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Nondeterministic Finite Automata

Definition (NFA)
Nondeterministic finite automaton (NFA)
is a quintuple A= (Q, %,9,s, F)

@ exactly one initial state s

@ transition function § : Q x ¥ — 29
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Definition (nsc)
The nondeterministic state complexity of L

is the number of states of some minimal
NFA for L. We use the denotation nsc(L).
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Nondeterministic Finite Automata

Definition (NFA) Example
Nondeterministic finite automaton (NFA) ab
is a quintuple A= (Q, %,9,s, F) 8 2 _ab_ab
@ exactly one initial state s — O—0O—0

@ transition function 6 : Q x ¥ — 29 | e 6(0,8)={0,1}

Definition (nsc) © Lga={wc{ab}"|
The nondeterministic state complexity of L WoZﬁizr??rgr:]n tLheeesr:g}
is the number of states of some minimal P

NFA for L. We use the denotation nsc(L). | @ Nsc(lsa) <4
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If more initial states are allowed, we use the denotation NNFA



Nondeterministic Finite Automata

Prefix-, Suffix-, Factor-, Subword-Free Languages

W = uxv w = CONFERENCE
@ uis a prefix of w @ CONFERis a prefix of w
® vis a suffix of w @ RENCE is a suffix of w
@ x is a factor of w @ FERENC is a factor of w
W = UgViUiVols - - - V;mUm
@ ViV ---Vpis asubword of w @ CERN is a subword of w ]
@ L is prefix-free iff @ {¢, FR, FRANCE}
w € L = no prefix of wisin L is not prefix-free
@ suffix-, factor-, subword-free @ {FRANCE, PARIS}

defined analogously is prefix-free




Nondeterministic Finite Automata

Properties of Free Languages

@ L is prefix-free = no out-transition from any final state
@ L is suffix-free = no in-transition to the initial state

Lemma (Sufficient conditions for an incomplete DFA to accept

suffix-free language)
@ no in-transition to the initial state,
@ single final state,
@ no two transitions on the same symbol to any state

Inclusions for classes of languages:
Prefix-free N suffix-free = bifix-free
Bifix-free D factor-free 2 subword-free



Nondeterministic Finite Automata

Convex languages

Every prefix-free, prefix-closed,
and right ideal language is
prefix-convex;

inclusions for suffix-, factor-,

@ suffix-, factor-, subword-convex | ¢ bword-convex languages

defined analogously hold analogously

Definition

@ L is prefix-convex iff
uuwelL=uvel

Lemma (Property of Prefix-Convex Languages)

LetD = (Q,%,0,s, F) be a DFA. If for each final state q and
each symbol a in ¥, the state 6(q, a) is final or dead, then L(D)
is prefix-convex.




Nondeterministic Finite Automata

Why Free and Convex Languages?

Motivation and History

Holzer, Kutrib (2003) (NFA), nsc(L) introduced

Han, Salomaa, Wood (2009): prefix-free (DFA, NFA)
@ Han, Salomaa (2010): suffix-free (DFA, NFA)

Brzozowski et al. (2010, 2017): convex (DFA)

P.M. (DCFS 2015): free, ideal (complement)

M.H., G.J., PM. (CIAA 2016): closed, ideal (NFA)




Lower-Bound Methods for NFAs

Fooling-Set Lower-Bound Method for NFAs

Definition (Fooling Set)
A set of pairs of strings
{(X17y1 )7 (X27 y2)7 T (men)
is called a fooling set for a
language L if for all /,j in
{1,2,...,n},

(F1) x;y; € L, and

(F2)if i # j, then
Xiyj & Lorx;y; ¢ L.
Lemma (Birget, 1992)

Let F be a fooling set for a
language L. Then every
NNFA for L has at least | F|
states.
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Definition (Fooling Set)

A set of pairs of strings
{(X17y1)7 (X27y2)7 ooy (men)
is called a fooling set for a
language L if for all /,j in
{1,2,...,n},

(F1) x;y; € L, and

(F2)if i # j, then
Xiyj & Lorx;y; ¢ L.

Lemma (Birget, 1992)

Let F be a fooling set for a
language L. Then every
NNFA for L has at least | F|
states.

If we insist on having a single initial
state, we use very useful
modification of fooling-set method.

Lemma (Jiraskova, Masopust, 2011)
@ A, B - sets of pairs of strings
@ u, v - two strings

e AUB, AU{(e,u)}, and
BU{(e, v)} are fooling sets
for a language L.

Then every NFA with a single initial
state for L has at least | A| + |B| + 1
states.




Lower-Bound Methods for NFAs

Other Lower-Bound Methods for NFAs

Lemma (g-lemma)

Let A be an NNFA. Let for each M
state q of A, the singleton set b a

{q} be reachable and H(%QB b
co-reachable in A. \Q/CQ
Then A is minimal.

then A and AR are minimal NFAs.

