
 
 
 
 
 
 
 
 
 
 

Tenth Workshop on 
Non-Classical Models of  

Automata and Applications 
(NCMA 2018) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



books@ocg.at 
BAND 332 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Wissenschaftliches Redaktionskomitee 
 
o.Univ.Prof. Dr. Gerhard Chroust 
Univ.Prof. Dr. Gabriele Kotsis 
Univ.Prof. DDr. Gerald Quirchmayr 
DI Dr. Peter M. Roth 
Univ.Prof. DDr. Erich Schweighofer 
Univ.Prof. Dr. Jörg Zumbach 



 
 
 
 
 
 
 
 
 

Rudolf Freund, Michal Hospodár, Galina Jirásková, and Giovanni Pighizzini 
(eds.) 

 
 

Tenth Workshop on 
Non-Classical Models of  

Automata and Applications 
(NCMA 2018) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

© Österreichische Computer Gesellschaft 2018 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Österreichische Computer Gesellschaft 
Komitee für Öffentlichkeitsarbeit 
www.ocg.at 
 
Druck: Druckerei Riegelnik 
1080 Wien, Piaristengasse 19 
 
ISBN  978-3-903035-21-8 



Preface

The Tenth Workshop on Non-Classical Models of Automata and Applications (NCMA 2018)
was held in Košice, Slovakia, on August 21st and 22nd, 2018. The NCMA workshop series
was established in 2009 as an annual forum for researchers working on di↵erent aspects of non-
classical and classical models of automata and grammars. The purpose of the NCMA workshop
series is to provide an opportunity to exchange and develop novel ideas, and to stimulate
research on non-classical and classical models of automata and grammar-like structures. Many
models of automata and grammars are studied from di↵erent points of view in various areas,
both as theoretical concepts and as formal models for applications. The goal of the NCMA
workshop series is to motivate a deeper coverage of this particular area and in this way to foster
new insights and substantial progress in computer science as a whole.

The previous workshops took place in the following places:

2009 Wroc law, Poland,
2010 Jena, Germany,
2011 Milano, Italy,
2012 Fribourg, Switzerland,
2013 Ume̊a, Sweden,
2014 Kassel, Germany,
2015 Porto, Portugal,
2016 Debrecen, Hungary, and
2017 Praha, Czech Republic.

The Tenth Workshop on Non-Classical Models of Automata and Applications (NCMA 2018)
was organized by the Košice branch of the Mathematical Institute of the Slovak Academy of
Sciences. Its scientific program consisted of invited lectures, regular contributions, and short
presentations.

At NCMA 2018 there were two invited lectures:

• Bruno Guillon (Università degli Studi di Milano, Dipartimento di Informatica, Italy):

On Nondeterministic Two-way Transducers

and

• José M. Sempere (DSIC, Universitat Politècnica de València, Spain):

On the Application of Watson-Crick Finite Automata for the Resolution of Bioinformatic
Problems.
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We thank Bruno Guillon and José M. Sempere for accepting our invitation and for presenting

their recent results.

For NCMA 2018, we received submissions by a total of 32 authors, from 11 di↵erent coun-

tries. On the basis of at least three referees’ reports each, the Program Committee selected 11

contributions for presentation at NCMA 2018 and for inclusion in the workshop proceedings.

We thank the members of the Program Committee for their excellent work in making this

selection:

• Suna Bensch (University of Ume̊a, Sweden),

• Cezar Câmpeanu (University of Prince Edward Island, Charlottetown, Canada),

• Erzsébet Csuhaj-Varjú (Eötvös Loránd University, Budapest, Hungary),

• Dora Giammarresi (University of Rome Tor Vergata, Rome, Italy),

• Mika Hirvensalo (University of Turku, Finland),

• Szabolcs Iván (University of Szeged, Hungary),

• Galina Jirásková (Slovak Academy of Sciences, Košice, Slovakia), co-chair,

• Ian McQuillan (University of Saskatchewan, Saskatoon, Canada),

• Nelma Moreira (University of Porto, Portugal),

• Frantǐsek Mráz (Charles University in Prague, Czech Republic),

• Alexander Okhotin (St. Petersburg State University, Russia),

• Meenakshi Paramasivan (University of Trier, Germany),

• Dana Pardubská (Comenius University in Bratislava, Slovakia)

• Giovanni Pighizzini (University of Milan, Italy),

• Bianca Truthe (University of Giessen, Germany),

• György Vaszil (University of Debrecen, Hungary),

• Mikhail Volkov (Ural Federal University, Yekaterinburg, Russia),

• Matthias Wendlandt (University of Giessen, Germany).

We also thank the following colleagues for helping in the evaluation process by providing ex-

ternal reviews:

• Jozef Jirásek (University of Saskatchewan, Saskatoon, Canada)

• Luca Prigioniero (University of Milan, Italy).

In addition to the invited talks and regular contributions, NCMA 2018 also featured five short

presentations to emphasize its workshop character, each of them also having been evaluated by

at least two members of the Program Committee.

This volume contains the two invited presentations and the eleven regular contributions. Ex-

tended abstracts of the short papers presented at NCMA 2018 appear in a separate booklet.
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A special issue of a renowned scientific journal dedicated to NCMA 2018 will also be edited
after the workshop, and it will contain extended versions of selected papers, which will undergo
the standard refereeing process of the journal.

We are grateful to the Košice branch of the Mathematical Institute of the Slovak Academy of
Sciences for the local organization and for the financial support of NCMA 2018.

August 2018

Rudolf Freund, Wien

Michal Hospodár, Košice

Galina Jirásková, Košice

Giovanni Pighizzini, Milano
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ON NONDETERMINISTIC TWO-WAY
TRANSDUCERS

Bruno Guillon

Università degli Studi di Milano, Dipartimento di Informatica, Italy
guillon.bruno+cs@gmail.com

Abstract
We study binary relations on words, namely transductions, that are computed by different kinds
of transducers, beyond the rational transductions. Our main focus is the class of transductions
that are realized by two-way nondeterministic transducers. While determinism (or unambiguity)
yields a robust class of word-to-word functions, the situation is more complex in the case of non-
deterministic transducers. We discuss two approaches to describe nonfunctional transductions
realized by two-way transducers.

The first approach is algebraic. We introduce natural operators that mimic the abilities of
two-way transducers in a similar way as rational operations mimic abilities of one-way trans-
ducers. These operations are sufficient to capture some families of transductions realized by
restricted versions of transducers, e.g., sweeping transducers and unary transducers.

