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Abstract

We divide the set of all diatonic scales into three classes P,G,R, the
intersection of which contains the major diatonic scale. The class G con-
tains Gypsy scales, the class P – Pythagorean heptatonic, and the class
R – Redfield Scale. The paper could be of interest for the music theorists,
mathematicians, as well as producers of modern key music instruments,
interpreters, composers, and electro-acoustical studios.
Keywords: Generalized geometrical progression, music acoustic, dia-
tonic scale, tuning of musical instruments, many valued coding, percep-
tion

1 Semitones

By a diatonic scale we mean usually a 7-degree music scale within the octave
in which intervals are not smaller than a semitone and not greater than three
semitones (= the hiat).

There are many different semitones in music. Each of them has its own
good reason for existence (depending on the temperature of the scale). Some
examples of semitones:

Pythagorean minor semitone (256/243),
Pythagorean major semitone (2187/2048),
Diatonic semitone (16/15),
Chromatic semitone (25/24),
Praetorius minor semitone ( 4

√
78125/16),

Praetorius major semitone (8/ 4
√

3125),
Co-chromatic semitone (27/25),
Co-diatonic semitone (135/128),
Equal-tempered semitone ( 12

√
2).



The appearance of other intervals between neighbouring tones (the whole
tones and/or hiats) in diatonic scales depends on the used semitones.

Various scales (diatonic or nondiatonic) use various numbers of different
semitones. Equal temperament uses one semitone. Pythagorean Tuning is con-
structed by two semitones, analogously Praetorius Tuning. What about diatonic
scales in general? It is known that the typical diatonic scale, the major diatonic
scale, is constructed e.g. by the semitones: 16/15, 25/24, and 27/25. But it is
not the only possibility: the triple (16/15, 25/24, 135/128) of semitones can also
serve for constructing of the major diatonic scale. Thus, not greater that three
semitones are needed for scale constructing of diatonic scales.

From the dimensional point of view, Equal Temperament can be imaged in
the line [the reper: the octave], Pythagorean Tuning (Praetorius Tuning) in the
plane [the repers: the octave and perfect fifth (the octave and major third)],
and the diatonic major scale [the repers: the octave, perfect fifth, major thirds]
in the Euler musical space. Note also that Just Intonation, moreover, needs the
fourth dimension, the natural seventh.

2 Definition of Diatonic scale

Although every musician understands what is a diatonic scale, we have find
no mathematical definition in the literature. Certainly, the reason is the ”great
fuzziness” of this notion in music. In this paper we bring a definition of the
notion of diatonic scale from the mathematical point of view.

We fix the structure of the 7-valued major diatonic scale (intervals between
tones: 9/8, 10/9, 16/15, 9/8, 10/9, 9/8, 16/15) and enlarge it to 12-degree scales
such that the resulting sequence will be (a generalization of the geometrical
progression) of the form:

Γn = XxnY ynZzn , (1)

where X,Y, Z ∈ (21/24; 23/24),

Γ0 = 1,Γ12 = 2, (2)

and n, xn, yn, zn are nonegative integers such that

xn + yn + xn = n (3)

and
0 ≤ x1 ≤ x2 · · · ≤ xn · · · , (4)

analogously for yn, zn.
We suppose the octave equivalency, i.e.

(Γ12i+0,Γ12i+1, . . . ,Γ12i+11) = 2i(Γ0,Γ1, . . . ,Γ11) (5)



where i is a natural number.
According to octave equivalency, consider a variation

D = (Γn1 ,Γn2 ,Γn3 ,Γn4 ,Γn5 ,Γn6 ,Γn7 ,Γn8) (6)

from the set
{Γn;n = 0, 1, . . . , 11} (7)

such that
1 ≤ ni+1 − ni ≤ 3, i = 1, 2, 3, 4, 5, 6, 7. (8)

Let Sn = XxnY ynZzn , Qn = UunV vnT tn be two generalized geometrical
progressions such that S0 = 1, S12 = 2, Q0 = 1, Q12 = 2, and X,Y, Z, U, V, T ∈
(21/24; 23/24). A map

θ : (Sn)→ (Qn) (9)

is a homomorphism of generalized geometrical progressions if for every n non-
negative integer number, Sn = XxnY ynZzn ⇒ Qn = UxnV ynT zn .

