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Abstract

The ratios 256/243,25/24,16/15 are known as the minor Pythagorean, chromatic, and
diatonic semitone, respectively. The main result of this paper is the following statement
which has a valuable consequence for the music acoustic theory:

According to the symmetry, all rational triplets (X1, X2, X3) TDS-generating generalized
geometrical progressions

<F1> _ <X1’/i,1X;/i,2X3’/i,3;Vi’1 + Vi2 + Vi3 = Z,O < 1o, < vi,. <...< Vi,. <.. '>u' N3

with the subsequences
(C121) = <21> s (Ti2igr) = <3 ‘ 2l71> s (Th2i4a) = <5 ‘ 2172>

are exactly the following:

(25/24,135/128,16/15), (256/243, 135/128,16/15), (25/24, 16 /15, 27/25).

Thus, not only the diatonic and chromatic but also the minor Pythagorean semitone
(together with the diatonic semitone and its complement to the major whole tone) can serve
as a basis for the construction of 12-degree diatonic scales.

1 Introduction

Every periodic waveform f(¢), understood as a function of time ¢ > 0, can be
represented as follows: f(t) = Y22, ag sin(2mwyt — ¢x), where wy, is the frequency
of the k-th partial (which is &k times the fundamental frequency w of the tone
associated with its pitch, i. e. wy = kw); ay is the amplitude of the k-th partial
(corresponding to its loudness); ¢y, is the phase of the k-th partial (conventionally
interpreted as the entry delay of the given partial). According to Fourier’s theorem,
any tone with a periodic waveform is a sum of harmonics, i. e. partials with
frequencies wy, satisfying the harmonic frequency ratio wy : we @ ... : Wy : =
1:2:...:k:... Besides harmonics, there are sounds with no salient pltch (not
considered in thls paper, cf. [1]) Wthh are of various types, e.g. the ratio of their
partial frequencies wy is not harmonic but inharmonic. For instance, the ratio
1: ¥/2is used in the well-known Equal Tempered Tuning.
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The ratios 256,/243,25/24,16/15 are known as the minor Pythagorean, chro-
matic, and diatonic semitone, respectively. The Just Intonation Set (cf. [3], [4],
we avoid the minor seventh (7/4) and the second (8/7)), considered as the most
natural tuning from many (physical, psycho-acoustical, polyphonic, etc.) points
of view in the present time, is constructed on the basis of the chromatic and di-
atonic semitones. On the other side, Pythagorean Tuning (cf. [3], [4]) is based
on the minor Pythagorean semitone, diesis (256/243). The Just Intonation Set
and Pythagorean Tuning are still considered by music theoreticians as two fully
incompatible tone systems.

The principal result of this paper, new for the music acoustic theory, is the
fact that not only the diatonic and chromatic but also the minor Pythagorean
semitone (together with the diatonic semitone and its complement to
the major whole tone) can serve as a basis for the construction of 12-
degree diatonic scales, cf. Table 2.

Recall that the major whole tone (the Pythagorean whole tone) is derived from
the perfect fourth and the perfect fifth, i.e. 9/8 = 3/2: 4/3. The minor whole tone
is obtained from the major third and the major whole tone, i.e. 10/9 =5/4:9/8.
Diesis is derived from the perfect fourth and two major whole tones, i.e. 256/243 =
4/3:(9/8)2. The diatonic semitone is obtained from the perfect fourth and major
third, i.e. 16/15 =4/3 : 5/4. For the review of the literature, see [4], [5].

2 Preliminaries

Denote by N = {0,1,2,...} and by Q the set of all rational numbers. If we
denote by £ = ((0,00),-,1,<) the usual multiplicative group on reals with the
usual order, then b/a is called the L-length of the interval (a,b),0 < a < b < 0.

Suppose (the fundamental frequency) w = 1. We restrict our considerations
to the subsequences <21> : <3 : 21’1> , <5 : 21’2> of the sequence (wy) = (k) ,k €
N (corresponding to the first three overtones; these subsequences are known in
music as the classes of equivalency of the octaves, perfect fifths, and major thirds;
members of each subsequence are denoted by the same letter in music, e.g. C, G, F,
respectively).

