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Abstract

Weak states on posets are defined which are in some
analogy to states on orthomodular posets used in
axiomatic quantum mechanics. It is shown how certain
properties of the set of weak states characterize certain
properties of the underlying poset.



Orthomodular posets serve as algebraic models for logics
in axiomatic quantum mechanics. States on them are
considered which reflect the properties of states of the
corresponding physical system. A crucial property of such
states is monotonicity. In analogy to these states we
define so-called weak states on an arbitrary poset. These
weak states are also monotonous and play some role in
the characterization of certain algebraic models of
quantum systems (cf. [Länger–Ma̧czyński, 2005]). We
use properties of the set of weak states in order to
characterize certain properties of the underlying poset. In
this context semilattices play an important role. For the
theory of semilattices see the monograph
[Chajda–Halaš–Kühr, 2007].



In the following let P = (P,≤) be an arbitrary but fixed
non-empty poset.

For every positive integer n and a1, . . . ,an ∈ P put
L(a1, . . . ,an) := {x ∈ P |x ≤ a1, . . . ,an} and
U(a1, . . . ,an) := {x ∈ P |x ≥ a1, . . . ,an}. P is called
connected if its Hasse diagram is a connected graph. P

is called upward directed if U(a,b) 6= /0 for any a,b ∈ P.

Now we define weak states on posets.



Definition
Let f : P → [0,1]. We call f a 0-weak state on P if both f
is monotonous and (f−1({0}),≤) has a greatest element
which we denote by α(f ). Let W0(P) denote the set of all
0-weak states on P.
We call f a 1-weak state on P if both f is monotonous
and (f−1({1}),≤) has a least element which we denote by
β (f ). Let W1(P) denote the set of all 1-weak states on
P.

Next we give some examples of weak states.
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Definition
For (a,s) ∈ P × (0,1] let fa,s denote the mapping from P to
[0,1] defined by

fa,s(x) :=

{

0 if x ≤ a
s otherwise.

We call the mappings of the form fa,1 – which we will
shortly denote by fa – canonical 0-weak states on P

and denote their set by C0(P).
For (a,s) ∈ P × [0,1) let ga,s denote the mapping from P
to [0,1] defined by

ga,s(x) :=

{

1 if x ≥ a
s otherwise.

We call the mappings of the form ga,0 – which we will
shortly denote by ga – canonical 1-weak states on P

and denote their set by C1(P).
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(Remark.) fa,s = fb,t if and only if either (a,s) = (b, t) or
a = b is the greatest element of P. ga,s = gb,t if and only
if either (a,s) = (b, t) or a = b is the least element of P.

Lemma
If (a,s) ∈ P × (0,1] then fa,s ∈ W0(P) and α(fa,s) = a. If
(a,s) ∈ P × [0,1) then ga,s ∈ W1(P) and β (ga,s) = a.



For weak states we consider pointwise arithmetic mean
and pointwise multiplication which not necessarily yields a
weak state.

Definition

For all f ,g ∈ [0,1]P we define f ⊕g, fg ∈ [0,1]P by
(f ⊕g)(x) := (f (x)+g(x))/2 and (fg)(x) := f (x)g(x) for all
x ∈ P.



(In the proofs we often use the following formulas:)

Lemma

(f ⊕g)−1({0}) = L(α(f ),α(g)) for all f ,g ∈ W0(P)

(f ⊕g)−1({1}) = U(β (f ),β (g)) for all f ,g ∈ W1(P)

(fg)−1({0}) = L(α(f ))∪L(α(g)) for all f ,g ∈ W0(P)

(fg)−1({1}) = U(β (f ),β (g)) for all f ,g ∈ W1(P)



Now we start our characterization results.

Theorem
The following are equivalent:
(i) P is connected.

(ii) For all a,b ∈ P there exist a positive integer n and
a0, . . . ,an ∈ P with a0 = a and an = b such that for all
i = 1, . . . ,n either (fai−1 ⊕ fai )

−1({0}) 6= /0 or
(gai−1gai )

−1({1}) 6= /0.

Theorem
Let a,b ∈ P. Then the following are equivalent:
(i) P is the disjoint union of (a] and [b).

(ii) fa = gb



Theorem
The following are equivalent:
(i) P is upward directed.

(ii) (fg)−1({1}) 6= /0 for all f ,g ∈ W1(P).

Theorem
The following are equivalent:
(i) P is a join-semilattice.

(ii) W1(P) is a subsemigroup of ([0,1], ·)P .



Further we see that if W1(P) is a subsemigroup of
([0,1], ·)P then it contains a subsemigroup which is both
isomorphic to (P,∨) and a homomorphic image of
W1(P) := (W1(P), ·).

Theorem

If P is a join-semilattice (P,∨) then C1(P) is the set of all
idempotents of W1(P) and a subsemilattice of W1(P)
which is both isomorphic to (P,∨) and a homomorphic
image of W1(P).

Theorem
Assume P to be a join-semilattice. Then the following are
equivalent:
(i) P has a least element.

(ii) (W1(P), ·) has a unit element.



Theorem
Assume P to be a join-semilattice. Then the following are
equivalent:
(i) P has a greatest element.

(ii) W1(P) has a zero element.

Theorem
The following are equivalent:
(i) P is a chain.

(ii) P is a meet-semilattice (P,∧) and every canonical
0-weak state on P is a homomorphism from (P,∧) to
({0,1}, ·).

(iii) W0(P) is a subsemigroup of ([0,1], ·)P .



Theorem
If P is a chain then C0(P) is the set of all idempotents of
W0(P) and a subsemilattice of W0(P) which is both
isomorphic to (P,∨) and a homomorphic image of W0(P).

For the following theorem we recall some definitions from
semigroup theory.

Definition

Let S = (S, ·) be a semigroup. S is called regular if for
every a ∈ S there exists an element b of S with aba = a.
S is called cancellative if whenever a,b,c ∈ S and either
ac = bc or ca = cb then a = b.



Theorem

The following are equivalent:
(i) P is trivial.

(ii) W0(P) is a regular subsemigroup of ([0,1], ·)P .
(iii) W1(P) is a regular subsemigroup of ([0,1], ·)P .
(iv) W1(P) is a cancellative subsemigroup of ([0,1], ·)P .
(v) W0(P) is a subgroup of ([0,1], ·)P .

(vi) W1(P) is a subgroup of ([0,1], ·)P .
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