The second approach is obtained by enriching the semantics of transducers. We consider trans-
ductions with origin information. We briefly discuss how this enriched semantics helps in
recovering some decidability results, and in describing classes of nonfunctional transductions.

1. Introduction

In the theory of automata two different terms designate more or less indifferently the same
object: transductions and binary relations. The former term implicitly distinguishes an input
and an output, even if the input does not uniquely determine the output. In certain contexts,
it is a synonym for translation where one source and one target are understood. The latter
term is meant to suggest pairs of words playing a symmetric role.

Natural models for implementing transductions and relations are transducers and two-tape
automata, respectively. Both are finite state automata provided with an additional tape. The
concept of multi-tape and thus in particular two-tape automata was introduced by Rabin and
Scott [29] and Elgot and Mezei [19], almost sixty years ago. Most closure and structural
properties were published in the next couple of years.

On the other hand, transduction is a more suitable term when the intention is that the input
preexists the output. Transducers implement this idea. Indeed, they are similar to two-tape
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automata, but their computations start with empty content on their second tape (namely the
output tape), and proceed on the first tape (namely the input tape) while emitting output
symbols that are appended to the output tape content. This difference is almost irrelevant
in the case of one-way devices (i.e., when the tape heads proceed rightward only), since there
exists an obvious direct translation from one model to the other.1 It makes however sense to
differentiate the models when the two tapes are not processed in the same way.

In this presentation, we focus on two-way transducers which are such models of machine using
two tapes. An input tape is read-only, it initially contains the input word, and it is scanned in
both directions. An output tape is write-only, initially empty, and it is explored in one direction
only.

The dynamics of two-way transducers is complex since such a device may admit computations
of unbounded length. The attempts to describe the class of transductions they realize can be
grouped in four families:

1. studying some syntactic restrictions, e.g., sweeping transducers;
2. studying some semantic restrictions, e.g., unambiguous, or functional transducers;
3. studying the special case of unary alphabets, for which some specific techniques may apply;
4. enriching of the semantics of the device in order to make precise how the output word is

related to the input word. This is the direction followed by Bojańczyk when introducing
origin information [8].

This present survey mainly deals with the two last directions. A special attention is paid to
the unary cases, while the origin semantics of transducers is briefly discussed at the end of the
paper. For the sake of completeness, let us first recall the main known results from the first
and the second directions.

Rational transductions. One-way transducers are now considered as restrictions of two-way
transducers. The transductions they realize have been widely studied and characterized as the
rational transductions, namely the rational subsets of the direct product of free monoids [19].
We point out that, even in this one-way case, some intractability arises from nondeterminism.
Mainly, natural problems such as equivalence or intersection emptiness have been shown to
be undecidable by Griffiths [24]. We refer the reader to [7] for further results on one-way
transducers; see also [21] and the references therein for connections with logic and algebra.

“Regular” transductions. Functional two-way transducers have received a lot of attention
in the last decades. This attractiveness comes from the robustness of the class of transductions
they define. Following [1], we call it the class of regular transductions. The probably most
important property witnessing the robustness of the class, is its closure under composition,

1The difference might be relevant when considering deterministic versions. Deterministic two-tape automata
are indeed more expressive than deterministic (or sequential) transducers, since the latter has access only to
the next input symbol when determining the next transition to perform, while the former has also access to the
next “output” symbol. In particular, transductions realized by deterministic transducers are functions.
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obtained by Chytil and Jákl [12].2 Gurari then proved that the equivalence of two-way de-
terministic transducers is decidable, thus contrasting with the results of Griffiths. Another key
result on the topic, obtained by Engelfriet and Hoogeboom, relates two-way transducers with
the monadic second order logic, i.e., first-order logic extended with quantification over sets of
positions [20]. The authors indeed showed that, in the functional case, the model is effectively
equivalent to mso transductions, an abstract formalism of graph transformation introduced by
Courcelle, that uses monadic second order logic as bottom level of specification, see [13]. A
consequence of their proof is that two-way deterministic transducers are as expressive as func-
tional two-way nondeterministic transducers. This again contrasts with the one-way case. Alur
and Černy then proposed an alternative equivalent model, called streaming string transducer,
which processes the input rightward while preparing the output on finitely many registers that
can be concatenated in a copyless way [1]. More recently, Dartois et al. proved that each
two-way transducer admits an equivalent reversible3 one [16], which allows to improve some of
the previously-known results. The problem of deciding given a two-way transducer whether it
admits an equivalent one-way transducer has been considered in [22, 5], while uniformization
results have been obtained in [31, 16].

Outline. In this work we consider different approaches to describe nonfunctional transduc-
tions realized by two-way transducers. In Section 2 are gathered basic definitions and typical
examples. Then, in Section 3, a particular attention is paid to some syntactical restrictions
of two-way nondeterministic transducers, namely to rotating and sweeping transducers, for
which an algebraic characterization can be obtained [27, 26]. We prove in Section 4 that this
characterization is also sufficient to capture the expressiveness of unary transducers, i.e., the
special case of single-letter input and output alphabets [10]. This however fails when one of the
alphabets contains two letters [25]. Finally, we briefly discuss origin semantics of transducers
in Section 5, and its contribution in describing nonfunctional transductions.

2. Preliminaries

We assume the reader is familiar with language and automata theory. For the sake of com-
pleteness, we briefly recall some notions and fix notations.

An alphabet ⌃ is a finite set of symbols. The free monoid it generates is denoted ⌃⇤, and
its elements are words over ⌃ including the empty word ✏. The length of a word u is |u|,
and for i = 1, . . . , |u|, the i-th symbol of u is ui. The reverse of a word u = u1 · · · un is the
word u = un · · · u1. The concatenation of two words u and v is denoted uv, and the n-th power
of u is denoted u

n. A language is a set of words, i.e., a subset of ⌃⇤.

In this presentation, we are interested in transductions, i.e., binary relations on words. Through-
out the paper, we fix an input alphabet ⌃ and an output alphabet �. A transduction over ⌃, � is

2In the sense of functional composition: a second transducer takes as input the output of a first one.
3Namely, whose underlying automaton is deterministic and co-deterministic.
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a subset of ⌃⇤⇥�⇤. It is functional if it is a (partial) function, namely, if for each word u 2 ⌃⇤

there exists at most one word v 2 �⇤ such that (u, v) belongs to the transduction.

Given a monoid M , the family of its rational subsets, denoted Rat(M), is the least family F
of subsets containing finite sets and closed under

– set union: X, Y 2 F =) X [ Y 2 F ;
– set product : X, Y 2 F =) XY 2 F ;
– Kleene star : X 2 F =) X

⇤ 2 F .

