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Basic algebras

A basic algebra is an algebra (A, @&, —,0) of type (2,1,0) that
satisfies the identities

x®0=0,
——X = X,
~(x®y)®y =-(-y ®x) D x,
(-(-(xdy)dy)®z) D (xD2)=-0.

Do not confuse with Hajek's basic logic and BL-algebras!
The intersection of our basic algebras and BL-algebras are just
MV-algebras.
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The beginning . ..

Sectionally pseudocomplemented lattices

Sectionally pseudocomplemented lattices = a non-distributive
generalization of relatively pseudocomplemented lattices:
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The beginning . ..

Sectionally pseudocomplemented lattices

Sectionally pseudocomplemented lattices = a non-distributive
generalization of relatively pseudocomplemented lattices:

Definition

A sectionally pseudocomplemented lattice is a lattice with
greatest element such that every section is a pseudocomplemented
lattice.

Definition

By a section in a lattice we mean a principal filter.
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The beginning . ..

Sectionally pseudocomplemented lattices

We can define the binary operations ¢ and — by

Ny

xoy:=x* and x —y:=(xVy)

and regard sectionally pseudocomplemented lattices
as algebras (A, V,A,0,1) or (A, V, A, —,1).
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The beginning . ..

Sectionally pseudocomplemented lattices

We can define the binary operations ¢ and — by

xoy:=x"Y and x—y:=(xVy)

and regard sectionally pseudocomplemented lattices
as algebras (A, V,A,0,1) or (A, V, A, —,1).

For x > a we have

x?=x0a=x— a.
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The beginning . ..

Sectionally pseudocomplemented lattices

We can define the binary operations ¢ and — by

xoy:=x"Y and x—y:=(xVy)

and regard sectionally pseudocomplemented lattices
as algebras (A, V,A,0,1) or (A, V, A, —,1).

For x > a we have

xP=x0a=x— a.

If the relative pseudocomplement x * y of x w.r.t. y exists, then
xky=x0y=x—(xAy). Indeed, x A (xoy) =x Ay implies
xoy<xx*y,and x A (x*y)=xAyyields xxy < xoy.
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The beginning . ..

Basic algebras

Basic algebras = bounded lattices with sectional antitone
involutions, i.e., every section [a) is equipped with an antitone
involution ~,.

We shall write x? instead of 7,(x).

J. Kiihr “Basic” Algebras



The beginning . ..

Basic algebras

Basic algebras = bounded lattices with sectional antitone
involutions, i.e., every section [a) is equipped with an antitone
involution ~,.
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The beginning . ..

Basic algebras

Basic algebras = bounded lattices with sectional antitone
involutions, i.e., every section [a) is equipped with an antitone
involution ~,.

We shall write x? instead of 7,(x).
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@ Orthomodular lattices: If (A,V,A,,0,1) is an OML, then
is an antitone involution on [a).
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Basic algebras
Why antitone involutions? Why “basic”?

@ Orthomodular lattices: If (A,V,A,,0,1) is an OML, then

|x — x'V a| is an antitone involution on [a).

e MV-algebras: An MV-algebra (A, ®,—,0) is a commutative
monoid (A, ®,0) with a unary operation — satisfying the
identities

_|_|X:X7
x @& =0 = -0,
(x@y)®y =-(-y ®x)Dx.
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Basic algebras
Why antitone involutions? Why “basic”?

@ Orthomodular lattices: If (A,V,A,,0,1) is an OML, then

|x — x'V a| is an antitone involution on [a).

e MV-algebras: An MV-algebra (A, ®,—,0) is a commutative
monoid (A, ®,0) with a unary operation — satisfying the
identities

X = X7
x @& =0 = -0,
“(x@y) @y =(ny ®x)Ox.

Every MV-algebra is a bounded distributive lattice in which

| x — —x @ a|is an antitone involution on [a).
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Basic algebras
Why antitone involutions? Why “basic”?

@ Orthomodular lattices: If (A,V,A,,0,1) is an OML, then

|x — x'V a| is an antitone involution on [a).

e MV-algebras: An MV-algebra (A, ®,—,0) is a commutative
monoid (A, ®,0) with a unary operation — satisfying the
identities

_|_|X:X7
x @& =0 = -0,
(x@y)®y =-(-y ®x)Dx.

Every MV-algebra is a bounded distributive lattice in which

| x — —x @ a|is an antitone involution on [a).

