Algebra = a set with operations:

$$\mathbf{A} = (A, \{f_i \mid i \in I\})$$

n-ary operation on the set A: function $A^n \to A$;

Examples: groups, rings, vector spaces, Boolean algebras, lattices...

Congruence on algebra A is an equivalence relation θ on the set A, preserved by all basic operations of A, i.e.

$$(a_1, b_1) \in \theta, \ (a_2, b_2) \in \theta, \dots, (a_n, b_n) \in \theta$$

implies

$$(f(a_1,\ldots,a_n),f(b_1,\ldots,b_n)\in\theta))$$

(for f n-ary). Every algebra with more than 1 element has at least two congruences.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Congruences enable *quotients*:

On the set of θ -classes we define the operations be means of representatives:

$$f(a_1/\theta,\ldots,a_n/\theta) = f(a_1,\ldots,a_n)/\theta.$$

This gives rise to a new algebra of the same type as \mathbf{A} , which is a simplified image of the algebra A.

For instance, $\mathbb{Z}/(\text{mod } n) = \mathbb{Z}_n$.

${\bf A}$... a group; Every normal subgroup ${\bf B}$ of ${\bf A}$ determines a congruence

$$\theta=\{(a,b)\in A^2\mid ab^{-1}\in B\}.$$

(That's why we speak about a factorization of a group by a normal subgroup.)

Similarly: rings, vector spaces

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\mathbf{B} = (B; \cup, \cap, ', 0, 1)$$

 $(B \subseteq \mathcal{P}(X));$
Ideal: a subset $I \subseteq B$ such that

- if $M \in I$, $N \subseteq M$, then $N \in I$;
- if $M, N \in I$, then $M \cup N \in I$.

Every ideal determines a congruence (and vice versa):

$$\theta = \{ (M, N) \in B^2 \mid (M \cap N') \cup (M' \cap N) \in I \}.$$

イロト イポト イヨト イヨト

Consider (\mathbb{Z}, \max, \min) (a distributive lattice)

Fact: Congruences are equivalences, whose all classes are intervals.

Miroslav Ploščica Critical points for congruence lattices

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Congruences on an algebra A can be ordered by the "refinement" relation (= set inclusion):

 $\varphi \leq \theta$ ak $(x\varphi y \text{ implies } x\theta y).$

We obtain a complete lattice ConA.

◆□→ ◆□→ ◆三→ ◆三→

э

For $(\mathbb{Z}, +, \cdot)$:

 $(\mod n) \le (\mod m)$ if m|n.

So: $\operatorname{Con} \mathbb{Z}$ is (isomorphic to) the set of all nonnegative integers, the smallest element is $(\mod 0)$, the largest $(\mod 1)$, the infimum is the LCM and the supremum is the GCD.

Congruence lattices

Let A be the 2-dimensional vector space over a field F. Every nontrivial congruence looks the same: its congruence classes are mutually parallel lines. So Con A looks as follows:

The number of elements in the

middle layer is equal to the number of the lines containing 0. For a finite F it is $n=|{\cal F}|+1.$

Is every lattice isomorphic to the congruence lattice of some algebra?

Theorem

(G. Grätzer, E. T. Schmidt) A lattice is isomorphic to the congruence lattice of some algebra if and only if it is algebraic.

What about congruence lattices of special kinds of algebras?

・ 同 ト ・ ヨ ト ・ ヨ ト

Open problem: Is every *finite* lattice (isomorphic to) the congruence lattice of some *finite* algebra?

Equivalent group formulation: Is every *finite* lattice (isomorphic to) an interval in the subgroup lattice of a *finite* group?

One solved problem: Is every *distributive* algebraic lattice (isomorphic to) the congruence lattice of some lattice?

Partial positive results (R. P. Dilworth, E. T. Schmidt, A. Huhn...), but Final answer: no (F. Wehrung 2005)

(日本) (日本) (日本)

Problem. For a given class \mathcal{K} of algebras describe Con \mathcal{K} =all algebras isomorphic to Con A for some $A \in \mathcal{K}$.

Or, at least,

for given classes \mathcal{K} , \mathcal{L} determine if Con $\mathcal{K} = \text{Con } \mathcal{L}$ (Con $\mathcal{K} \subseteq \text{Con } \mathcal{L}$)

and, if Con $\mathcal{K} \nsubseteq$ Con \mathcal{L} , determine

 $\operatorname{Crit}(\mathcal{K},\mathcal{L}) = \min\{\operatorname{card}(L_c) \mid L \in \operatorname{Con} \mathcal{K} \setminus \operatorname{Con} \mathcal{L}\}$

 $(L_c = \text{compact elements of } L)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

We are especially interested in the case when \mathcal{K} and \mathcal{L} are congruence-distributive varieties (in most results also finitely generated). For instance, $Crit(N_5, M_3) = 5$, $\operatorname{Crit}(\mathbf{M}_3, \mathbf{N}_5) = \operatorname{Crit}(\mathbf{M}_3, \mathbf{D}) = \aleph_0,$ $\operatorname{Crit}(\mathbf{M}_4, \mathbf{M}_3) = \aleph_2$ $\operatorname{Crit}(\operatorname{Maj}, \operatorname{Lat}) = \aleph_2.$ $(N_5, M_3, M_4, D \text{ are well-known lattice varieties, } Lat = all$ lattices, Maj = all majority algebras.) P. Gillibert: under some reasonable finiteness conditions, the critical point between two varieties cannot be larger than \aleph_2 .

 N_5 and M_n

Miroslav Ploščica Critical points for congruence lattices

・ロト ・部ト ・ヨト ・ヨト

æ

M(L)....completely meet-irreducible elements of a lattice L($a = \inf X$ implies $a \in X$) Fact: if L is algebraic, then every element is a meet of completely meet-irreducible elements.

