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Palacký University in Olomouc
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Basic algebras

Definition

A basic algebra is an algebra (A,⊕,¬, 0) of type (2, 1, 0) that
satisfies the identities

x ⊕ 0 = 0,

¬¬x = x ,

¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x ,

¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x ⊕ z) = ¬0.

Do not confuse with Hájek’s basic logic and BL-algebras!
The intersection of our basic algebras and BL-algebras are just
MV-algebras.
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The beginning . . .
Sectionally pseudocomplemented lattices

Sectionally pseudocomplemented lattices = a non-distributive
generalization of relatively pseudocomplemented lattices:

Definition

A sectionally pseudocomplemented lattice is a lattice with
greatest element such that every section is a pseudocomplemented
lattice.

Definition

By a section in a lattice we mean a principal filter.
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The beginning . . .
Sectionally pseudocomplemented lattices

1

a

x 7→ x
a

We can define the binary operations � and → by

x � y := xx∧y and x → y := (x ∨ y)y

and regard sectionally pseudocomplemented lattices
as algebras (A,∨,∧, �, 1) or (A,∨,∧,→, 1).
For x ≥ a we have

xa = x � a = x → a.

If the relative pseudocomplement x ∗ y of x w.r.t. y exists, then
x ∗ y = x � y = x → (x ∧ y). Indeed, x ∧ (x � y) = x ∧ y implies
x � y ≤ x ∗ y , and x ∧ (x ∗ y) = x ∧ y yields x ∗ y ≤ x � y .
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The beginning . . .
Basic algebras

1

a

γa

6

?

Basic algebras = bounded lattices with sectional antitone
involutions, i.e., every section [a) is equipped with an antitone
involution γa.
We shall write xa instead of γa(x).
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Basic algebras
Why antitone involutions? Why “basic”?

Orthomodular lattices: If (A,∨,∧,′ , 0, 1) is an OML, then

x 7→ x ′ ∨ a is an antitone involution on [a).

MV-algebras: An MV-algebra (A,⊕,¬, 0) is a commutative
monoid (A,⊕, 0) with a unary operation ¬ satisfying the
identities

¬¬x = x ,

x ⊕ ¬0 = ¬0,

¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x .

Every MV-algebra is a bounded distributive lattice in which
x 7→ ¬x ⊕ a is an antitone involution on [a).

Basic algebras = a common generalization of orthomodular
lattices and MV-algebras
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Basic algebras
MV-algebras

The equivalent algebraic semantics for the  Lukasiewicz
many-valued propositional logic.

The variety of MV-algebras is generated by the standard
MV-algebra ([0, 1],⊕,¬, 0) where

x ⊕ y := min{1, x + y} and ¬x := 1− x .

All MV-algebras can be obtained as follows:
Let (G ,+, 0,∨,∧) be an Abelian lattice-ordered group and
u ∈ G+. Then ([0, u],⊕,¬, 0) is an MV-algebra where

x ⊕ y := u ∧ (x + y) and ¬x := u − x .

GMV-algebras = a non-commutative generalization of
MV-algebras.
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Basic algebras
Formal approach

1 Let (A,∨,∧, (a)a∈A, 0, 1) be a bounded lattice with sectional
antitone involutions. If we define

x ⊕ y := (x0 ∨ y)y and ¬x := x0,

then the algebra (A,⊕,¬, 0) satisfies the identities

x ⊕ 0 = 0, (BA1)

¬¬x = x , (BA2)

¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x , (BA3)

¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x ⊕ z) = ¬0. (BA4)

We have x ∨ y = ¬(¬x ⊕ y)⊕ y and x ∧ y = ¬(¬x ∨ ¬y),
and xa = ¬x ⊕ a for x ∈ [a).
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Basic algebras
Formal approach

2 Let (A,⊕,¬, 0) be an algebra satisfying (BA1)–(BA4), and
put

x ∨ y := ¬(¬x ⊕ y)⊕ y and x ∧ y := ¬(¬x ∨ ¬y).

Then (A,∨,∧, 0, 1), where 1 := ¬0, is a bounded lattice
whose underlying order is given by

x ≤ y iff ¬x ⊕ y = 1,

and for each a ∈ A, the map

γa : x 7→ ¬x ⊕ a

is an antitone involution on [a).
We have ¬x = γ0(x) and x ⊕ y = γy (¬x ∨ y).
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Basic algebras
The definition and MV-algebras

Definition
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MV-algebras = commutative and associative basic algebras.

