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Abstract

The tuning in music is an excellent example of that the human percep-
tive mechanism uses various multivalued systems of information coding.
The ambiguous intervals in the Just Intonation Set are the second and
the minor seventh and the tritone (the relative frequencies 10/9, 9/8, 8/7
and 7/4, 16/9, 18/10 and 45/32, 64/45, respectively). Pythagorean Tun-
ing is also 17-valued. In the present paper we find a 17-valued diatonic
tone system which is a consequence of the unique solution of a Diophan-
tine equation describing the basic acoustic relations among octave, perfect
fifth and major (minor) third. This system has properties of the Just In-
tonation Set (it involves octave, perfect fifth, perfect fourth, major third,
minor third, major whole tone, minor whole tone, diatonic semitone and
chromatic semitone) and also of Pythagorean Tuning. We bring appli-
cations of our theory to superparticular ratios and partial monounary
algebras.

Math. Rev. Class. 94 B 60, 94 D 05, 11 A 05, 92 J 30, 08 A 55
Keywords. Symmetrical associative aggregation operator, Mean, Finite
dimensional algebras, tone system

1 Introduction

Based on the postulate that only the numbers 1,2, and 3 are perfect, Pytha-
gorean Tuning was created as a sequence of 17 numbers of the form 223°, where
a,b are integers. This tuning was established about five hundred years B. C.
and used in European music up to the 14th century, cf. Table 1.

The gradual development of polyphony led to the introduction
of thirds (5/4 and 6/5) and sixths (8/5 and 5/3). Targeting at a
strict mathematical definition of consonance, the problem of ratios
of integers was studied by Gioseffo Zarlino (1517 —
1590), Simon Stevin (1548 — 1620), and J o h ann
Kepler (1571 — 1630). One practical result of this period was



the creation of the 17-valued Just Intonation Set, cf. [4], cf. Table
2, on which the Equal Tempered Scale was later based (Andreas
Werckmeister, 1698) (it is represented by the sequence
W:{L 1\2/57(1\2/5)27'”7(1\2/5)12:2})'

The further development was connected with mathematical physics.
Joseph Fourier (1768 — 1830) demonstrated that the
oscillations of a string can be represented as the superposition of
elementary sinusoid oscillations whose frequency ratios are related
to each other as integers. Hermann von Helmholtz
(1821 — 1894) assumed that the aesthetic characteristics of intervals
were connected with the beating produced by overtones.

In the present time, some of musicologists and psycho-acousticians
assert that the twelve-degree musical scales appeared not as merely
artificial convention, but rather the natural development of musical
culture led to aural selection of qualitative intervals (to be more
precisely, interval "zones”) with a particular degree of individual-
ity. They are: the unison, minor second, major second, minor third,
major third, fourth, fifth, tritone, fifth, minor sixth, major sixth,
minor seventh, major seventh, and octave which is qualitative iden-
tified with unison. Thus, the diatonic scales appeared as the result of
categorizing certain intervals with specific psycho-acoustical proper-
ties. There have been also many theoretical and experimental works
concerned — both pro and contra — with the assumed universality of
diatonic scales. For a review of the literature, cf. [4], [5].

Our aim is not to judge such non-mathematical problem. We
are interested is the fact that the tuning (which should be strict and
exact, otherwise it is not a tuning!) in music is an excellent example
of that the human perceptive mechanism uses various multivalued
systems of information coding.

Particularly, two 17-tone tuning systems for the 12 qualitative
different music intervals (Pythagorean Tuning and Just Intonation)
are well-known. The main requirement is that the subject’s percep-
tive system be able to encode the informational content unambigu-
ously: this factor distinguishes a musical interval from any other
pair of sounds.

In the present paper we find a 17-valued diatonic tuning sys-
tem which is a consequence of the unique solution of a Diophantine
equation describing the basic acoustic relations among octave, per-
fect fifth and major (minor) third. This system has properties of the



C 2030 1/1 1.0 200
Cy 28375 256,243 1.053497942  z'yY
D, 271137 2187/2048  1.067871094 a%y!
D 27332 9/8 1.125 zlyt
Dy  2°373 32/27 1.185185185  x?y?
E, 271439 19683/16384 1.201354981 x'y?
E 2763 81/64 1.265625 z2y?
F 22371 4/3 1.333333333 232
Fy 210376 1024/729  1.404663923 x'y?
G, 27936 729/512 1.423828125  a%y°
G 2713t 3/2 1.5 xhy3
Gy 27371 128/81 1.580246914  z°y>
A, 27123%  6561/4096  1.601806641 xiy?
A 27133 27/16 1.6875 2oyt
Ay 21372 16/9 L7777 25yt
B, 2715310 59049/32768 1.802032473 x°y°
B 27730 243/128 1.898437528  25y°
c’ 2 2/1 2.0 x7yd

