well the opinion that the tone is of a spiritual nature (all numbers only, the
octaves are irrational).

Example 2. Perhaps the tone systems called Pure Tunings are the most typical
representatives of an opinion that hearing is primary and spirit secondary as they
are constructed with respect to the existence of a higher harmonics of the vibrating
string. Since the presence of harmonics is objective, it does not depend on our
psyché. An l-semigroup Λ of the simplest tone system of this kind is generated by
the set of generators 〈1, 2, 3〉 and the group operation of multiplication having the
lexicographical ordering. For instance, 1/2 = 2−1 ≤ 8 = 23 and 9 = 32 ≤ 1/2 =
2−1.

Example 3. V. Liern [7] developed a pitch of tones as fuzzy triangular numbers
(cf. Figure 1). Here, the l-semigroup Λ ⊂ FM is not an l-group but an l-grupoid
(cf. [2]) with respect to the operation

(a ∧ b)(t) =
min(a(t), b(t))

maxt∈Rmin(a(t), b(t))
, a ∈ FM, b ∈ FM, t ∈ R.

In [3], Definition 1, a pitch function is introduced in general. Without considering
the loudness, duration, and the other tone attributes incorporated into a tone
system notion, the pitch is a one-dimensional object. In the following definition
we specify the pitch function ϕ and l-semigroup Λ as n-dimensional objects from
Definition 1.

Definition 2. Let T ⊂ T be a set. Let n ∈ N. Let ϕ : T→ Λ be a vector function
of the vector argument, where ϕ(τ) = (ϕ1, . . . , ϕn)(τ) = (ϕ1(τ), . . . , ϕn(τ)), τ ∈ T,
and Λ = Λ1 × · · · × Λn where Λi, i = 1, . . . , n, are commutative l-semigroups and
the l-semigroup Λ is equipped with a lexicographical order. Then the set

(2) RT,n = {ϕ(τ); τ ∈ T}
is said to be a complex tone system (in a narrower sense).

In particular, we put RT = RT,1, CT = RT,2.

In Sections 4 and 5 we will construct the operations over the set of all tone sys-
tems introduced in Definition 2 and we will demonstrate the need for this definition.
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2. Composite vector pitch functions

The individual coordinates ϕ1, ϕ2, . . . , ϕn (cf. Definition 2) of the pitch function
ϕ : T → Λ represent the tone attributes. They can be of psychological or physical
nature. With each psychological tone attribute corresponds its physical counter-
part, and vice–versa. As a result we get couples: pitch ↔ frequency, loudness ↔
amplitude, duration ↔ time interval, etc. Correspondences between psychological
and physical attributes within these pairs are not precious. Thus we set questions
about the nature of l-semigroups Λi, i = 1, . . . , n (semigroup operations, orders, ad-
ditional structures) from Definition 2 which reflect both the psychological and/or
physical sides of tones. Concerning the couple timbre ↔ Fourier (or wavelet) se-
ries, W. Sethares [9] constructs the tone systems optimal in some sense for a given
timbre, and vice–versa.

An idea how to define operations over tone systems is a result of the observation
that every attempt to define such operations based exclusively on psychological or
exclusively on physical attributes has failed. But how to integrate the two seem-
ingly mutually fighting parts – qualitative and quantitative tone attributes – into
a whole? The solution: to construct the pitch functions as composite vector func-
tions. Mathematically speaking, the principal qualitative “jump” will occur when
expanding one dimension into two dimensions, from RT,1 to RT,2 (cf. Section 4).
The generalization to n > 2 dimensions is easy then.

For instance, let us deal with two psychological tone attributes, the pitch ϕ(τ)
and the loudness ψ(τ), where τ ∈ T. Now, besides psychological attributes, let
us mention two physical attributes of this tone. In general, they need not be the
counterparts to the considered psychological tone attributes, ϕ and ψ in our case.
For instance, we may consider (ϕ(τ), ψ(τ)) ∈ CT, where ϕ(τ) = [Φ ◦ (ξ, t)](τ) =
Φ(ξ(τ), t(τ)), ψ(τ) = [Ψ ◦ (ξ, t)](τ) = Ψ(ξ(τ), t(τ)). Here, the time t ∈ R is a
physical duration of the tone (in seconds), and the tone frequency ξ ∈ R (in Hz)
and are supposed to be equal to the time duration and the frequency of the first
harmonic in Fourier series representation of the tone τ ∈ T.

