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Abstract

The importance of considering of tetrachords consists of that they are the simplest structured
tone systems in the music theory. We show that the set of all tetrachords is naturally structured as a
lattice. There are 156 superparticular tetrachords, where nine of them can be nontrivally expressed
in the form of the geometrical generalized sequence. We show how these 9 tetrachords construct tone
systems of 12 or 5 notes (i.e., qualitative musical degrees).
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1 Introduction

The importance of considering of tetrachords consists of that they are the simplest structured
tone systems in the music theory. For instance, the theory of pentatonics is much more com-
plicated, cf. [1]. By a tetrachord we mean a quadruple of real numbers T' = (1, 71, T2, 73), such that
1=10< 7 <12 <13 =4/3. (Without loss of generality, from the viewpoint of tuning of music
instruments, we identify tone pitches with their relative frequencies.)

Every discrete tone system can be expressed as a geometrical generalized sequence (abbreviation:
GGS). This idea, to describe tone systems via GGS, we applied to the following tone systems used
in the western music: Pythagorean Tuning, [6]; Ptolemaic Tuning, [5]; Praetorius (1/4-meantone)
Tuning, [4]; Diatonic scales, [3]; (and trivially to Equal Temperament).

In this paper, we show that the set of all tetrachords is naturally structured as a
lattice. There are 156 superparticular tetrachords, where nine of them can be expressed
nontrivially in the form of the GGS. We show how these 9 tetrachords construct tone
systems of 12 or 5 notes (i.e., qualitative musical degrees).

Denote by N = {0,1,2,...},Z = {...,-1,0,1,2,...}. If we denote by £ = ((0,00),-,1,<) the
usual multiplicative group on reals with the natural order, then the L-length b/a of the interval
(a,b),0 < a < b < oo, is called the musical interval. For n € N, we say that a sequence (7;) is an
n-geometrical generalized sequence if there exist

a€el, X = (X17X2,"',Xn) € ﬁn, Vi € 2,
such that

Vi1 xVi,2 v, _ — i
n:a-Xl’ XQZ ...ann, Vi,kSVi+l,k7 k—1,2,...,n, 1/,‘,1-|-1/7;,2-|-...+1/,‘,n—l,ZGZ.

2 Examples of tetrachords

There are examples of tetrachords of the various type and construction:

1. Lydian Pythagorean: (1,9/8,81/64,4/3),



Frygian Pythagorean: (1,9/8,32/27,4/3),
Dorian Pythagorean: (1,256/243,32/27,4/3),
Dorian Aristoxenos: (1,16/15,32/27,4/3),
Chromatic Aristoxenos: (1,16/15,10/9,4/3),
Enharmonic Aristoxenos: (1,32/31,16/15,4/3),
Archytas’ Chromatic: (1,28/27,9/8,4/3),

Lyra Tuning: (1,28/27,32/27,4/3),
Mohajira-type: (1,59/54,11/9,4/3),

Al-Farabi Diatonic: (1,8/7,64/49,4/3).
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We say that a tone system is based on prime numbers (1), 2, 3, 5, 7, etc. if the acoustical intervals
the (unison), octave, fifth, third, seventh, etc. are used in its construction. These numbers are the
numbers of harmonics in the Fourier series of the tone.

Tetrachords, the archaic tone systems, have also a philosophical context of their construction. The
Pythagoreans built tone systems based on numbers (1), 2 and 3, because they asserted that only these
numbers are perfect. Tone systems of the Aristoxenos School contain also musical intervals based
on 5, 7, etc. There is also a large group of tetrachords coming from the Islamic world (Al-Farabi,
Mohajira). For a present music theory survey of tetrachords and tetrachordal scales, see [2].

