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Abstract

The ratios 256/243, 25/24, 16/15 are known as the minor Pythagorean, chromatic, and
diatonic semitone, respectively. The main result of this paper is the following statement
which has a valuable consequence for the music acoustic theory:

According to the symmetry, all rational triplets (X1, X2, X3) TDS-generating generalized
geometrical progressions

〈Γi〉 =
〈
X
νi,1
1 X

νi,2
2 X

νi,3
3 ; νi,1 + νi,2 + νi,3 = i, 0 ≤ ν0,· ≤ ν1,· ≤ . . . ≤ νi,· ≤ . . .

〉
νi,·∈N3

with the subsequences

〈Γ12l〉 =
〈
2l
〉
, 〈Γ12l+7〉 =

〈
3 · 2l−1

〉
, 〈Γ12l+4〉 =

〈
5 · 2l−2

〉

are exactly the following:

(25/24, 135/128, 16/15), (256/243, 135/128, 16/15), (25/24, 16/15, 27/25).

Thus, not only the diatonic and chromatic but also the minor Pythagorean semitone
(together with the diatonic semitone and its complement to the major whole tone) can serve
as a basis for the construction of 12-degree diatonic scales.

1 Introduction

Every periodic waveform f(t), understood as a function of time t > 0, can be
represented as follows: f(t) =

∑∞
k=1 ak sin(2πωkt− ϕk), where ωk is the frequency

of the k-th partial (which is k times the fundamental frequency ω of the tone
associated with its pitch, i. e. ωk = kω); ak is the amplitude of the k-th partial
(corresponding to its loudness); ϕk is the phase of the k-th partial (conventionally
interpreted as the entry delay of the given partial). According to Fourier’s theorem,
any tone with a periodic waveform is a sum of harmonics, i. e. partials with
frequencies ωk satisfying the harmonic frequency ratio ω1 : ω2 : . . . : ωk : . . . =
1 : 2 : . . . : k : . . . Besides harmonics, there are sounds with no salient pitch (not
considered in this paper, cf. [1]) which are of various types, e.g. the ratio of their
partial frequencies ωk is not harmonic but inharmonic. For instance, the ratio
1 : 12
√

2 is used in the well-known Equal Tempered Tuning.
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The ratios 256/243, 25/24, 16/15 are known as the minor Pythagorean, chro-
matic, and diatonic semitone, respectively. The Just Intonation Set (cf. [3], [4],
we avoid the minor seventh (7/4) and the second (8/7)), considered as the most
natural tuning from many (physical, psycho-acoustical, polyphonic, etc.) points
of view in the present time, is constructed on the basis of the chromatic and di-
atonic semitones. On the other side, Pythagorean Tuning (cf. [3], [4]) is based
on the minor Pythagorean semitone, diesis (256/243). The Just Intonation Set
and Pythagorean Tuning are still considered by music theoreticians as two fully
incompatible tone systems.

The principal result of this paper, new for the music acoustic theory, is the
fact that not only the diatonic and chromatic but also the minor Pythagorean
semitone (together with the diatonic semitone and its complement to
the major whole tone) can serve as a basis for the construction of 12-
degree diatonic scales, cf. Table 2.

Recall that the major whole tone (the Pythagorean whole tone) is derived from
the perfect fourth and the perfect fifth, i.e. 9/8 = 3/2 : 4/3. The minor whole tone
is obtained from the major third and the major whole tone, i.e. 10/9 = 5/4 : 9/8.
Diesis is derived from the perfect fourth and two major whole tones, i.e. 256/243 =
4/3 : (9/8)2. The diatonic semitone is obtained from the perfect fourth and major
third, i.e. 16/15 = 4/3 : 5/4. For the review of the literature, see [4], [5].

2 Preliminaries

Denote by N = {0, 1, 2, . . .} and by Q the set of all rational numbers. If we
denote by L = ((0,∞), ·, 1,≤) the usual multiplicative group on reals with the
usual order, then b/a is called the L-length of the interval (a, b), 0 < a ≤ b <∞.