@ Basic algebras = a common generalization of orthomodular
lattices and MV-algebras
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@ The equivalent algebraic semantics for the tukasiewicz
many-valued propositional logic.



Basic algebras
MV-algebras

@ The equivalent algebraic semantics for the tukasiewicz
many-valued propositional logic.

@ The variety of MV-algebras is generated by the standard
MV-algebra ([0, 1], ®, -, 0) where

x®y:=min{l,x+y} and —-x:=1-x.
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Basic algebras
MV-algebras

@ The equivalent algebraic semantics for the tukasiewicz
many-valued propositional logic.

@ The variety of MV-algebras is generated by the standard
MV-algebra ([0, 1], ®, -, 0) where

x@y:=min{l,x+y} and —-x:=1-x.

@ All MV-algebras can be obtained as follows:
Let (G,+,0,V,A) be an Abelian lattice-ordered group and
u € G*. Then ([0, u],®,—,0) is an MV-algebra where

x@y:=ulN(x+y) and —-x:=u-—x.
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Basic algebras
MV-algebras

@ The equivalent algebraic semantics for the tukasiewicz
many-valued propositional logic.

@ The variety of MV-algebras is generated by the standard
MV-algebra ([0, 1], ®, -, 0) where

x@y:=min{l,x+y} and —-x:=1-x.

@ All MV-algebras can be obtained as follows:
Let (G,+,0,V,A) be an Abelian lattice-ordered group and
u € G*. Then ([0, u],®,—,0) is an MV-algebra where

x@y:=ulN(x+y) and —-x:=u-—x.

o GMV-algebras = a non-commutative generalization of
MV-algebras.
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Basic algebras

Formal approach

Q Let (A, V,A,(?)aen, 0,1) be a bounded lattice with sectional

antitone involutions. If we define
L 0 y 0
x@y =x"Vy) and —x:=x,
then the algebra (A, @, -, 0) satisfies the identities

x®0=0,

=X = X,
ﬁ(ﬁx@y)@y:ﬁ(ﬁy@X)@Xa
(-(-(xdy)®y)®z)® (xP 2) = 0.
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Basic algebras

Formal approach

Q Let (A, V,A,(?)aen, 0,1) be a bounded lattice with sectional

antitone involutions. If we define
L 0 y 0
x@y =x"Vy) and —x:=x,
then the algebra (A, @, -, 0) satisfies the identities

x®0=0,

=X = X,
ﬁ(ﬁx@y)@y:ﬁ(ﬁy@X)@Xa
(-(-(xdy)®y)®z)® (xP 2) = 0.

We have x Vy = =(-xDy) Dy
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Basic algebras

Formal approach

Q Let (A, V,A,(?)aen, 0,1) be a bounded lattice with sectional
antitone involutions. If we define

x@y:=("Vy) and -x:=x°

then the algebra (A, @, -, 0) satisfies the identities

x®0=0, (BA1)
—ox = x, (BA2)
“(x@y)@y =(-y®x) DX, (BA3)
“(-(-(xdy)dy)Dz) D (XD 2) = 0. (BA4)

We have x Vy = =(-x @ y) Sy and x Ay = =(—x V —y)
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Basic algebras

Formal approach

Q Let (A, V,A,(?)aen, 0,1) be a bounded lattice with sectional
antitone involutions. If we define

x@y:=("Vy) and -x:=x°

then the algebra (A, @, -, 0) satisfies the identities

x®0=0, (BA1)
—ox = x, (BA2)
“(x@y)@y =(-y®x) DX, (BA3)
“(-(-(xdy)dy)Dz) D (XD 2) = 0. (BA4)

We have x Vy = =(-x @ y) @y and x Ay = =(—x V —y),
and x? = —x @ a for x € [a).
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Basic algebras

Formal approach

@ Let (A, &, —,0) be an algebra satisfying (BA1)—-(BA4), and
put

xVy:==(-x®y)®y and xAy:=-(-xV-y).

Then (A, V,A,0,1), where 1 := =0, is a bounded lattice
whose underlying order is given by

x<y iff ~xdy=1,
and for each a € A, the map
Ya: X+ XD a

is an antitone involution on [a).
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Basic algebras

Formal approach

@ Let (A, &, —,0) be an algebra satisfying (BA1)—-(BA4), and
put

xVy:==(-x®y)®y and xAy:=-(-xV-y).