3 The set of all tetrachords

Consider the subset of all GGSs given by n = 4 and the Diophantine equation system:

vigk Svak Svsg S Vak,
Uk, + Vg2 + Vg 3+ Vka =k, 1)
k =1,2,3,4.
Denote by
vi,1 V12 V1,3 Vig
A = V321 Va2 V23 V24
V3,1 V32 V33 V34
V41 Va2 Va3 Vag

the matrix of integers satisfying (1). According to the commutativity, the all 4!-15 = 360 possibilities
of A satisfying (1) are reduced to the following 15 matrixes:

rT1 0 0 07 F1 0 0 07 T 1 0 0 07
2 0 0 0 2 0 0 0 2 0 0 0
A=13 0 0 0™ 3 00 0|21 0 0|
L4 0 0 0 | [ 3 1 0 0 | [ 3 1 0 o0 |
r1 0 0 07 F1 0 0 07 r1 0 0 07
2 0 0 0 2 0 0 0 1 1 0 0
Ar=19 1 g o M= 2 1 0 0= 2 1 0 0|
|2 2 0 0 | [ 2 1 1 o0 ] | 3 1 0 0 |
rT1 0 0 07 F1 0 0 07 T1 0 0 07
1 1 0 0 1 1 0 0 1 1 0 0
Ar=t 9 1 0 o= 2 1 0 0= 1 2 0 0"
L2 2 0 0 | [ 2 1 1 0 | [ 2 2 0 o0 |
T1 0 0 07 r1 0 0 07 r1 0 0 07
1 1 0 0 1 1 0 0 1 1 0 0
Aw=149 9 ¢ o [Au=|1 9 ¢ o [A2=| 1 1 1 o>
| 1 3 0 0 | |1 2 1 0 | [ 2 1 1 0 |
T1 0 0 07 rT1 0 0 07 T1 0 0 07
1 1 0 0 1 1 0 0 1 1 0 0
Ais=11 1 1 o |Au=| 1 1 1 o [A4=]1 1 1 ¢
[ 1 2 1 0 | |1 1 2 0 | [ 101 1 1 ]




| X Xo Xs X4

A - - - -
Ay 2/a/3 9/8 - -
As 9/8 508,243 - -

Ay || /32/27 9/8 - -
Ag 9/8  \/32/27 - -

Aro || 256/243 9/8 - -

Ag 9/8 508/243 - -
A7 || \/32/27 9/8 - -
As t 4/(3t2) 9/8 —
As t 4/(3t%) 9/8 -
A1l t 4/(3t) 9/8 —
A19 9/8 8t/9 4t/3 —
Agg t 9/8 32/(27t) -
A1g t 32/(27t) 9/8 —
Ais t ’U/t 4/(31)) 9/8

Table 1: Constructing intervals

With the matrix A we associate the following equation system:

= Xfl’l X;1‘2Xg1‘3XZL4

Ty = Xf2’1 X;2‘2Xg2‘3X:2’4

T3 = Xf3’1 X;3‘2X:;’3‘3XZ3,4 — 4/3 (2)
Xi/4,1 Xg4‘2Xg4‘3XZ4’4 — 3/2

1<m <1 <73,

T4

The proofs of the following theorems are easy.

Theorem 1 According to the commutativity, the Diophantine equation system (1) has the
unique solution A, such that det A # 0, namely A;s.

Theorem 2 Let A= Ay, As,..., A15, 1 <11 <12 <4/3. Then the equation system (2) has
the solutions collected in Table 1 (the intervals for the parameters are in Table 2).

Theorem 3 For every T;,i € {2,3,...,15}, there exists k € {1,2,3,4}, such that X = 9/8
(the Pythagorean whole tone).

Theorem 4 LetTy,T5,...,T 5 be tetrachords corresponding to Ay, A, ..., Ays, respectively.
Then the expressions of T1, Ty, ..., T15 are collected in Table 2.

Theorem 5 For arbitrary 71,72 (1 < 71 < 72 < 4/3), and Ays, the unique solution of the
equation system (2) is the following: (X1, X2, X3, X4) = (11, 72/71,4/(372),9/8).

Thus, we obtained the expression (possible, not unique) of each tetrachord by a GGS.
Since A;, As, ..., A5 are (according to the commutativity) the all possibilities of powers for
GGS, solving the system (2) for Ay, Ao, ..., A5, respectively, we obtain a classification of
all tetrachords, i.e. Table 2.

4 Tetrachord lattice

Definition 1. The vector function O(-) = (1,71(+),72(-),4/3) is said to be the F-tetrachord
if the quadruple O(M) = (1,71 (M), 2(M),4/3) is a tetrachord for every M € Dg, where Dg
is the support of @ (@, 0-, 1-, or 2- dimensional, see Table 2).