Suppose (the fundamental frequency) ω = 1. We restrict our considerations

to the subsequences
〈
2l
〉
,
〈
3 · 2l−1

〉
,
〈
5 · 2l−2

〉
of the sequence 〈ωk〉 = 〈k〉 , k ∈

N (corresponding to the first three overtones; these subsequences are known in
music as the classes of equivalency of the octaves, perfect fifths, and major thirds;
members of each subsequence are denoted by the same letter in music, e.g. C,G,E,
respectively).

We will use the following conventional notation:

X = (X1, X2, · · · , Xn) ∈ Ln, νi,· = (νi,1, νi,2, . . . , νi,n) ∈ N n,

νi,· ≤ νi+1,· ⇔ νi,k ≤ νi+1,k (k = 1, 2, . . . , n),

|νi,·| = νi,1 + νi,2 + . . .+ νi,n, X
νi,· = X

νi,1
1 X

νi,2
2 . . . Xνi,n

n (i, n ∈ N ).

Definition 1 For n ∈ N , we say that a sequence 〈Γi〉 is an n-generalized
geometrical progression if there exist X ∈ Ln and νi,j ∈ N (i ∈ N , j = 1, 2, . . . , n)
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such that
Γi = Xνi,· , 0 ≤ ν0,· ≤ ν1,· ≤ . . . ≤ νi,· ≤ . . . , |νi,·| = i.

In this paper, we will consider the case n = 3.
We say that a matrix (νi,j)

1,2,3
12,7,4 ∈ N 3 × N 3 is a (12, 7, 4)-matrix, cf. [3],

Definition 2, if 0 ≤ ν4,· ≤ ν7,· ≤ ν12,· and |νi,·| = i, i = 12, 7, 4.

Theorem 1 ([3], Theorem 1) Let A = (νi,j)
j=1,2,3
i=12,7,4 ∈ N 3 ×N 3 with detA 6= 0.

Then there exist a unique X ∈ L3, such that Xν12,· = 2/1, Xν7,· = 3/2, Xν4,· =
5/4, and the following statements are equivalent:

(a) X ∈ Q3, (b) detA = 1.

The values are as follows:

X1 =
detA
√

2D2,13D3,15D5,1 , X2 =
detA
√

2D2,23D3,25D5,2 , X3 =
detA
√

2D2,33D3,35D5,3 ,

where

D2,1 =

∣∣∣∣∣
1 ν12,2 ν12,3

−1 ν7,2 ν7,3

−2 ν4,2 ν4,3

∣∣∣∣∣ , D2,2 =

∣∣∣∣∣
ν12,1 1 ν12,3

ν7,1 −1 ν7,3

ν4,1 −2 ν4,3

∣∣∣∣∣ , D2,3 =

∣∣∣∣∣
ν12,1 ν12,2 1
ν7,1 ν7,2 −1
ν4,1 ν4,2 −2

∣∣∣∣∣ ,

D3,1 =

∣∣∣∣∣
0 ν12,2 ν12,3

1 ν7,2 ν7,3

0 ν4,2 ν4,3

∣∣∣∣∣ , D3,2 =

∣∣∣∣∣
ν12,1 0 ν12,3

ν7,1 1 ν7,3

ν4,1 0 ν4,3

∣∣∣∣∣ , D3,3 =

∣∣∣∣∣
ν12,1 ν12,2 0
ν7,1 ν7,2 1
ν4,1 ν4,2 0

∣∣∣∣∣ ,

D5,1 =

∣∣∣∣∣
0 ν12,2 ν12,3

0 ν7,2 ν7,3

1 ν4,2 ν4,3

∣∣∣∣∣ , D5,2 =

∣∣∣∣∣
ν12,1 0 ν12,3

ν7,1 0 ν7,3

ν4,1 1 ν4,3

∣∣∣∣∣ , D5,3 =

∣∣∣∣∣
ν12,1 ν12,2 0
ν7,1 ν7,2 0
ν4,1 ν4,2 1

∣∣∣∣∣ .