Table 1: Pythagorean Tuning

C 203050 /1 1.0
Cy,D, 28371571 16/15 1.066666666
2137251 10/9  1.111111111
D 27332 9/8 1.125
23771 8/7  1.14285714
Dy, &, 213571 6/5 1.2
£ 27251 5/4 1.25
F 22371 4/3  1.333333333
Fy 2773251 45/32  1.40625
G, 26372571 64/45 1.422222222
g 27131 3/2 1.5
Gy, A, 23571 8/5 1.6
A 37151 5/3  1.666666666
27271 7/4  1.75
Ay, B, 21372 16/9  1.777777777
3251 9/5 1.8
B 2733151 15/8  1.875
C’ 21 2/1 20

Table 2: Just Intonation



Just Intonation Set (it involves octave, perfect fifth, perfect fourth,
major third, minor third, major whole tone, minor whole tone, di-
atonic semitone and chromatic semitone) and also of Pythagorean
Tuning. We bring applications of our theory to superparticular ra-
tios and partial monounary algebras.

2 Preliminaries

Denote by R, N, Z, Q the sets of all real, natural, integer, and
rational numbers, respectively. Denote by L = ((0,00),,1,<) the
usual multiplicative group with the usual order on R. So, if a <
b,a,b € (0,00), then b/a is an L-length of the interval (a,b). Since
this terminology is not obvious, we borrow the usual musical ter-
minology, i.e. we simply say that b/a is an interval. This inaccu-
rateness does not lead to any misunderstanding because the therm
"interval” is used only in this sense in this paper.

Definition 1 Let {z,...,y e R;1 <z < --- <y < 10/9} be a
set of N reals. Let mg,mq,...,ma;...;n0,n1,...,n0 be M X N
nonnegative integers, such that

0:m0§m1S-"SmM,...,O:n0§n1§~~<nM

and
m;+---+n;=7,7=01,..., M.
Then the set S = {a™0 ... y"0 ™ y™ ... ™M y"M} i said
to be an M-degree N-interval scale.
A 12-degree N-interval scale S is a 12-degree N-interval (2/1,
3/2)-scale [(2/1, 3/2, 5/4)-scale] if

2 ...yn12 = 2/17xm7 yn7 = 3/27 [mm‘l yn4 = 5/4]

We say that S is an M-degree N-interval system ((2/1, 3/2)-
system), [(2/1, 3/2, 5/4)-system] if S = | J S, where S are M-degree
N-interval scales ((2/1, 3/2)-scales) [(2/1, 3/2, 5/4)-scales].

Example 1 Equal Tempered Scale is a 12-degree 1-interval scale
which is neither a 12-degree N-interval (2/1, 3/2)-system nor a 12-
degree N-interval (2/1, 3/2, 5/4)-system for every N € N ( V/2 is
an irrational number). O

Example 2 Pythagorean Tuning is a 12-degree 2-interval (2/1,
3/2)-system, cf. Table 1, [6], [2], where these two intervals are =



28/3% y = 37 /21 known in the literature as diesis (the Pythagorean
minor semitone) and apotome (the Pythagorean major semitone),
respectively. This tone system contains no major triad (the rela-
tively frequency ratio intervals 1: 5/4: 3/2=4: 5: 6). Pythagorean
Tuning is not a 12-degree N-interval (2/1, 3/2, 5/4)-system for ev-
ery NeN. 0

Definition 2 We say that a matrix

Mmiz2 Ni2 T12
A= mry ny r7
my N4 T4
of nonnegative integers, is a (12, 7, 4)-matrix, if
0<my <mz <mz,0<ny <nyg<npp,0<ry <r;<rp
and
m;+mn;+r;=7,7=4,7,12.

Definition 3 If to a given (12, 7, 4)-matrix A there exists an
M-degree N-interval scale S (system S), then we say that the scale
S (system S) is generated by A.

In the present paper we find a (12, 7, 4)-matrix and then con-

struct and consider the generated 12-degree 3-interval (2/1, 3/2,
5/4)-system.