Recall that XY = {xy | x 2 X and y 2 Y } and X

⇤ = {1} [X [ · · · [X

i [ · · · where 1 is the
unit of the monoid. Here, we are interested in the case where M is a free monoid or the direct
product of free monoids, namely in rational languages and rational transductions, respectively.

Automata. A two-way automaton is a finite state machine which has read-only access to the
input tape on which is written the input word surrounded by the left (B) and the right (C)
endmarkers not belonging to ⌃. Starting in the initial state from the leftmost tape cell (i.e.,
on B) the automaton accepts the input word if it eventually enters a final state while scanning
the rightmost tape cell (i.e., on C) The set of input words accepted by the automaton is the
language accepted. Two automata are equivalent if they accept the same language. There are
different kinds of automata, depending on the constrained they satisfy.

One-way automata can read the input tape only once and only from left to right. Rotating
automata can read the input tape several times, but only from left to right. Clearly, they can be
presented as a restriction of two-way automata. Sweeping automata can read the whole input
tape several times, from left-to-right and from right-to-left. Their input head may indeed change
direction only when scanning an endmarker. An automaton is deterministic if at any time, the
next transition to be performed can be decided uniquely from the information of its current
state, and the symbol currently read by the input head. Otherwise, it is nondeterministic.
Unambiguous automata are particular nondeterministic automata which admit at most one
accepting computation on every input.

Transducers. Transducers extend automata by providing a way to produce an output word
from the input word, thus defining transductions. A natural way to define transducers is to
associate an automaton with a production function that maps each transition of the automaton
to some kind of output. This definition allows in particular to consider different kinds of
transducers according to the different kinds of underlying automata, e.g., one-way or two-way
transducers. Usually, the output associated with a transition is a word or a letter. A more
general definition maps transitions into rational languages over the output alphabet �. This
corresponds to see transducers as a particular case of weighted automata, namely as weighted
automata over the semiring of rational languages over �, see, e.g., [30, 27]. These different
possible definitions do not alter the expressiveness of the model in general as long as stationary
moves and empty productions are allowed. According to its underlying automaton, a transducer
may be one-way, rotating, sweeping, deterministic or unambiguous.
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Examples. A typical example of transduction realized by a one-way transducer, is the identity
transduction, assuming ⌃ = �, which is functional and rational:

Identity = {(u, u) | u 2 ⌃⇤} = {(�, �) | � 2 ⌃}⇤.

Another functional rational transduction, which is here instrumental, is the Erase function
that maps every word to the empty word:

Erase = {(u, ✏) | u 2 ⌃⇤} = {(�, ✏) | � 2 ⌃}⇤.

A nonfunctional rational example is the relation subword, which, to any input word, associates
its (not necessarily connected) subwords:

Subword = {(u, v) | v is a subword of u 2 ⌃⇤} = (Identity [ Erase)⇤.

Rotating transducers are more expressive than one-way transducers, even in the case of func-
tions. A functional transduction witnessing this separation is the squaring function, which
maps an input word to its square:

Square = {(u, uu) | u 2 ⌃⇤}.

This transduction is not rational whence no one-way transducer realize it. Another interesting
transduction realized by a rotating transducer is the power transduction, which associate the
powers of a word to itself:

Power = {(u, v) | u 2 ⌃⇤
, v = u

n for some integer n}.

Lastly, we can show that sweeping transducers are more expressive than rotating ones. Indeed,
the mirror functional transduction that maps every input word u to its reverse u, is realized
by a sweeping transducer, but by no rotating transducer:

Mirror = {(u, u) | u 2 ⌃⇤}.

Rational transductions. Rational operations (namely union, componentwise concatena-
tion, and Kleene star) are well-suited for one-way transducers. In particular, given two such
transducers, one can easily obtain a one-way transducer for their union, their componentwise
concatenation, or the Kleene star of one of them. Elgot and Mezei proved that these operations
are sufficient to characterize the transductions realized by one-way transducers [19].

Theorem 2.1 A transduction is realized by a one-way transducer if and only if it is rational.

This is not any longer the case for two-way transducers, for which no such characterization is
known, cf. Table 1.4 The next sections are devoted to attempts to describe the corresponding
class of transductions.

4For regular transductions, namely functional transductions realized by two-way transducers, a characteriz-
ation of similar flavour has been obtained, by introducing new operations (some of them being considered in the
next session), and by semantically restricting componentwise concatenation and Kleene star to unambiguous
concatenations only [3, 17, 6].
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transducer one-way two-way

general ?

q r
a,!| b

B C B C

Rat

Table 1:: Expressiveness of one-way transducers

3. Hadamard Transductions

It can be shown that the class of transductions realized by two-way transducers is not closed
under componentwise concatenation. For instance, when ⌃ = � contains at least two symbols,
no transducer realizes Square · Erase, the transduction which associates u1u1 to u1u2 for
any u1, u2 2 ⌃⇤. Intuitively, the factorization u1u2 of the input word has to be guessed by the
device, but cannot be stored in its finite control. Hence, when scanning for the second time the
prefix u1 (which should happen since Square is not a rational transduction), the automaton
cannot recover the position of the last symbol of u1.

However, other operations are well-suited for two-way transducers. Given two transductions R
and S, we define the Hadamard product of R by S, denoted R� S, to be the transduction:

R� S = {(u, v1v2) | (u, v1) 2 R and (u, v2) 2 S}.

So defined, we have Square = Identity� Identity. The class of transductions defined by
two-way (rotating or sweeping) transducers is closed under Hadamard product [27, 26].

Proposition 3.1 Let T and T 0 be two two-way transducers respectively realizing the trans-
ductions R and S. Then, there exists a two-way transducer T �T 0 which realizes R � S.
Furthermore, the construction preserves determinism, unambiguity, and the properties of being
rotating and sweeping.

Proof. The construction is illustrated in Figure 1a. 2

Another operation is the Hadamard star (or Hadamard iteration) of a transduction R, de-
noted R

? and defined as follows:

R

? = {(u, v1v2 · · · vn) | n 2 N and (u, vi) 2 R for each i}.

Hence, Power = Identity? . Observe that the operation necessarily introduces nondetermin-
ism, since the number of iterations is not fixed. As for the Hadamard product, two-way trans-
ducers enjoy closure properties with respect to Hadamard star [27, 26].

Proposition 3.2 Let T be a two-way transducer realizing R. Then, there exists a two-way
transducer T ? which realizes R

? . Furthermore, the construction preserves the properties of
being rotating and sweeping.