Then (A, V,A,0,1), where 1 := =0, is a bounded lattice
whose underlying order is given by

x<y iff ~xdy=1,
and for each a € A, the map
Ya: X+ XD a

is an antitone involution on [a).
We have —x = p(x) and x & y = v, (—x V y).
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Basic algebras
The definition and MV-algebras

A basic algebra is an algebra (A, @, —,0) satisfying the identities
x®0=0, (BA1)
X = X, (BA2)
“(x@y)@y=-(-y®x)®x, (BA3)
“(-(-(xoy)®y)®2) @ (x D 2) = 0. (BA4)
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Basic algebras
The definition and MV-algebras

A basic algebra is an algebra (A, @, —,0) satisfying the identities

x®0=0,
-—Xx = X,
“(x®y)®dy =(-y ®x) D x,
(-(-(xdy)dy)®z) D (xD2)=-0.

(
(
(
(

MV-algebras = commutative and associative basic algebras. )

@ Another motivation: basic algebras as a non-associative
(and non-commutative) generalization of MV-algebras
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OML's = idempotent basic algebras satisfying the quasi-identity

x<y = yhx=y.
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Basic algebras

Orthomodular lattices

OML's = idempotent basic algebras satisfying the quasi-identity

X<y = ydx=y.

Proof:

@ —x is a complement of x iff x § x = x.
Indeed, x & x = (—x V x)* = x iff -xV x = 1.
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Basic algebras

Orthomodular lattices

OML's = idempotent basic algebras satisfying the quasi-identity

X<y = ydx=y.

Proof:

@ —x is a complement of x iff x § x = x.
Indeed, x ® x = (—x V x)* = x iff -xV x = 1.

o If Ais an OML, then x < y implies
ydEx=(yVx)*==(-yVx)Vx=(yA—-x)Vx=y.
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Basic algebras

Orthomodular lattices

OML's = idempotent basic algebras satisfying the quasi-identity

X<y = ydx=y.

Proof:
@ —x is a complement of x iff x § x = x.
Indeed, x ® x = (—x V x)* = x iff -xV x = 1.
o If Ais an OML, then x < y implies
yoOx=(CyVx)=-(-yVx)Vx=(yANx)Vx=y.
If Ais not an OML, then it contains
1

0

where y & x = (-y V x)* = 1¥ = x.
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Basic algebras
Example 1

The smallest basic algebra which is neither an OML nor an
MV-algebra:

1 @0 a b 1]~

0|0 a b 1]1

a b ala 1l b 1| a
b|b a 1 1]5b

0 111 1 1 1|0

a®b=(-aVvbP=1"=0p
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The term operation © defined by

X0y .=

—(y ® ~x)
is useful.

it
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Basic algebras

Some properties

The term operation & defined by
xoy:=-(y®x)

is useful. We have:
exdy=16((1oy)ox)and ~x=10x;
o x<yiffxey=0;
e xVy=(yo—x)@yand xANy=x0 (xOy);
°o (xANy)dz=(x®2)A(y o 2);
e xo(yNz)=(xoy)V(x62).
If the lattice is distributive, then
o (xVy)dz=(xdz)V(y®2),
e xo(yVz)=(xoy)A(xo2).
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@ For every a € A, the map

X—aox
is an antitone involution on [0, aJ;
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Basic algebras

Some properties

@ For every a € A, the map
X aoXx

is an antitone involution on [0, aJ;

@ [0, a] is a basic algebra when equipped with the operations
defined by

XBy =ac((acy)ox) and —x:=aox.

Observe that x ©,y = —,(y ©,7ax) = x Oy for x,y € [0, a].
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Basic algebras

Some properties

The variety of basic algebras is congruence regular and
arithmetical.

Regularity:

tilx,y,z) =(x0y)V(yox)Vz
t(x,y,z2) =20 ((xOy)V(y ©x))

Arithmeticity:

m(x,y,z) = (xS (y©2)V(zo(y ©x)) V(x12)
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Commutative BA's
CBA's are distributive lattices

The underlying lattices of commutative basic algebras are
distributive.
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Commutative BA's
CBA's are distributive lattices

The underlying lattices of commutative basic algebras are
distributive.

Proof: If A contains a copy of N5, then

1

9
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Commutative BA's
CBA's are distributive lattices

The underlying lattices of commutative basic algebras are
distributive.

Proof: If A contains a copy of N5, then
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Commutative BA's
CBA's are distributive lattices

The underlying lattices of commutative basic algebras are
distributive.

Proof: If A contains a copy of N5, then

and we have a =17 = (ncVa)! =cha=adc=(-aVc) =
(wu) =(-bVec)=bdc=c®b=(-cVbP=1>=b
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Commutative BA's
CBA's are distributive lattices

The underlying lattices of commutative basic algebras are
distributive.