3 (12, 7, 4)-matrices

Theorem 1 Let

mi2 MNi2 Ti12
A = mry ny r7
my N4 Ty

be a matriz of nonnegative integers with det A # 0.
Then there exist unique and positive x,y,z € R, such that

xmlgynlzzrlg _ 2/1, $m7yn7zr7 — 3/2’ xm4yn4zr4 = 5/4, (1)

and the following statements are equivalent:

(a) z,y,2 € Q, (b) det A = 1.



The values of x,y, z are as follows:

det A det A det A
I = et\/2D2,m3D3,x5D5,w’ y — et /2D2,y3D3,y5D5,y’ 5 = et /21)2&3133&51)5@7

where
1 mi2 12 miz 1 7112 miz niz 1
DQ@ = —1 nr T ,Dgyy = mr -1 T7 7D2,Z = mr nr —1 5
—2 N4 T4 maq —2 T4 ma N4 —2
0 ni2 ri2 mi2 0 712 mi2 ni2 0
Dg’x = 1 nr T7 7D3,y = mr 1 T7 ,Dg}z = mr nr 1 )
0 N4 T4 ma 0 T4 ma N4 O
0 mi2 72 miz2 0 72 mi2 niz 0
D57x = 0 nr r7 ,D57y = mry 0 7 7D5,z = mr nr 0
1 ng 7 mg 1 74 ms  ng 1

ProofIf x,y, 2z € Q, then there exist p € P and Es,,... E,. € Z
such that

z = 25223830 .pEW, Y = 22383y .pE”*y, z = 2F2:383 .pE”’z,

(2)
Combining (1) and (2),

EQ,a: E27y EQ,Z b

g?;,x g&y g?’vz mia My My 8 é (1)
5,x 5,y 5,z Nn12 ny Ty =

E?,ac E7yy E77Z T2 T7 T4 oY '

E,. B, E,. 0 0 0

E2,$ EQ,y E2,z DQ,:L: D2,y D2,z
E3,ac E3,y E3,z D3,x DS,y D3,z
E5,a: E5,y E5,z — D5,cc D5,y D5 z
Exy Er, En. 0 0 0
Eye E,, E,. 0 0 0

O

Theorem 2 No 12-degree 1- or 2- rational interval system is
generated by any (12, 7, 4)-matriz.



Proof The analysis of all (12, 7, 4)-matrices with det A = 1
contains no case Dy, = D3, = D5, = 0. So, D3 .+ D35 ,+DZ, > 0.
Analogously, D3, + D3, + D3, > 0,D3 .+ D3, + Di_ > 0. The
assertion for l-interval system is trivial. O

Corollary 1 FEqual Temperament and Pythagorean Tuning are
not generated by any (12, 7, 4)-matriz.

Theorem 3 Let A be a (12, 7, 4)-matriz. Then
Dyu+ Day+ Dy, > 0,D5,+ D5, +Ds, > 0,D5,+ D5, + D5, >0,

where Dy 4, Dy y, Dy ., D3 o, D3y, Ds ., Ds o, D5, Ds . are as in The-
orem 1.

Proof At first, note that a (12, 7, 4)-matrix exists, e.g. the
matrix A, in Theorem 5. If D, + D3, + D3, = 0, then there
exist no my, ny, ry in A such that x™y™2"™ = 5/4. A contradiction.
Similarly for the numbers 2 and 3. 0

Theorem 4 Let A be a (12, 7, 4)-matriz with det A = 1. Then

Proof If 1 < x =y = z, then ¢ Q. A contradiction.
Suppose © = y # z (the cases y = z # x, x = z # y are
symmetric). By Definition 1 and 2,

gt = 54, 27T =32, 01222 = 21, (3)

By Theorem 1, z = 2%3°57, 2 = 293°5%, for some a, 3,7,0,¢,0 € Z.
Then (3) implies

CY(]_Q — T‘lg) —I—r125 = 1,5(12 —7"12) +T12€ = 0,7(12 —7"12) —I—T’lgg = 0,
(4)
04(7—7“7)—1—7’7(5: —1,5(7—7”7)—1-7’76: 1,")/(7—7’7)4-7”79:0, (5)
ald—ry) +146 = =204 —ry) +1r0e =0,7(4 —14) + 740 = 1. (6)
If e = (3, then (5) implies 5 = 1/7 ¢ Z. If v = 6, then (6) implies
v=1/4¢ Z. So, € # 3,0 # . Then (4), and (6) imply
128 —12y —48 14y

TlQ_E—ﬁ_Q—’y’m_e—ﬁ_@—’y' (7)




If 8 # 0, then (7) implies

—128  —12y

—45 1 -4y’
which implies 0 = 1. If 8 = 0 then (7) implies 0 = v = 1/4. A
contradiction. O

Corollary 2 If S (S) is a 12-degree 3-interval (2/1, 3/2, 5/4)-
scale (system) with x,y,z € Q, then we can redenote x,y,z, such
that 1 <z <y <z <10/9.