Let T = {@1,@2, . ..@15}, where G)z = {TZ(M),M (S D@i}, D@i is the support of @i, 0,
corresponds to T; in Table 2, i =1,2,...,15. For ®,¥ € T, we define & < ¥ if and only if
® C V. In Table 2, we see that each couple of elements of 7 has the both supremum A and
infimum V.



| = T2

Ty —

T> 3/4/3 {/16/9
Ts 9/8 81/64
Ty || 4/32/27  32/27
Ts 9/8 32/27

Ty || £/32/27 3/2
To 9/8 \/3/2

Tio || 256/243  32/27

Ts t 12 1<t</4/3

Ty t 4/(3t) 1<t<4/3
Th1 t w/4t/3 1<t<4/3
Tyo 9/8 t 9/8 <t<4/3
T3 t 9t/8 9/8<t<4/3
Tyyg t 32/27 1<t<32/27
Tys t v 1<t<1)<4/3

Table 2: The set of all tetrachords

Theorem 6 The set T equipped with the operations A,V is a non-modular atomic lattice with
atoms 02,03, 04,04, 7,09, O10.

Proof We see that 7 is a lattice, see Figure 1. Since it contains a pentagon, it is a non-
modular, hence non-distributive lattice. The assertion about atoms is easy.

The maximal F-tetrachord Oq5 is given by A;5, see Theorem 5. The minimal F-tetrachord
O, is given by A; and it is the empty set of tetrachords. Indeed, A; yields a contradiction:
X, =4/3,X} =3/2.

The F-tetrachords ©; and ©15 we will call to be trivial.

The support of @y is §) set and T' € ©; have no GGS constructing intervals.

The nontrivial 13 F-tetrachords ©4,0s3,...,014 are of two types. The first one contains
seven F-tetrachords (05,03, 04,04, 07,09,01¢) with one individual tetrachord with 2 GGS
constructing intervals, i.e. X7, X>. Each of these F-tetrachords has a 0-dimensional support.

The second type contains 6 F-tetrachords (Os, Og, ©11, 012, 013,014) with the 1-dimens-
ional support. Individual tetrachords have 3 GGS constructing intervals, i.e. X7, X5, X3.

The support of 5 is a 2-dimensional set. Individual tetrachords T" € T}5 have 4 GGS
constructing intervals, i.e. X, X5, X3, X4.

5 S-tetrachords

We say that a tetrachord T is superparticular if T, 7 /71,4/(372) are of the form (n +1)/n
for some n = 1,2,..., see [1]. Tetrachords no. 4., 5., 6., 8., and 10. in Section 2 are
superparticular.

Clearly ©15 contains all superpatricular tetrachords, see Theorem 5, ®; none. But what
about nontrivial F-tetrachords ©,,...,047

Definition 2. A superparticular tetrachord which can be expressed as a 2- or 3- geometrical
generalized sequence we will call the S-tetrachord. The set of all S-tetrachords denote by .
If we define the tetrachord sequence (7;) recursively as follows:

(Tak, Tak+1, Takt2, Takts) = (3/2)FT,

(where T is a tetrachord and k an integer number), we obtain a tone system with the period
3/2 (i.e., the perfect fifth).



Definition 3. We say that two tetrachords T' = (79,71, 72,73) and L = (Ao, A1, A2, A3) are
equivalent, we write L =~ T, if for the corresponding tetrachord sequences (7;) and (\;), there
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exist integer numbers p, ¢ and k € (0, oc) such that

(Tps Tpt 15 Tpr2, Tp3) = K = (Mg, Agr15 Adgra, Ag3)-

It is easy to see that this definition introduces a relation of equivalency on the set of all

tetrachords (tetrachord sequences).