Another motivation: basic algebras as a non-associative
(and non-commutative) generalization of MV-algebras
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Basic algebras
Orthomodular lattices

OML’s = idempotent basic algebras satisfying the quasi-identity

x ≤ y ⇒ y ⊕ x = y .

Proof:

¬x is a complement of x iff x ⊕ x = x .
Indeed, x ⊕ x = (¬x ∨ x)x = x iff ¬x ∨ x = 1.

If A is an OML, then x ≤ y implies
y ⊕ x = (¬y ∨ x)x = ¬(¬y ∨ x) ∨ x = (y ∧ ¬x) ∨ x = y .
If A is not an OML, then it contains

0

1

x

y

¬y

¬x

where y ⊕ x = (¬y ∨ x)x = 1x = x .
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Basic algebras
Example 1

The smallest basic algebra which is neither an OML nor an
MV-algebra:

0

1

ba

6

?

- -

⊕ 0 a b 1 ¬
0 0 a b 1 1
a a 1 b 1 a
b b a 1 1 b
1 1 1 1 1 0

a⊕ b = (¬a ∨ b)b = 1b = b
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Basic algebras
Some properties

The term operation 	 defined by

x 	 y := ¬(y ⊕ ¬x)

is useful. We have:

x ⊕ y = 1	 ((1	 y)	 x) and ¬x = 1	 x ;

x ≤ y iff x 	 y = 0;

x ∨ y = (¬y 	 ¬x)⊕ y and x ∧ y = x 	 (x 	 y);

(x ∧ y)⊕ z = (x ⊕ z) ∧ (y ⊕ z);

x 	 (y ∧ z) = (x 	 y) ∨ (x 	 z).

If the lattice is distributive, then

(x ∨ y)⊕ z = (x ⊕ z) ∨ (y ⊕ z);

x 	 (y ∨ z) = (x 	 y) ∧ (x 	 z).
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Basic algebras
Some properties

For every a ∈ A, the map

x 7→ a	 x

is an antitone involution on [0, a];

[0, a] is a basic algebra when equipped with the operations
defined by

x ⊕a y := a	 ((a	 y)	 x) and ¬ax := a	 x .

Observe that x 	a y := ¬a(y ⊕a ¬ax) = x 	 y for x , y ∈ [0, a].
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Basic algebras
Some properties

Theorem

The variety of basic algebras is congruence regular and
arithmetical.

Regularity:

t1(x , y , z) = (x 	 y) ∨ (y 	 x) ∨ z

t2(x , y , z) = z 	 ((x 	 y) ∨ (y 	 x))

Arithmeticity:

m(x , y , z) = (x 	 (y 	 z)) ∨ (z 	 (y 	 x)) ∨ (x ∧ z)
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Commutative BA’s
CBA’s are distributive lattices

Theorem

The underlying lattices of commutative basic algebras are
distributive.

Proof: If A contains a copy of N5, then

and we have a = 1a = (¬c ∨ a)a = c ⊕ a = a⊕ c = (¬a ∨ c)c =
(¬u)c = (¬b ∨ c)c = b ⊕ c = c ⊕ b = (¬c ∨ b)b = 1b = b.
The case when A contains M3 is analogous.
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Commutative BA’s
RDP

Theorem

Every commutative basic algebra has the Riesz decomposition
property:

x ≤ a⊕ b ⇒ x = a1 ⊕ b1 (RDP)

for some a1 ≤ a and b1 ≤ b.

Proof: Put a1 := x 	 b = x 	 (x ∧ b) and b1 := x ∧ b. Then
a1 ≤ (a⊕ b)	 b = a ∧ ¬b ≤ a and

a1 ⊕ b1 = (x 	 (x ∧ b))⊕ (x ∧ b) = x .
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Commutative BA’s
Finite CBA’s are MV-algebras

Theorem

Every finite commutative basic algebra is an MV-algebra.
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Commutative BA’s
Finite CBA’s are MV-algebras

Theorem

Every finite commutative basic algebra is an MV-algebra.