By a diatonic scale we understand the variation D according to homomor-
phisms of generalized geometrical progressions.

The idea to explain the structure of various tone systems via the gener-
alization of the notion of geometrical progression was successfully applied to
Pythagorean Tuning (and Equal Temperament) in [1], [6], [10], and to Just
Intonation in [2]. An other approach to music scales uses continued fractions,
[5].

3 Three classes

For the proof of the following theorem, see [3].

Theorem 1 According to the symmetry, all rational triples (X,Y, Z) gen-
erating generalized geometrical progressions such that (1) (2) (3) (4) with the
diatonic major scale are the following:

(25/24, 135/128, 16/15), (10)

(256/243, 135/128, 16/15), (11)

(25/24, 16/15, 27/25). (12)

All superparticular ratios for numbers 2,3, and 5, are exactly: 2/1, 3/2, 4/3,
5/4, 6/5, 9/8, 10/9, 16/15, 25/24, and 81/80. It is easy to verify Table 1.

The following three Tables 2, 3, and 4 shows the result of enlargement of
the diatonic major scale (C,D,E, F,G,A,B,C ′) to 12-degree scales. There
are 96 12-degree scales such that they are generalized geometrical progressions.
From these 12-degree scales we choose diatonic scales (not considering homo-
morphism).



Table 1
Superparticular ratios
X = 25/24, Y = 16/15, Z = 27/25, V = 135/128,W = 256/243

2/1 X5Y 4Z3 X2V 3Y 7 W 2V 5Y 5

3/2 X3Y 2Z2 XV 2Y 4 WV 3Y 3

4/3 X2Y 2Z XV Y 3 WV 2Y 2

5/4 X2Y Z XV Y 2 WV 2Y
6/5 XY Z V Y 2 V Y 2

9/8 XZ V Y V Y
10/9 XY XY WV
16/15 Y Y Y
25/24 X X WV Y −1

81/80 Y −1Z X−1V W−1Y

Table 2
Class R
X = 25/24, Y = 16/15, Z = 27/25

X0Y 0Z0 1 C
X1Y 0Z0 25/24 C]
X0Y 0Z1 27/25 D[
X1Y 0Z1 9/8 D
X2Y 0Z1 75/64 D]
X1Y 1Z1 6/5 E[
X2Y 1Z1 5/4 E
X2Y 2Z1 4/3 F
X3Y 2Z1 25/18 F]
X2Y 2Z2 36/25 G[
X3Y 2Z2 3/2 G
X4Y 2Z2 25/16 G]
X3Y 3Z2 8/5 A[
X4Y 3Z2 5/3 A
X5Y 3Z2 125/72 A]
X4Y 3Z3 9/5 B[
X5Y 3Z3 15/8 B
X5Y 4Z3 2 C′



Table 3
Class G
X = 25/24, Y = 16/15, V = 135/128

X0Y 0V 0 1 C
X0Y 0V 1 135/128 C]
X0Y 1V 0 16/15 D[
X0Y 1V 1 9/8 D
X1Y 1V 1 75/64 D]
X0Y 2V 1 6/5 E[
X1Y 2V 1 5/4 E
X1Y 3V 1 4/3 F
X1Y 3V 2 45/32 F]
X1Y 4V 1 64/45 G[
X1Y 4V 2 3/2 G
X2Y 4V 2 25/16 G]
X1Y 5V 2 8/5 A[
X2Y 5V 2 5/3 A
X2Y 5V 3 225/128 A]
X2Y 6V 2 16/9 B[
X2Y 6V 3 15/8 B
X2Y 7V 3 2/1 C′