Theorem 7 According to the equivalency of tetrachords, the all S-tetrachords are the follow-

ing nine:

(1,9/8,5/4,4/3),
(1,9/8,7/6,4/3),
(1,7/6,21/16,4/3),

5/4
5/4
5/4
5/4
5/4
5/4
5/4
5/4
5/4
5/4
6/5
6/5
6/5

Table 3: Musical intervals [r1, 72/71, 4/(372)] constructing superparticular tetrachords

17/16
18/17
19/18
20/19
21/20
22/21
24/23
26/25
28/27
31/30
11/10
12/11
13/12

(1,9/8,6/5,4/3)

0

%

(1,16/15,6/5,4/3)

(1,9/8,21/16,4/3),
(1,8/7,9/7,4/3),

256/255
136/135
96/95
76/75
64/63
56/55
46/45
40/39
36/35
32/31
100/99
55/54
40/39

6/5
6/5
6/5
7/6
7/6
7/6
7/6
8/7
8/7
8/7
8/7
9/8
10/9

15/14
16/15
19/18
9/8
10/9
12/11
15/14
8/7
9/8
10/9
13/12
10/9
11/10

Figure 1: Lattice of F-tetrachords

(1,9/8,8/7,4/3),
(1,9/8,9/7,4/3).

28/27
25/24
20/19
64/63
36/35
22/21
16/15
49/48
28/27
21/20
14/13
16/15
12/11



T € Tiz | T € Tig | T € Tis
(1,9/8,21/16,4/3) | (1,7/6,32/27,4/3) | (1,7/6,21/16,4/3)
(1,9/8,8/7,4/3) | (1,64/63,32/27,4/3) | (1,64/63,8/7,4/3)
(1,9/8,9/7,4/3) (1,8/7,32/27,4/3) (1,8/7,9/7,4/3)
(1,9/8,7/6,4/3) | (1,28/27,32/27,4/3) | (1,28/27,7/6,4/3)
( )
( )

o
)
w0
@
[}

NN NN NN
W W W W W W
SRS N S N I

1,9/8,5/4,4/3 (1,10/9,32/27,4/3) | (1,10/9,5/4,4/3)
1,9/8,6/5,4/3) | (1,16/15,32/27,4/3) | (1,16/15,6/5,4/3)

Table 4: S-tetrachords

Proof In Table 3, there are collected all 26 superparticular ratios, the combinations of the
numbers [1y, 72/71, 4/(37)]. To obtain this table, we used the general algorithm for dividing
a given interval into a certain number of superparticular steps, [1], Table 3 is attributed to I
E. Hofmann, [2]. One triple [r1, 72/71, 4/(372)] yields 3 x 2 x 1 = 6 permutations. So, the set
S consists of 6 x 26 = 156 superparticular tetrachords. We have to find the intersection

w=sn |J U T,

i=2,...,14 M€ Do,

where Dg, is the support of ©. € T.

(a) Superparticular tetrachords.

The interval 9/8 appears in the F-tetrachord T, and also in the combinations [7/6, 9/8,
64/63], [8/7, 9/8, 28/27], [9/8, 10/9, 16/15], see Table 3. So we obtain the first column of
Table 4.

Analogously, for Ty3, T14, we obtain the second and third column of S-tetrachords in
Table 4.

It can be verified that the following pairs of tetrachords are equivalent:

1,9/8,7/6,4/3)
(1,9/8,21/16,4/3)

( (1,28/27,32/27,4/3)
1

(1,9/8,8/7,4/3)

(

(

(

(1,7/6,32/27,4/3)
(1,64/63,32/27,4/3)
(1,8/7,32/27,4/3)
(1,10/9,32/27,4/3)
(1,16/15,32/27,4/3)
(1,64/63,8/7,4/3)
(1,28/27,7/6,4/3)
(1,10/9,5/4,4/3).

1,9/8,9/7,4/3)
1,9/8,5/4,4/3)
1,9/8,6/5,4/3)
(1,7/6,21/16,4/3)
(1,8/7.9/7,4/3)
(1,16/15,6/5,4/3)

xareeareaex

(b) Non superparticular tetrachords.

4/(319) is not superparticular for T5.

71 is not superparticular for 15, Ty, T7,T1o.

T9 /71 is not superparticular for Tg, Ty.

If t = (n+1)/n, then t? = (n? + 2n + 1)/n? is not superparticular, so T is not superpar-
ticular.

If t = (n+ 1)/n, then 75/71 = \/4n/(3n + 3). Suppose n = k2, then 2k = 1 + v/3k2 + 3
which has not an integer solution. Hence 771 is not superparticular.

