Extended finite automata and decision problems for matrix semigroups

Özlem Salehi, Ahmet Celal Cem Say

Department of Computer Engineering, Boğaziçi University İstanbul, Turkey

NCMA'18

Aim: Make a connection between extended finite automata over matrix semigroups and decision problems for matrix semigroups

E

イロト イロト イヨト イヨト

<ロト < 部 ト < 注 ト < 注 ト - 注</p>

5900

• One-way finite state automaton equipped with a register

イロト 不得 トイヨト イヨト 二日

- One-way finite state automaton equipped with a register
- Register is initialized with the identity element of G

3

- One-way finite state automaton equipped with a register
- Register is initialized with the identity element of G
- Register is multiplied with an element of G at each step

- One-way finite state automaton equipped with a register
- Register is initialized with the identity element of G
- Register is multiplied with an element of G at each step
- An input string is accepted if the register is equal to the identity at the end of the computation

- One-way finite state automaton equipped with a register
- Register is initialized with the identity element of G
- Register is multiplied with an element of G at each step
- An input string is accepted if the register is equal to the identity at the end of the computation

Let M be a monoid. M-automaton is defined analogously.

• Let S be a semigroup. We want to allow the register to be multiplied elements from S.

E

- Let S be a semigroup. We want to allow the register to be multiplied elements from S.
- We define S-automaton by letting 1 to be the identity element.

Э

イロト イポト イヨト イヨト

- Let S be a semigroup. We want to allow the register to be multiplied elements from S.
- We define S-automaton by letting 1 to be the identity element.
- If S is not a monoid nor a group, then only the empty string can be accepted.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3

Let S be a matrix semigroup finitely generated by a generating set of square matrices F. The **membership problem** is to decide whether or not a given matrix Y belongs to the matrix semigroup S. Let S be a matrix semigroup finitely generated by a generating set of square matrices F. The **membership problem** is to decide whether or not a given matrix Y belongs to the matrix semigroup S.

Given: $F = \{Y_1, Y_2, ..., Y_n\}$ and a matrix Y**Problem:** Determine if there exist an integer $k \ge 1$ and $i_1, i_2, ..., i_k \in \{1, ..., n\}$ such that $Y_{i_1}Y_{i_2} \cdots Y_{i_k} = Y$.

Salehi, Say Extended finite automata and decision problems for matrix semigroups NCMA'18 5 / 23

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回

When Y is restricted to be the identity matrix, the problem is called the **identity problem**.

E

イロト イロト イヨト イヨト

When Y is restricted to be the identity matrix, the problem is called the **identity problem**.

Given: $F = \{Y_1, Y_2, \dots, Y_n\}$ **Problem:** Determine if there exist an integer $k \ge 1$ and $i_1, i_2, \dots, i_k \in \{1, \dots, n\}$ such that $Y_{i_1}Y_{i_2} \cdots Y_{i_k} = I$.

Salehi, Say Extended finite automata and decision problems for matrix semigroups NCMA'18 6 / 23

イロト 不得 トイヨト イヨト 二日

Let G be a finitely generated group and let H be a subgroup of G. **Subgroup membership problem** or generalized word problem for H in G is to decide whether or not a given element $g \in G$ belongs to the subgroup H.

(4 同) (4 回) (4 回)

Let G be a finitely generated group and let H be a subgroup of G. **Subgroup membership problem** or generalized word problem for H in G is to decide whether or not a given element $g \in G$ belongs to the subgroup H.

Word problem for *G* is the membership problem for the trivial group generated by 1.

Let G be a finitely generated group and let H be a subgroup of G. **Subgroup membership problem** or generalized word problem for H in G is to decide whether or not a given element $g \in G$ belongs to the subgroup H.

Word problem for *G* is the membership problem for the trivial group generated by 1.

The subgroup membership problem can be seen as a special case of the (semigroup) membership problem.

- * 同 * * ヨ * * ヨ * - ヨ

	Identity problem	Membership problem
$\mathbb{Z}^{2 \times 2}$	decidable	decidable
Н	decidable	?
$SL(3,\mathbb{Z})$?	?
$\mathbb{Z}^{3 \times 3}$?	undecidable
<i>SL</i> (4, ℤ)	undecidable	undecidable

Salehi, Say

Extended finite automata and decision problems for matrix semigroups NCMA'18 8 / 23

・ロト ・回ト ・ヨト ・ヨト

1

Theorem

Let H be a finitely generated subgroup of G. If the emptiness problem for G-automata is decidable, then the subgroup membership problem for H in G is decidable.