Definition 2 We say that a 3-generalized geometrical progression 〈Γi〉 is TDS-
generated by a (12, 7, 4)-matrix A [or, is TDS-generated by X ∈ Q3 such that
Xν12,· = 2/1, Xν7,· = 3/2, Xν4,· = 5/4 (νi,j, i, j ∈ N ), cf. Theorem 1] if

ν2,· = 2ν7,· − ν12,·, ν5,· = ν12,· − ν7,·, ν9,· = ν12,· − ν7,· + ν4,·, ν11,· = ν7,· + ν4,·,

and for i ≥ 12, there exists p ∈ N , 0 ≤ p < 12, and q ∈ N , such that νi,· =
qν12,· + νp,·.

Note that the members Γi, i = 1, 3, 6, 8, 10, mentioned in Definition 2, are not
uniquely determined.

3 Three sequences

Theorem 2 According to the symmetry, all X ∈ Q3 TDS-generating 3-gener-
alized geometrical progressions

〈Γi〉 = 〈Xνi,· ; |νi,·| = i, 0 ≤ ν0,· ≤ ν1,· ≤ . . . ≤ νi,· ≤ . . .〉νi,·∈N 3
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with the subsequences

〈Γ12l〉 =
〈
2l
〉
, 〈Γ12l+7〉 =

〈
3 · 2l−1

〉
, 〈Γ12l+4〉 =

〈
5 · 2l−2

〉

are the following:

(25/24, 135/128, 16/15), (256/243, 135/128, 16/15), (25/24, 16/15, 27/25).

Proof. The analysis of the Diophantine equation

det[(νi,j)
j=1,2,3
i=12,7,4] = 1, 0 ≤ ν4,· ≤ ν7,· ≤ ν12,·, |νi,·| = i

in N 3 ×N 3 with the additional (not restricting the solution) condition

2ν7,· − ν12,· ≥ 0

yields the following matrices (excluding symmetries, permutations of columns):

A1 =




2 7 3
1 4 2
1 2 1


 , A2 =




2 5 5
1 3 3
1 1 2


 , A3 =




5 4 3
3 2 2
2 1 1


 , A4 =




1 2 9
1 1 5
0 1 3


 ,

A5 =




1 3 8
1 2 4
0 1 3


 , A6 =




1 4 7
1 2 4
1 1 2


 , A7 =




1 5 6
1 3 3
1 2 1


 , A8 =




2 3 7
1 2 4
1 0 3


 .

Apply Theorem 1 and find all sequences by the algorithm in Definition 2. Ex-
cluding all such sequences 〈Γi〉 which do not satisfy the condition ν0,· ≤ ν1,· ≤
. . . ≤ νi,· ≤ . . . in Definition 1, we obtain the following three matrices: A1, A2, A3.

In Tables 1 and 2 there are all TDS-generated sequences 〈Γi〉 (in the fifth col-
umn, there are values in cents, i.e. in the isomorphism Γi 7→ 1200 · log2 Γi; in the
sixths column, there is a musical denotation) corresponding to the matrices A1

and A2. The TDS-generated sequences corresponding to A3 can be found in [3],
Table 3. 2

In the connection with the previous theorem we mention here the following

Theorem 3 ([3], Theorem 5) According to the symmetry, A3 is the unique solu-
tion of the Diophantine equation det[(νi,j)

j=1,2,3
i=12,7,4] = 1, 0 < ν4,· < ν7,· < ν12,·, |νi,·| =

i.

All superparticular ratios for numbers 2,3, and 5, are exactly: 2/1, 3/2, 4/3,
5/4, 6/5, 9/8, 10/9, 16/15, 25/24, and 81/80, cf. [2]. The proof of the following
theorem is easy.