In this way, we can (or according to [5] we have to) introduce a fuzzy set structure
as a refining of the mathematical structure of a tone system from Definition 2.
Therefore it is legitimized/reasonable to call such parameterized tone systems the
fuzzy tone systems. Of course, we can also consider the frequency and time to be
functions of a pitch and a loudness, i.e., to make the superposition in a reverse
order, starting from physical attributes and fuzzifying them by psychological tone
attributes.

There exist some physical and biological limits of human hearing (maximal heard
frequency and threshold of pain). However, they are individual and depend on
age, mood, situation, etc. Therefore, despite the principled possibility, we do not
suppose the normalization of fuzzy sets.

3. Aggregation operator algebras

Let us recall some facts about aggregation operators which are the main tools
when defining operations over the set of all tone systems.
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Let 〈Λ,⊗ ≤, 0〉 be a commutative l-semigroup with the minimal element 0. Under
an aggregation operator we will understand the mapping

A :
⋃

m∈N
Λm → Λ,

satisfying the following two axioms. For every m ∈ N,

(3) A(m)(0, . . . , 0) = 0

and

(4)
ϕ′(1) ≤ ϕ′′(1), . . . , ϕ

′
(m) ≤ ϕ′′(m)

⇒ A(m)(ϕ′(1), . . . , ϕ
′′
(m)) ≤ A(m)(ϕ′′(1), . . . , ϕ

′′
(m)),

where A(m) is a restriction A(m) = A|Λm and ϕ′(n) ∈ Λn, ϕ′′(n) ∈ Λn (the first
m coordinates), where Λn is the n-th copy of Λ in the Cartesian product Λm,
1 ≤ n ≤ m.

For further reading about aggregation operators cf. [1]. It is known that the as-
sertions of binary associative commutative (= symmetrical) operators (operations)
can be easily extended to a general case of the associative symmetrical aggregation
operators. That is why in this paper, a binary operator A will be denoted by ⊗A
as a binary operation i.e., A(ϕ′, ϕ′′) = ϕ′ ⊗A ϕ′′ = ϕ′′′. Hence, in the case of
associative and symmetrical operators we write:

(ϕ′ ⊗A ϕ′′)⊗A ϕ′′′ = ϕ′ ⊗A (ϕ′′ ⊗A ϕ′′′)
and

ϕ′ ⊗A ϕ′′ = ϕ′′ ⊗A ϕ′,
respectively, for every ϕ′, ϕ′′, ϕ′′′ ∈ Λ.

Example 4. The operations of minimum, maximum, (truncated) addition, and
multiplication of fuzzy sets define the associative and symmetrical aggregation op-
erators.

Example 5. Let the binary operation ⊗ : Λ × Λ → Λ generate a symmetrical
associative aggregation operator. Let β : Λ→ Λ be a monotone bijective function.
Then the aggregation operator given by the following binary operator A(ϕ′, ϕ′′) =
β−1{β(ϕ′)⊗ β(ϕ′′)} is an associative and symmetrical operator. Indeed,

A(A(ϕ′, ϕ′′), ϕ′′′) = β−1{β(A(ϕ′, ϕ′′))⊗ β(ϕ′′′)}
= β−1{β[β−1(β(ϕ′)⊗ β(ϕ′′))]⊗ β(ϕ′′′)}
= β−1{β(ϕ′)⊗ β(ϕ′′)⊗ β(ϕ′′′)}

.

For a fixed τ ∈ T (cf. Definition 2), we will apply the various associative sym-
metrical aggregation operators Ak, resp. the operations ⊗k, k = 1, . . . ,K, to
vectors ϕ(τ) = (ϕ1, . . . , ϕn)(τ) = (ϕ1(τ), . . . , ϕn(τ)). It leads us to the notion of
an n-dimensional algebra over the set T.

