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But how do we handle the following example:

In most matching engines the subexpression (?i) matches the empty string,

but enables case-insensitive matching.

Thus (?i)(.*)\1 matches any ↵1 · · ·↵n�1 · · · �n where,

↵i and �i are the same letter up to one (perhaps) being lowercase

and the other uppercase.
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We permit transducer subexpressions, obtained by allowing the application of

some string-to-string transducer to subexpressions.

A transducer subexpression t(E) describes the language of strings obtained

by applying the transducer t to the language matched by E.

We call these extended expressions, obtained by adding backreferences and

transducers, regular expressions with backreferences and transducers

(REbt).
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Example

A simple class of transducers over ⌃

⇤
, corresponding to transducers

with only one state, is the set of all t = (↵1 : �1, . . . ,↵k : �k)

where ↵1, �1, . . . ,↵k, �k 2 ⌃ [ {"}.

The transduction denoted by t is

L(t) = {(↵i1 · · ·↵in , �i1 · · · �in) | n 2 N}.

If tb = a : b, tc = a : c and td = b : d then

- L([1a⇤]1tb("1 )tc("1 )) = {anbncn | n 2 N}

- L([1a⇤]1[2b⇤]2tc("1 )) = {ambncmdn | m,n 2 N}
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The Bad News

Theorem

For a recursively enumerable language L there exists E 2 REbt

such that L(E) = L.
Consequently the membership problem is undecidable for REbt.

Proof

For a Turing machine M with input alphabet �, choose a representation

of the configurations of M as strings w 2 ⌃

⇤
, where ⌃ ◆ �.

We construct

- a transducer tinit 2 FST such that (w, c) 2 L(tinit) if c 2 ⌃

⇤
is the

initial configuration of M when starting with w 2 �

⇤
as input,

- a transducer tacc 2 FST such that (c, c) 2 L(tacc) if c is the concatenation

of configurations of M , with only the last configuration being accepting, and

- a transducer tstep 2 FST such that (c, c0) 2 L(tstep) if M can go from

the configuration c to the configuration c0 in a single step.

E = [��
⇤
]�D([�tinit("� )]�tacc([�tstep("� )]�⇤)), where D 2 FST

deletes the entire input and outputs ".

The first subexpression selects and captures any input string w.
The subexpression D(· · · ) simulates a computation of M on w to either fail or,

if M accepts, yield ".
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Consider various restrictions

- Allow backreferences but not transducers.

- Allow transducers but not backreferences.

- Do not allow the capture of transducer preimages.
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Example

A simple class of transducers over ⌃

⇤
, corresponding to transducers

with only one state, is the set of all t = (↵1 : �1, . . . ,↵k : �k)

where ↵1, �1, . . . ,↵k, �k 2 ⌃ [ {"}.

The transduction denoted by t is

L(t) = {(↵i1 · · ·↵in , �i1 · · · �in) | n 2 N}.

If tb = a : b, tc = a : c and td = b : d then

- L([1a⇤]1tb("1 )tc("1 )) = {anbncn | n 2 N}

- L([1a⇤]1[2b⇤]2tc("1 )td("2 )) = {ambncmdn | m,n 2 N}
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The Bad News

Theorem

For a recursively enumerable language L there exists E 2 REbt

such that L(E) = L.
Consequently the membership problem is undecidable for REbt.

Proof

For a Turing machine M with input alphabet �, choose a representation

of the configurations of M as strings w 2 ⌃

⇤
, where ⌃ ◆ �.

We construct

- a transducer tinit 2 FST such that (w, c) 2 L(tinit) if c 2 ⌃

⇤
is the

initial configuration of M when starting with w 2 �

⇤
as input,

- a transducer tacc 2 FST such that (c, c) 2 L(tacc) if c is the concatenation

of configurations of M , with only the last configuration being accepting, and

- a transducer tstep 2 FST such that (c, c0) 2 L(tstep) if M can go from

the configuration c to the configuration c0 in a single step.

E = [��
⇤
]�D([�tinit("� )]�tacc([�tstep("� )]�⇤)), where D 2 FST

deletes the entire input and outputs ".

The first subexpression selects and captures any input string w.
The subexpression D(· · · ) simulates a computation of M on w to either fail or,

if M accepts, yield ".
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Theorem

For an expressions E without transducers we may decide whether

w 2 L(E) in time polynomial in |w| and |E|, with the degree of

the polynomial a constant times the number of backreference

symbols in E.
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Theorem

For an expression E with transducers but not backreferences,

it is PSPACE-complete to decide whether " 2 L(E). In general,

uniform membership testing for this class of expressions is

PSPACE-complete.

Proof

Use PSPACE-hardness of Finite Automaton Intersection Emptiness,

where the instances are sets of finite automata {A1, . . . , An} and the question is

whether L(A1) \ · · · \ L(An) = ;. For each Ai construct the FST ti with
L(ti) = {(w,w) | w 2 L(A)}, and let E = D(t1(· · · tn(⌃⇤

) · · · )) where D is the FST

that takes every input to ". Then the intersection is non-empty if and only if " 2 L(E).
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We have:

(i) proposed an extension of regular expressions with backreferences

by additional transducers;

(ii) established that this makes membership testing intractable; and

(iii) explored various restrictions to form a practical basis for use in software.

Future work

The precise expressiveness of the classes should be considered –

several gaps exist beyond what follows naturally from what we have done here.

The subclasses should also be compared with respect to succinctness,

and there remain some open questions regarding computational complexity

of for example (uniform) membership in certain cases.
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