Lemma

Every element of A is in the form∨
a∈M

na ⊗ a, (F)

where M is the set of the atoms of A, and na ∈ N0 for all a ∈ M.

Here n ⊗ x := x ⊕ · · · ⊕ x︸ ︷︷ ︸
n times

for n ∈ N, and 0⊗ x := 0.

Proof: Fact: If x ∧ y = 0, then x ⊕ y = x ∨ y , and
(m ⊗ x) ∧ (n ⊗ y) = 0 for all m, n ∈ N0.
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Commutative BA’s
Finite CBA’s are MV-algebras

Suppose there is z ∈ A which is not of the form (F). Then there
exists x ∈ A that is maximal among the elements which can be
written in the form (F) and are less than or equal to z . Let
x =

∨
a∈M na ⊗ a. Further, there exists y ∈ A such that

x ≺ y ≤ z . Obviously, b := y 	 x is an atom and y is not in the
form (F). Then

y = (y 	 x)⊕ x = b ⊕

(∨
a∈M

na ⊗ a

)
=
∨

a∈M

b ⊕ (na ⊗ a).

But for a 6= b we have b ⊕ (na ⊗ a) = b ∨ (na ⊗ a), so

y = (b⊕(nb⊗b))∨b∨
∨

a∈M\{b}

na⊗a = ((nb+1)⊗b)∨
∨

a∈M\{b}

na⊗a

which is an element of the form (F), a contradiction.
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Commutative BA’s
Finite CBA’s are MV-algebras

For a ∈ M the set N(a) = {n ⊗ a | n ∈ N0} is a finite chain
0 < a < · · · < â.

The RDP entails N(a) = [0, â].

(N(a),⊕â,¬â, 0) is a basic algebra in which 	â coincides with
the original 	 in A.

(N(a),⊕â,¬â, 0) is a linearly ordered MV-algebra.

Theorem

The map

(xa)a∈M 7→
∨

a∈M

xa

is an isomorphism of
∏

a∈M N(a) onto A.
Hence A is an MV-algebra.
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Commutative BA’s
A commutative BA which is not an MV-algebra

The standard MV-algebra is the algebra ([0, 1],⊕,¬, 0), where

x ⊕ y := min{1, x + y} and ¬x := 1− x .

x

y

Theorem

Let ([0, 1],⊕,¬, 0) be a commuta-
tive basic algebra. Then (up to iso-
morphism) the negation is given by

¬x := 1− x .
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Commutative BA’s

Theorem

Every complete (as a lattice) commutative basic algebra is a
subdirect product of linearly ordered commutative basic algebras.

∗ ∗ ∗

Two problems

1 Is every commutative basic algebra a subdirect product of
linearly ordered ones?

2 Find an associative basic algebra that is not an MV-algebra.
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Lattice effect algebras and D-lattices

Definition

An effect algebra is a structure (E ,+, 0, 1) where 0, 1 are
elements of E and + is a partial binary operation on E , satisfying
the following conditions:

(EA1) x + y = y + x if one side is defined,

(EA2) x + (y + z) = (x + y) + z if one side is defined,

(EA3) for every x there exists a unique x ′ such that x ′ + x = 1,

(EA4) x + 1 is defined only for x = 0.

The underlying order:

x ≤ y iff y = x + z for some z ;

this z is denoted by y − x .
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Lattice effect algebras and D-lattices

Definition

A D-poset is a structure (D,≤,−, 0, 1) where (D,≤, 0, 1) is a
bounded poset and − is a partial binary operation such that x − y
is defined iff x ≥ y , satisfying the conditions

(DP1) x − 0 = x ,

(DP2) if x ≤ y ≤ z , then z − y ≤ z − x and
(z − x)− (z − y) = y − x .

To a D-poset (D,≤,−, 0, 1) there corresponds the effect algebra
(D,+, 0, 1) obtained by letting

x + y := z iff z ≥ y and z − y = x .

Lattice effect algebras/D-lattices are those with the underlying
lattice order.
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J. Kühr “Basic” Algebras



Lattice effect algebras and D-lattices

Definition

A D-poset is a structure (D,≤,−, 0, 1) where (D,≤, 0, 1) is a
bounded poset and − is a partial binary operation such that x − y
is defined iff x ≥ y , satisfying the conditions

(DP1) x − 0 = x ,

(DP2) if x ≤ y ≤ z , then z − y ≤ z − x and
(z − x)− (z − y) = y − x .