The analysis of all (12,7,4)-matrices A with det A = 1 yields the
following surprising statement.

Theorem 5 According to the symmetry,

A, =

Y

DO W Ot
— N

3
2
1

15 the unique solution of the Diophantine equation

Mis Nig T 0 <my <my; <m .
12 Mz Tiz | 1 4 7 12 M+ 41 =i,

m7z ny 17 | =1, <ng <ny <N , i=4.7.12

My Mg T4 0 <mry <Tr7 < T12 R

Corollary 3 By Corollary 2, let 1 < z < y < z < 10/9. By
Theorem 1, for A, we have:

Dyy Doy D -3 4 0
D3,CE D3,y D3,z = -1 -1 3 )
Ds. Ds, Ds. 2 —1 -2

and denote by
X, = (z,y,2) = (25/24,16/15,27/25) = (1.041666..., 1.0666..., 1, 08).

4 Construction of 12-degree scales generated by
A,

Theorem 6 Let A be a (12, 7, 4)-matriz and corresponding x,y, z €
R as in Theorem 1 (not necessary rational).



Put m5 = 2m7; — mqe,nl = 2n7 — nig, 15 = 2r7 — T2, mE =
Mg — M7, NE = Nig — N7, T5 = T1a — Ty, Mg = Mg — My + My, Ng =
N12 —Tl7+77,4,7”3 = 7’12—7’7+T4,m>{1 = m7+m4,nh = n7—i—n4,ri“1 =
T+ Ty4.

Put ¢ = 2920, d = o™y e = pM™ytm f = g™y "5,
g =xMYV LT = g™y b= g™y ¢ = gMzyM2gn2 =
2d.

Then

Ycie:g=g:b:d=f:a:d=1:5/4:3/2,

20 my +ny+ 15 =2,mE+ni+ri =5mi+ni+r5=9,mi +
ny; +rj = 1L

Proof 1° We have: 1 : (5/4) : (3/2) = c :e: g = 3/2 :
g(ii/Qf)@/fl)), H(3/2)7 =g b d = ((2)(2/3) = (2)(2/3)(5/4)) :

20 I}’or.5,.(m12 — m7) + (n12 — 717) + (T12 — 7’7) = (m12 + Ny +
r12) — (m7 +n7 +17) = 12 — 7 =5, analogously for 2, 9, 11. [

Corollary 4 If

O0=mg <my <my <mg <my; <mg <mj <m,
_ * * * *

O=ng <ny <ng <ny <ny <ng <njy <niy,
=rg <ry; <ry <ry <r; <rg <ri; <o,

then numbers d, f,a,b can be taken as the 3rd, 6th, 10th, and 12th
coordinates of the 12-degree scale vector and put mi = mg,n5 =
Ng, Ty = Ty, Mi = M5, NE = N5, 5 = T's, My = Mg, Ny = Ng, Ty =
T‘g,mil = mn,n”{l = nll,rfl =T11.

Theorem 7 Let (z,yz) = (25/24,16/15,27/25). Letc = 2% 2%, ¢; =
1
b

)
21020 d, = 2%02' d = 'yl dy = %02t e, = alylele =
21,1 ¢ _ 221 2,22 _ 3,21 o _ 322
ey f o= atyte fy = xtytRt gy = xtyta,g = rtytR, gy =
222 a0, = 3P a = ahPaR, ay = 2P b, = alytl b =

20323, = 2Pyt d = 2d.

Then the all 12-degree scales generated by A, satisfying the con-
ditionc:e:g=g¢g:b:d =f:a:c =1:5/4:3/2 are the
next: (c,i,d, j,e, f. k,g,l,a,m,b,c), where i = ¢, dy;j = dy, e,k =
ft: 93 1= gs, a;m = ay, by,

Proof Combine Corollary 3, Theorem 6, and Corollary 4. It is
easy to verify, cf. Table 3, that ¢ = ¢;,d,;j = dy,epsk = fi, 9,0 =



gs, ay; M = ay, by, are the all possibilities how to complete {c,d, e, f, g,a,b, ¢’}
to the 12-degree scales. 0

Corollary 5 The tuning S, = {c, ¢, dy,d, dy, €5, €, f, fs, 9, 9, g5, @b, @, a3, by, b, ¢},
cf. Table 3, is a 17-valued 12-degree 3-interval (2/1, 3/2, 5/4)-
system.

