Congruence lattices of algebras

Miroslav Ploščica

Slovak Academy of Sciences, Košice

October 16, 2014

(中) (문) (문) (문) (문)

Grant

2/0028/2013 Reprezentačné a klasifikačné problémy algebraických štruktúr Riešitelia: M. Ploščica, E. Halušková, J. Pócs Ciele:

- testovanie kongruenčnej ekvivalentnosti a kongruenčnej maximálnosti variet;
- (2) popis zväzov kongruencií algebier v (lokálne konečných) kongruenčne distributívnych varietách s vlastnosťou kompaktného prieniku;
- (3) klasifikácia monounárnych algebier a iných štruktúr (retraktové variety, radikálové triedy, konvexity);
- (4) direktné a inverzné limity algebier;
- (5) aplikácia metód formálnej konceptovej analýzy na niektoré problémy teoretickej informatiky.

Algebra = a set with operations:

$$\mathbf{A} = (A, \{f_i \mid i \in I\})$$

n-ary operation on the set A: function $A^n \to A$;

Examples: groups, rings, vector spaces, Boolean algebras, lattices...

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Congruence on algebra A is an equivalence relation θ on the set A, preserved by all basic operations of A, i.e.

$$(a_1, b_1) \in \theta, \ (a_2, b_2) \in \theta, \dots, (a_n, b_n) \in \theta$$

implies

$$(f(a_1,\ldots,a_n),f(b_1,\ldots,b_n)\in\theta))$$

(for f n-ary).

э

 $\mathsf{On}\ \mathbb{Z}:$

$$a \equiv b \pmod{m}$$
 if $m|(a-b)$

Key property:

$$a \equiv b \pmod{m}, \ c \equiv d \pmod{m}$$

implies

$$a + c \equiv b + d \pmod{m},$$

 $ac \equiv bd \pmod{m}.$

(ロ) (部) (E) (E)

æ

Congruences enable *quotients*:

On the set of θ -classes we define the operations be means of representatives:

$$f(a_1/\theta,\ldots,a_n/\theta) = f(a_1,\ldots,a_n)/\theta.$$

This gives rise to a new algebra of the same type as A, which is a simplified image of the algebra A.

For instance, $\mathbb{Z}/(\text{mod } n) = \mathbb{Z}_n$.

イロト イポト イヨト イヨト

 ${\bf A}$... a commutative group; Every subgroup ${\bf B}$ of ${\bf A}$ determines a congruence

$$\theta = \{ (a, b) \in A^2 \mid ab^{-1} \in B \}.$$

(That's why we speak about a factorization of a group by a subgroup.)

Similarly: rings, vector spaces

▲ 同 ▶ → 目 ▶ → ● ▶ →

$$\mathbf{B} = (B; \cup, \cap, ', 0, 1)$$

($B \subseteq \mathcal{P}(X)$);
Ideal: a subset $I \subseteq B$ such that

- if $M \in I$, $N \subseteq M$, then $N \in I$;
- if $M, N \in I$, then $M \cup N \in I$.

Every ideal determines a congruence (and vice versa):

$$\theta = \{ (M, N) \in B^2 \mid (M \cap N') \cup (M' \cap N) \in I \}.$$

・ロト ・ 戸 ・ ・ ヨ ・ ・

Consider (\mathbb{Z}, \max, \min) (a distributive lattice)

Fact: Congruences are equivalences, whose all classes are intervals.

イロト イポト イヨト イヨト

Congruences on an algebra A can be ordered by the "refinement" relation (= set inclusion):

 $\varphi \leq \theta$ ak $(x\varphi y \text{ implies } x\theta y).$

We obtain an ordered set ConA, in which every 2 elements have the largest lower bound (infimum) and the smallest upper bound (supremum) - *lattice*. ConA always contains a smallest and a largest element.

For $(\mathbb{Z}, +, \cdot)$:

$(\bmod n) \le (\bmod m) \quad \text{if } m|n.$

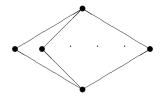
So: the smallest element is $(mod\,0),$ the largest $(mod\,1),$ the infimum is the LCM and the supremum is the GCD.

イロト イポト イヨト イヨト

э

Vector spaces

Let A be the 2-dimensional vector space over a field F. Every nontrivial congruence looks the same: its congruence classes are mutually parallel lines. So Con A looks as follows. (The number of elements in the middle layer is equal to the number of the lines containing 0. For a finite F it is n = |F| + 1.)