We will use the following conventional notation:

X = (X17X27H : 7Xn) S Enayi,- - (Vi,layi,%’ . ‘7Vi,n) eNn7

Vi, S Vit 54 Vik S Vit1k (k = 1, 2, ce ,n),

Vi, 2

’Vi,-| = l/l”l—f—Vi’Q—'—...—f—Vi’n,XW" :Xi/i’l 2 XZZ’" (Z,TLEN)

Definition 1 For n € N, we say that a sequence (I';) is an n-generalized
geometrical progression if there exist X € L and v;; e N (i e N,j =1,2,...,n)



such that
Fz‘ = X”i",O S .. S vy, S e S V. S ey |Vi,~| =1.
In this paper, we will consider the case n = 3.

We say that a matrix (V@j)%i%ﬂ € N3 x N3 is a (12, 7, 4)-matrix, cf. [3],

Definition 2, if 0 < wy. <wv7. <wvyo. and |y, | =i,i = 12,7,4.

Theorem 1 ([3], Theorem 1) Let A = (v;;)I=)55 € N? x N'® with det A # 0.
Then there exist a unique X € L3, such that X2 = 2/1, X" = 3/2, X" =
5/4, and the following statements are equivalent:

(a) X € Q% (b) det A=1.

The values are as follows:

det A det A det A
Xl — \/2D2,1303,15D5,17X2 — \/2132,23D3,25D5,27 X3 — \/2D2,33D3,35D5,37

where

1 vigo viegs viga 1 viggs vi2,1  Viz2 1
Doy=| -1 wvi2 wvr3 |,Deo=| vvg -1 w3 |,Daz=| vrq1 w72 -1 |,
-2 12 143 V41 —2 143 V41 Va2 —2
0 wvie2 vi23 vi2g 0 vigg3 vig,1 vize 0
D3i=|1 wao wvi3 |,D3o=| vii 1 w3 |,D3z=| vi1 172 1|,
0 12 143 vsn1 0 143 vs1 a2 0O
0 vi22 Vizgs viz1 0 viog vi2,1 viz2 O
Dsi1=|0 wao wvi3 |,Dso=| vvii 0 w3 |,Dsz=| vein wv72 0 |.
1 w42 a3 va1 1 a3 va1 a2 1

Definition 2 We say that a 3-generalized geometrical progression (I';) is TDS-
generated by a (12, 7, 4)-matrix A [or, is TDS-generated by X € Q3 such that
X2 =2/1, X =3/2, X" =5/4 (v;4,1,j € N), cf. Theorem 1] if

Vo. = 2V7’. — Vig,., V5. = V12, — V7.,V9. = Vi2. — V7. + V4., V11, = V7. + Vy,.,

and for ¢ > 12, there exists p € N,0 < p < 12, and ¢ € N, such that v;. =
qUi,. + Vp,..

Note that the members I';,7 = 1, 3,6, 8,10, mentioned in Definition 2, are not
uniquely determined.

3 Three sequences

Theorem 2 According to the symmetry, all X € Q3 TDS-generating 3-gener-
alized geometrical progressions

(Iy) = (X" v | =i,0<1y. <1, <...<y;. < "'>ui,eN3



with the subsequences
(Tya1) = <2l> AT2i47) = <3 : 21_1> AT 12144) = <5 : 21_2>
are the following:
(25/24,135/128,16/15), (256,243, 135/128, 16/15), (25/24, 16 /15, 27/25).
Proof. The analysis of the Diophantine equation
det[(vs)Tisgal = 1,0 < v, S v <wio || =
in A® x N® with the additional (not restricting the solution) condition
2v7. — Vg, 2> 0

yields the following matrices (excluding symmetries, permutations of columns):

2 7 3 2 5 5 5 4 3 129
A=14 2|, 4=|133]| 4=322|4=|115],
121 11 2 2 11 013
13 8 147 156 2 37
As=12 4|, 4=|12 4|, 4,=|133]|4=|124
01 3 112 121 103

Apply Theorem 1 and find all sequences by the algorithm in Definition 2. Ex-
cluding all such sequences (I';) which do not satisfy the condition vy. < vy. <
... <wy;. <...in Definition 1, we obtain the following three matrices: Ay, A, As.

