A Jumping $5' \rightarrow 3'$ WK Automata Model

Radim Kocman Benedek Nagy Zbyněk Křivka Alexander Meduna

Centre of Excellence IT4Innovations, Faculty of Information Technology, Brno University of Technology, Božetěchova 2, Brno Czech Republic {ikocman,krivka,meduna}@fit.vutbr.cz

Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, North Cyprus, Mersin-10, Turkey nbenedek.inf@gmail.com

NCMA 2018

Table of contents

1 Introduction

- 2 Combined idea
- 3 Final definition
- 4 Examples
- 5 General results
- 6 Results on restricted variations

(General) Jumping Finite Automaton (JFA)

quintuple
$$M = (Q, \Sigma, R, s, F)$$

- Q is a finite set of states
- Σ is an input alphabet, $Q \cap \Sigma = \emptyset$
- *R* is a finite set of rules: (p, y, q), where $p, q \in Q$, $y \in \Sigma^*$
- s is the start state
- F is a set of final states

Step/Move/Jump

■ FA: $pyx \Rightarrow qx$ only if $(p, y, q) \in R$, $x \in \Sigma^*$ ■ JFA: $xpyz \curvearrowright x'qz'$ only if $(p, y, q) \in R$, $x, z, x', z' \in \Sigma^*$, xz = x'z'

Example automaton

$$M = (\{s, p, q\}, \{a, b, c\}, R, s, \{s\})$$

where R:

$$(s, a, p)$$

 (p, b, q)
 (q, c, s)

Resulting language

■ FA:
$$L(M) = \{(abc)^n : n \ge 0\}$$

■ JFA: $L(M) = \{w : w \in \{a, b, c\}^*, |w|_a = |w|_b = |w|_c\}$

Jumping Finite Automata – Extended Models

n-parallel jumping finite automata

- have n heads
- heads cannot cross each other
- in the right-jumping mode the behavior resembles:
 n-parallel right linear grammars, simple matrix grammars

Double-jumping finite automata

- always 2 heads
- heads cannot cross each other
- each had has its own restricted direction
- in some modes the model accepts only a subset of linear languages

Watson-Crick Automata

Watson-Crick finite automata

- biology-inspired model
- the core model is similar to FA
- work with the Watson-Crick tape
- uses two heads (one for each strand of the tape)

Watson-Crick tape

- double-stranded tape
- resembles DNA

 satisfies Watson-Crick complementary relation: the elements of the strands are pairwise complements of each other (e.g. (*T*, *A*), (*A*, *T*), (*C*, *G*), (*G*, *C*))

$5^\prime \rightarrow 3^\prime$ Watson-Crick finite automata

- \blacksquare the heads read in the biochemical $5' \rightarrow 3'$ direction
- that is physically/mathematically in opposite directions

Sensing 5' \rightarrow 3' Watson-Crick finite automata

- the heads sense that they are meeting
- the processing of the input ends if for all pairs of the sequence one of the letters is read (due to the complementary relation, the sequence is fully processed)
- the tape notation is usually simplified: $\begin{bmatrix} A \\ T \end{bmatrix}$ as a, \ldots

Example steps

```
start: \begin{bmatrix} A & A & T & C & G & A & C & T \\ T & T & A & G & C & T & G & A \end{bmatrix}

1st step: \begin{bmatrix} A & A & T & C & G & A & C & T \\ T & T & A & G & C & T & G & A \end{bmatrix}

2nd step: \begin{bmatrix} A & A & T & C & G & A & C & T \\ T & T & A & G & C & T & G & A \end{bmatrix}

3rd step: \begin{bmatrix} A & A & T & C & G & A & C & T \\ T & T & A & G & C & T & G & A \end{bmatrix}

:

last step: \begin{bmatrix} A & A & T & C & G & A & C & T \\ T & T & A & G & C & T & G & A \end{bmatrix}
```

Accepting power

the family of linear languages

Kocman, Nagy, Křivka, Meduna

- 2 Combined idea
- 3 Final definition
- 4 Examples
- 5 General results
- 6 Results on restricted variations

Combined model

- \blacksquare the combination of (G)JFA and sensing 5' \rightarrow 3' WKA
- two heads as in sensing $5' \rightarrow 3'$ WKA
- each head can traverse the whole input in its direction
- all pairs of symbols are read only once