Definition 3. Let T 6= ∅ be a set. Let T ⊂ T be a subset. Let n ∈ N, K ∈ N.
The (K+1)-tuple RT,n = 〈RT,n; ⊗1, . . . ,⊗K〉 is said to be an n-dimensional alge-
bra over the set T if the binary operations ⊗1, . . . ,⊗K are commutative, associative,
and closed in RT,n, i.e.,

∀τ ∈ T,∀k = 1, . . . ,K, ∀ϕ′(τ) ∈ RT,n1 ∈ RT,n, ∀ϕ′′(τ) ∈ RT,n2 ∈ RT,n,
∃RT,n3 ∈ RT,n, ∃ϕ′′′(τ) ∈ RT,n3 : ϕ′(τ)⊗k ϕ′′(τ) = ϕ′′′(τ).
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Remark 1. Concerning the notion of algebra in Definition 3 and to make clear
why we acquire the aggregation operators generated by binary operations ⊗1, . . . ,
⊗K to be “mean-like”, symmetrical, and associative, let us mention the physical
sound aggregation in a violin orchestra playing in unison. If nobody plays, we have
zero loudness or pitch (cf. (3)). The higher the pitches/frequences of individual
players in a mean are, the higher the resulting pitch/frequence of a sound in a mean
is (cf. (4)). The question is how to aggregate the various pitches and loudness at
the same time when individual players can join or disjoin the sound sequentially
and in a various order. Which kind of a mean is appropriate, which one weighs more
– loudness/amplitude? Tones aggregate into new resulting tones with respect their
nearness. The “closer” they are, the “better” the aggregation is. See the practical
outputs: some orchestras result to play in Pythagorean Tone System, some in 12-
tone Equal Temperament, and some in Just Intonation. If we join or disjoin the
aggregated tones of an orchestra sound in arbitrary orders, the final result will be
the same.

4. Introducing operations

For the sake of simplicity, let us consider Λ = FM, Γ = FM (the set of all triangular
fuzzy numbers) in this paper farther. The sets Λ, Γ may be equipped with many
different operations and orders.

If A :
⋃
n∈N Λn → Λ and B :

⋃
m∈N Γm → Γ are two (symmetrical and associa-

tive) aggregation operators, then it is clear that (A,B) :
⋃
n∈N Λn ×⋃m∈N Γm →

Λ × Γ is also a 2-dimensional (symmetrical and associative) aggregation operator
it the order and the operations are defined coordinate-wisely. But it is not our
case (cf. Remark 1) because the coordinates, e.g., pitch and loudness, are not
independent. A louder tone system prevails in a pitch, too. Moreover, many seem-
ingly appropriate aggregation operators are not apt for one dimensional variant
of the pitch function. For instance, aggregation operators called means are non-
symmetric and non-associative. The idea in Section 4 is analogous to an idea of
how to define the operation of a multiplication for complex numbers: the solution
of an equation x2 + 1 = 0 can be obtained by mixing both coordinates into a two
complex numbers multiplication. This is not possible to use a ”coordinate-wise”
approach. So, in our case, we will treat the aggregation operators. We will find out
that some 2-dimensional (n-dimensional, n ≥ 2) algebras of aggregation operators
with the specially defined operations are symmetrical and associative although the
coordinates considered separately are not.

Definition 4. Let ζ : Λ → Λ be a bijective function. Let CT be a fam-
ily of all two-dimensional algebras over the set T 6= ∅, cf. Definition 3. Let
(Γ; 0,⊕,~,≤) be a commutative l-ring and (Λ; 0,�,≤) be a free l-modul over
Γ such that � : Λ × Γ → Λ be a binary operation distributive with respect
to �. Let CT1 = {(ϕ1(τ), ψ1(τ));ϕ1(τ) ∈ Λ, ψ1(τ) ∈ Γ, τ ∈ T} ∈ C

T
, CT2 =

{(ϕ2(τ), ψ2(τ));ϕ2(τ) ∈ Λ, ψ2(τ) ∈ Γ, τ ∈ T} ∈ CT. Let us generate an aggre-
gation operator by a binary operator A : CT × CT → CT as follows

(5)

(ϕ1(τ), ψ1(τ))⊗A (ϕ2(τ), ψ2(τ)) =
= [ζ−1(ψ1(τ)~ {ψ1(τ)⊕ ψ2(τ)}−1 � ζ(ϕ1(τ))
�ψ2(τ)~ {ψ1(τ)⊕ ψ2(τ)}−1 � ζ(ϕ2(τ))),

ψ1(τ)⊕ ψ2(τ))].
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In a trivial case, we put 0~ 0−1 = 0, [1].

