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In 1920, Hardy [7] proved the discrete inequality
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where a(n) � 0 for n � 1, a(n) 2 lp(N) (i.e. ∑∞
n=1 ap(n) < ∞).

In 1925, Hardy [8] proved the integral version of (1), by using
the calculus of variations, which states that for f � 0 and
integrable over any finite interval (0, x), where x 2 (0, ∞) and
f 2 Lp(0, ∞) and p > 1, thenZ ∞
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The constant (p/ (p� 1))p in (1) and (2) is the best possible.
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In 1927, Hardy and Littlewood [11] showed that the inequality
(2) is reversed for 0 < p < 1, provided that the integral
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0 f (t)dt
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x f (t)dt and the constant (p/(p� 1))p is
replaced by (p/(1� p))p, thenZ ∞
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where the constant (p/(1� p))p is the best possible value.
We say that the constant (p/(1� p))p is best possible (sharp) if
it can not be replaced by a smaller one without the affecting the
validity of the inequality (3) for all possible functions.
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The first weight version of the classical Hardy inequality (2)
was proved by Hardy himself [9] and given byZ ∞
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provided that p > 1, γ < p� 1, andZ ∞
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(5)
provided that p > 1, p < γ+ 1, where f is a measurable and
nonnegative function on (0, ∞).
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In 1990, Ariňo and Muckenhoupt [1] generalized (4), (5) and
characterized the weighted function w, such that the inequalityZ ∞
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holds for all nonnegative nonincreasing measurable functions f
on (0, ∞) with a constant C > 0 independent of f (here
1 � p < ∞). The characterization reduces to the condition that
the nonnegative function w satisfiesZ ∞

t
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w(x)dx, 8t 2 (0, ∞) and B > 0. (7)
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For the discrete case, in 2006, Bennett and Gross-Erdmann [3]
proved that the inequality
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holds for all nonnegative nonincreasing sequences (gn)n�1 and
C > 0. The characterization reduces to the condition that the
nonnegative sequence (wn)n�1 satisfies
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wk, 8n 2 N and B > 0. (9)
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In 2014, Gao [6] extended the results of Bennett and
Gross-Erdmann [3] and characterized the weights such that the
inequality
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holds for all nonnegative nonincreasing sequences (gn)n�1 and
(an)n�1 is a nonnegative and nonincreasing sequence with
a1 > 0 and the constant C > 0 is independent of an and gn. The
characterization reduces to the condition that the nonnegative
sequences (an)n�1 and (wn)n�1 satisfy
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where Ak = ∑k
s=1 as.
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In 1972, Muckenhoupt [12] generalized (6) and characterized
the weights such that the inequality�Z ∞
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(12)
holds for all measurable functions f � 0 and the constant C > 0
is independent of f (here 1 < p < ∞). The characterization
reduces to the condition that the nonnegative functions u and v
satisfy

sup
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and K � C � p1/p(p�)1/p�K.
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In 1978, Bradley [5] studied (12) in the different spaces Lp(R)
and Lq(R) when 1 � p � q � ∞, and gave new
characterizations of weights such that the general inequality�Z ∞
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(13)
holds for all measurable functions f � 0 and the constant C > 0
is independent of f (here 1 � p � q � ∞). The characterization
reduces to the condition that the nonnegative functions u and v
satisfy
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and A � C � p1/q(p�)1/p�A, for 1 < p < q < ∞ and A = C if
p = 1 and q = ∞.
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In 1990, Opic and Kufner [13] proved that the inequality�Z b
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holds for all nonnegative functions f and u, v are measurable
positive functions in (a, b), �∞ < a < b < ∞ and
1 < p � q < ∞, if and only if the following condition holds

B = sup
a<x<b

�Z b

x
u(t)dt

�1/q �Z x

a
υ1�p�(t)dt

�1/p�

< ∞.