Proof. The construction is illustrated in Figure 1b. 2
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Ti f T 0i f
 

a, : ✏
C
, :

✏ B,

#: ✏

(a) Hadamard product of transducers

Ti f
 

a, : ✏

!

a,!: ✏

B,

#: ✏

B,!: ✏

C, : ✏

(b) Hadamard star of transducer

Figure 1:: Closure of two-way transducers under Hadamard product and Hadamard star.
Here,  , #,! respectively stand for left, stationary and right head moves, and a denotes any symbol from ⌃.

Definition 3.3 The class of Hadamard transductions, denoted Had, is the least class of trans-
ductions containing rational transductions which is closed under Hadamard operations, namely
union, Hadamard product and Hadamard star.

Because rational transductions correspond to left-to-right processing of the input by transducer,
and since Hadamard product and Hadamard star capture the idea of rescanning the input word,
it is not surprising to obtain the following characterization of transductions realized by rotating
transducers [27, 14, 26].

Theorem 3.4 A transduction is realized by rotating transducer if and only if it is in Had.

The difference between rotating and sweeping transducers is the ability of the latter to scan
the whole input word from right to left, e.g., to compute Mirror. This ability is captured by
the mirror operation, defined as follows for a transduction R:

R = {(u, v) | (u, v) 2 R}.

So defined, Mirror = Identity.5 We extend Definition 3.3 to a superclass of transductions.

Definition 3.5 The class of Mirror-Hadamard transductions, denoted MHad, is the least class
containing rational transductions which is closed under mirror and Hadamard operations.

As expected, we obtain the following result [27, 25].

Theorem 3.6 A transduction is realized by sweeping transducer if and only if it is in MHad.

We have seen characterizations for three families of transducers, namely one-way, rotating, and
sweeping transducers (see Table 2). However, two-way transducers are more expressive than
sweeping transducers. A witness of this separation is the transduction Prefix2Palindromic
over ⌃ = � of cardinality at least 2, defined by:

Prefix2Palindromic = {(u1u2, u1u1) | u1, u2 2 ⌃⇤} = (Identity�Mirror) · Erase.
5The transduction Mirror is close to be realized by a one-way transducer, since such a device requires

only one pass over the input word, but from right to left. Indeed, it the mirror of a rational transduction,
namely Identity. Such transductions have been studied in [11].
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transducer one-way rotating sweeping two-way

general ?

input unary ?

output unary ?

both unary

q r
a,!| b

B C B C B C B C

Rat
Had

MHad

Table 2:: Expressiveness of different types of transducers according to the alphabet sizes

4. Unary Cases

We consider here the cases in which either the input, or the output, or both alphabets are
unary, namely contain only one symbol. The situation is depicted in Table 2.

First of all, it is routine to prove that the mirror operation is irrelevant as far as one of the
alphabets is unary, e.g., [25].

Proposition 4.1 If ⌃ or � is unary, then MHad = Had.

Hence, by Theorems 3.4 and 3.6, rotating are as expressive as sweeping transducers in these spe-
cial cases. They are however more expressive than one-way transducers, even if both alphabets
are unary. A witness is the restriction of Power to unary alphabets, denoted uPower:

uPower =
�
(an, akn) | k, n 2 N

 
.

The transduction is not rational. Indeed, identifying a

⇤ with the additive monoid of integers N,
it defines the relation “being multiple of”. However, rational subsets of N are first-order definable
in Presburger arithmetics, i.e., arithmetics with addition only.

4.1. Commutative Outputs

As highlighted by the uPower example, the further expressiveness of rotating transducers
over unary output alphabet with respect to one-way transducers comes from the presence of
loops in successful computations, that can be repeated an arbitrary number of times thus
producing some power of a factor of the output. This is confirmed by a result of Anselmo
on two-way weighted automata over commutative semirings, from which we can deduce that
whenever the output alphabet is unary, loop-free transducers, namely two-way transducers
that do not allow loops in successful computations, recognize rational transductions only [4].
This result applies to many interesting subcases, e.g., functional transductions,6 transducers

6Functional transducers are not always loop-free, but their accessible and co-accessible loops necessarily
produce empty outputs. They can therefore be cut off when considering successful computations.
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with deterministic underlying automaton. Another consequence of Anselmo’s construction
is the uniformization of output-unary two-way transducers by one-way transducer.7 Indeed,
by applying the construction to transducers with loops, we obtain a one-way transducer which
realizes a sub-transduction of same domain (only outputs generated through loop-free successful
computations are recovered). This one-way transducer can in turn be uniformized [18, 2, Prop.
IX 8.2].

Hadamard transductions admit also a simpler form [10, 26], which mainly comes from the
facts that, with commutative outputs, the Hadamard product is commutative, and rational
transductions are closed under Hadamard product, e.g., [30].

Proposition 4.2 Let T be a transduction over ⌃,� with � unary. Then T is Hadamard if
and only if there exists a finite set I, and two finite families (Ri)i2I and (Si)i2I of rational
transductions such that T =

S
i2I Ri � Si

? .

4.2. Connecting Hits

Let T be a two-way transducer and T be the transduction it realizes. A hit of T over some
input word u is a partial computation of T over u between two successive visits of endmarkers.
Hits can be grouped in four types according to their starting and ending sides. Moreover, they
can be parametrized by their initial and final states. We thus speak of (q, s)-to-(q0, s0) hits, for q
a state and s an endmarker in {B,C}, with the obvious meaning. Such a pair (q, s) is called a
border point. Each parametrized family of hits define the transduction Tq,s,q0,s0 , defined by:

Tq,s,q0,s0 = {(u, v) | v is produced during a (q, s)-to-(q0, s0) hit over u}.

Notice that a simple modification of T realizes Tq,s,q0,s0 . Given some descriptions of each Tq,s,q0,s0 ,
we can describe the transduction T as a finite expression connecting the Tq,s,q0,s0 ’s with Hadam-
ard operations, since successful computations are compositions of hits. (This was actually used
in the proof of Theorems 3.4 and 3.6.) We thus obtain the following.

Lemma 4.3 If each Tq,s,q0,s0 is mirror-Hadamard or Hadamard then so is the transduction T .

This can already apply to some particular output-unary transducers.

Corollary 4.4 Over a unary output alphabet, if T is outer-nondeterministic, namely if non-
deterministic choices may occur only while reading an endmarker [23], then the transduction
realized is Hadamard. In particular, there exists an equivalent rotating transducer.