The following theorem constructively describes a class of 2-dimensional associa-
tive and symmetric aggregation operators generated by formula (5).

Theorem 1. A 2-dimensional aggregation operator defined by (5) is associative
and symmetrical.

Proof. It is obvious that the operator is symmetrical. To show associativity, we
have:

A(A(CT1 , CT2 ), CT3 ) = A{[ζ−1(ψ1(τ) ~ {ψ1(τ) ⊕ ψ2(τ)}−1 � ζ(ϕ1(τ)) � ψ2(τ) ~
{ψ1(τ)⊕ψ2(τ)}−1�ζ(ϕ2(τ))), ψ1(τ)⊕ψ1(τ)), (ϕ3(τ), ψ3(τ)} = {ζ−1(ψ1(τ)⊕ ψ2(τ)~
{ψ1(τ)⊕ψ2(τ)⊕ψ3(τ)}−1� ζ[ζ−1(ψ1(τ)~{ψ1(τ)⊕ψ2(τ)}−1� ζ(ϕ1(τ))�ψ2(τ)~
{ψ1(τ) ⊕ ψ2(τ)}−1 � ζ(ϕ2(τ))]) � ψ3(τ) ~ {ψ1(τ) ⊕ ψ2(τ) ⊕ ψ3(τ)}−1 � ζ(ϕ3(τ)),
ψ1(τ)⊕ ψ2(τ)⊕ ψ3(τ)} =
{ζ−1(ψ1(τ) ~ {ψ1(τ) ⊕ ψ2(τ) ⊕ ψ3(τ)}−1 � ζ(ϕ1(τ)) � ψ2(τ) ~ {ψ1(τ) ⊕ ψ2(τ) ⊕
ψ3(τ)}−1�ζ(ϕ2(τ))�ψ3(τ)~{ψ1(τ)⊕ψ2(τ)⊕ψ3(τ)}−1�ζ(ϕ3(τ)))ψ1(τ)⊕ψ2(τ)⊕
ψ3(τ)},
where (ϕ1(τ), ψ1(τ)) ∈ CT1 , (ϕ2(τ), ψ2(τ)) ∈ CT2 and (ϕ3(τ), ψ3(τ)) ∈ CT3 , τ ∈ T. �

Remark 2. The construction of an aggregation operator (5) and the assertion
of Theorem 1 can be easily extended from 2 to every finite number of coordinates.

Example 6. Let ψ1⊕ψ2 = ψ1+ψ2 (a usual addition of scalars ψ1, ψ2), ψ�ϕ(τ) =
ψ · ϕ(τ) [a multiplication of vector ϕ(τ) (pitch) by scalar ψ (loudness)], and let
ϕ1(τ)� ϕ2(τ) = ϕ1(τ) + ϕ2(τ) (an addition of vectors ϕ1(τ), ϕ2(τ)).

(a) Let ζ−1(·) = exp(·). Then an operation ⊗A over CT1 , CT2 corresponds with a
weighed quasi-arithmetic mean (letter G – Geometric) in the first coordinate.

Indeed,

G(2)(CT1 , CT2 ) = [exp
(

ψ1
ψ1+ψ2

· lnϕ1(τ) + ψ2
ψ1+ψ2

· lnϕ2(τ)
)
, ψ1 + ψ2]

= [ϕ1(τ)
ψ1

ψ1+ψ2 · ϕ2(τ)
ψ2

ψ1+ψ2 , ψ1 + ψ2]
= [(ϕ1(τ)ψ1 · ϕ2(τ)ψ2)

1
ψ1+ψ2 , ψ1 + ψ2].

(b) Let ζ−1(·) = (·)r. The case r = 1 corresponds with a weighed quasi-
arithmetic mean (letter A – Arithmetic) in the first coordinate.

(c) For ζ−1(·) = (·)r, the case r = −1 corresponds with a weighed quasi-
arithmetic mean (letter H – Harmonic) in the first coordinate.