Is every lattice isomorphic to the congruence lattice of some algebra?

Theorem

A lattice is isomorphic to the congruence lattice of some algebra if and only if it is algebraic.

What about congruence lattices of special kinds of algebras?

Open problem: Is every *finite* lattice (isomorphic to) the congruence lattice of some *finite* algebra?

Equivalent group formulation: Is every *finite* lattice (isomorphic to) an interval in the subgroup lattice of a *finite* group?

Recently solved problem: Is every *distributive* algebraic lattice (isomorphic to) the congruence lattice of some lattice?

Answer: no (F. Wehrung 2005)

イロト イポト イヨト イヨト

Problem. For a given class \mathcal{K} of algebras describe Con \mathcal{K} =all lattices isomorphic to Con A for some $A \in \mathcal{K}$.

Or, at least,

for given classes \mathcal{K} , \mathcal{L} determine if Con $\mathcal{K} = Con \mathcal{L}$ and, if Con $\mathcal{K} \nsubseteq Con \mathcal{L}$, determine

 $\operatorname{Crit}(\mathcal{K},\mathcal{L}) = \min\{\operatorname{card}(L_c) \mid L \in \operatorname{Con} \mathcal{K} \setminus \operatorname{Con} \mathcal{L}\}$

 $(L_c = \text{compact elements of } L)$

We are interested in the case when \mathcal{K} and \mathcal{L} are (congruence-distributive) varieties. For instance, $\operatorname{Crit}(\mathbf{N}_5, \mathbf{M}_3) = 5$, $\operatorname{Crit}(\mathbf{M}_3, \mathbf{N}_5) = \operatorname{Crit}(\mathbf{M}_3, \mathbf{D}) = \aleph_0$, $\operatorname{Crit}(\mathbf{M}_4, \mathbf{M}_3) = \aleph_2$, $\operatorname{Crit}(\mathbf{Maj}, \mathbf{Lat}) = \aleph_2$. (\mathbf{N}_5 , \mathbf{M}_3 , \mathbf{M}_4 are well-known lattice varieties, $\mathbf{Lat} =$ all lattices, $\mathbf{Maj} =$ all majority algebras.) P. Gillibert: under some reasonable finiteness conditions, the critical

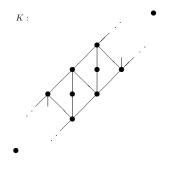
point between two varieties cannot be larger than \aleph_2 .

・ 同 ト ・ ヨ ト ・ ヨ ト

Critical points \aleph_1

First such example has been discovered by P. Gillibert. We present two more examples.

Let ${\bf K}$ be the variety generated by the bounded lattice



Theorem

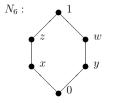
(1)
$$\operatorname{Crit}(\mathbf{N}_5, \mathbf{K}) = \aleph_1;$$

(2) $\operatorname{Crit}(\mathbf{K}, \mathbf{N}_5) = \aleph_0.$

・ロト ・部 ト ・ヨト ・ヨト

æ

Let N_6^* be the variety generated by the bounded lattice N_6 with an additional unary operation of 180° rotation (f(x) = w...).



・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

(1) $\operatorname{Crit}(\mathbf{N}_6^*, \mathbf{N}_5) = \aleph_1;$ (2) $\operatorname{Crit}(\mathbf{N}_5, \mathbf{N}_6^*) = \aleph_0.$

Miroslav Ploščica Congruence lattices of algebras

What is the mechanism behind these examples?

Miroslav Ploščica Congruence lattices of algebras

(ロ) (部) (E) (E)

æ

For any homomorphism of algebras $f: A \rightarrow B$ we define

$$\operatorname{Con}_c f:\ \operatorname{Con}_c A\to \operatorname{Con}_c B$$

by $\alpha\mapsto \text{congruence generated by } \{(f(x),f(y))\mid (x,y)\in\alpha\}.$

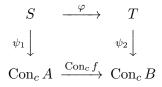
Fact. Con_c f preserves \lor and 0, not necessarily \land .

For every commutative diagram \mathcal{A} of algebras we have a commutative diagram $\operatorname{Con} \mathcal{A}$ of $(\lor, 0)$ -semilattices.