To a D-poset (D,≤,−, 0, 1) there corresponds the effect algebra
(D,+, 0, 1) obtained by letting

x + y := z iff z ≥ y and z − y = x .

Lattice effect algebras/D-lattices are those with the underlying
lattice order.
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Lattice effect algebras and D-lattices
. . . as basic algebras

In each effect algebra/D-poset:

x 7→ x ′ + a is an antitone involution on [a, 1],

x 7→ a− x is an antitone involution on [0, a].

Hence lattice effect algebras/D-lattices are basic algebras:

Theorem

Let (E ,+, 0, 1) be a lattice effect algebra. If we set

x ⊕ y := (x ∧ y ′) + y and ¬x := x ′,

then (E ,⊕,¬, 0) is a basic algebra.

Proof: x ⊕ y := (x0 ∨ y)y = (x ′ ∨ y)′ + y = (x ∧ y ′) + y .
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Lattice effect algebras and D-lattices
. . . as basic algebras

We have

x 	 y := ¬(y ⊕ ¬x) = x − (x ∧ y);

x + y = x ⊕ y for x ≤ ¬y ;

x − y = x 	 y for x ≥ y .

Theorem

Let (A,⊕,¬, 0) be a basic algebra, and define the partial operation
+ as follows:

x + y is defined iff x ≤ ¬y , in which case x + y := x ⊕ y .

Then (A,+, 0, 1) is a lattice effect algebra if and only if
(A,⊕,¬, 0) satisfies the quasi-identity

x ≤ ¬y & x ⊕ y ≤ ¬z ⇒ (x ⊕ y)⊕ z = x ⊕ (z ⊕ y). (E)
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Lattice effect algebras and D-lattices
. . . as basic algebras

Theorem

Let (A,⊕,¬, 0) be a basic algebra, and define the partial operation
− as follows:

x − y is defined iff x ≥ y , in which case x − y := x 	 y .

Then (A,≤,−, 0, 1) is a D-lattice if and only if (A,⊕,¬, 0) satisfies
the quasi-identity

x ≤ y ≤ z ⇒ (z 	 x)	 (z 	 y) = y 	 x . (E’)
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Effect basic algebras

Definition

We call a basic algebra an effect basic algebra if it satisfies (E)
(equivalently, (E’)).

Effect basic algebras (= lattice effect algebras = D-lattices) form a
variety. This variety is

congruence regular and arithmetical;

an ideal variety; the ideal terms (in y ’s) are

t1(x , y1, y2) = x ∧ (y1 ⊕ y2),

t2(x , y) = ¬x 	 ¬y .
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Effect basic algebras
Compatibility and commutativity

In a lattice effect algebra, two elements x , y are compatible if

(x ∨ y)− y = x − (x ∧ y).

Theorem

Let (E ,⊕,¬, 0) be an effect basic algebra and (E ,+, 0, 1) the
associated lattice effect algebra. Then x , y ∈ E are compatible iff
x ⊕ y = y ⊕ x .

Theorem

For every effect basic algebra E , the following are equivalent:

1 E is an MV-algebra;

2 E is commutative;

3 E satisfies the RDP.
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Effect basic algebras
Compatibility and commutativity

A block is a maximal subset whose elements commute.
The MV-centre is the intersection of the blocks.

Theorem

For every basic algebra E , the following are equivalent:

1 E is an effect basic algebra;

2 every block of E is a subalgebra which itself is an MV-algebra.

Theorem

Let E be an effect basic algebra. If E is subdirectly irreducible,
then its MV-centre MV (E ) is a subdirectly irreducible MV-algebra
(hence MV (E ) is linearly ordered).
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J. Kühr “Basic” Algebras



Effect basic algebras
Compatibility and commutativity

A block is a maximal subset whose elements commute.
The MV-centre is the intersection of the blocks.

Theorem

For every basic algebra E , the following are equivalent:

1 E is an effect basic algebra;

2 every block of E is a subalgebra which itself is an MV-algebra.