Remark 3. For the real functions ϕ(τ), ψ(τ) of real variables (in particular,
fuzzy sets), many types of operations ⊕,�,~,� (pseudo addition, pseudo mul-
tiplication, the g-Calculus) can be chosen (cf. book [8]). In particular, we will
use this fact in following Section 5 where the operations depend on parameter α
(α-compatibility of tones and tone systems).

5. Compatibility of tones

V. Liern [7] introduced the notion of a so-called α-compatibility of fuzzy (one-
dimensional) tones and fuzzy tone systems. Although the view to consider the
tones as triangular fuzzy numbers is very simplified, we will use this imagination.
The idea of an α-compatibility of fuzzy tones and operations over tone systems is
glimpsed: to define the “mean-like” symmetrical associative aggregation operators



ON ALGEBRAS OF AGGREGATION OPERATORS 76

-
ξ(τ)ξ(τ)− δ(τ) ξ(τ) + δ(τ)

1

Φ(ξ(τ), δ(τ))(t)

R

Figure 1. Fuzzy pitch ϕ(τ)(t) = Φ(ξ(τ), δ(τ))(t) of a tone τ ∈ T

over tone systems such that the aggregation will happen only if the operands are
mutually close in some sense (α-compatible or compatible in any generalized sense).

Let FM be the set of all triangular fuzzy numbers. Consider the 2-dimensional
tone system, CT = RT,2 = {(ϕ(τ), ψ(τ)); τ ∈ T} such that the first coordinate,
pitch of a tone, ϕ(τ) ∈ Λ = FM is a triangular fuzzy number. Let the refining
physical attributes of a given tone τ ∈ T be the frequency ξ(τ) ∈ R and accuracy
of its measurement δ(τ) > 0. So, the first coordinate of our tone system has the
form ϕ(τ) = Φ(ξ(τ), δ(τ)). For the shape of this fuzzy imagination of the pitch
see Figure 1. For the sake of simplicity, we put the second coordinate representing
the loudness to be constant for every tone τ ∈ T, i.e., it is not depending on tone
frequency or accuracy of measurement, ψ(τ) = Ψ(ξ(τ), δ(τ)) = const for every
τ ∈ T.

The triangular symmetrical fuzzy number ϕ(τ) (we identify the fuzzy number
with the membership function of it)

ϕ(τ)(t) = Φ(ξ(τ), δ(τ))(t) =

{
1− |ξ(τ)−t|

δ(τ) if |ξ(τ)− t| < δ(τ)
0 otherwise

can also be called a fuzzy tone pitch.
The following definition is a straightforward generalization of Liern’s α-compatibility

of two fuzzy tones (fuzzy notes in his terminology). Two fuzzy tones corresponding
with one (real) tone τ ∈ T are taken from various tone systems which belong to a
tone systems algebra.

Definition 5. Let α ∈ [0, 1]. Two fuzzy tones (ϕ1(τ), ψ1(τ)) and (ϕ2(τ), ψ2(τ))
are α-compatible if

κ = sup
t∈R
{κα[(ϕ1(τ), ψ1(τ)), (ϕ2(τ), ψ2(τ))](t)} ≥ α,

where

(6) κα[(ϕ1(τ), ψ1(τ)), (ϕ2(τ), ψ2(τ))](t) =
= {[ϕ1(τ)⊗ ψ1(τ)]⊕ [ϕ2(τ)⊗ ψ2(τ)]}(t),

where ⊕,⊗ are two commutative associative binary operations.

Remark 4. The notion of α-compatibility can be generalized in various di-
rections, e.g. by considering other aggregation operators instead of sup, min and
multiplication as in Definition 5. We can rewrite formula (6) from Definition 5 and
by induction to generalize it to n dimensions as follows:

(ϕ1(τ), ψ1(τ), χ1(τ))⊗ (ϕ2(τ), ψ2(τ), χ2(τ)) =
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6

-

κ ≥ α

ξ1(τ)+ξ2(τ)
2

1

R

Figure 2. α-compatibility of two fuzzy tones

([(ϕ1(τ), ψ1(τ), χ1(τ))⊗α′′ (ϕ2(τ), ψ2(τ), χ2(τ))]⊕2 κ
−1
α ,

κα ⊕1 [χ1(τ)⊗α′ χ2(τ)]−1,

[χ1(τ)⊗α′ χ2(τ)]),

etc. for n ∈ N. ⊕1,⊕2,⊗α′ ,⊗α′′ are the associative and symmetrical aggregation
operators here.