T2/71 is not superparticular for Ts. Indeed, 72/7 = 4/(3t?). Hence 4 — 3t> = 1 implies
t = —1 or +1, a contradiction. O

We proved also the following statements:
Theorem 8 No S-tetrachord is Pythagorean (based only on primes 2 and 3).
Theorem 9 S-tetrachords are based either on the triplet [2, 3, 5] or [2, 3, T].

Theorem 10 Other primes or triplets of primes than [2,3,5] and [2, 3, 7] or n-tuples of primes
cannot construct S-tetrachords.



6 Symmetry: pentatonics or 12-degree systems
Definition 4. We say that a tone system
D= {dl,dQ,...,dn;dl =1l<dy<...<dp_1 <d, :2}

has the center of symmetry /2 if for every z € D, there exists y € D such that zy = 2.

We join all S-tetrachord sequences based on the number triple [2,3,5] into a new tone
system as follows:

1. take two tetrachord periods (k = 0,1);

2. group the neighbouring values with their ratio less or equal than 81/80 (Comma of
Dydimus) into clusters (qualitative musical degrees);

3. the L-length between the tag points of two different clusters is equal or greater than
the diatonic semitone (16/15);

4. consider the octave equivalence for the new tone system.

This way, we obtain the following 11 degrees (clusters):

I: 16/15 (diatonic semitone);

I1: 10/9, 9/8 (the major and Pythagorean tones, respectively);

III: 32/27, 6/5 (the Pythagorean and pure minor third, respectively);

IV: 5/4 (the major third);

V: 4/3 (the perfect fourth);

VI —

VII: 3/2 (the perfect fifth);

VIII: 8/5 (the minor sixth)

IX: 5/3, 27/16 (the pure and Pythagorean minor sevenths, respectively );

X:16/9, 9/5 (the Pythagorean and minor sevenths, respectively);

XI: 15/8 (the major seventh);

XII: 2 ~ 1.

We denote the resulting tone system (the many valued 12-degree system) as follows:

Dss5 = {1,16/15,(10/9,9/8), (32/27,6/5),5/4,4/3,
3/2,8/5,(5/3,27/16),(16/9, 9/5), 2},

where (...) denotes the clustering.
Consider also the 12-degree many valued tone system:

D;r’375 ={1,16/15,(10/9,9/8),(32/27,6/5),5/4,4/3, (45/32,64/45),

3/2,8/5,(5/3,27/16), (16/9, 9/5),15/8, 2}.

It is easy to see that the tone system D 35 has not the center of symmetry V2.

We say that the system D7 is the minimal extension of the system D with respect to a
property (*) if (1) D C D¥; (2) D* fulfills the property (*); (3) every proper subset D',
D C D' C DT does not fulfill the property (*).

Theorem 11 The tone system DZ&S is the minimal extension of Ds 35 such that it has the
center of symmetry V2.

Analogously, if we join all S-tetrachord sequences based on the number triple [2,3, 7] into
a new tone system as follows:

1. take two tetrachord periods (k = 0,1);

2. group values having their ratio less or equal than 49/48 into clusters (qualitative musical
degrees);

3. the L-length between the tag points of two different clusters is greater than the chromatic
semitone (25/24);



4. consider the octave equivalence for the new tone system.

This way, we obtain the following 5 degrees (clusters):

1. 9/8, 8/7,7/6, 32/27;

II: 9/7, 21/16, 4/3;

III: 3/2, 32/21, 14/9;

IV: 27/16, 12/7, 7/4, 16/9;

V:27/14, 63/32,2 ~ 1, 64/63, 28/27.

We denote the resulting tone system (the many valued pentatonic) as follows:

Dy 37 =1{(1,64/63,28/27),(9/8,8/7,7/6,32/27),(9/7,21/16,4/3),
(3/2,32/21,14/9),(27/16,12/7,7/4,16/9), (27/14, 63/32, 2)},
where (...) denotes the clustering.
Theorem 12 The tone system D 3 7 has the center of symmetry V2.

Note that 12-degree tone systems are characteristic for the European cultural zone, while
5-degree tone systems are typical for Asia (excluding the Islamic world and India), Africa,
Polynesia, Micronesia, Malaysia, etc.
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