Proof: If A contains a copy of N5, then

and we have a =17 = (ncVa)! =cha=adc=(-aVc) =
(~u)* = (-bVc)=bBc=cBb=(-cVbP=1"=b.
The case when A contains M3 is analogous.
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Commutative BA's
RDP

Every commutative basic algebra has the Riesz decomposition
property:

x<adb = x=adb (RDP)

for some a; < a and b; < b.
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Commutative BA's
RDP

Every commutative basic algebra has the Riesz decomposition
property:

x<a®b = x=a®bh (RDP)

for some a; < a and b; < b.

Proof: Put a1 :=x© b=x6 (xAb)and by := x A b. Then
aa<(adb)ob=an-b<aand

aadb=(x0(xAb))®(xAb)=x.
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Commutative BA's
Finite CBA's are MV-algebras

Every finite commutative basic algebra is an MV-algebra. \

J. Kiihr “Basic” Algebras



Commutative BA's
Finite CBA's are MV-algebras

Every finite commutative basic algebra is an MV-algebra.
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Commutative BA's
Finite CBA's are MV-algebras

Every finite commutative basic algebra is an MV-algebra.

Lemma

Every element of A is in the form

\V n.®a, (F)

where M is the set of the atoms of A, and n; € Ny for all a € M.

Here n@x i =x@---@dxforneN, and 0 ® x :=0.
—_——

n times
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Commutative BA's
Finite CBA's are MV-algebras

Every finite commutative basic algebra is an MV-algebra.

Lemma

Every element of A is in the form

\V n.®a, (F)

where M is the set of the atoms of A, and n; € Ny for all a € M. )

Here n@x i =x@---@dxforneN, and 0 ® x :=0.
—_——

n times

Proof: Fact: If x Ay =0, then x®y =xV y, and
(mex)A(n®y) =0 forall mne Np.
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Commutative BA's
Finite CBA's are MV-algebras

Suppose there is z € A which is not of the form (F). Then there
exists x € A that is maximal among the elements which can be
written in the form (F) and are less than or equal to z. Let

x = \/,em Na ® a. Further, there exists y € A such that

x <y < z. Obviously, b := y © x is an atom and y is not in the
form (F).
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Commutative BA's
Finite CBA's are MV-algebras

Suppose there is z € A which is not of the form (F). Then there
exists x € A that is maximal among the elements which can be
written in the form (F) and are less than or equal to z. Let

x = \/,em Na ® a. Further, there exists y € A such that

x <y < z. Obviously, b := y © x is an atom and y is not in the
form (F). Then

y=(oex)ex
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Commutative BA's
Finite CBA's are MV-algebras

Suppose there is z € A which is not of the form (F). Then there
exists x € A that is maximal among the elements which can be
written in the form (F) and are less than or equal to z. Let

x = \/,em Na ® a. Further, there exists y € A such that

x <y < z. Obviously, b := y © x is an atom and y is not in the
form (F). Then

y=(y@x)@x:b@<\/ na®a>

aeM
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Commutative BA's
Finite CBA's are MV-algebras

Suppose there is z € A which is not of the form (F). Then there
exists x € A that is maximal among the elements which can be
written in the form (F) and are less than or equal to z. Let

x = \/,em Na ® a. Further, there exists y € A such that

x <y < z. Obviously, b := y © x is an atom and y is not in the
form (F). Then

y=(y@x)@x:b@<\/ na®a> = \/ b® (n,® a).

aeM aeM
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Commutative BA's
Finite CBA's are MV-algebras

Suppose there is z € A which is not of the form (F). Then there
exists x € A that is maximal among the elements which can be
written in the form (F) and are less than or equal to z. Let

x = \/,em Na ® a. Further, there exists y € A such that

x <y < z. Obviously, b := y © x is an atom and y is not in the
form (F). Then

y=(y@x)@x:b@<\/ na®a> = \/ b® (n,® a).

aeM aeM

But for a # b we have b @ (n, ® a) = bV (n, ® a),
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Commutative BA's
Finite CBA's are MV-algebras

Suppose there is z € A which is not of the form (F). Then there
exists x € A that is maximal among the elements which can be
written in the form (F) and are less than or equal to z. Let

x = \/,em Na ® a. Further, there exists y € A such that

x <y < z. Obviously, b := y © x is an atom and y is not in the
form (F). Then

y=(y@x)@x:b@<\/ na®a> = \/ b® (n,® a).