Proof. Since the transducer is outer-nondeterministic, every hit occurring in a successful
computation is loop-free. Hence, because the output alphabet is unary, each Tq,s,q0,s0 is rational
by Anselmo’s theorem [4]. Finally, since rational transductions are in particular Hadamard, we
obtain the results by Lemmata 4.3 and 3.4. 2

7A uniformization of a relation R, is a partial function F included in R which has same domain as R.
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4.3. Unary Transducers

We consider now the case in which both the input and the output alphabets are unary. In
this special case, we are able to characterize the class of transductions realized by two-way
transducers: they are exactly the Hadamard transductions [10].

This result is obtained by combining three ingredients:

1. a one-way simulation of loop-free hits with commutative outputs, obtained by adapting
the classical notion of crossing sequences as in [4];

2. the study of unary outputs that can be produced during a loop in a hit;
3. the connection of hits described in Lemma 4.3.

Only Ingredient 2, which is the key point of the proof, uses the assumption of having a unary
input alphabet. Intuitively, since the input is unary, the production associated with a central
loop (i.e., a loop that does not visit the endmarkers) does not really depend on the starting
position of the loop, but can be shifted along the input tape, providing the starting position
is sufficiently far away from the endmarkers. Given two elements ` and r in N [ {1}, and a
central loop r = (q0, p0) · · · (qn, pn) represented as a sequence of configurations over some fixed
input word (q0 = qn and p0 = pn), we say that r is (`, r)-limited if for all 0  i  n, the
head position component pi is greater than or equal to p0 � `, and less than or equal to p0 + r,
i.e., p0 � `  pi  p0 + r. Observe that if `0 � ` and r

0 � r, every (`, r)-limited central loop
is (`0, r0)-limited. Also, any central loop is (1,1)-limited. We denote by ⇤`,r(q) the set of
outputs generated by (`, r)-limited central loops around state q, namely:

⇤`,r(q) = {�(r) | r is a (`, r)-limited central loop around q}.

As observed previously, we have ⇤`,r(q) ✓ ⇤`0,r0(q) ✓ ⇤1,1(q) for any `

0 � ` and r

0 � r. Fur-
thermore, each ⇤`,r(q) contains ✏, as being the output of the trivial central loops around q. The
set ⇤1,1(q) is the set of all outputs of central loops around q. The following shows that each
of these languages is rational and that there are finitely many different such languages [10].

Lemma 4.5 For each state q and each `, r 2 N [ {1}, the language ⇤`,r(q) is rational.
Moreover, there exists a constant N 2 N depending on T only, such that for each state q

and each `, r � N , it holds: ⇤`,r(q) = ⇤N,N(q) = ⇤1,1(q).

Proof. We fix q and `, r 2 N [ {1}. Since concatenating two (`, r)-limited loops yields a
(`, r)-limited loop, we obtain the closure of ⇤`,r(q) under Kleene star. Because the language
is furthermore unary, we obtain that it is rational, by identifying it with a sub-monoid of the
additive monoid of integers which is therefore finitely generated.

Let hg1, . . . , gmi be a finite family of generators of ⇤1,1(q). Then, each gi is the output of some
central loop ri around q. By considering the maximal limits of these loops, we obtain that
each generator is (Nq, Nq)-limited for some integer Nq. In particular, ⇤Nq ,Nq(q) = ⇤1,1(q). We
conclude the proof by setting N as the maximum of the Nq’s over q. 2

Remark 4.6 The above proof is non-constructive. In order to obtain an effective transforma-
tion, we should use an alternative proof.
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It is indeed possible, given q, `, r, to build a counter automaton which recognizes ⇤`,r(q). In-
formally, the device performs a direct simulation of T from state q but reads the emitted output
rather than the input word, while assuming that only a’s are read by T . In parallel, it uses the
counter to store the distance of the simulated head position to the original position. This allows
it to accept only when entering the state q with empty counter, that is, when the simulated
computation is a central loop around q. Additionally, it can check that the counter value does
not exceed ` to the left and r to the right, using its finite control. This counter automaton can
in turn be transformed into an equivalent finite automaton A(q)

`,r via Parikh’s Theorem [28].

Finally, by successively testing equivalence of the automata A(q)
`,r while increasing ` and r, it is

possible to compute the constant N of the lemma. Unfortunately, this gives no bound on the
size of this constant with respect to the size of T . We leave this question as an open problem.

Combining Ingredients 1 and 2, namely [4] and Lemma 4.5, we obtain that the parametrized
hits of a unary transducer define a rational transduction [10].

Lemma 4.7 Let T be a unary two-way transducer. For each border points (q, s) and (q0, s0),
the transduction Tq,s,q0,s0 of productions of (q, s)-to-(q0, s0) hits of T is rational.

We are now ready to state the characterization of unary two-way transducers [10].

Theorem 4.8 A unary transduction is realized by a two-way transducer if and only if it is
in Had.

Proof. The result follows from Theorem 3.4, and Lemmata 4.3 and 4.7. 2

As a consequence, every unary two-way transducer admits an equivalent rotating transducer.

Corollary 4.9 Unary two-way transducers are as expressive as unary rotating transducers.

It is a natural question whether a similar results still holds when one of the alphabets only is
unary. As the commutativity of the outputs is required by the main ingredients of the previous
proof, it is not surprising to find counterexamples with unary input alphabets and nonunary
output alphabets. Such an example is the transduction RLPrefix defined by:

RLPrefix = {(an, ambm) | n,m 2 N,m  n}.

Informally, a two-way transducer realizing it can operate in three phases:

Phase 1: rightward scanning of the input while emitting the symbol a at each step, until
reaching some nondeterministically chosen position before the right endmarker;

Phase 2: backward scanning of the input prefix while emitting the symbol b at each step, until
reaching the left endmarker;

Phase 3: acceptation by reaching the right endmarker without emitting any output symbol.

However, no rotating transducer realizes RLPrefix [25].
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Concerning transducers over nonunary input alphabets and unary output alphabets, we can
also show that the statement of Theorem 4.8 does not hold. Notice that a counter example
necessarily has to admit central loops, otherwise Ingredient 2 would be irrelevant. We define
the transduction MultOneBlock as follows:

MultOneBlock =
�
(u, akn) | u 2 {], a}⇤ and k, n 2 N such that ]an] is a factor of u

 
.

The transduction is an adaptation of uPower, in which a factor delimited by ]’s rather than
the whole input word is raised to some power. It is an easy exercise to design a two-way
transducer realizing it. However, it is more involved to show that there is no equivalent rotating
transducer. Intuitively, this holds because the following two conditions are gathered. First, k
and n are unbounded whence some computations require many passes over the input tape.
Second, between two passes, a rotating transducer cannot store which factor delimited by ]’s
has been selected on the previous passes, because there are an unbounded number of such
factors. The formal proof of this separation result has required the investigation of the periods
of the output language associated to an input word [25].