イロト イポト イヨト イヨト

Theorem

Let H be a finitely generated subgroup of G. If the emptiness problem for G-automata is decidable, then the subgroup membership problem for H in G is decidable.

Proof.

• Let g be an element from G. We should decide whether $g \in H$.

Theorem

Let H be a finitely generated subgroup of G. If the emptiness problem for G-automata is decidable, then the subgroup membership problem for H in G is decidable.

Proof.

- Let g be an element from G. We should decide whether $g \in H$.
- Construct *G*-automaton *V*.

Theorem

Let H be a finitely generated subgroup of G. If the emptiness problem for G-automata is decidable, then the subgroup membership problem for H in G is decidable.

Proof.

- Let g be an element from G. We should decide whether $g \in H$.
- Construct *G*-automaton *V*.
- We are going to show that $g \in H$ iff L(V) is nonempty.

イロト イポト イヨト イ

Salehi, Say Extended finite automata and decision problems for matrix semigroups NCMA'18 10 / 23

Image: A matrix and a matrix

B> B

E ► 4

Proof.

- $\{h_1, \ldots, h_n\}$ generates H
- Claim: $g \in H$ iff L(V) is nonempty.

Image: A mathematical states and a mathem

∃ ▶ ∢

Proof.

• $g \in H \implies g^{-1} \in H$

Salehi, Say Extended finite automata and decision problems for matrix semigroups NCMA'18 11 / 23

Proof.

$$\bullet g \in H \implies g^{-1} \in H$$

•
$$h_{i_1}h_{i_2}\cdots h_{i_k}=g^{-1}$$
 for some $k\geq 1$ and $i_1,i_2,\ldots,i_k\in\{1,\ldots,n\}$

Salehi, Say Extended finite automata and decision problems for matrix semigroups NCMA'18 11 / 23

Proof.

$$g \in H \implies g^{-1} \in H$$

Salehi, Say

Extended finite automata and decision problems for matrix semigroups NCMA'18 11 / 23

Proof.

$$\bullet g \in H \implies g^{-1} \in H$$

• $h_{i_1}h_{i_2}\cdots h_{i_k}=g^{-1}$ for some $k\geq 1$ and $i_1,i_2,\ldots,i_k\in\{1,\ldots,n\}$

$$gg^{-1} = 1 \implies a^{k+1} \in L(V)$$

Salehi, Say

Salehi, Say Extended finite automata and decision problems for matrix semigroups NCMA'18 12 / 23

Proof.

- Suppose L(V) is nonempty
- Acceptance condition: register is equal to identity

Salehi, Say Extended finite automata and decision problems for matrix semigroups NCMA'18 12 / 23

Э

- 4 同 ト 4 三 ト 4

Proof.

- Suppose L(V) is nonempty
- Acceptance condition: register is equal to identity
- Register is initially multiplied by $g \implies H$ contains g^{-1} .

Salehi, Say Extended finite automata and decision problems for matrix semigroups NCMA'18 12 / 23

Э

イロト イポト イヨト イヨト

Proof.

- Suppose L(V) is nonempty
- Acceptance condition: register is equal to identity
- Register is initially multiplied by $g \implies H$ contains g^{-1} .

$$g^{-1} \in H \implies g \in H$$

Э

イロト イポト イヨト イヨト

Proof.

• Suppose that the emptiness problem for *G*-automaton is decidable.

Salehi, Say Extended finite automata and decision problems for matrix semigroups NCMA'18 13 / 23

メロト メロト メビト メ

Proof.

- Suppose that the emptiness problem for *G*-automaton is decidable.
- To check if $g \in H$,

Salehi, Say Extended finite automata and decision problems for matrix semigroups NCMA'18 13 / 23

メロト メロト メビト メ

Proof.

- Suppose that the emptiness problem for *G*-automaton is decidable.
- To check if $g \in H$,
 - Construct V

・ロト ・回ト ・ ヨト・

Proof.

- Suppose that the emptiness problem for *G*-automaton is decidable.
- To check if $g \in H$,
 - Construct V
 - Check if L(V) is nonempty

・ロト ・回ト ・ ヨト・

Proof.

- Suppose that the emptiness problem for *G*-automaton is decidable.
- To check if $g \in H$,
 - Construct V
 - Check if L(V) is nonempty
 - \implies subgroup membership problem for H is decidable .