aeM aeM

But for a # b we have b® (n, ® a) = bV (n, ® a), so

y = (ba(np®@b))vbv \/ n,®a
acM\{b}
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Commutative BA's
Finite CBA's are MV-algebras

Suppose there is z € A which is not of the form (F). Then there
exists x € A that is maximal among the elements which can be
written in the form (F) and are less than or equal to z. Let

x = \/,em Na ® a. Further, there exists y € A such that

x <y < z. Obviously, b := y © x is an atom and y is not in the
form (F). Then

yz(y@x)@x:b@<\/ na®a> = \/ b (n, ® a).
acM acM

But for a # b we have b® (n, ® a) = bV (n, ® a), so

y = (b@(n@b))vbv \/ n@a=((n+1)@b)v \/ n®a
acM\{b} ae M\{b}

which is an element of the form (F), a contradiction.
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O<a<---<a.

e For a€ M theset N(a) = {n® a| n€ Ny} is a finite chain

«0» «F»r « =) 4 » Q™



e For a€ M theset N(a) = {n® a| n€ Ny} is a finite chain
0<a<---<a

@ The RDP entails N(a) = [0, 3].

it
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Commutative BA's
Finite CBA's are MV-algebras

@ For a € M theset N(a) ={n® a|ne Ny} is a finite chain
0<a<---<a.

@ The RDP entails N(a) = [0, 4.

e (N(a), D3, 3,0) is a basic algebra in which ©3 coincides with
the original & in A.
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Commutative BA's
Finite CBA's are MV-algebras

@ For a € M theset N(a) ={n® a|ne Ny} is a finite chain
0<a<---<a.

@ The RDP entails N(a) = [0, 4.

e (N(a), D3, 3,0) is a basic algebra in which ©3 coincides with
the original & in A.

e (N(a),®s,3,0) is a linearly ordered MV-algebra.
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Commutative BA's
Finite CBA's are MV-algebras

@ For a € M theset N(a) ={n® a|ne Ny} is a finite chain
0<a<---<a.

@ The RDP entails N(a) = [0, 4.

e (N(a), D3, 3,0) is a basic algebra in which ©3 coincides with
the original & in A.

e (N(a),®s,3,0) is a linearly ordered MV-algebra.

Theorem
The map

(Xa)aGM = \/ Xa

aeM

is an isomorphism of [],.,, N(a) onto A.
Hence A is an MV-algebra.
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Commutative BA's
A commutative BA which is not an MV-algebra

The standard MV-algebra is the algebra ([0, 1], &, —,0), where

x@®y:=min{l,x+y} and —x:=1-x.

2,
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Commutative BA's
A commutative BA which is not an MV-algebra

The standard MV-algebra is the algebra ([0, 1], &, —,0), where

x@®y:=min{l,x+y} and —x:=1-x.

Let ([0, 1], &, —,0) be a commuta-
tive basic algebra. Then (up to iso-
morphism) the negation is given by

-x:=1-—x.

2,
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Commutative BA's
A commutative BA which is not an MV-algebra

The standard MV-algebra is the algebra ([0, 1], &, —,0), where

x@®y:=min{l,x+y} and —x:=1-x.

Let ([0, 1], &, —,0) be a commuta-
tive basic algebra. Then (up to iso-
morphism) the negation is given by

-x:=1-—x.

s
2,
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Commutative BA's

Every complete (as a lattice) commutative basic algebra is a
subdirect product of linearly ordered commutative basic algebras.

X 3k Xk
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Commutative BA's

Every complete (as a lattice) commutative basic algebra is a
subdirect product of linearly ordered commutative basic algebras.

X 3k Xk

Two problems

@ Is every commutative basic algebra a subdirect product of
linearly ordered ones?
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Commutative BA's

Every complete (as a lattice) commutative basic algebra is a
subdirect product of linearly ordered commutative basic algebras.

X 3k Xk

Two problems

@ Is every commutative basic algebra a subdirect product of
linearly ordered ones?