The two above examples implies that the unknown expressiveness of two-way transducers
strictly extend the expressiveness of sweeping transducers as far as one of the alphabets has
cardinality at least 2. In other words, the question marks in Table 2 indicate classes of trans-
ductions that strictly include MHad.

Perspective. One possible direction towards characterizing the class of transductions realized
by two-way transducers, is to adapt the regular combinators from [3, 17, 6], that already capture
regular transductions. In this perspective, considering the case of commutative outputs seems
more promising than the general case.

5. Origin Semantics

Transductions are not only sets of pairs of words. Indeed, they represent the result of some
computation over an input word producing an output word. Hence, the output is implicitly
related to the input. The origin semantics of transducers, introduced by Bojańczyk in [8],
aims to make this correspondence more explicit. It is founded on the observation that each
transducer actually provides more than a set of pairs of words. Indeed, from the transducer,
one can also reconstruct the origin information, which says how positions of the output word
originate from positions of the input word. Formally, the origin of an output position is the
position of the input head when the corresponding output symbol was emitted. There are thus
two semantics for transducers: one standard semantics where the output is a word, and an
origin semantics where the output is a word with origin information. Identifying words with
labeled paths, we can represent the latter as families of particular graphs, called origin graphs,
which consists in:

1. a path with vertices labeled by ⌃ for the input word;
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a b a a b b

a b a a b b a b a a b b

(a) Square

a a a a

a a a a

(b) uIdentity

a a a a

a a a a

(c) uMirror

Figure 2:: Origin graphs from the origin semantics of transducers.
The upper (resp. downer) path represent the input (resp. output), while the upward edges are the origin edges.

2. a second disjoint path with vertices labeled by � for the output word;
3. origin edges from each output position towards some input position.

Figure 2 gives examples of origin graphs. A set of origin graphs is called an origin transduction.
As shown in [8], the different equivalent formalisms for the class of regular transductions, namely
functional two-way transducers, streaming string transducers [1] and mso transductions [20],
are consistent with origin information. Indeed, transforming one of these models into another
one using the known constructions that proved their equivalences, yields a device which realizes
the same transduction with the same origin information as the original one. In other words,
the models do not only compute the same transduction but they compute it in a similar way.

The origin semantics of transducers is finer than the standard semantics in the sense that
two transducers might be equivalent under the standard semantics, but not under the origin
semantics. For instance, the restrictions to unary alphabets of the transducers realizing Iden-
tity and Mirror, respectively denoted uIdentity and uMirror, are equivalent for the
standard semantics (indeed, the transduction realized is {(an, an) | n 2 N} in both cases), but
their origin semantics differ (cf. Figures 2b and 2c).

In a very recent unpublished work on two-way transducers with origin semantics, Bose, Muscholl,
Penelle, and Puppis have shown that the equivalence of nondeterministic transducers with origin
is decidable [Personal communication], thus contrasting with the undecidability of their standard
equivalence [24].

The origin semantics is richer than the standard semantics. It allows in particular to use
structural graph properties, such as having bounded degree, to talk about family of origin
graphs, namely origin transductions. It has been shown in [9] that an origin transduction is
the origin semantics of a functional two-way transducers if and only if it has four properties:

(1) it is mso-definable as a set of coloured graph (i.e., there exists an mso formula which is
true in exactly the origin graphs of the transduction);

(2) it has bounded degree (equivalently, an input position might be the origin of a bounded
number of output positions);

(3) it is origin functional, i.e., each input word, appears in at most one origin graph of the
origin transduction;8

8Notice that this property is stronger than functionality for the standard semantics, e.g., uIdentity [
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(4) it has bounded crossing, which intuitively means that the origin mapping does not oscillate
to much. More precisely, the crossing of an origin graph counts how many visits to an input
position is required by a two-way transducer to realize the transduction. In particular,
bounding it implies that each input position is visited only a bounded number of times
whence there is no loop.

It thus seems natural to relax these structural properties in order to capture some classes of
nonfunctional transductions. Still in [9], it has been proved that (1), (2) and (4) characterize the
origin semantics of nondeterministic streaming string transducers. This model is orthogonal to
two-way transducers. Indeed, a nondeterministic streaming string transducer may for instance
realize the transduction SquaredSubword defined by:

SquaredSubword = {(u, vv) | v is a subword of u} = Square � Subword,9

which cannot be realized by any two-way transducer, but, conversely, the model can realize
only origin transductions with bounded degree, contrary to two-way transducers, e.g., Power.

So, although functional streaming string transducers and functional two-way transducers have
same expressiveness [1], their nondeterministic versions define orthogonal classes of transduc-
tions. This is because the nondeterminism of the two models has a completely different nature.
On the one hand, the nondeterminism of streaming string transducers allows to globally select
some input position, e.g., in SquaredSubword we can pre-select the input positions of the
symbols that will form the subword. This is highlighted by the equivalence of the model with
nondeterministic mso transducers [2], in which the nondeterminism is precisely a global pre-
selection of positions (also called common guess). On the other hand, the nondeterminism of
two-way transducers allows computations to loop, thus emitting an unbounded repetition of
some output factor.

In [9], the authors considered some combinations of these abilities, namely streaming string
transducer with "-moves, and two-way transducers with common guess. It was shown that
when considering only origin semantics of the latter model which have bounded degree, one
recovers exactly the origin semantics of nondeterministic streaming string transducers. In
particular, the class of bounded-degree origin transductions defined by two-way transducers
is strictly included in the class of origin transductions realized by nondeterministic streaming
string transducers.

We believe that the origin semantics of two-way nondeterministic transducers is a promising
direction towards describing the expressiveness of some relevant subclasses of the model, while
recovering decidability results such as equivalence of devices. The origin semantics indeed
provides a more suitable structure for relating transductions with logic. In this scope, it could
be interesting to study the class of nonfunctional transductions that are definable in the decid-
able logic from [15], a logic speaking of transductions which characterizes regular transductions
when restricted to functions. Conversely, it could be interesting to design new nondetermin-
istic transducing models which realize some robust classes of origin transductions, for instance
satisfying (1), (2), and having bounded pathwidth.

uMirror is not origin functional.
9Here, S �R denotes the composition of R and S, namely (x, y) 2 S �R () 9z | (x, z) 2 R ^ (z, y) 2 S.
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Watson-Crick Finite Automata (WKFA) were formulated in the framework of DNA computing

[1]. They are based on DNA recombination and the complementarity relationship between

the double-stranded nucleotides to form biochemical bonds. From the beginning, it was estab-

lished that WKFA recognize some language classes that are included in the context sensitive

class. Therefore, the WKFA can recognize languages that could be applied to the modeling of

languages that are useful for solving di↵erent tasks. In our case, we take advantage of the de-

scriptive power of the languages accepted by WKFA. We apply them in the tasks of annotation,

classification and prediction for genomic sequences (biosequences of DNA, RNA and proteins).