Note that the impreciseness of a triangular fuzzy number depends on accuracy of
hearing δ(τ) the given tone τ ∈ T. For the sake of simplicity we consider the same
δ for all tones and for every considered tone systems, so δ1(τ) = δ2(τ) = δ = const.
In the sequel to this paper we suppose that ψ1(τ) = ψ2(τ) = const and we take min
instead of ⊕ and the usual multiplication of functions instead of ⊗. This situation
is shown in Figure 2.

The next lemma allows us to ensure the α-compatibility and is a necessary and
sufficient condition for compatibility level α, cf. [7].

Lemma 1. Let α ∈ [0, 1] and τ ∈ T. Two fuzzy tones (ϕ1(τ), ψ1(τ)), and
(ϕ2(τ), ψ2(τ)) such that ϕ1(τ) = Φ1(ξ1(τ), δ), ϕ2(τ) = Φ2(ξ2(τ), δ) ∈ FM, δ > 0 and
ψ1(τ) = ψ2(τ) = const, are α-compatible if and only if |ξ1(τ)− ξ2(τ)| ≤ 2δ(1− α).

Proof. We can assume that ξ1(τ) < ξ2(τ) without loss of generality. According to
Definition 5 if the intersection between ϕ1(τ) ·ψ1(τ) and ϕ2(τ) ·ψ2(τ) is non-empty
then ϕ1(τ) · ψ1(τ) ∧ ϕ2(τ) · ψ2(τ) is a triangular non-normalized fuzzy number.
Therefore from Definition 5 we have

κ = sup
t∈R
{κα[(ϕ1(τ), ψ1(τ)), (ϕ2(τ), ψ2(τ))](t)} =

= sup
t∈R
{[ϕ1(τ) · ψ1(τ) ∧ ϕ2(τ) · ψ2(τ)](t)} =

= {[ϕ1(τ) · ψ1(τ) ∧ ϕ2(τ) · ψ2(τ)]
(
ξ1(τ) + ξ2(τ)

2

)
} =

= max
{

0, 1− |ξ1(τ)− ξ2(τ)|
2δ

}
.

Then κ ≥ α if and only if 1− |ξ1(τ)−ξ2(τ)|
2δ ≥ α, i.e. |ξ1(τ)− ξ2(τ)| ≤ 2δ(1− α). �



ON ALGEBRAS OF AGGREGATION OPERATORS 9

Remark 5. The individual tones of tone systems are supposed to be hierarchi-
cally ordered with respect to more criterions depending on musical style, mood,
etc. Therefore the Garbuzov zones representing the accuracy of measurement of
frequency (cf. [4]) are of various size. If we need to take an information view (un-
ambiguity of tones) into account, at some level α > 0, tones = codes should be
distinguished. Turkish music is based on 53 step dividing the octave. So, when
considering E53, one step is approximately 22, 6 cents ≈ syntonic comma which
need not be distinguishable by a non-musically trained ear. Less dramatic situa-
tion exists in Arabic and Indian music where less steps within octave (22 in Indian
music, Arabic: 17, 19, 24, 31 or 53) are used. European music based on using the
harmony uses 12–tone (or less) systems per octave mostly. Since there are valuable
changes in a pitch for one note in orchestra play, it yields the interpretation of a
sound. Formally we can say that every instrument plays its own tone system and
we aggregate these tone systems into a whole.

6. Compatibility of tone systems

The following definition gives us an α-compatibility of two (or more) tone sys-
tems. Note that the set T may be of various cardinality (12 in the case of E12, but
of continuum in glissando, too).

Definition 6. Let T ⊂ T 6= ∅ be a set. Let CT1 = {(ϕ1(τ), ψ1(τ)); τ ∈ T},
CT2 = {(ϕ2(τ), ψ2(τ)); τ ∈ T} be two fuzzy tone systems such that

ϕ1(τ) = Φ1(ξ1(τ), δ), ϕ2(τ) = Φ2(ξ2(τ), δ) ∈ FM
and ψ1(τ) = ψ2(τ) = const. Let α ∈ [0, 1]. We say that CT1 and CT2 are α-compatible
if

min
τ∈T

sup
t∈R

κα[(ϕ1(τ), ψ1(τ)), (ϕ2(τ), ψ2(τ))](t) ≥ α,

where κα is defined by (5).