Theorem 4 See Table 3.
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X0
1X

0
2X

0
3 203050 1/1 1.0 0 C

X0
1X

0
2X

1
3 2−73351 135/128 1.0546875 92.1787 C]

X0
1X

1
2X

0
3 243−15−1 16/15 1.066666666 111.7313 D[

X0
1X

1
2X

1
3 2−33250 9/8 1.125 203.9100 D

X1
1X

1
2X

1
3 2−63152 75/64 1.171875 274.5824 D]

X0
1X

2
2X

1
3 21315−1 6/5 1.2 315.6413 E[

X1
1X

2
2X

1
3 2−23051 5/4 1.25 386.3137 E

X1
1X

3
2X

1
3 223−150 4/3 1.333333333 498.0450 F

X1
1X

3
2X

2
3 2−53251 45/32 1.40625 590.2237 F]

X1
1X

4
2X

1
3 263−25−1 64/45 1.422222222 609.7763 G[

X1
1X

4
2X

2
3 2−13150 3/2 1.5 701.9550 G

X2
1X

4
2X

2
3 2−43052 25/16 1.5625 772.6274 G]

X1
1X

5
2X

2
3 23305−1 8/5 1.6 813.6863 A[

X2
1X

5
2X

2
3 203−151 5/3 1.666666666 884.3587 A

X2
1X

5
2X

3
3 2−73252 225/128 1.7578125 976.5374 A]

X2
1X

6
2X

2
3 243−250 16/9 1.777777777 996.0900 B[

X2
1X

6
2X

3
3 2−33151 15/8 1.875 1088.2687 B

X2
1X

7
2X

3
3 213050 2/1 2.0 1200 C′

. . . . . . . . . . . . . . . . . .

Table 1: X1 = 25/24, X2 = 16/15, X3 = 135/128

X0
1X

0
2X

0
3 203050 1/1 1.0 0 C

X0
1X

0
2X

1
3 2−73351 135/128 1.0546875 92.1787 C]

X0
1X

1
2X

0
3 243−15−1 16/15 1.066666666 111.7313 D[

X0
1X

1
2X

1
3 2−33250 9/8 1.125 203.9100 D

X1
1X

1
2X

1
3 253−350 32/27 1.185185185 294.1350 D]

X0
1X

1
2X

2
3 2−103551 1215/1024 1.186523438 296.0887 E[

X1
1X

1
2X

2
3 2−23051 5/4 1.25 386.3137 E

X1
1X

2
2X

2
3 223−150 4/3 1.333333333 498.0450 F

X1
1X

2
2X

3
3 2−53251 45/32 1.40625 590.2237 F]

X1
1X

3
2X

2
3 263−25−1 64/45 1.422222222 609.7763 G[

X1
1X

3
2X

3
3 2−13150 3/2 1.5 701.9550 G

X2
1X

3
2X

3
3 273−450 128/81 1.580246914 792.1800 G]

X1
1X

3
2X

4
3 2−83451 405/256 1.58203125 794.1337 A[

X2
1X

3
2X

4
3 203−151 5/3 1.666666666 884.3587 A

X2
1X

3
2X

5
3 2−73252 225/128 1.7578125 976.5374 A]

X2
1X

4
2X

4
3 243−250 16/9 1.777777777 996.0900 B[

X2
1X

4
2X

5
3 2−33151 15/8 1.875 1088.2687 B

X2
1X

5
2X

5
3 213050 2/1 2.0 1200 C′

. . . . . . . . . . . . . . . . . .

Table 2: X1 = 256/243, X2 = 16/15, X3 = 135/128
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(x, y, z) (x, v, y) (w, v, y)

2/1 x5y4z3 x2v3y7 w2v5y5

3/2 x3y2z2 xv2y4 wv3y3

4/3 x2y2z xvy3 wv2y2

5/4 x2yz xvy2 wv2y
6/5 xyz vy2 vy2

9/8 xz vy vy
10/9 xy xy wv
16/15 y y y
25/24 x x wvy−1

81/80 y−1z x−1v w−1y

Table 3: x = 25/24, y = 16/15, z = 27/25, v = 135/128, w = 256/243
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