Moreover, the estimate for the constant C > 0 in (14) is given by
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In 1995, Heinig and Maligranda [10] proved that if
0 < p � 1 � q and u, v are positive functions, then there exists a
constant C > 0 such that the inequality
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holds for all nonnegative nonincreasing functions f and k1,
k2 : R+ �R+ ! R+, are positive kernels if and only if

�Z ∞

0
u(x)

�Z s

0
k1(x, t)dt

�q

dx
� 1

q

� C
�Z ∞

0
v(x)

�Z s

0
k2(x, t)dt

�p

dx
� 1

p

,

for all s > 0.
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In 2000, Barza et al. [2] pointed that if 0 < p � q < ∞,
1 � q < ∞ and u, v are positive functions, then the inequality
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holds for all nonnegative nonincreasing functions f and
k2 : R+ �R+ ! R+ is a positive kernel, where the constant
C > 0 in (16) is given by
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Time scales calculus

Definition ([4])

A time scale T is an arbitrary nonempty closed subset of the
real numbers R.

For example, the real numbers R, the integers Z, the
nonnegative integers N0 and the quantum calculus qN0 for
q > 1.

Definition ([4])

Let T be a time scale. For t 2 T, we define the forward jump
operator σ : T ! T as

σ(t) = inffs 2 T : s > tg.

We note that σ(t) � t for any t 2 T.
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Definition ([4])

Let T be a time scale. For t 2 T, we define the backward jump
operator ρ : T ! T as

ρ(t) = supfs 2 T : s < tg.

We note that ρ(t) � t for any t 2 T.

Definition ([4])

Let T be a time scale. For t 2 T, we define the graininess
function µ : T ! R+ = [0, ∞) as

µ(t) = σ(t)� t.
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Example ([4])

1. If T =R, then we have that σ(t) = ρ(t) = t and µ(t) = 0 for
all t 2 T.
2. If T = N, then we have that σ(t) = t+ 1, ρ(t) = t� 1 and
µ(t) = 1 for all t 2 T.
3. If T =hN, h > 0, then we have σ(t) = t+ h, ρ(t) = t� h and
µ(t) = h for all t 2 T.
4. If T = qN0 for q > 1, then we have σ(t) = qt, ρ(t) = t/q and
µ(t) = (q� 1)t and for all t 2 T.
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Classification of points

t 2 T is called right-scattered if t < σ(t)
t 2 T is called right dense if t = σ(t)
t 2 T is called left-scattered if t > ρ(t)
t 2 T is called left dense if t = ρ(t)
t 2 T is called isolated if ρ(t) < t < σ(t)
t 2 T is called dense if ρ(t) = t = σ(t)
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Differentiation

Definition (The Delta Derivative [4])

Assume that f : T ! R is a function and let t 2 T. We define
f ∆(t) to be the number, provided it exists, as follows: for any
ε > 0 there is a neighborhood U of t, U = (t� δ, t+ δ) \T for
some δ > 0, such that

jf (σ(t))� f (s)� f ∆(t)(σ(t)� s)j � εjσ(t)� sj for all s 2 U.

We say f ∆(t) the delta (or Hilger) derivative of f at t. We say
that f is delta (or Hilger) differentiable on T provided f ∆(t)
exists for all t 2 T.
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Example (Delta derivative [4])
1 If T =R, then for f : R ! R, we get

f ∆(t) = lim
s!t

f (t)� f (s)
t� s

= f
0
(t), for all t 2 T,

where f
0

is the usual derivative.
2 If T =hZ, h > 0, then we have σ(t) = t+ h, µ(t) = h and

f ∆(t) = ∆hf (t) =
f (σ(t))� f (t)

µ(t)
=

f (t+ h)� f (t)
h

.

3 If T = qN0 for q > 1, then we have σ(t) = qt,
µ(t) = (q� 1)t and

f ∆(t) = ∆qf (t) =
f (q t)� f (t)
(q� 1) t

.
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Theorem ([4])

Assume that f , g : T ! R are differentiable at t 2 T, then

The sum f + g : T ! R is differentiable at t with

(f + g)∆(t) = f ∆(t) + g∆(t).

For any constant α, αf : T ! R is differentiable at t with

(αf )∆ (t) = αf ∆(t).

The product fg : T ! R is differentiable at t with

(fg)∆(t) = f ∆(t)g(t)+ f (σ(t))g∆(t) = f (t)g∆(t)+ f ∆(t)g(σ(t)).