In Tables 1 and 2 there are all TDS-generated sequences (I';) (in the fifth col-
umn, there are values in cents, i.e. in the isomorphism I'; — 1200 - log, I';; in the
sixths column, there is a musical denotation) corresponding to the matrices A,
and A,. The TDS-generated sequences corresponding to Az can be found in [3],
Table 3. O

In the connection with the previous theorem we mention here the following

Theorem 3 ([3], Theorem 5) According to the symmetry, As is the unique solu-
tion of the Diophantine equation det[(l/id)fjﬁi] =1,0<u. <vi. <v.,|v.|=

1.

All superparticular ratios for numbers 2,3, and 5, are exactly: 2/1, 3/2, 4/3,
5/4,6/5,9/8, 10/9, 16/15, 25/24, and 81/80, cf. [2]. The proof of the following
theorem is easy.

Theorem 4 See Table 3.



X9x9x79 203050 1/1 1.0 0 C
XX9X; 2773%51 135/128 1.0546875 92.1787  Cy
XPx3x9 2'37'57'  16/15  1.066666666 111.7313 D,
XVXoXx; 2733750 9/8 1.125 203.9100 D
XiX3X3 27°3'57 75/64  1.171875 274.5824 Dy
X%x2xi  2l3ls! 6/5 1.2 315.6413  E,
XT1X3X5; 2723%! 5/4 1.25 386.3137 E
XIX3XY 92237150 4/3 1.333333333  498.0450 F
X1X5X3 27°3%50 45/32  1.40625 590.2237  Fy
XiX3X; 20372571 64/45  1.422222222  609.7763 G,
X1X3x3 271315° 3/2 1.5 701.9550 G
XiX3iX; 2773957 25/16  1.5625 772.6274 Gy
Xix5x2 2339571 8/5 1.6 813.6863 A,
XZX5xZ  2"37TI5! 5/3 1.666666666  884.3587 A
XIX5X5 2773?57 225/128 1.7578125 976.5374 Ay
X2x8x2 92437250 16/9 L777TTTTT7T 996.0900 B,
X2XSx35 273351 15/8 1.875 1088.2687 B
XiX1X3 213059 2/1 2.0 1200 C’
Table 1: X; = 25/24, X, = 16/15, X3 = 135/128
X9x9x9 203950 1/1 1.0 0 C
X9x9xI 2773350 135/128  1.0546875 92.1787  Cy
X9xix9 237157t 16/15 1.066666666  111.7313 D,
XOxIxl 2733250 9/8 1.125 203.9100 D
X1X;X; 2°3735° 32/27 1.185185185  294.1350 Dy
X0X3X2 27103551 1215/1024 1.186523438  296.0887  F,
X1X;X; 2773%! 5/4 1.25 386.3137 E
X1X2XZ 2737150 4/3 1.333333333  498.0450 F
Xi1X3X5 2773757 45/32 1.40625 590.2237  Fy
Xix3x2 20372571 64,/45 1.422222222  609.7763 G,
XT1X3x3 2713150 3/2 1.5 701.9550 G
XIX3X35 2737750 128/81 1.580246914  792.1800 Gy
Xix3x3 278315! 405/256  1.58203125 794.1337 A,
XIX5X5 2937 T5! 5/3 1.666666666  884.3587 A
X7X3X3  2773%57 225/128  1.7578125 976.5374 Ay
XiX3x3  2%3725° 16/9 L.777777T777T - 996.0900 B,
X7X3Xx3; 273350 15/8 1.875 1088.2687 B
X2X5X3 213050 2/1 2.0 1200 c’

Table 2: X, = 256/243, X, = 16/15, X5 = 135/128



(,y,2) (zvy) (woy)

2/1 Y B P YL IR
3/2 z3y?2? zviyt wvdy®
4/3 z2y?z zvy® wv?y?
5/4 z2yz zvy? wov?y
6/5 TYZ vy? vy?
9/8 Tz vy vy
10/9 xy zy wv
16/15 Y y y
25/24 T T woy !
81/80 | y 'z ™ wly

Table 3: © = 25/24,y = 16/15,z = 27/25,v = 135/128, w = 256/243
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