Topology on M(L): all sets of the form

$$\mathcal{M}(L) \cap \uparrow x = \{a \in \mathcal{M}(L) \mid a \ge x\}$$

are closed.

Theorem

If L is distributive algebraic, then $L \cong \mathcal{O}(M(L))$. (The lattice of all open subsets of M(L).

Sometimes the properties of Con A are more effectively expressed as topological properties of M(Con A). A sample:

- If $A \in \mathbf{D}$ then $M(\operatorname{Con} A)$ is Hausdorff.
- There exists a countable $B \in \mathbf{M}_3$ such that $\mathrm{M}(\mathrm{Con}\,B)$ is not Hausdorff.
- Therefore, $\operatorname{Crit}(\mathbf{M}_3, \mathbf{D}) \leq \aleph_0$.

The topological approach was used to establish e.g. $Crit(\mathbf{M}_4, \mathbf{M}_3) = \aleph_2$. (But the argument is much more complicated.)

イロト イポト イヨト イヨト

The Con functor:

For any homomorphism of algebras $f:\;A\to B$ we define ${\rm Con}\,f:\;{\rm Con}\,A\to {\rm Con}\,B$

by $\alpha \mapsto \text{congruence generated by } \{(f(x), f(y)) \mid (x, y) \in \alpha\}.$

Fact. Con f preserves \lor and 0, not necessarily \land .

イロト イポト イヨト イヨト

Let

• $\varphi:\ S\to T$ be a $(\vee,0)\text{-homomorphisms}$ of lattices;

• $f: A \rightarrow B$ be a homomorphisms of algebras.

We say that f lifts $\varphi,$ if there are isomorphisms $\psi_1:\ S\to {\rm Con}\,A,$ $\psi_2:\ T\to {\rm Con}\,B$ such that

commutes.

A generalization: lifting of semilattice diagrams

・ロト ・得 ト ・ヨト ・ヨト - ヨ

Let $\mathcal{K},\ \mathcal{L}$ be finitely generated congruence distributive varieties.

Theorem

TFAE

- $\operatorname{Con} \mathcal{K} \nsubseteq \operatorname{Con} \mathcal{L};$
- there exists a diagram of finite $(\lor, 0)$ -semilattices indexed by $\{0,1\}^n$ (for some n) liftable in $\mathcal K$ but not in $\mathcal L$

・ロト ・聞 と ・ 聞 と ・ 聞 と …

Theorem

(2) implies (1), where

- $\operatorname{Crit}(\mathcal{K},\mathcal{L}) \leq \aleph_n;$
- there exists a diagram of finite (∨,0)-semilattices indexed by a product of n + 1 finite chains liftable in K but not in L

If n = 0 then also (1) \Longrightarrow (2).

Question. What about (1) \Longrightarrow (2) for n > 0?

・ロト ・ 同ト ・ ヨト ・ ヨト - -

Example

The semilattice homomorphism

has a lifting in \mathbf{M}_3 (the embedding of a 3-element chain into M_3 lifts it), but not in \mathbf{D} . Therefore, $\operatorname{Crit}(\mathbf{M}_3, \mathbf{D}) \leq \aleph_0$.

| 4 同 1 4 三 1 4 三 1

We know that $Crit(\mathbf{M}_4, \mathbf{M}_3) = \aleph_2$. Is there a diagram indexed by a product of 3 finite chains liftable in \mathbf{M}_4 but not in \mathbf{M}_3 ?

Yes, it is on the next slide.

Miroslav Ploščica Critical points for congruence lattices

◆□→ ◆□→ ◆三→ ◆三→

э

M3 versus M4

Miroslav Ploščica Critical points for congruence lattices

Critical point \aleph_1

Let \mathbf{C}_4^* and \mathbf{N}_6^* be the varieties generated by the bounded lattices C_4 and N_6 with an additional unary operation: on $C_4 \dots f(0) = 0$, f(a) = b, f(b) = a, f(1) = 0; on $N_6 \dots 180^\circ$ rotation ($f(x) = w \dots$).

Theorem

- (1) $\operatorname{Crit}(\mathbf{N}_6^*, \mathbf{N}_5) = \aleph_1;$
- (2) $\operatorname{Crit}(\mathbf{N}_5, \mathbf{N}_6^*) = \aleph_0.$
- (3) $\operatorname{Crit}(\mathbf{N}_6^*, \mathbf{C}_4^*) = \aleph_1;$
- (4) $Crit(C_4^*, N_6^*) = \infty.$

< ロ > (同 > (回 > (回 >))) 目 = (回 >) (u = (u

What is the mechanism behind these examples?

Miroslav Ploščica Critical points for congruence lattices

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

æ

N6 versus N5

Both N_5 and N_6^* have the same congruence lattice, but N_6^* has an automorphism h (the vertical symmetry), such that $\operatorname{Con}_c h$ interchanges α and β :

伺 と く ヨ と く ヨ と

N6 versus N5

Below: \mathcal{D} is the diagram in \mathbf{N}_6^* , so that $\operatorname{Con} \mathcal{D}$ has a lifting in \mathbf{N}_6^* but - no lifting in \mathbf{N}_5 .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Every automorphism $f: A \to A$ induces an automorphism $\operatorname{Con}_c f: \operatorname{Con}_c A \to \operatorname{Con}_c A$. These induced automorphisms form a subgroup of the automorphism group of $\operatorname{Con}_c A$. And this subgroup has an influence on the class $\operatorname{Con} \mathbf{A}$, where A is the variety generated by A.