@ Find an associative basic algebra that is not an MV-algebra.
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Lattice effect algebras and D-lattices

Definition

An effect algebra is a structure (E,+,0,1) where 0,1 are
elements of E and + is a partial binary operation on E, satisfying
the following conditions:

(EA1) x + y =y + x if one side is defined,

(EA2) x+ (y + z) = (x + y) + z if one side is defined,

(EA3) for every x there exists a unique x’ such that x’ + x = 1,
(EA4)

EA4) x + 1 is defined only for x = 0.
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Lattice effect algebras and D-lattices

Definition

An effect algebra is a structure (E,+,0,1) where 0,1 are
elements of E and + is a partial binary operation on E, satisfying
the following conditions:

(EA1) x + y =y + x if one side is defined,

(EA2) x+ (y + z) = (x + y) + z if one side is defined,

(EA3) for every x there exists a unique x’ such that x’ + x = 1,
(EA4)

EA4) x + 1 is defined only for x = 0.

The underlying order:
x <y iff y=x+4 z forsome z;

this z is denoted by y — x.
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Lattice effect algebras and D-lattices

Definition

A D-poset is a structure (D, <, —,0,1) where (D,<,0,1) is a
bounded poset and — is a partial binary operation such that x — y
is defined iff x > y, satisfying the conditions

(DP1) x —0=x,
(DP2) if x <y <z thenz—y <z—x and
(z=x)=(z=y)=y—x
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Lattice effect algebras and D-lattices

Definition

A D-poset is a structure (D, <, —,0,1) where (D,<,0,1) is a
bounded poset and — is a partial binary operation such that x — y
is defined iff x > y, satisfying the conditions

(DP1) x —0=x,
(DP2) if x <y <z thenz—y <z—x and
(z=x)=(z=y)=y—x

To a D-poset (D, <,—,0,1) there corresponds the effect algebra
(D, +,0,1) obtained by letting

x+y:=z iff z>yandz—y=x.
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Lattice effect algebras and D-lattices

Definition

A D-poset is a structure (D, <, —,0,1) where (D,<,0,1) is a
bounded poset and — is a partial binary operation such that x — y
is defined iff x > y, satisfying the conditions

(DP1) x —0=x,
(DP2) if x <y <z thenz—y <z—x and
(z=x)=(z=y)=y—x

To a D-poset (D, <,—,0,1) there corresponds the effect algebra
(D, +,0,1) obtained by letting

x+y:=z iff z>yandz—y=x.

Lattice effect algebras/D-lattices are those with the underlying
lattice order.
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Lattice effect algebras and D-lattices

...as basic algebras

In each effect algebra/D-poset:
@ x — x' + a is an antitone involution on [a, 1],
@ x — a— x is an antitone involution on [0, a].

Hence lattice effect algebras/D-lattices are basic algebras:

J. Kiihr “Basic” Algebras



Lattice effect algebras and D-lattices

...as basic algebras

In each effect algebra/D-poset:
@ x — x' + a is an antitone involution on [a, 1],
@ x — a— x is an antitone involution on [0, a].

Hence lattice effect algebras/D-lattices are basic algebras:

Let (E,+,0,1) be a lattice effect algebra. If we set

/

x®y:=(xAy)+y and -x:=x,

then (E, @, —,0) is a basic algebra.

J. Kiihr “Basic” Algebras



Lattice effect algebras and D-lattices

...as basic algebras

In each effect algebra/D-poset:
@ x — x' + a is an antitone involution on [a, 1],
@ x — a— x is an antitone involution on [0, a].

Hence lattice effect algebras/D-lattices are basic algebras:

Let (E,+,0,1) be a lattice effect algebra. If we set

/

x®y:=(xAy)+y and -x:=x,

then (E, @, —,0) is a basic algebra.

Proof: x@y = (xXVy) =(xXVy)+y=(xAy)+y.

J. Kiihr “Basic” Algebras



We have

e xoy =-(y®—x)=x—(xAy),
o x+y=x8y for x < y;
e x—y=x68yforx>y.

i
v
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Lattice effect algebras and D-lattices

...as basic algebras

We have
o xSy = ~(y®x) =x—(xAy);
o x+y=x®y forx <y,
e x—y=x08yforx>y.

Theorem

Let (A, @, —,0) be a basic algebra, and define the partial operation
+ as follows:

x + y is defined iff x < =y, in which case x+y (= x@ y.

Then (A, +,0,1) is a lattice effect algebra if and only if
(A, @, —,0) satisfies the quasi-identity

x<-ay & x0y<-z = (xdy)dz=x®(zdy). (E)

v

J. Kiihr “Basic” Algebras



Lattice effect algebras and D-lattices

...as basic algebras

Theorem

Let (A, @, —,0) be a basic algebra, and define the partial operation
— as follows:

x — y is defined iff x > y, in which case x — y ;= x O y.