We see that the structure of S, is similar to Pythagorean Tuning.

5 Application to superparticular ratios in music

In this section we show that the system S, is very near also to
Just Intonation.

The only pairs of naturals (n+1,n), for which (n+1) and n,n €
N, are divisible only by 2,3, or 5, are

(2,1),(3,2), (4,3), (5,4), (6,5), (9,8), (10,9), (16, 15), (25, 24), (81, 80).
The following superparticular ratios, cf. [1],
2/1,3/2,4/3,5/4,6/5,9/8,10/9,16/15,25/24, 81/80

account for common music intervals (they denominate the relative
acoustic frequency or, inversely, the length of the pipe or the string)
and correspond to octave (= x°y*2?), perfect fifth (= x3y*2?%), per-
fect fourth (= z*y*2'), major third (= x?y'2'), minor third (= xyz),
major whole tone (= xz), minor whole tone (= xy), diatonic semi-
tone (= y), chromatic semitone (= x), and comma of Dydimus
(= y~12), respectively, where (z,y,z) = (25/24,16/15,27/25), cf.
Corollary 3.

In the next section we consider some partial monounary alge-
bras on the system S, (representing corresponding transpositions in
music).

6 Application to partial monounary algebras

Let X be a nonempty set and ¥ C X. Let 2 : Y — X be a
mapping of Y into X. Then the couple (X, 2) is said to be a partial
monounary algebra. More about this notion we can find e.g. in [3].

10



Consider the partial functions €2 defined on some subsets of the
set S, = {c, ¢4, dy,d, dy, 5,6, f, f4, 05,9, G5, v, @, a8, b,,0,¢'} C [1,2] as
follows:

for some u € S, Qu(u) =u-wif 1 <u-w <2 or Q,(u) = uw/2
otherwise, where

W = 011, 51,11, 71,115 @210, 52,10, V2,10, 52,10, €2,10; @39, 53,97 73,9, 53,9,
€3,9, C3,9; Qq 8, 54,8774,8, 54,8, €485 a5,7,ﬁ5,7775,7, 55,7; Q6.6, 56,6,76,6, 56,6,
respectively, where

111 = T, 51,11 =Y, 71,11 = %;

Q210 = TZ, 52,10 =2y, 72 10 =z? 52 10 yz €210 = y

Qg9 = ﬂflylzlaﬁ:&, = 2%y’ 2" y V3,9 = zly?z’ 539 = z?
209221, Gy = 209122

2,11 1,201 _ 2,,0.2 — 2,2,0 _
Qg8 —xyz,ﬁ4yg—xyz,7478—xyz,54,8 = T7Y 2,648 =
3,,1.0.

7
ZU ;63,9 =

Yz
_ .3,,2,2 _ _ 2 _ 4,2 1.
Q57 = 90y27ﬁ57 xyz,%y $CUZ 557 T Y-z,
_ _ _ 3,.1.2.
g6 = xyzvﬂ, fyz;%,ﬁ $yZ756 =Ty 7

where (z,y, z) = (25/24,16/15,27/25).

We define the following partial monounary algebras:

) <8*7 Qﬂl,u)v (8*7 Q’Yl,ll);

) (8*7 Qﬂ2,10)7 (8*? Q“fz,lo)a (8*7 Q52,10)> (8*7 Q€2,10);

) (8*’ Qﬁ4,8)’ (8*7 Qm,s)u (S*v 954,8)7 (S*a Q€4,8);
) (8*7 QﬁS,?)’ (8*7 975,7)’ (S*v 955,7);

(S*v 956,6)7 (S*v Q’YG,G)’ (S*v Q56,6)’

cf. 1gure s1,2, 3,4,5 and 6

11



Figure 1: The minor seconds (the major sevenths)
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Figure 2: The major seconds (the minor sevenths)
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B39

Figure 3: The minor thirds (the major sixths)
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If we consider the inverse partial functions Q! (they exist; all
arrows switch the direction in Figures 1, 2, 3, 4, 5, 6), then Figures
1, 2, 3, 4, 5, 6 define also the partial monounary algebras