イロト イヨト イヨト イヨト

Theorem

Given a matrix Y from $\mathbb{Z}^{2\times 2}$ and a subgroup H of $\mathbb{Z}^{2\times 2}$, it is decidable whether Y belongs to H.

Theorem

Given a matrix Y from $\mathbb{Z}^{2\times 2}$ and a subgroup H of $\mathbb{Z}^{2\times 2}$, it is decidable whether Y belongs to H.

Proof.

 \blacksquare We will prove that the emptiness problem for $\mathbb{Z}^{2\times 2}\text{-}\mathsf{automata}$ is decidable

Theorem

Given a matrix Y from $\mathbb{Z}^{2\times 2}$ and a subgroup H of $\mathbb{Z}^{2\times 2}$, it is decidable whether Y belongs to H.

Proof.

- We will prove that the emptiness problem for Z^{2×2}-automata is decidable
- Suppose that a $\mathbb{Z}^{2\times 2}$ -automaton V is given.

Theorem

Given a matrix Y from $\mathbb{Z}^{2\times 2}$ and a subgroup H of $\mathbb{Z}^{2\times 2}$, it is decidable whether Y belongs to H.

Proof.

- We will prove that the emptiness problem for Z^{2×2}-automata is decidable
- Suppose that a $\mathbb{Z}^{2\times 2}$ -automaton V is given.
 - Remove edges labeled by a non-invertible matrix from V

Theorem

Given a matrix Y from $\mathbb{Z}^{2\times 2}$ and a subgroup H of $\mathbb{Z}^{2\times 2}$, it is decidable whether Y belongs to H.

Proof.

- We will prove that the emptiness problem for Z^{2×2}-automata is decidable
- Suppose that a $\mathbb{Z}^{2\times 2}$ -automaton V is given.
 - Remove edges labeled by a non-invertible matrix from V
 - ► Matrices multiplied by the register are invertible and belong to GL(2, Z)

Salehi, Say Ex

Extended finite automata and decision problems for matrix semigroups NCMA'18 14 / 23

▲ 同 ▶ ▲ 三 ▶ ▲

Theorem

Given a matrix Y from $\mathbb{Z}^{2\times 2}$ and a subgroup H of $\mathbb{Z}^{2\times 2}$, it is decidable whether Y belongs to H.

Proof.

- We will prove that the emptiness problem for Z^{2×2}-automata is decidable
- Suppose that a $\mathbb{Z}^{2\times 2}$ -automaton V is given.
 - Remove edges labeled by a non-invertible matrix from V
 - ► Matrices multiplied by the register are invertible and belong to GL(2, Z)
- V is a $GL(2,\mathbb{Z})$ -automaton

▲ 同 ▶ ▲ 三 ▶ ▲

Lemma

Let G be a finitely generated group and let H be a subgroup of finite index. Any G-automaton can be converted into an H-automaton recognizing the same language.

Salehi, Say Extended finite automata and decision problems for matrix semigroups NCMA'18 15 / 23

Lemma

Let G be a finitely generated group and let H be a subgroup of finite index. Any G-automaton can be converted into an H-automaton recognizing the same language.

Lemma

Any F_2 -automaton can be converted into a pushdown automaton recognizing the same language.

イロト イロト イヨト イ

Theorem

Given a matrix Y from $\mathbb{Z}^{2\times 2}$ and a subgroup H of $\mathbb{Z}^{2\times 2}$, it is decidable whether Y belongs to H.

Proof.

• A pushdown automaton recognizing L(V) can be constructed

- ▶ **F**₂ has finite index in *GL*(2, ℤ)
- F_2 -automaton recognizing L(V) can be constructed
- ▶ **F**₂-automaton can be converted to a pushdown automaton
- \blacksquare Emptiness problem for pda is decidable \implies Emptiness problem for $\mathbb{Z}^{2\times 2}\text{-automata}$ is decidable

<ロト < 回 ト < 三 ト < 三 ト - 三

The emptiness problem and identity problem

Theorem

Let S be a semigroup. The identity problem for S is decidable if the emptiness problem for S-automaton is decidable.

The emptiness problem and identity problem

Theorem

Let S be a semigroup. The identity problem for S is decidable if the emptiness problem for S-automaton is decidable.

Proof.

• Construct an S-automaton V such that $1 \in S$ iff L(V) is nonempty.