Remark 6. Here τ ∈ T is represented by one fuzzy number for one fuzzy
tone. However, tone systems can also involve other types of uncertainty (fuzziness,
strike, principal impreciseness) there. For example, Pythagorean c] and d[ differ
from each other, i.e., ξc](minor second) 6= ξd[(minor second), ascending versus dis-
cending scales, etc. So, we can see that the set of triangular fuzzy numbers for
Pythagorean Tone System is an insufficient tool for abstraction. For the sake of
simplicity, in this paper we do not study the other types of uncertainty.

Lemma 2 (Upper bound for α). Let T 6= ∅ be a set of tones and let CT1 , CT2 be
two fuzzy tone systems α-compatible, α ∈ [0, 1], as in Definition 6. Then

α ≤ min
τ∈T

{
1− |ξ1(τ)− ξ2(τ)|

2δ

}
.

The proof is a direct consequence of Lemma 1 and Definition 6.

Theorem 2. If two fuzzy tone systems CT1 and CT2 (cf. Definition 6), are α-
compatible, then there exists τ∗ ∈ T such that for all τ ∈ T

|ξ1(τ∗)− ξ2(τ∗)| ≥ |ξ1(τ)− ξ2(τ)|
holds.
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Proof. According to Definition 6 two fuzzy tone systems are α-compatible, if

min
τ∈T

sup
t∈R

κα[(ϕ1(τ), ψ1(τ)), (ϕ2(τ), ψ2(τ))](t) ≥ α,

for every τ ∈ T. Let τ∗ ∈ T for all τ ∈ T. Then

sup
t∈R

κα[(ϕ1(τ), ψ1(τ)), (ϕ2(τ), ψ2(τ))](t) ≥

≥ sup
t∈R

κα[(ϕ1(τ∗), ψ1(τ∗)), (ϕ2(τ∗), ψ2(τ∗))](t)

holds for all pairs of fuzzy tones such that (ϕ1(τ), ψ1(τ)) ∈ CT1 and (ϕ2(τ), ψ2(τ)) ∈
CT2 , and for all τ ∈ T, i.e.,

max
{

0, 1− |ξ1(τ)− ξ2(τ)|
2δ(τ)

}
≥ max

{
0, 1− |ξ1(τ∗)− ξ2(τ∗)|

2δ(τ)

}
,

i.e. |ξ1(τ∗)− ξ2(τ∗)| ≥ |ξ1(τ)− ξ2(τ)|. �
Now, we will show that the aggregation does not worsen the compatibility of tone

systems. We could consider a general situation of an operation over tone systems
similarly as in Theorem 1, however, we will only prove the theorem for a harmonic
mean, which is a special case of 2–dimensional aggregation operator defined in (4).

Theorem 3. Let CT1 , CT2 be two α-compatible fuzzy tone systems defined in Def-
inition 6. Then H(2)(CT1 , CT2 ) and CT2 are β-compatible, where β ≥ α.

Remark 7. This theorem holds analogously for H(2)(CT1 , CT2 ) and CT1 .

Proof. Denote by

CT = H(2)(CT1 , CT2 ) = {(ϕ(τ), ψ(τ)); τ ∈ T} =

=






ψ1(τ) + ψ2(τ)

ψ1(τ)
ϕ1(τ) + ψ2(τ)

ϕ2(τ)

, ψ1(τ) + ψ2(τ)


 ; τ ∈ T



 .

Prove that CT is β-compatible with CT2 , i.e.

min
τ∈T

sup
t∈R

κα




ψ1(τ) + ψ2(τ)

ψ1(τ)
ϕ1(τ) + ψ2(τ)

ϕ2(τ)

, ψ1(τ) + ψ2(τ)


 , (ϕ2(τ), ψ2(τ))


 (t) = β ≥ α.