If g(t)g(σ(t)) 6= 0, then f /g is differentiable at t and�
f
g

�∆

(t) =
f ∆(t)g(t)� f (t)g∆(t)

g(t)g(σ(t))
.
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Chain Rule

Definition ([4])

A function f : R ! R is called continuously differentiable if it is
continuous and its derivative is continuous.

Theorem (Chain Rule [4])

Assume g : R ! R is continuous, g : T ! R is delta differentiable
on Tκ, and f : R ! R is continuously differentiable. Then there
exists c in the real interval [t, σ(t)] with

(f � g)∆ (t) = f
0
(g(c)) g∆(t). (17)

where

Tk=

�
Tn(ρ(sup T), sup T], if sup T < ∞,

T, otherwise.
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Definition of rd-continuous functions

Definition ([4])

A function f : T ! R is called rd�continuous provided it is
continuous at right-dense points in T and its left-sided limits
exist (finite) at left-dense points in T. The set of rd�continuous
functions f : T ! R is denoted by Crd or Crd(T) or Crd(T, R).
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Integration

Definition ([4])

A function F : T ! R is called an antiderivative of f : T ! R

provided
F∆(t) = f (t), holds for all t 2 T.

In this case, the Cauchy integral of f is defined byZ s

r
f (t)∆t = F(s)� F(r), for all r, s 2 T.

Theorem ([4])

Every rd-continuous function f : T ! R has an antiderivative. In
particular, if t0 2 T, then�Z t

t0

f (τ)∆τ

�∆

= f (t), for t 2 T.

Theorem ([4])

If f 2 Crd(T) and t 2 T, thenZ σ(t)

t
f (s)∆s = µ(t)f (t).
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The interval [a, b]T is defined by [a, b]T := [a, b] \T.

Theorem ([4])

Let a, b 2 T and f 2 Crd([a, b]T,R).

If T = R, then Z b

a
f (t)∆t =

Z b

a
f (t)dt.

If T = N, σ(t) = t+ 1 and µ(t) = 1, then

Z b

a
f (t)∆t = ∑

t2[a,b)
µ(t)f (t) =

b�1

∑
t=a

f (t).

If T = qN0 for q > 1, σ(t) = qt, ρ(t) = t/q and
µ(t) = (q� 1) t, then

Z b

a
f (t)∆t =

b/q

∑
t=a
(q� 1) tf (t)
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Lemma (Integration by Parts [4])

If a, b 2 T and u, v 2 Crd([a, b]T, R), thenZ b

a
u(t)v∆(t)∆t = [u(t)v(t)]ba �

Z b

a
u∆(t)v(σ(t))∆t. (18)

Lemma (Hölder’s Inequality [4])

If a, b 2 T and f , g 2 Crd([a, b]T, R), then
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a
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� 1
γ
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jg(t)jν∆t

� 1
ν

, (19)

where γ, ν > 1 such that 1/γ+ 1/ν = 1. The inequality (19) is
reversed for 0 < γ < 1 or γ < 0.
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In 2005, Rehak [14] established the time scale version of
Hardy-type inequalities (1) and (2).

Theorem

Assume that T is a time scale with a 2 T, 1 < α < ∞ and f is a
nonnegative function such that

R ∞
a f α(t)∆t exists as a finite number.

Then Z ∞

a

�
Fσ(t)
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�α
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a
f α(t)∆t, (20)

where F(t) =
R t

a f (x)∆x. In addition, if µ(t)/t ! 0 as t ! ∞, then
the constant (α/(α� 1))α is the best possible.
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The discrete inequality is given by
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where a(n) � 0 for n � 1, a(n) 2 lp(N) (i.e. ∑∞
n=1 ap(n) < ∞).

The continuous version states that for f � 0 and integrable over
any finite interval (0, x), where x 2 (0, ∞) and f 2 Lp(0, ∞) and
p > 1, thenZ ∞
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The constant (p/ (p� 1))p in (21) and (22) is the best possible.
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Proof. Denote ϕ(t) = F(t)/(t� a). Then for t � a,

[ϕσ(t)]α � α

α� 1
[ϕσ(t)]α�1 f (t)

= [ϕσ(t)]α � α
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Applying the chain rule formula (17), we have that

[ϕα(t)]∆ = αϕα�1(c)ϕ∆(t) for some c 2 [t, σ(t)].