Theorem

Let E be an effect basic algebra. If E is subdirectly irreducible,
then its MV-centre MV (E ) is a subdirectly irreducible MV-algebra
(hence MV (E ) is linearly ordered).
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Effect basic algebras
Some varieties

BooleanA

OML MVA

?

EBA

CBA

Theorem

The variety generated by the algebra from Example 1 is
axiomatized, relative to the variety of distributive EBA’s, by the
identity (x 	 y)	 (z ⊕ z) = (x 	 (z ⊕ z))	 (y 	 (z ⊕ z)).
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Cantor-Bernstein theorem
Boolean algebras and MV-algebras

Let A and B be σ-complete Boolean algebras. If A is
isomorphic to [0, a] ⊆ B and B is isomorphic to [0, b] ⊆ A,
then A ∼= B.

Let A and B be σ-complete MV-algebras. If A is isomorphic
to [0, a] ⊆ B and B is isomorphic to [0, b] ⊆ A where a, b are
complemented elements, then A ∼= B.

∼
=

0

1

a

0

1

b
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Cantor-Bernstein theorem
Central elements

(0, 1) (1, 0)

(0, 0)

(1, 1)

Definition

We say that a ∈ A is a central element in a basic algebra A if

a = f −1(0, 1) or a = f −1(1, 0)

for some direct product decomposition f : A ∼= A1 × A2.
The centre of A, C (A), is the set of all central elements.
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Cantor-Bernstein theorem
Central elements

C (A) is a subalgebra of A and a Boolean algebra in its own
right.

If A is a commutative basic algebra, then a ∈ C (A) iff a is
complemented iff ¬a is a complement of a.

If A is an effect basic algebra, then a ∈ C (A) iff ¬a is a
complement of a and a ∈ MV (A).

Cantor-Bernstein type theorem

Let A,B be basic algebras satisfying certain conditions. If

A ∼= [0, a] ⊆ B for some a ∈ C (B) and

B ∼= [0, b] ⊆ A for some b ∈ C (A),

then A ∼= B.
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Cantor-Bernstein theorem

Let K be a K-congruence distributive quasivariety. We shall say
that an algebra A ∈ K satisfies the condition P if for every
countable set {θi | i ∈ I} of factor K-congruences of A such that
θj ◦ θk = ∇A for all j 6= k, the congruence

θ∞ :=
⋂
i∈I

θi

is a factor K-congruence of A and

A/θ∞ ∼=
∏
i∈I

A/θi .

Theorem

Let A and B be two algebras in K satisfying the condition P. If

A ∼= B × C and B ∼= A× D

for some C ,D ∈ K, then A ∼= B.
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Cantor-Bernstein theorem

Lemma

Let A ∈ K and φ be a factor K-congruence of A. Then θ ⊇ φ is a
factor K-congruence of A if and only if θ/φ is a factor
K-congruence of A/φ.

Lemma

Let A ∈ K. If A satisfies P, then so does A/φ for every factor
K-congruence φ of A.
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Cantor-Bernstein theorem

Lemma

Let A ∈ K satisfy the condition P. Let θ1 ⊆ θ2 be factor
K-congruences of A. If A ∼= A/θ2, then A ∼= A/θ1.

Proof: We construct the sequence θ0 ⊆ θ1 ⊆ θ2 ⊆ θ3 ⊆ . . . of
factor K-congruences of A so that A/θn ∼= A/θn+2 for all n ∈ N0:

θ0 := ∆A and θ1 ⊆ θ2 are the initial congruences;

Once θ0 ⊆ θ1 ⊆ . . . ⊆ θn−1 (n ≥ 3) satisfying A/θi ∼= A/θi+2

for all i = 0, 1, . . . , n − 3 are given, the congruence θn is
defined by the rule

θn/θn−1 = f (θn−2/θn−3)

where f : A/θn−3
∼= A/θn−1.

Skipping trivialities, we have θ0 ⊂ θ1 ⊂ · · · ⊂ θn−1 ⊂ θn ⊂ . . . .
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Cantor-Bernstein theorem

For every n ∈ N0, let φn/θn be the complement (θn+1/θn)∗ of
θn+1/θn in the lattice ConK(A/θn). Then φn is a factor
K-congruence of A. Under the isomorphism A/θn ∼= A/θn+2,
φn/θn corresponds to φn+2/θn+2. Hence

A/φn
∼= (A/θn)/(φn/θn) ∼= (A/θn+2)/(φn+2/θn+2) ∼= A/φn+2.