Let

- $\varphi: S \to T$ be a homomorphism of $(\lor, 0)$ -semilattices;
- $f: A \rightarrow B$ be a homomorphisms of algebras.

We say that f lifts φ , if there are isomorphisms $\psi_1: S \to \operatorname{Con}_c A$, $\psi_2: T \to \operatorname{Con}_c B$ such that



commutes.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Lifting of diagrams

Let P be a poset and let

- $\mathcal{D}: P \to \mathcal{S}$ be a diagram of $(\vee, 0)$ -semilattices;
- $\mathcal{A}: P \to \mathcal{K}$ be a diagram of algebras;

We say that \mathcal{A} *lifts* \mathcal{D} , if there are isomorphisms $\psi_j: \mathcal{D}(j) \to \operatorname{Con}_c \mathcal{A}(j)$ such that

$$\begin{array}{ccc} \mathcal{D}(j) & \xrightarrow{\mathcal{D}(j,k)} & \mathcal{D}(k) \\ \psi_j & & \psi_k \\ \operatorname{Con}_c \mathcal{A}(j) & \xrightarrow{\operatorname{Con}_c \mathcal{A}(j,k)} & \operatorname{Con}_c \mathcal{A}(k) \end{array}$$

commutes for every $j \leq k$.

・ロト ・ 同ト ・ ヨト ・ ヨト …

Theorem

(2) implies (1), where

(1) $\operatorname{Crit}(\mathcal{K},\mathcal{L}) \leq \aleph_n$;

(2) there exists a diagram of finite (∨,0)-semilattices indexed by a product of n + 1 finite chains liftable in K but not in L
If n = 0 then also (1)⇒ (2).

Especially, if there exists a diagram of finite $(\lor, 0)$ -semilattices indexed by a square liftable in \mathcal{K} but not in \mathcal{L} , then $\operatorname{Crit}(\mathcal{K}, \mathcal{L}) \leq \aleph_1$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

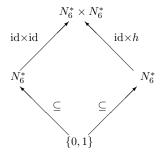
N6 versus N5

Both N_5 and N_6^* have the same congruence lattice, but N_6^* has an automorphism h (the vertical symmetry), such that $\operatorname{Con}_c h$ interchanges α and β :

▲□ ▶ ▲ □ ▶ ▲ □ ▶

N6 versus N5

Below: \mathcal{D} is the diagram in \mathbf{N}_6^* , so that $\operatorname{Con} \mathcal{D}$ has a lifting in \mathbf{N}_6^* but - no lifting in \mathbf{N}_5 .



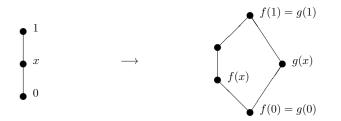
< ∃ >

Every automorphism $f: A \to A$ induces an automorphism $\operatorname{Con}_c f: \operatorname{Con}_c A \to \operatorname{Con}_c A$. These induced automorphisms form a subgroup of the automorphism group of $\operatorname{Con}_c A$. And this subgroup has an influence on the class $\operatorname{Con} \mathbf{A}$, where A is the variety generated by A.

N5 versus K

The same idea as before, but more subtle. Not only automorphisms are important.

Consider the homomorphisms $f,\ g$ in $\mathbf{N}_5:$

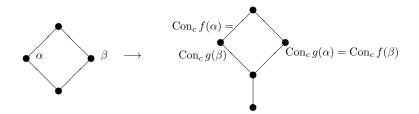


▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

N5 versus K

The maps $\operatorname{Con}_c f$ and $\operatorname{Con}_c g$:

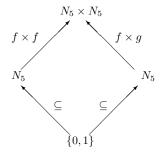


< □ > < 三 >

э

N5 versus K

If ${\cal D}$ is the diagram below, then ${\rm Con}\,{\cal D}$ has a lifting in ${\bf N}_5$ but not in ${\bf K}.$



Different mechanism: a semilattice homomorphism $\varphi: S \to T$ with two liftings $f: A \to B_1$, $g: A \to B_2$ such that $\operatorname{Con} f$ and $\operatorname{Con} g$ have different kernels.

Possible general "theorem":

 $\operatorname{Crit}(\mathbf{V}_1, \mathbf{V}_2) = \aleph_1$ occurs when all diagrams indexed by a finite chain liftable in \mathbf{V}_1 are also liftable in \mathbf{V}_2 , but the liftings in \mathbf{V}_2 are "less symmetric".