—Q_ ,

Let A be a trim NFA. If both A O\

and AR are incomplete DFAs, b ?b ?b b gb
a

We use these claims in the proofs of our results



Nondeterministic Complexity of Operations on Classes

@000

Complexity of Operations on Free Languages

We examined the nondeterministic state complexity of:

Unary Operations

Binary Operations

@ union (U) @ square (L?)
@ intersection (N) @ star (Kleene closure, L)
@ concatenation (-) e reversal (L)

@ complementation (L)
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Known and New Results

Prefix-free || Suffix-free ||
KNnL| mn—(m+n-2) 2 2] | mn—(m+n-2) 2 [3]
KulL m+n 2 2] m+n-—1 2 [3]
KL m+n-1 1 [2] m+n-—1 1 [1]
12
L* n 2 2] n 4 [1]
LA n 1 (2] n+1 3 [1]
Le 2n-T 3 [2] 2n-T 3 [4]
not2 [4] not2 [5]

[1] Han, Salomaa DCFS 2010

[2] Jiraskova, Krausova DCFS 2010
[3] Jiraskova, Olejar NCMA 2009
[4] Jiraskova, Mlynarcik DCFS 2014
[5] MlynarCik DCFS 2015
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Our Results

Factor-free || Subword-free ||

KnL| mn—-2(m+n-3) 2 mn—-2(m+n—-3) m+n-5
KuL m+n-—2 2 m-+n-—2 2
KL m-+n-—1 1 m-+n-—1 1
L2 2n—1 1 2n—1 1
L* n—1 1 n—1 1
LR n 1 n 1

Le 272 14 3 272 4 1 2n-2
not 2 smaller?

The results for complementation are from P.M., DCFS 2015



Nondeterministic Complexity of Operations on Classes
[e]e]e] ]

Union on Prefix-Free Languages: m+ n

Proof Idea:

Upper Bound: merge final states and add initial state
Tightness:

O

b

2 (@) ) @
Use AB-Lemma with
A:{(a’ a2 p) |1 <i<m-2}yu{(@" "', a"2b), (@ 2b,e)}
B={(t/,b"*7a)[1<i<n-2yu{(6"" b” ?a)}

U= bn 2

v=a""?p
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Our Results on Convex Languages

Prefix- Suffix- Factor- Subword-
convex |X| | convex |X| | convex |X|| convex |X]
KnL mn 2 2 2 2
KuL | m+n+1 2 2 2 2
KL m+n 3 3 3 3
L? 2n 3 3 3 3
L n+1 2 2 2 2
L7 n+1 2 3 3 2n-2

@ nsc of operations on convex languages

@ all upper bounds are met by ideal languages (star)
or closed languages (all the other operations)
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Our Results on Convex Languages

Prefix- Suffix- Factor- Subword-
convex |X] convex |X| | convex |X| | convex |X|
KnL mn 2 2 2 2
KuL | m+nt1t 2 2 2 2
KL m+n 3 3 3 3
L2 2n 3 3 3 3
L n+1 2 2 2 2
L7 n+1 2 . 3 3 2n—2
LC 2" 2 [>2 141 2 2 2"
<2"

@ nsc of operations on convex languages

@ all upper bounds are met by ideal languages (star)
or closed languages (all the other operations) , except for
complementation
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Complementation on Suffix-Convex Languages

Tight upper bounds:
o suffix-closed: 2" 1 + 1
@ left ideal, suffix-free: 271

Lemma (Complementation)

If all subsets are reachable and
co-reachable, then nsc(L®) = 2"

Lemma (Property of

Prefix-Convex Languages)

LetD = (Q,%,0,s,F) bea
DFA. If for each final state q
and each symbol a in ¥, the
state 6(q, a) is final or dead,
then L(D) is prefix-convex.

Suffix-convex witness meeting 2" Proof Idea

) @ 8

0-0:{0,1,...,
0-d={1,2,.. 1}
q-e:{n—1}foreachstateqofA

@ show that L is
prefix-convex by
Lemma (Property)

@ use Lemma
(Complementation)
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Unary Case

@ Unary free languages: L = {a"~'} < nsc(L) = n
@ Unary convex languages:

o L={a|i>k}=nsc(L)=k+1

o L={a|k<i</{}=nsc(L)y=¢+1

Unary KnL KulL KL L2 L* L°c

free nym=n | max{m,n} m+n—1 2n—1 n—1 o(y/n)

convex | max{m,n} | max{m,n} m+n—1 2n—1 n—1 n+1

regular mn; m4+n+1; | >men—1|>2n—1 | nt1 | 20(/nlogn)
(myn)y=1 | (mn)=1 | <m+n <2n




Summary and Open Problems

The most important results:
@ intersection on subword-free languages:
mn—-2(m+n-3),|X|=m+n-5
@ union on prefix-free languages:
m+n, |X| =2
@ complementation on suffix-convex languages:
2" 1| =5

Tight upper bounds were provided for all other combinations
of operations and classes except for complementation on
factor-convex and subword-convex languages (open problem)

Possible to decrease alphabet size

@ subword-free

e intersection (binary, m = n)
@ complementation

@ subword-convex
e reversal
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