Without loss of generality consider ϕ1(τ) ≤ ϕ2(τ) for all τ ∈ T. Then
ψ1(τ) + ψ2(τ)
ψ1(τ)
ϕ1(τ) + ψ2(τ)

ϕ2(τ)

= ϕ1(τ) · η(τ) ≥ ϕ1(τ),

where

η(τ) =
(ψ1(τ) + ψ2(τ)) · ϕ2(τ)

ψ1(τ) · ϕ2(τ) + ψ2(τ) · ϕ1(τ)
≥ 1.

For the second coordinate we obtain ψ1(τ) + ψ2(τ) ≥ ψ1(τ). Now, we have

β = min
τ∈T

sup
t∈R

κα




ψ1(τ) + ψ2(τ)

ψ1(τ)
ϕ1(τ) + ψ2(τ)

ϕ2(τ)

, ψ1(τ) + ψ2(τ)


 , (ϕ2(τ), ψ2(τ))


 (t)

≥ min
τ∈T

sup
t∈R

κα[(ϕ1(τ), ψ1(τ)), (ϕ2(τ), ψ2(τ))](t) ≥ α.

Thus CT = H(2)(CT1 , CT2 ) is β-compatible with CT2 , where β ≥ α. Analogously for CT
and CT1 .
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Note Pythagorean (P) Equal (E) Garbuzov zone Compatibility
(in cents) (in cents) of tone (in cents) of P and E tones

C 0 0 (−12, 12) 1

D[ 90.225 0.492276
C] 113.685

100 (48, 124)
0.694821

D 203.91 200 (160, 230) 0.894196

E[ 294.135 0.816331
D] 317.595

300 (272, 330)
0.534493

E 407.820 400 (372, 430) 0.762382

F 498.045 500 (472, 530) 0.934784

G[ 588.270 0.690215
F] 611.730

600 (566, 630)
0.688895

G 701.955 700 (672, 730) 0.934784

A[ 792.180 0.782233
G] 815.904

800 (766, 830)
0.601922

A 905.865 900 (866, 930) 0.832105

B[ 996.090 0.873688
A] 1019.550

1000 (966, 1024)
0.495809

B 1109.775 1100 (1066, 1136) 0.754936

C′ 1200 1200 (1188, 1212) 1

Table 1. α-compatibility of Pythagorean and Equal tone systems

Note that the case α = 0 and β > 0 is also possible. �

Remark 8. The consideration the α-compatibility of fuzzy tone systems could
yield the following interesting situations: If CT1 is α-compatible with CT2 and CT2 is
α-compatible with CT3 , then it may happen that CT1 is not α-compatible with CT3 .
And vice versa, if CT1 is not α-compatible with CT2 and CT2 is not α-compatible with
CT3 , then it may happen that CT1 is α-compatible with CT3 .

Example 7. Let ϕi : T→ R, i ∈ {P,E} be a fuzzy pitch function of Pythagorean
(P) and Equal Tempered (E) 12–tone systems, respectively. Consider the fuzzy
tones (ϕi(τ), ψi(τ)) where ϕi(τ) = Φi(ξi(τ), δ(τ)) ∈ FM, ψi(τ) = const for all
τ ∈ T, i.e. for the tone τ = F is ξP (F) = 498.045C and ξE(F) = 500C, cf.
Table 1, Columns 2 and 3. We calculate the compatibility between fuzzy tones
(see column 5) of the two fuzzy tone systems considering the accuracy of hearing
δ(τ) = 25 cents. It is obvious, the smaller (the bigger) δ(τ) > 0 is chosen, the
smaller (the bigger) α-compatibility of fuzzy tones and fuzzy tone systems we ob-
tain, and vice versa, respectively. Using so-called Garbuzov zones (cf. [4]) we can
refine our considerations. In that case we have non-symmetrical triangular fuzzy
numbers (a fuzzy pitch of tones) ϕi(τ) = Φi(ξi(τ), δ) = (n · 100, δ+

τ , δ
−
τ ), where

δ+
τ , δ

−
τ are right and left interval deviations from the points n · 100 cents, n ∈ Z (cf.

Table 1, Column 4).
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Žilina, Hurbanova 15, 010 26 Žilina, Slovakia, e-mail: jhaluska@saske.sk

Department of Math. Analysis and Applied Mathematics, University of Žilina, Hur-
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