
Algebras

Algebra = a set with operations:

A = (A, {fi | i ∈ I})

n-ary operation on the set A: function An → A;

Examples: groups, rings, vector spaces, Boolean algebras, lattices...
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Congruences

Congruence on algebra A is an equivalence relation θ on the set A,
preserved by all basic operations of A, i.e.

(a1, b1) ∈ θ, (a2, b2) ∈ θ, . . . , (an, bn) ∈ θ

implies

(f(a1, . . . , an), f(b1, . . . , bn) ∈ θ))
(for f n-ary).
Every algebra with more than 1 element has at least two

congruences.
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Importance of congruences

Congruences enable quotients:

On the set of θ-classes we de�ne the operations be means of

representatives:

f(a1/θ, . . . , an/θ) = f(a1, . . . , an)/θ.

This gives rise to a new algebra of the same type as A, which is a

simpli�ed image of the algebra A.

For instance, Z/(modn) = Zn.
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Example: groups

A . . . a group;

Every normal subgroup B of A determines a congruence

θ = {(a, b) ∈ A2 | ab−1 ∈ B}.

(That's why we speak about a factorization of a group by a normal

subgroup.)

Similarly: rings, vector spaces
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Example: Boolean algebras

B = (B;∪,∩, ′, 0, 1)
(B ⊆ P(X));
Ideal: a subset I ⊆ B such that

if M ∈ I, N ⊆M , then N ∈ I;
if M,N ∈ I, then M ∪N ∈ I.

Every ideal determines a congruence (and vice versa):

θ = {(M,N) ∈ B2 | (M ∩N ′) ∪ (M ′ ∩N) ∈ I}.
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Example: chains

Consider (Z,max,min) (a distributive lattice)

Fact: Congruences are equivalences, whose all classes are intervals.
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Congruence lattices

Congruences on an algebra A can be ordered by the �re�nement"

relation (= set inclusion):

ϕ ≤ θ ak (xϕy implies xθy).

We obtain a complete lattice ConA.
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Congruence lattices

For (Z,+, ·):

(modn) ≤ (modm) if m|n.
So: ConZ is (isomorphic to) the set of all nonnegative integers,

the smallest element is (mod 0), the largest (mod 1), the in�mum

is the LCM and the supremum is the GCD.
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Congruence lattices

Let A be the 2-dimensional vector space over a �eld F . Every
nontrivial congruence looks the same: its congruence classes are

mutually parallel lines. So ConA looks as follows:
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The number of elements in the

middle layer is equal to the number of the lines containing 0. For a
�nite F it is n = |F |+ 1.
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Congruence lattices

Is every lattice isomorphic to the congruence lattice of some

algebra?

Theorem

(G. Grätzer, E. T. Schmidt) A lattice is isomorphic to the

congruence lattice of some algebra if and only if it is algebraic.

What about congruence lattices of special kinds of algebras?
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Congruence lattices

Open problem: Is every �nite lattice (isomorphic to) the

congruence lattice of some �nite algebra?

Equivalent group formulation: Is every �nite lattice (isomorphic to)

an interval in the subgroup lattice of a �nite group?
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Congruence lattices

One solved problem: Is every distributive algebraic lattice

(isomorphic to) the congruence lattice of some lattice?

Partial positive results (R. P. Dilworth, E. T. Schmidt, A. Huhn...),

but

Final answer: no (F. Wehrung 2005)
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General problem

Problem. For a given class K of algebras describe Con K =all

algebras isomorphic to Con A for some A ∈ K.

Or, at least,

for given classes K, L determine if Con K = Con L
(Con K ⊆ Con L)

and, if Con K * Con L, determine

Crit(K,L) = min{card(Lc) | L ∈ ConK \ ConL}

(Lc = compact elements of L)
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Some critical points

We are especially interested in the case when K and L are

congruence-distributive varieties (in most results also �nitely

generated). For instance,

Crit(N5,M3) = 5,
Crit(M3,N5) = Crit(M3,D) = ℵ0,
Crit(M4,M3) = ℵ2,
Crit(Maj,Lat) = ℵ2.
(N5, M3, M4, D are well-known lattice varieties, Lat = all

lattices, Maj = all majority algebras.)