To address the integral design of a classifier or an annotation tool based on WKFA, we use a

reduction technique based on a representation theorem that we proposed in [2]. This allows

us to define the languages accepted by WKFA as intersections of linear languages and even

linear languages. The main advantages of this reduction is that we can introduce characteristic

features such as those shown in [3, 4] and we can approach the machine learning of these models

with grammatical inference techniques such as those shown in [5, 6].

We will show how to build de novo a WKFA classifier for genomic sequences from a (finite) set

of annotated examples and counterexamples. We will propose a solution for the bioinformatic

tasks of annotation and classification of structural motifs in proteins such as the coiled coils

and transmembrane motifs. We will show some experiments with real data, and we will also

make a proposal for the modeling of annotation for pseudoknots in RNA that is still an open

problem in structural bioinformatics.



30 José M. Sempere

References
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(A)Aix-Marseille Univ., Université de Toulon, CNRS, LIS, Marseille, and IXXI, Lyon, France
{pablo.arrighi,stefano.facchini}@univ-amu.fr

(B)Inria, LSV, ENS Paris-Saclay 61, avenue du Président Wilson, 94235 Cachan Cedex, France

(C)Atos/Bull, Quantum R&D, 78340 Les Clayes-sous-Bois, France
simon.martiel@atos.net

Abstract

We extend Cellular Automata to time-varying discrete geometries. In other words we formal-

ize, and prove theorems about, the intuitive idea of a discrete manifold which evolves in time,

subject to two natural constraints: the evolution does not propagate information too fast; and it

acts everywhere the same. For this purpose we develop a correspondence between complexes and

labeled graphs. In particular we reformulate the properties that characterize discrete manifolds

amongst complexes, solely in terms of graphs. In dimensions n < 4, over bounded-star graphs,

it is decidable whether a Cellular Automaton maps discrete manifolds into discrete manifolds.

Keywords: Causal graph dynamics, crystallizations, gems, balanced complexes, combinato-

rial manifolds, graph-local Pachner moves, bistellar, inverse shellings, homeomorphism, Regge-

calculus, causal dynamical triangulations, spin networks.

1. Introduction

Discrete geometry refers to discretizations of continuous geometries, i.e., piecewise-linear man-
ifolds, that can be abstracted as combinatorial objects such as simplicial complexes, etc. But it
may also refer to mere graphs/networks equipped with their natural graph distance. This am-
biguity is common in Computer Science, but also in Physics. For instance in discrete/quantized
versions of General Relativity, spacetime is discretized as simplicial complexes (Regge-calculus)
or in the basis of spin networks graphs (Loop Quantum Gravity). This raises the question of a
thorough comparison between simplicial complexes and graphs.

A natural way of approaching this question is to seek to encode complexes into labeled graphs.
Then, a natural way to encode a complex into a labeled graph, is to map: each simplex u into a
vertex u; each facet u:a of the simplex into a port u:a of the vertex u; each gluing between facets
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u:a and v:b into an edge (u:a, v:b); each possible way of rotating/articulating this gluing as a
label � carried by this edge – see Fig. 1 and 2. We formalize this correspondence in Section 2.
Notice that by ‘complex’, we really mean ‘pseudo-manifold’ here, i.e., each facet of a simplex
is attached to one other facet at most. Notice also that the precise choices of ports may not
matter, so long as the edges between them represent oriented gluings of simplices. There is,
therefore, a local rotation symmetry.

This works well, but a non-often emphasized problem arises. Consider triangles hinging around
a point, as in the bottom left of Fig. 1. The geometrical distance between the two extreme
tetrahedrons is one, since they share a point. But the graph distance between their correspond-
ing vertices is three, and the path between them could be made – they are not graph neighbors.
There is a discrepancy between the two distances, which we characterize in Section 3. Faced
with this discrepancy, we have two options.

One option is to forget about geometrical distance altogether. Indeed, if one thinks of each
tetrahedron as a room (as in the movie Cube, say), then it is the graph distance that matters.
In Section 4, we develop a theory of Causal Dynamics of Complexes (CDC). CDC evolve
complexes in discrete time steps, subject to two natural constraints: the evolution does not
propagate information too fast; and it acts everywhere the same. This is thanks to the concept of
Causal Graph Dynamics (CGD), which we recall. We prove that the CGD which commute with
local rotations, can always be implemented with rotation-commuting local rules – a property
which in turn is decidable. Then, the previously developed correspondence between complexes
and labeled graphs readily allows us to reinterpret these rotation-commuting CGD, as CDC.
CDC are already interesting as a mathematically rigorous framework in which to cast the more
pragmatical simplicial complex parallel rewrite system of [8], or in order to explore causal
dynamics of Causal Dynamical Triangulations [1], à la [11].

Another option is to take geometrical distance into account. Then, looking at the complex at
this larger scale, and in dimension 3 and above, unravels new concerns. For instance Fig. 5
has the topology of a pinched ball (think of a balloon compressed between two fingers until
they touch each other). This is not a manifold, since the neighborhood of the compression
point is not a ball. Thus, since the cycle length is arbitrary, the property of being a manifold,
is non-local. To make matters worse, the two extreme tetrahedrons could have been glued
in a torsioned manner, see Fig 5 again. A somewhat radical solution to these concerns is to
restrict to complexes such that, even in the geometrical distance, neighborhoods are bounded.
Then, the discrepancy between the geometrical and the graph distances is linearly bounded.
Another motivation for considering these ‘bounded-star complexes’ is if the next state of a
tetrahedron is computed from that of the geometrically neighboring tetrahedrons: we may
want this neighborhood to be bounded, whether for practical purposes (e.g. e�ciency of a
finite-volume elements methods) or theoretical reasons (e.g. computability from the finiteness
of the local update rule; finite-density as a physics postulate). Finally, this is a way to prevent
sudden geometrical distance collapse – see Fig. 10.