Then (A, <,—,0,1) is a D-lattice if and only if (A, ®, —,0) satisfies
the quasi-identity

x<y<z = (z6x)6(z6y)=yox. (E)

<
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Effect basic algebras

Definition

We call a basic algebra an effect basic algebra if it satisfies (E)
(equivalently, (E")).

Effect basic algebras (= lattice effect algebras = D-lattices) form a
variety. This variety is
@ congruence regular and arithmetical;

@ an ideal variety; the ideal terms (in y's) are

t1(x, y1,¥2) = x A (y1 @ y2),
t2(Xay) =X -y.
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In a lattice effect algebra, two elements x, y are compatible if

(xVy)—y=x—(xAy).
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Effect basic algebras

Compatibility and commutativity

In a lattice effect algebra, two elements x, y are compatible if

(xVy)—y=x—(xAy).

Let (E,®,—,0) be an effect basic algebra and (E,+,0,1) the
associated lattice effect algebra. Then x,y € E are compatible iff
XDy =y>Dx.
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Effect basic algebras

Compatibility and commutativity

In a lattice effect algebra, two elements x, y are compatible if

(xVy)—y=x—(xAy).

Theorem

Let (E,®,—,0) be an effect basic algebra and (E,+,0,1) the
associated lattice effect algebra. Then x,y € E are compatible iff
XDy =y>Dx.

Theorem

For every effect basic algebra E, the following are equivalent:
Q@ E is an MV-algebra;
@ E is commutative;
© E satisfies the RDP.
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Effect basic algebras

Compatibility and commutativity

A block is a maximal subset whose elements commute.
The MV-centre is the intersection of the blocks.
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Effect basic algebras

Compatibility and commutativity

A block is a maximal subset whose elements commute.
The MV-centre is the intersection of the blocks.

For every basic algebra E, the following are equivalent:

© E is an effect basic algebra;
@ every block of E is a subalgebra which itself is an MV-algebra.
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Effect basic algebras

Compatibility and commutativity

A block is a maximal subset whose elements commute.
The MV-centre is the intersection of the blocks.

For every basic algebra E, the following are equivalent:

© E is an effect basic algebra;
@ every block of E is a subalgebra which itself is an MV-algebra.

Let E be an effect basic algebra. If E is subdirectly irreducible,
then its MV-centre MV/(E) is a subdirectly irreducible MV-algebra
(hence MV/(E) is linearly ordered).

A
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Effect basic algebras

Some varieties

EBA
? CBA
oML MVA
BooleanA

The variety generated by the algebra from Example 1 is
axiomatized, relative to the variety of distributive EBA'’s, by the
identity (x&y)o(zdz)=(x6(zdz))o(yo (z® 2)).
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Cantor-Bernstein theorem
Boolean algebras and MV-algebras

o Let A and B be o-complete Boolean algebras. If A is
isomorphic to [0,a] C B and B is isomorphic to [0, b] C A,
then A= B.

@ Let A and B be o-complete MV-algebras. If A is isomorphic
to [0,a] C B and B is isomorphic to [0, b] C A where a, b are
complemented elements, then A= B.
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Cantor-Bernstein theorem

Central elements

(L)

0,1) (1,0)

(0,0)

Definition
We say that a € A is a central element in a basic algebra A if

a=f"10,1) or a=f"1(1,0)

for some direct product decomposition f: A= A; x As.
The centre of A, C(A), is the set of all central elements.
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Cantor-Bernstein theorem

Central elements

@ C(A) is a subalgebra of A and a Boolean algebra in its own
right.

e If Ais a commutative basic algebra, then a € C(A) iff a is
complemented iff —a is a complement of a.

o If Ais an effect basic algebra, then a € C(A) iff ~ais a
complement of a and a € MV (A).

Cantor-Bernstein type theorem

Let A, B be basic algebras satisfying certain conditions. If
e A= 0, a] C B for some a € C(B) and
e B=|0,b] C Afor some b € C(A),

then A = B.
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Cantor-Bernstein theorem

Let IC be a K-congruence distributive quasivariety. We shall say
that an algebra A € KC satisfies the condition &7 if for every
countable set {#; | i € I} of factor K-congruences of A such that
0; 0 0k = V4 for all j # k, the congruence

0o =)0
icl
is a factor KC-congruence of A and

Al = T A/0:.

i€l

Let A and B be two algebras in K satisfying the condition &. If

A=2BxC and B=2AxD

for some C,D € K, then A= B.
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Cantor-Bernstein theorem

Let A € K and ¢ be a factor K-congruence of A. Then 6 D ¢ is a
factor [C-congruence of A if and only if /¢ is a factor
KC-congruence of A/¢.