It is easily seen that φj ◦ φk = ∇A for all j 6= k. Now, the property
P implies that φ∞ :=

⋂
n∈N0

φn is a factor K-congruence of A and

A/φ∞ ∼=
∏
n∈N0

A/φn
∼= A/φ0 × A/φ1 × A/φ0 × A/φ1 × . . . ,

whence

A ∼= A/φ∗∞×A/φ∞ ∼= A/φ∗∞×A/φ0×A/φ1×A/φ0×A/φ1× . . . .
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Cantor-Bernstein theorem

For every n ∈ N, φn/θ1 is a factor K-congruence of A/θ1 since
φn ⊇ θn ⊇ θ1. We have (φj/θ1) ◦ (φk/θ1) = ∇A/θ1

for j 6= k.
Since A/θ1 fulfils P,

ψ/θ1 :=
⋂
n∈N

φn/θ1

is a factor K-congruence of A/θ1 and

A/θ1 ∼= (A/θ1)/(ψ/θ1)∗ ×
∏
n∈N

(A/θ1)/(φn/θ1).

Obviously, ψ =
⋂

n∈N φn and so φ∞ = ψ ∩ φ0, where φ0 = θ∗1 as
φ0/θ0 = (θ1/θ0)∗ in ConK(A/θ0) and θ0 = ∆A. Further, let

ψ\/θ1 := (ψ/θ1)∗.

Then
A/θ1 ∼= A/ψ\ ×

∏
n∈N

A/φn.
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Cantor-Bernstein theorem

Since ψ\ is the complement of ψ in [θ1,∇A]ConK(A), we have

ψ\ = ψ∗ ∨ θ1 = ψ∗ ∨ φ∗0 = (ψ ∩ φ0)∗ = φ∗∞ where ψ∗ is the
complement of ψ in ConK(A).
Hence

A/θ1 ∼= A/ψ\ ×
∏
n∈N

A/φn = A/φ∗∞ ×
∏
n∈N

A/φn

∼= A/φ∗∞ × A/φ1 × A/φ0 × A/φ1 × A/φ0 × . . .

which together with

A ∼= A/φ∗∞ × A/φ0 × A/φ1 × A/φ0 × A/φ1 × . . .

yields A ∼= A/θ1.
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Cantor-Bernstein theorem

Proof of the theorem:

Let A ∼= B × C and B ∼= A× D. Then A ∼= A× D × C .
Let θ1 and θ2 be the congruences on A corresponding, respectively,
to the projections p1 : (a, d , c) 7→ (a, d) and p2 : (a, d , c) 7→ a.
Then θ1 ⊆ θ2 and A ∼= A/θ2. Hence by the last lemma we have
A ∼= A/θ1 ∼= A× D ∼= B.
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Cantor-Bernstein theorem
. . . for basic algebras

The condition P

If {θi | i ∈ I} is a countable set of factor K-congruences with
θi ◦ θj = ∇A for all i 6= j , then

1 θ∞ :=
⋂

i∈I θi is a factor K-congruence,

2 A/θ∞ ∼=
∏

i∈I A/θi .

In basic algebras, the factor congruences correspond one-one to the
central elements:

The condition P for basic algebras

If {ai | i ∈ I} is a countable set of central elements such that
ai ∧ aj = 0 for all i 6= j , then

1 a∞ :=
∨

i∈I ai exists and is a central element,

2 for every {xi | i ∈ I} ⊆ A such that xi ≤ ai for all i ∈ I , the
supremum

∨
i∈I xi exists.
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Cantor-Bernstein theorem
. . . for CBA’s and EBA’s

A basic algebra is orthogonally σ-complete if there exists the
supremum

∨
X of every countable subset X such that x ∧ y = 0

for all x 6= y .

Theorem

Let A and B be orthogonally σ-complete commutative (or effect)
basic algebras. If

A ∼= [0, a] ⊆ B for some a ∈ C (B) and

B ∼= [0, b] ⊆ A for some b ∈ C (A),

then A ∼= B.
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