(8,921, (S Qpag)s (S ) (Si Q505

6,6 76,6

S*aQal ) 8*79557) (S*,w,;;?), (S*a 557)

5r) (
Sy, (2 8)7 (8*7 Qﬁ4ls> (8 Q’Mls) * 54 s) (S*’ Q€ . )’
o) ( S (

o (S 1
S*’ Qa; ’ S*’ 5319) (S Q%lg) (S*v Q53 9) (S*v Q €3, 9)
S Qa2110)’ <S*’ QﬁQ 10) (8 Q. ' ) (S*7 Q ) (S*a Q

72,10

(802500, (S0, 51 ), (Seywrl).

71,11
The proof of the following theorem can be obtained easy and

omitted.

5.9L);

(
(
( .
( o)

02,10

Theorem 8 The following partial monounary algebras are iso-
morphic:

(1) (Sis Qag2), (S, ey )s (Sey Qo) (S, Q).

(ii) (S«, Q) and (S, Q1),

where w = 111, 51,117 71,115 @210, 52,107 V2,10, 52,10; €210, @39, 53,97 73,95
53,97 €3,9, C3,9; Q4 8, ﬁ4,87 74,85 54,8, €48, A5 7, ﬂ5,7, V5,7, 55,7; 06,6, 56,6, 76,65 56,6-

Remark 1 (8., Q0,115 (Sa,Q8,.1,), (Se, 8, ) are partial mo-
nounary algebras of the minor seconds (the chromatic (25/24), dia-
tonic (16/15) semitones and the complement of the chromatic semi-
tone to the magjor whole tone (27/25 = 9/8 : 25/24), respectively),

(Ss: Qay o5 (S84, Q,,,) are partial monounary algebras of the ma-
jor seconds (the magjor (9/8) and minor (10/9) whole tones, respec-
tively),

(S84, Qay,) is a partial monounary algebra of the minor thirds
(6/5),

(S4:Qays) is a partial monounary algebra of the magjor thirds
(5/4).

(S, Q! ) 1s a partial monounary algebra of the perfect fourths

/3.

(S84, Qag6) is a partial monounary algebra of the tritones - the
augmented fourths (25/18),
(Ss, Qa616) 15 a partial monounary algebra of the tritones - the

diminished fifths (36/25),
(S, Qas,) is a partial monounary algebra of the perfect fifths

(3/2),

15



ap

Qg8

=)

Q48

Bag

Q4.8

9

Q4.8

Figure 4: The major thirds (the minor sixths)
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Figure 5: The fourths (the fifths)

Be.6 Be,6 B6.6 06,6
Qg6 6,6 6.6 76,6
06,6 B6.,6 Be.6 Be.6
@ o Do (@ ‘ b
76,6 Q6.6 6,6 Q6.6
f
56 @6’6 06,6 6.6
B6,6 B6.6

Figure 6: The tritones - the augmented fourths (the diminished fifths)
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(S., Q1) is a partial monounary algebra of the minor sizths

Q4.8

(8/5),

(S*,Qa_gg) 1s a partial monounary algebra of the major sizths
(5/3),

(S Q2] ) (S*,Qg;m) are some partial monounary algebras of
the minor sevenths,

(Ss, Q1 (Ss, lelu), (8., ,) are partial monounary algebras
of the major sevenths.
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2()3050

0,,0.,0

c 1/1 1.0 2y z

cy 273371527 25/24  1.041666666 x'y0z°
d, 233572 27/25 1.08 299021
d 2733250 9/8 1.125 wly0zt
dy 2793152 75/64 1171875  2?%y0z1
e, 2131571 6/5 1.2 rlytz?
e 2723051 5/4 1.25 w?ylzt
f 2237150 4/3  1.333333333 x%y%2!
fi 271372527  25/18 1.388888888 a%y?:!
g 223?572 36/25 1.44 x2y? 22
g 2713150 3/2 1.5 239222
g: 2713952 25/16 1.5625 xry?2?
a, 233%57! 8/5 1.6 39322
a  2937T5! 5/3  1.666666666 x%y>22
ay  27337%5° 125/72 1.736111111 x5y322
b, 2032571 9/5 1.8 xhy23
b 2733151 15/8 1.875 xoy3 23
d 213050 2/1 2.0 xoyt3

Table 3: z = 25/24,y = 16/15,z = 27/25

19