Salehi, Say

Extended finite automata and decision problems for matrix semigroups NCMA'18 17 / 23

Undecidability of the emptiness problem for $\mathbb{Z}^{4 \times 4}$ -automata

Fact

Given a semigroup S generated by eight 4×4 integer matrices, determining whether the identity matrix belongs to S is undecidable. [KNP17]

- 4 同 ト 4 三 ト 4

Undecidability of the emptiness problem for $\mathbb{Z}^{4\times 4}$ -automata

Fact

Given a semigroup S generated by eight 4×4 integer matrices, determining whether the identity matrix belongs to S is undecidable. [KNP17]

Corollary

Let S be a subsemigroup of $\mathbb{Z}^{4\times 4}$ generated by eight matrices. The emptiness problem for S-automaton is undecidable.

イロト イヨト イヨト イヨト

Undecidability of the emptiness problem for $\mathbb{Z}^{4 \times 4}$ -automata

Fact

Given a semigroup S generated by eight 4×4 integer matrices, determining whether the identity matrix belongs to S is undecidable. [KNP17]

Corollary

Let S be a subsemigroup of $\mathbb{Z}^{4\times 4}$ generated by eight matrices. The emptiness problem for S-automaton is undecidable.

Proof.

We know that the identity problem for S is undecidable. By the above theorem the result follows.

Salehi, Say

Extended finite automata and decision problems for matrix semigroups NCMA'18

イロト イポト イヨト イ

18 / 23

The universe problem and subgroup membership problem

Theorem

Let H be a finitely generated subgroup of G. If the universe problem for G-automata is decidable, then the subgroup membership problem for H in G is decidable.

The universe problem and subgroup membership problem

Theorem

Let H be a finitely generated subgroup of G. If the universe problem for G-automata is decidable, then the subgroup membership problem for H in G is decidable.

Proof.

• Construct G-automaton V such that $g \in H$ iff $L(V) = \Sigma^*$.

Salehi, Say

Extended finite automata and decision problems for matrix semigroups NCMA'18 19 / 23

The universe problem and identity problem

Theorem

Let S be a finitely generated semigroup. If the universe problem for S-automata is decidable, then the identity problem for S is decidable.

The universe problem and identity problem

Theorem

Let S be a finitely generated semigroup. If the universe problem for S-automata is decidable, then the identity problem for S is decidable.

Proof.

• Construct an S-automaton V such that $1 \in S$ iff $L(V) = \Sigma^*$

Salehi, Say Extended finite automata and decision problems for matrix semigroups NCMA'18 21 / 23

• Universe problem for \mathbf{F}_2 -automaton is undecidable

<ロト <部ト <きト <きト = き

- Universe problem for \mathbf{F}_{2} -automaton is undecidable
 - For a given pushdown automaton, an F₂-automaton recognizing the same language can be constructed

Э

- Universe problem for **F**₂-automaton is undecidable
 - For a given pushdown automaton, an F₂-automaton recognizing the same language can be constructed
 - Universe problem for pushdown automata is undecidable

<ロト < 部ト < 注ト < 注ト < </p>

Э

- Universe problem for **F**₂-automaton is undecidable
 - For a given pushdown automaton, an F₂-automaton recognizing the same language can be constructed
 - Universe problem for pushdown automata is undecidable
- F₂ is a subgroup of SL(2, ℤ) and the membership and identity problems for SL(2, ℤ) are decidable

イロト 不得 トイヨト イヨト 二日

We make a connection between the decidability of the subgroup membership and identity problems and the universe and emptiness problems for extended finite automata

Э

イロト イポト イヨト イヨト

We make a connection between the decidability of the subgroup membership and identity problems and the universe and emptiness problems for extended finite automata

- Emptiness problem for S-automata
 - \blacktriangleright Decidability of the subgroup membership problem for $\mathbb{Z}^{2\times 2}$
 - ▶ Undecidability of the emptiness problem for $\mathbb{Z}^{4 \times 4}$ -automata
- Universe problem for *S*-automata

We make a connection between the decidability of the subgroup membership and identity problems and the universe and emptiness problems for extended finite automata

Emptiness problem for S-automata

- \blacktriangleright Decidability of the subgroup membership problem for $\mathbb{Z}^{2\times 2}$
- ▶ Undecidability of the emptiness problem for $\mathbb{Z}^{4 \times 4}$ -automata
- Universe problem for *S*-automata

Identity and membership problems for 3×3 integer matrix groups are open.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回

Thank You!

Salehi, Say Extended finite automata and decision problems for matrix semigroups NCMA'18 23 / 23

< □ > < □ > < □ > < □ > < □ > < □ >

æ