ON A LATTICE STRUCTURE OF OPERATOR SPACES
IN COMPLETE BORNOLOGICAL LOCALLY CONVEX SPACES

JÁN HALUŠKA

Abstract. For X, Y complete bornological locally convex spaces, we consider a lattice structure of the space $L(X, Y)$ of all continuous linear operators $L: X \to Y$.

Introduction

The description of theory of complete bornological locally convex spaces (C.B.L.C.S.) we can find in [4], [6], and [3].

In [1], [2] we have developed a technique for an operator valued measure $m : \Delta \to L(X, Y)$, where Δ is a δ-ring of sets, $L(X, Y)$ the space of all continuous operators $L: X \to Y$, where X, Y are both C.B.L.C.S. In [1] we gave a more detailed explanation of basic $L(X, Y)$-measure set structures (H. Weber, cf. [7], considered these structures particularly from topological aspects.). In connection with it, a Bartle type integral was investigated. In [2], convergences in measure, almost everywhere, almost uniform (and relations between them) were studied.

In the present paper we consider the lattice structure of the range space of such measure m, the space $L(X, Y)$.

1. Preliminaries

Let X, Y be two C.B.L.C.S. over the field of real or complex numbers equipped with the bornologies $\mathfrak{B}_X, \mathfrak{B}_Y$. The basis \mathcal{U} of the bornology \mathfrak{B}_X has a marked element $u_0 \in \mathcal{U}$, if $u_0 \subseteq u$ for every $u \in \mathcal{U}$. Let the bases \mathcal{U}, \mathcal{W} be chosen to consist of all $\mathfrak{B}_X-,\mathfrak{B}_Y$- bounded Banach disks in X, Y, with marked elements $u_0 \in \mathcal{U}, u_0 \neq \{0\}$, and $w_0 \in \mathcal{W}, w_0 \neq \{0\}$, respectively. Remind that a Banach disk in X is a set which is closed, absolutely convex and the linear span of which is a Banach space. The space X is an inductive limit of Banach spaces $X_u, u \in \mathcal{U}$,

$$X = \lim \text{ind}_{u \in \mathcal{U}} X_u,$$

cf. [4], where X_u is a linear span of $u \in \mathcal{U}$ and \mathcal{U} is directed by inclusion (analogously for Y and \mathcal{W}).

1991 Mathematics Subject Classification. Primary 06 F 20; Secondary 47 B 37.

Key words and phrases. Complete bornological locally convex spaces, Distributive lattices, Spaces of linear operators.

Supported by Grant GA-SA 367/92.
On \mathcal{U} the lattice operations are defined as follows. For $u_1, u_2 \in \mathcal{U}$ we have: $u_1 \wedge u_2 = u_1 \cap u_2$, $u_1 \vee u_2 = u_1 \cup u_2$, where $\text{acs}(u_1 \cup u_2)$ denotes the topological closure of the absolutely convex span of the set. Analogously for \mathcal{W}. For $(u_1, w_1), (u_2, w_2) \in \mathcal{U} \times \mathcal{W}$, we write $(u_1, w_1) \ll (u_2, w_2)$ if and only if $u_1 \subset u_2$ and $w_1 \supset w_2$.

2. Lattice structure of $L(X, Y)$

If p_u is Minkowski functional of the set $w \in \mathcal{W}$, then for $u \in \mathcal{U}$, $L \in L(X, Y)$, we put $p_{u,w}(L) = \sup_{x \in u} p_u(L(x))$ (If w does not absorb $L(x), x \in u$, we put $p_{u,w}(L) = \infty$).

Denote by $\mathcal{L}_{u,w} = \{L \in L(X, Y); p_{u,w}(L) < \infty\}, (u, w) \in \mathcal{U} \times \mathcal{W}$, and $\mathcal{L}_{\mathcal{U}, \mathcal{W}} = \bigcup \mathcal{L}_{u,w}; (u, w) \in \mathcal{U} \times \mathcal{W}$. For $(u, w) \in \mathcal{U} \times \mathcal{W}$, a sequence $L_n \in L(X, Y), n = 1, 2, \ldots$, is said to be convergent to $L \in L(X, Y)$ in $\mathcal{L}_{u,w}$ whenever $\lim_{n \to \infty} p_{u,w}(L_n - L) = 0$.