Expectations

- better accepting power than the non-combined models
- ability to model languages with some crossed agreements

- 2 Combined idea
- 3 Final definition
 - 4 Examples
- 5 General results
- 6 Results on restricted variations

Final definition

Jumping $5' \rightarrow 3'$ WK automaton

quintuple
$$M = (V, Q, q_0, F, \delta)$$

 V, Q, q_0, F as in FA, $V \cap \{\#\} = \emptyset$, $\delta: (Q \times V^* \times V^* \times D) \to 2^Q$ (finite), $D = \{\oplus, \ominus\}$ indicates the mutual position of heads.

Configuration

 (q, s, w_1, w_2, w_3)

- \boldsymbol{q} is the state
- s is the position of heads
- w_1 is the unprocessed input before the first head
- w_2 is the unprocessed input between the heads
- w_3 is the unprocessed input after the second head

Steps

Let $x, y, u, v, w_2 \in V^*$ and $w_1, w_3 \in (V \cup \{\#\})^*$.

- \oplus -reading: $(q, \oplus, w_1, xw_2y, w_3) \frown (q', s, w_1\{\#\}^{|x|}, w_2, \{\#\}^{|y|}w_3)$, where $q' \in \delta(q, x, y, \oplus)$, and s is either \oplus if $|w_2| > 0$ or \ominus .
- ≥ \ominus -reading: $(q, \ominus, w_1 y, \varepsilon, x w_3) \land (q', \ominus, w_1, \varepsilon, w_3)$, where $q' \in \delta(q, x, y, \ominus)$.
- **3** \oplus -jumping: $(q, \oplus, w_1, uw_2v, w_3) \land (q, s, w_1u, w_2, vw_3)$, where s is either \oplus if $|w_2| > 0$ or \ominus .
- $4 \ominus -jumping: (q, \ominus, w_1\{\#\}^*, \varepsilon, \{\#\}^*w_3) \frown (q, \ominus, w_1, \varepsilon, w_3).$

Accepted language L(M)

A string w is accepted by a jumping $5' \to 3'$ WK automaton M if and only if $(q_0, \oplus, \varepsilon, w, \varepsilon) \curvearrowright^* (q_f, \oplus, \varepsilon, \varepsilon, \varepsilon)$, for $q_f \in F$.

- 2 Combined idea
- 3 Final definition

4 Examples

- 5 General results
- 6 Results on restricted variations

Examples – Input 1

Example automaton $L(M) = \{w \in \{a, b\}^* : |w|_a = |w|_b\}$

$$M = (\{a, b\}, \{s\}, s, \{s\}, \delta)$$

where δ :

$$\delta(s, a, b, \oplus) = \{s\}$$

 $\delta(s, a, b, \ominus) = \{s\}$

Input aaabbb

$$(s, \oplus, \varepsilon, aaabbb, \varepsilon) \curvearrowright$$

 $(s, \oplus, \#, aabb, \#) \curvearrowright$
 $(s, \oplus, \#\#, ab, \#\#) \curvearrowright$
 $(s, \oplus, \#\#\#, \varepsilon, \#\#\#) \curvearrowright$
 $(s, \oplus, \varepsilon, \varepsilon, \varepsilon)$

Kocman, Nagy, Křivka, Meduna

Examples – Input 2

Example automaton $L(M) = \{w \in \{a, b\}^* : |w|_a = |w|_b\}$

$$M = (\{a, b\}, \{s\}, s, \{s\}, \delta)$$

where δ :

$$\delta(s, a, b, \oplus) = \{s\}$$

 $\delta(s, a, b, \ominus) = \{s\}$

Input baabba

$$(s, \oplus, \varepsilon, baabba, \varepsilon) \curvearrowright$$

 $(s, \oplus, b, aabb, a) \curvearrowright$
 $(s, \oplus, b\#, ab, \#a) \curvearrowright$
 $(s, \ominus, b\#\#, \varepsilon, \#\#a) \curvearrowright$
 $(s, \ominus, b, \varepsilon, a) \curvearrowright$
 $(s, \ominus, \varepsilon, \varepsilon, \varepsilon)$

Kocman, Nagy, Křivka, Meduna

- 2 Combined idea
- 3 Final definition
- 4 Examples
- 5 General results
- 6 Results on restricted variations

Lemma 5.1 For every regular language L, there is a jumping $5' \rightarrow 3'$ WK automaton M such that L = L(M).