Since ϕ∆(t) > 0 and c � σ(t), then ϕ is increasing function and
ϕ (c) � ϕσ(t), thus

[ϕα(t)]∆ � α [ϕσ(t)]α�1 ϕ∆(t),
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and then (23) gives

[ϕσ(t)]α � α
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Applying Hölder’s inequality on the right hand side of (25)
with indices α > 1 and α/(α� 1), we obtain
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when s ! ∞, we can get the dynamic Hardy inequality (20).
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To prove that (α/(α� 1))α is the best possible, we assume that

f (t) =

8<:
0 for t 2 [a, á)

(t� a)�1/α for t 2 [á, b]
0 for t 2 (b, ∞),

where a < á < b. Then
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,
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which implies �
Fσ(t)
t� a

�α

�
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�α 1� εt

t� a
,

for t 2 [á, b], where εt ! 0 as t ! ∞.
Consequently, Z ∞
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�α
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where δb ! 0 as b ! ∞.
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Hence any inequality of the typeZ ∞

a

�
Fσ(t)

σ(t)� a

�α

∆t <
�

α

α� 1

�α

(1� ε)
Z ∞

a
f α (t)∆t,

with ε > 0, fails to hold if f is chosen as above and b is
sufficiently large.
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Application to Hardy’s inequality

Theorem ([15])

Let T be a time scale with a, b 2 T, 1 < p � q < ∞,
f 2 Crd ([a, b]T, R) and let u, v be positive rd-continuous functions
on (a, b)T. Then Z b

a
u (x)

�Z σ(x)

a
f (t)∆t

�q

∆x

!1/q

� C
�Z b

a
υ (x) f p(x)∆x
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holds if and only if

B = sup
a<x<b
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x
u(t)∆t

�1/q �Z σ(x)

a
υ1�p�(t)∆t
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where p� = p/(p� 1).
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Moreover, the estimate for the constant C > 0 in (26) is given by

B � C �
�

1+
q
p�

�1/q �
1+

p�

q

�1/p�

B.

The authors employed the weighted Hardy inequality (26) to
the following equation in order to examine its oscillatory
properties �

r(t)ϕα(x
∆)
�∆
+ s(t)ϕα(x

σ) = 0, (27)

where 1 < α < ∞, ϕα(y) = jyj
α�2 y and r, s 2 Crd ([a, b]T, R)

with r(t) 6= 0 for t 2 [a, b]T.
They showed that the equation (27) is nonoscillatory if and
only if the weighted Hardy inequality (26) holds for p = q = α
and the constant C = 1.
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Aims of PhD-Thesis

# Hölder’s inequality

Generalized dynamic Hölder’s inequality on time scales
Reversed dynamic Hölder’s inequality using Specht’s ratio
on time scales

# Minkowski’s inequality

Generalized dynamic Minkowski’s inequality on time
scales
Reversed dynamic Minkowski’s inequality using Specht’s
ratio on time scales
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# Hilbert-type inequality

Dynamic inequalities of Hilbert-type on time scales nabla
calculus
Reverse dynamic Hilbert-type inequalities using the mean
inequality
Novel Dynamic inequalities of Hilbert-Pachpatte-type for
a class of non-homogeneous kernels on time scales
Recent generalized inequalities of Hilbert-type for a class
of homogeneous kernels on time scales
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# Hardy-type inequality

Some new generalizations of inequalities involving
Hardy-type operator on time scales.
Dynamic Hardy-type inequalities involving a single
negative parameter on time scales.
Generalized dynamic inequalities similar to Hardy’s
inequality involving a convex function
New formulation of dynamic Hardy-type inequalities on
time scales such that the inequality holds when the
parameter p = 1
Characterizations of the weighted functions for Hardy’s
inequality with general kernel on time scales
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Generalized Hardy-type inequalities through conformable
fractional time scale calculus.
New properties of weighted Muckenhoupt and Gehring
classes on time scales such that the characterization of
weight for Muckenhoupt class represents the validity of
condition of Hardy’s inequality and the characterization of
weight for Gehring class represents reverse Hölder’s
inequality.
Weighted Lorentz spaces and equivalent relations between
`p-classes by using Hardy operator.
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Thanks for your attention!