On $\mathcal{L}_{\mathcal{U}, \mathcal{W}}$ define the operations \wedge, \vee and an order \ll. For $(u_1, w_1), (u_2, w_2) \in \mathcal{U} \times \mathcal{W},$

$$\mathcal{L}_{u_1,w_1} \vee \mathcal{L}_{u_2,w_2} = \mathcal{L}_{u_1 \cup u_2, w_1 \vee w_2}, \quad \mathcal{L}_{u_1,w_1} \wedge \mathcal{L}_{u_2,w_2} = \mathcal{L}_{u_1 \cap u_2, w_1 \wedge w_2}$$

$$\mathcal{L}_{u_2,w_2} \ll \mathcal{L}_{u_1,w_1} \quad \text{if and only if} \quad (u_1, w_1) \ll (u_2, w_2).$$

It is easy to see that \wedge, \vee are lattice operations.

Theorem 1. The family $\mathcal{L}_{\mathcal{U}, \mathcal{W}}$ of operator spaces is a distributive lattice.

Proof. For $(u_1, w_1), (u_2, w_2), (u_3, w_3) \in \mathcal{U} \times \mathcal{W}$, we have:

$$\mathcal{L}_{u_1,w_1} \vee (\mathcal{L}_{u_2,w_2} \wedge \mathcal{L}_{u_3,w_3}) = \mathcal{L}_{u_1 \cup (u_2 \cap u_3), w_1 \vee (w_2 \wedge w_3)}$$

$$= \mathcal{L}_{u_1 \cup (u_2 \cap u_3), w_1 \vee (w_2 \wedge w_3)}$$

$$= \mathcal{L}_{u_1 \cup (u_2 \cap u_3), (w_1 \vee w_2) \wedge (w_1 \wedge w_2)}$$

$$= \mathcal{L}_{u_1 \cup (u_2 \cap u_3), w_1 \wedge w_2}$$

$$= \mathcal{L}_{u_1 \cup (u_2 \cap u_3), w_1 \wedge w_2} \vee \mathcal{L}_{u_1 \cup (u_2 \cap u_3), w_1 \wedge w_2}$$

$$= (\mathcal{L}_{u_1, w_1} \vee \mathcal{L}_{u_2, w_2}) \wedge (\mathcal{L}_{u_1, w_1} \vee \mathcal{L}_{u_3, w_3}).$$

By [5], Th.2.2, $\mathcal{L}_{\mathcal{U}, \mathcal{W}}$ is a distributive lattice.

The lattice $\mathcal{L}_{\mathcal{U}, \mathcal{W}}$ introduces a topology of an inductive limit on $L(X, Y)$, i.e. there holds the following theorem.

Theorem 2. $L(X, Y)$ is the inductive limit of the subalgebras $L(u, w) \subseteq L(X, Y)$

Proof. For $u \in \mathcal{U}, w \in \mathcal{W}$, it is easy to verify that $L(u, w)$ is vector subspace of $L(X, Y)$ equipped with the topology given by the seminorm $p_{u,w}$.

Show that $\bigcup_{(u, w) \in \mathcal{U} \times \mathcal{W}} L(u, w) = L(X, Y)$. The inclusion $\bigcup_{(u, w) \in \mathcal{U} \times \mathcal{W}} L(u, w) \subseteq L(X, Y)$ is trivial. Show $\bigcup_{(u, w) \in \mathcal{U} \times \mathcal{W}} L(u, w) \supseteq L(X, Y)$. Let $L \in L(X, Y)$, then for each $u \in \mathcal{U}$ there exists $w_{u,L} \in \mathcal{W}$ such that $L \subset w_{u,L}$, i.e. $p_{u,w_{u,L}}(L) \leq 1 < \infty$. Thus, $L \in L(u,w_{u,L}) \subseteq \bigcup_{(u, w) \in \mathcal{U} \times \mathcal{W}} L(u, w)$.