Usually does not hold in JFA, but we can simulate classical FA.

Lemma 5.2 For every sensing $5' \rightarrow 3'$ WK automaton M_1 , there is a jumping $5' \rightarrow 3'$ WK automaton M_2 such that $L(M_1) = L(M_2)$.

M can model linear languages with \oplus -reading steps.

Theorem 5.3 LIN = SWK \subset JWK.

SWK – the language family of sensing 5' \rightarrow 3' WKA **JWK** – the language family of jumping 5' \rightarrow 3' WKA The next two characteristics follow from the previous results.

Theorem 5.4 Jumping 5' \rightarrow 3' WK automata without \ominus -reading steps accept linear languages.

If \ominus -reading is not used, M can be simulated with a linear grammar.

Proposition 5.5 The language family accepted by double-jumping finite automata that perform right-left and left-right jumps is strictly included in **JWK**.

It was previously shown that these families are strictly included in LIN.

General results

Lemma 5.10 There are some non-context-free languages accepted by jumping $5' \rightarrow 3'$ WK automata.

$$L(M) = \{w_1w_2 : w_1 \in \{a, b\}^*, w_2 \in \{c, d\}^*, |w_1|_a = |w_2|_c, |w_1|_b = |w_2|_d\}$$

Lemma 5.6

There is no jumping $5' \rightarrow 3'$ WK automaton M such that $L(M) = \{a^n b^n c^n : n \ge 0\}.$

Lemma 5.7

There is no jumping $5' \rightarrow 3'$ WK automaton M such that $L(M) = \{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}.$

Lemma 5.11

There is no jumping $5' \rightarrow 3'$ WK automaton M such that $L(M) = \{a^n b^n c^m d^m : n, m \ge 0\}.$

Proposition 5.8 JWK is incomparable with GJFA and JFA.

$$\{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\} \\ \{a^n b^n : n \ge 0\}$$

Theorem 5.9 **JWK** \subset **CS**.

simulated by linear bounded automata

Theorem 5.12 **JWK** and **CF** are incomparable.

Lemma 5.10, Lemma 5.11

- 2 Combined idea
- 3 Final definition
- 4 Examples
- 5 General results
- 6 Results on restricted variations

Definition

- **N** stateless, i.e., with only one state: if $Q = F = \{q_0\}$
- **F** all-final, i.e., with only final states: if Q = F
- **S** simple (at most one head moves in a step) $\delta: (Q \times (\begin{pmatrix} V^* \\ \{\varepsilon\} \end{pmatrix} \cup (\begin{pmatrix} \varepsilon\} \\ V^* \end{pmatrix})) \rightarrow 2^Q$
- 1 1-limited (exactly one letter is being read in a step) $\delta \colon (Q \times ((\begin{smallmatrix} V \\ \{\varepsilon\} \end{smallmatrix}) \cup (\begin{smallmatrix} \{\varepsilon\} \\ V \end{smallmatrix}))) \to 2^Q$

Further variations such as **NS**, **FS**, **N1**, and **F1** WK automata can be identified in a straightforward way by using multiple constraints.

Previous results with restricted variations

Sensing $5' \rightarrow 3'$ Watson-Crick Automata (without the sensing distance)

→ proper inclusion

Results on restricted variations

- 2 Combined idea
- 3 Final definition
- 4 Examples
- 5 General results
- 6 Results on restricted variations

- \blacksquare increased above sensing $5^\prime \rightarrow 3^\prime \; WK$ automata
- some non-linear and even some non-context-free languages
- the jumping movement of the heads is restricted compared to JFA: limited capabilities to accept languages that require discontinuous information processing

Open Question – Full-reading sensing $5' \rightarrow 3'$ WK automata

There are some languages accepted by full-reading sensing $5' \rightarrow 3'$ WK automata that cannot be accepted by jumping $5' \rightarrow 3'$ WK automata. But what about the other direction?

Open Question – Can we somehow safely remove # and \ominus -jumping steps from the model?

The answer is yes, if the model uses 1-limited restriction. But what about the general case?

Thank you! Any questions?