P. Gillibert: under some reasonable �niteness conditions, the critical

point between two varieties cannot be larger than ℵ2.
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N5 and Mn
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Topological approach

M(L)....completely meet-irreducible elements of a lattice L
(a = infX implies a ∈ X)

Fact: if L is algebraic, then every element is a meet of completely

meet-irreducible elements.

Topology on M(L): all sets of the form

M(L) ∩ ↑x = {a ∈ M(L) | a ≥ x}

are closed.

Theorem

If L is distributive algebraic, then L ∼= O(M(L)). (The lattice of all

open subsets of M(L).
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Topological approach

Sometimes the properties of ConA are more e�ectively expressed

as topological properties of M(ConA). A sample:

If A ∈ D then M(ConA) is Hausdor�.

There exists a countable B ∈M3 such that M(ConB) is not
Hausdor�.

Therefore, Crit(M3,D) ≤ ℵ0.
The topological approach was used to establish e.g.

Crit(M4,M3) = ℵ2. (But the argument is much more

complicated.)
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Con functor

The Con functor:

For any homomorphism of algebras f : A→ B we de�ne

Con f : ConA→ ConB

by

α 7→ congruence generated by {(f(x), f(y)) | (x, y) ∈ α}.

Fact. Con f preserves ∨ and 0, not necessarily ∧.
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Lifting of semilattice morphisms

Let

ϕ : S → T be a (∨, 0)-homomorphisms of lattices;

f : A→ B be a homomorphisms of algebras.

We say that f lifts ϕ, if there are isomorphisms ψ1 : S → ConA,
ψ2 : T → ConB such that

S
ϕ−−−−→ T

ψ1

y ψ2

y
ConA

Con f−−−−→ ConB

commutes.

A generalization: lifting of semilattice diagrams
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Results of P. Gillibert 1

Let K, L be �nitely generated congruence distributive varieties.

Theorem

TFAE

ConK * ConL;
there exists a diagram of �nite (∨, 0)-semilattices indexed by

{0, 1}n (for some n) liftable in K but not in L
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Results of P.Gillibert 2

Theorem

(2) implies (1), where

Crit(K,L) ≤ ℵn;
there exists a diagram of �nite (∨, 0)-semilattices indexed by a

product of n+ 1 �nite chains liftable in K but not in L
If n = 0 then also (1)=⇒ (2).

Question. What about (1)=⇒(2) for n > 0?
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Example

The semilattice homomorphism
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has a lifting in M3 (the embedding of a 3-element chain into M3

lifts it), but not in D. Therefore, Crit(M3,D) ≤ ℵ0.
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Critical point aleph2

We know that Crit(M4,M3) = ℵ2. Is there a diagram indexed by

a product of 3 �nite chains liftable in M4 but not in M3?

Yes, it is on the next slide.
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M3 versus M4
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Critical point ℵ1
Let C∗4 and N∗6 be the varieties generated by the bounded lattices

C4 and N6 with an additional unary operation:

on C4 ... f(0) = 0, f(a) = b, f(b) = a, f(1) = 0;
on N6 ... 180◦ rotation (f(x) = w...) .
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Critical points ℵ1

Theorem

(1) Crit(N∗6,N5) = ℵ1;
(2) Crit(N5,N

∗
6) = ℵ0.

(3) Crit(N∗6,C
∗
4) = ℵ1;

(4) Crit(C∗4,N
∗
6) =∞.
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Question

What is the mechanism behind these examples?
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N6 versus N5

Both N5 and N∗6 have the same congruence lattice, but N∗6 has an

automorphism h (the vertical symmetry), such that Conc h
interchanges α and β:
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N6 versus N5

Below: D is the diagram in N∗6 , so that ConD has a lifting in N∗6
but - no lifting in N5.
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Observation

Every automorphism f : A→ A induces an automorphism

Conc f : ConcA→ ConcA. These induced automorphisms form a

subgroup of the automorphism group of ConcA. And this

subgroup has an in�uence on the class ConA, where A is the

variety generated by A.
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