Table 4
Class P
W = 256/243, Y = 16/15, V = 135/128

W 0Y 0V 0 1 C
W 0Y 0V 1 135/128 C]
W 0Y 1V 0 16/15 D[
W 0Y 1V 1 9/8 D
W 1Y 1V 1 32/27 D]
W 0Y 1V 2 1215/1024 E[
W 1Y 1V 2 5/4 E
W 1Y 2V 2 4/3 F
W 1Y 2V 3 45/32 F]
W 1Y 3V 2 64/45 G[
W 1Y 3V 3 3/2 G
W 2Y 3V 3 128/81 G]
W 1Y 3V 4 405/256 A[
W 2Y 3V 4 5/3 A
W 2Y 3V 5 225/128 A]
W 2Y 4V 4 16/9 B[
W 2Y 4V 5 15/8 B
W 2Y 5V 5 2 C′



4 Structure of the all diatonic scales set

Denote the classes od diatonic scales given by Table 2, Table 3, and Table 4,
as R,G, P corresponding triplets (X,Y, Z), (X,Y, V ), (W,Y, V ), respectively.

Theorem 2 The class R contains the Redfield diatonic scale.

Proof. The Redfield diatonic scale, [8], [9], is defined by the sequence of in-
tervals between the neighbour tones: (10/9, 9/8, 16/15, 9/8, 10/9, 9/8, 16/15).
We see (Table 2) that the sequence

(E[, F,G,A[, B[, C ′, D′, E′[) (13)

satisfies the requirement, where D′ = 2D,E[ = 2E′[. 2

Theorem 3 The class G contains the Gypsy major and minor scales.

Proof.
(a) The Gypsy major scale, [8], is defined by the sequence of intervals be-

tween the neighbour tones: (16/15, 9/8 · 25/24, 16/15, 9/8, 16/15, 9/8 · 25/24,
16/15 ). We see (Table 3) that the sequence

(C,D[, E, F,G,A[, B,C
′) (14)

satisfies the requirement.
(b) The Gypsy minor scale, [8], is defined by the sequence of intervals be-

tween the neighbour tones: (9/8, 16/15, 9/8 · 25/24, 16/15, 16/15, 9/8 · 25/24,
16/15). We see (Table 3) that the sequence

(A,B,C ′, D′], E
′, F ′, G′], A

′) (15)

satisfies the requirement, where D′] = D], E
′ = 2E,F ′ = 2F . 2

Theorem 4 The class P contains the Pythagorean heptatonic.

Proof. The Pythagorean heptatonic, [8], is defined by the sequence of intervals
between the neighbour tones: (9/8, 9/8, 256/243, 9/8, 9/8, 9/8, 256/243). We
see (Table 4) that the sequence

(D], F,G,G], B[, C
′, D′, D′]) (16)

satisfies the requirement, where D′ = 2D,D′] = 2D]. 2

The following three theorems can be verified directly.

Theorem 5 The class G contains no Redfield scale and no Pythagorean
heptatonic.



Theorem 6 The class R contains no Gypsy scale and no Pythagorean hep-
tatonic.

Theorem 7 The class P contains no Redfield scale and no Gypsy scale.

The other diatonic scales we obtain from classes G,P,R via homomorphism
(and specially, isomorphism). We do not describe them in this paper and note
now only some important special cases.

If X = Y = Z = V = W = 12
√

2, then Table 2, Table 3, and Table 4 define
Equal Temperament. Another interesting simplification of the general case via
homomorphism we obtain in the following theorem which can be verified directly.

Theorem 8 If
(a) Y = Z = a,X = b (see Table 2), or
(b) X = Y = a, V = b (see Table 3), or
(c) W = Y = a, V = b (see Table 4),
and a = 256/243, b = 2187/2048 (or a = 8/ 4

√
3125, b = 4

√
78125/16), then

Table 2 or Table 3 or Table 4 contain Pythagorean (or Praetorius) Tuning.

Corollary 1 Pythagorean Tuning (reduced to a 12-valued one) and Praeto-
rius Tuning are isomorphic.
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