Let $(u_1, w_1), (u_2, w_2) \in \mathcal{U} \times \mathcal{W}$. Consider sequence $L_n \in L(X, Y), n = 1, 2, \ldots$, of operators converges to $L \in L(X, Y)$ in $L(u_2, w_2)$, then it converges to L also in $L(u_1, w_1)$. Indeed, by definition, $(u_1, w_1) \ll (u_2, w_2) \Rightarrow u_1 \subset u_2 \wedge w_1 \supset w_2$. The relation $u_1 \subset u_2$ implies $p_{u_1, w}(L) \leq p_{u_2, w}(L)$ for every $w \in \mathcal{W}$. The inclusion $w_2 \subset w_1$ implies $p_{w_1}(L(x)) \leq p_{w_2}(L(x))$.
for every $x \in X$. From this we have $p_{u,w_1}(L) \leq p_{u,w_2}(L)$ for every $u \in U$. Thus, $p_{u_1,w_1}(L) \leq p_{u_2,w_1}(L) \leq p_{u_2,w_2}(L)$. So, if $(u_1, w_1) \ll (u_2, w_2)$ and $L \in L(X, Y)$, then $p_{u_1,w_1}(L) \leq p_{u_2,w_2}(L)$. This completes the proof.

Note that in the terminology of [6], $L(X, Y)$ (as an inductive limit of seminormed spaces) is a bornological convex vector space, cf. [6], chap. 4, §2, Th. 1.

Theorem 3. For every $(u_1, w_1) \in U \times W$, the set

$$\mathcal{J}_{u_1,w_1} = \{L_{u,w} \in \mathcal{L}_{U,W}; L_{u,w} \ll L_{u_1,w_1}, (u, w) \in U \times W\}$$

is an ideal in $\mathcal{L}_{U,W}$.

Proof. Let $(p, q), (u, w) \in U \times W$. and $(u_1, w_1) \ll (u, w), (u_1, w_1) \ll (p, q)$. Since $u \wedge p = u \cap p \subseteq u_1, w \vee q = \text{acs}(w \cup q) \subseteq w_1$, then $L_{u_1,w_1} \cap L_{u_1,w_1}$.

Let $(p, q), (u, w) \in U \times W$, and $(u_1, w_1) \ll (p, q)$. Then $L_{u_1,w_1} \cap L_{u_1,w_1} \ll L_{u_1,w_1}$.

Dually to Theorem 3, we obtain the following corollary.

Corollary 4. For every $(u_2, w_2) \in U \times W$, the set

$$\mathcal{F}_{u_2,w_2} = \{L_{u,w} \in \mathcal{L}_{U,W}; L_{u,w} \ll L_{u_2,w_2}, (u, w) \in U \times W\},$$

is a filter in $\mathcal{L}_{U,W}$.

Theorem 5. Let $(u_1, w_1), (u_2, w_2) \in U \times W$. If $(u_1, w_1) \ll (u_2, w_2)$, then the order interval $[L_{u_2,w_2}, L_{u_1,w_1}] = \mathcal{J}_{u_1,w_1} \cap \mathcal{F}_{u_2,w_2}$ in $\mathcal{L}_{U,W}$ is a Boolean algebra with L_{u_2,w_2} as null and L_{u_1,w_1} as unit.

Proof. Let $(u, w) \in U \times W, (u_1, w_1) \ll (u, w) \ll (u_2, w_2)$. Put

$$L_{u_1,w_1} = L_{(u_2,w_2) \cup u_1 \setminus (w_1 \cup w_2)} \in [L_{u_2,w_2}, L_{u_1,w_1}]$$

and show that L_{u_1,w_1} is a complement of L_{u_1,w_1} in $[L_{u_2,w_2}, L_{u_1,w_1}]$. We have:

$$L_{u_1,w_1} \vee L_{u_1,w_1} = L_{u_1,w_1} \vee L_{(u_2,w_2) \cup u_1 \setminus (w_1 \cup w_2)}$$

$$= L_{u \cup (u_2 \setminus u_1 \setminus (w_1 \cup w_2))}$$

$$= L_{u \cup (u_2 \setminus u_1 \setminus (w_1 \cup w_2))}$$

$$= L_{u_1,w_1}.$$

Analogously, $L_{u_1,w_1} \wedge L_{u_1,w_1} = L_{u_2,w_2}$. So, L_{u_2,w_2} is the null and L_{u_1,w_1} is the unit of the Boolean algebra $[L_{u_2,w_2}, L_{u_1,w_1}]$.
References

Mathematical Institute, Slovak Academy of Sciences, Grešáková 6, 040 01 Košice, Slovak Republic

E-mail address: jhaluska @ saske.sk