Let A € K. If A satisfies &, then so does A/¢ for every factor
K-congruence ¢ of A.
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Cantor-Bernstein theorem

Let A € K satisfy the condition &2. Let 6; C 6, be factor
KC-congruences of A. If A=~ A/0,, then A= A/b6;.

Proof: We construct the sequence 6y C 61 C 0, C O3 C ... of
factor K-congruences of A so that A/0, = A/0,4 for all n € Np:

@ Oy := Ap and 07 C 65 are the initial congruences;

@ Once p C 6y C...C 0h—1 (n>3) satisfying A/6; = A/ 12
forall i=0,1,...,n— 3 are given, the congruence 6, is
defined by the rule

Gn/an—l — f(en—2/9n—3)

where f: A/0p,_3 = A/0,_1.
Skipping trivialities, we have g C 01 C --- C 6,1 C O, C....
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Cantor-Bernstein theorem

For every n € Ny, let ¢,/0, be the complement (6,11/6,)* of
0n+1/05 in the lattice Conx(A/6,). Then ¢, is a factor
KC-congruence of A. Under the isomorphism A/0, = A/0p42,
®n/0n corresponds to ¢pi2/0,1+2. Hence

Albn = (A/0n)/(¢n/0n) = (A/On12)/(Pn12/Ont2) = Al na.

It is easily seen that ¢; o ¢ = V4 for all j # k. Now, the property
& implies that ¢oo = [,cny, ¢n is a factor K-congruence of A and

Alpoo = ] Aldn = Alo x Aldn x Aldo x A1 x ...,

neNy

whence

A AIGE X A dos 2 AIG% X Aldo x Aldy x Al x Alpy % ...
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Cantor-Bernstein theorem

For every n € N, ¢,/0; is a factor K-congruence of A/0; since
¢n 2 0p 2 01. We have (¢;/01) o (¢x/01) = V ase, for j # k.
Since A/0; fulfils 2,

V[0 = () én/0n
neN
is a factor KC-congruence of A/f; and
AlO1 2= (A/01)/(1/61)" x T](A/61)/(¢n/61)-
neN

Obviously, ¥ = [ ,,cny @n and so ¢ = ¥ N ¢o, where ¢g = 07 as
¢0/90 = (01/90)* in COHK(A/H()) and g = A 4. Further, let

Y01 = (6/61)"

Then
Al0y = AJp* x T A/én-

neN
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Cantor-Bernstein theorem

Since 9! is the complement of 1 in [61, V alcony (), We have

Ph=p* VO =YV gf = (YN o) = ¢ where 1b* is the
complement of ¢ in Cong(A).
Hence

Al = A x ] Aldn = Aldte x T Al

neN neN
S A/P5 X Aldr X Aldo X Ald1 X Al X ...

which together with

AZA/P5 X Aldg x A1 X Aldg x Aldp1 X ...

yields A= A/0;.
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Cantor-Bernstein theorem

Proof of the theorem:

Let ABx Cand BZAXxD. Then AZAx D x C.

Let 61 and 6, be the congruences on A corresponding, respectively,
to the projections p1: (a,d,c) — (a,d) and p2: (a,d, c) — a.
Then 61 C 6, and A= A/6,. Hence by the last lemma we have
A2 A/ 2 AxD=B.
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Cantor-Bernstein theorem

... for basic algebras

The condition &

If {6; | i € I} is a countable set of factor C-congruences with
0;i00; =V forall i # j, then

@ 0o :=ig, bi is a factor K-congruence,

Q@ A/ =i, A/0i-

In basic algebras, the factor congruences correspond one-one to the
central elements:

The condition &2 for basic algebras

If {aj | i € I} is a countable set of central elements such that
aj A\ aj =0 for all i # j, then
Q a = \/,-e, a; exists and is a central element,

@ for every {x; | i € I} C A such that x; < a; for all i € [, the
supremum \/;, x; exists.
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Cantor-Bernstein theorem
...for CBA’'s and EBA's

A basic algebra is orthogonally o-complete if there exists the
supremum \/ X of every countable subset X such that x Ay =0
for all x # y.

Theorem

Let A and B be orthogonally o-complete commutative (or effect)
basic algebras. If

e A=0,a] C B for some a € C(B) and
e B]0,b] C A for some b € C(A),
then A= B.
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