In Section 5 we characterize manifolds. In continuous geometries, a manifold is characterized
by the neighborhood of every point being homeomorphic to a ball. Over simplicial complexes,
this translates into the neighborhood of every simplex being homeomorphic to a ball, where
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Figure 1: Complexes as graphs. Top row. The naive way to encode complexes as graphs is ambiguous.
Bottom row. Encoding colored complexes instead lifts this ambiguity.

the notion of homeomorphism is captured by a finite set of local rewrite rules, often referred to
as Pachner moves (technically, bistellar moves plus shellings and their inverses). These moves
are reformulated in terms of graph moves; but the obtained graph moves are not graph-local.
We show that a subset of these graph moves is just as expressive as the Pachner moves, whilst
enjoying the property of being graph-local. That way, the properties that characterize discrete
manifolds are reformulated in terms of graph-local moves.

In Section 6, we show that it is decidable whether a CGD is torsion-free bounded-star discrete-
manifold preserving – in dimensions less than four. Then, the correspondence between com-
plexes and labeled graphs readily allows us to reinterpret these, as Causal Dynamics of Discrete
Manifolds (CDDM).

We conclude in Section 7 with a discussion of the result and their connection with past and
future works, as well as a detailed comparison with the crystallizations/gems alternative.

2. Complexes as Graphs

The naive way is to map each simplex to a vertex v, and each gluing between facets to an edge
{u, v}. The problem, then, is that we can no longer tell one facet from another, which leads
to ambiguities (see Fig. 1 Top row.). A first solution attempt is to consider colored simplicial

complexes instead. In these complexes, each of the n+ 1 points of a n–simplex has a di↵erent
color. Now we can map each simplex to a vertex, and each gluing between facets to an edge,
but now this edge {u:p, v:q} holds the colors of the points that are opposite the glued facets
(see Fig. 1 Bottom row.). The problem, now, is that as soon as we consider 3–dimensional
complexes, there are three di↵erent, rotated/articulated ways of gluing two tetrahedrons along
two given facets (see Fig. 2). We must therefore provide a permutation � telling us which points
identifies with whom, on the edges. Because these permutations are not, in general, involutions,
we must direct our edges. Odd permutations correspond to oriented gluings. Altogether this
leads to the following definition, which is an elaborated version of [2, 3, 4]:
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Figure 2: The di↵erent, rotated/articulated ways of gluing of two tetrahedrons along two given facets
are specified on the edges.

Definition 2.1 (Graphs, Disks) Let V be an infinite countable set referred to as the ‘universe

of names’. Let ⌃ be a finite set referred to as the ‘internal states’. Let n stand for the spatial

dimension. Let ⇡ be 0 . . . n+ 1 referred to as the ‘set of ports’. Let � be the (n + 2)!/2 odd

permutations of ⇡, referred to as ‘gluings’. A graph G is given by

• A subset V (G) of V – whose elements are called vertices.

• A function � : V (G) ! ⌃ associating to each vertex its label.

• A set S(G) of elements of the form (u:p) with u 2 V (G), p 2 ⇡ – whose elements are

called semi-edges.

• A set E(G) of elements of the form (u:p, �, v:q) with u, v 2 V (G), p, q 2 ⇡, � 2 � – whose

elements are called edges.

This is with the conditions that

• if (u:p) 2 S(G) then there is no (u:p, �, v:q) 2 E(G).

• if (u:p, �, v:q) 2 E(G) then there is no other (u:p, �0, v0:q0) 2 E(G).

• each vertex has exactly n+ 1 ports, i.e. appearing in S(G) [ E(G).

• if (u:p, �, v:q) 2 E(G) then � must map the n+ 1 ports of u into the n+ 1 ports of v, with
�(p) = q.

• if (u:p, �, v:q) 2 E(G) then (v:q, ��1, u:p) 2 E(G).

The set of graphs is denoted G. Given a graph G, we write Gr
v for its disk of radius r centered

on v, i.e. its subgraph induced by those vertices that lie at graph distance less or equal to r + 1
from v in G, breaking outgoing edges into semi-edges. The set of disks of radius r is denoted

Dr
.

Figure 3: Complexes, Colored complexes, Oriented Complexes.

These graphs correspond to colored complexes, i.e. gluings of simplices whose points have
colors. Colored simplicial complex are not uncommon, but certainly not as common as oriented
complexes, however – see Fig. 3. If we wish to remove colors, we must allow for the simplices



CAUSAL DYMAMICS OF DISCRETE MANIFOLDS 35

to rotate freely. On graphs this corresponds to reshu✏ing the ports in ⇡ according to an even
permutation, i.e. a rotation.

Definition 2.2 (Vertex rotations and symmetries) Let G be a graph, u one of its vertex

and r an even element of ⇧. Then, a vertex rotation ru is the application of r at u. More

precisely, G0 = (ru)G, is such that

• V (G0) = V (G).

• E(G0) and S(G0) are the image of E(G) and S(G) under the map:

– (u:p, �, v:q) 7! (u:r(p), � � r�1, v:q).

– (v:q, ��1, u:p) 7! (v:q, r � ��1, u:r(p)).

– (u:p) 7! (u:r(p)).

• �0(u) = h(r)(�(u)), whereas �0(v) = �(v) for v 6= u,

where h is a given homomorphism between the group of permutations � over ⇡, and a group

of transformations h(�) over ⌃. A rotation sequence r is a finite composition

Q
riui

, with ri

some rotations, and ui some vertices. When s is an odd element of ⇧, we can similarly define

a vertex symmetry su and a symmetry sequence s. We use sij as a shorthand notation for the

flip between i and j.

Oriented simplicial complexes correspond to the equivalences classes of our labeled graphs:

Definition 2.3 (Rotation Equivalence) Two graphs G and H are rotation equivalent if and

only if there exists a rotation sequence r such that rG = H.

From now on and in the rest of this paper, we will let ⌃ = ? in order to simplify notations –

although all of the results of this paper carry through to graphs with internal states.

3. Graph Distance Versus Geometrical Distance

On the one hand in the world of simplicial complexes, two simplices are a djacent if they share a
geometric point (a 0–face). On the other hand in the world of graphs, two vertices are adjacent
if they share an edge. These two notions do not coincide, as shown in Fig. 1. In order to
understand the interplay between geometrical and graph distances, we first express the notion
of k–face of a given simplex, in graph terms. We then provide graph-based condition that tell
whether the k–face is shared by another simplex.

The way we express the notion of k–face in terms of graphs is as follows. Consider Figure 2.
Each port p can be interpreted, geometrically, as the point opposite to where the gluing occurs.
Then, a k-face F can be described just by the set of ports–points that composes it.

Definition 3.1 (Face) A k–face F at vertex u is a subset {p0, . . . , pk} of k + 1 ports of a

vertex u.
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Now, if a point p belongs to a k–face at u, and a simplex u0 is glued on port p, this simplex
no longer contains the k–face, as it excludes the point u : p. We can use this to characterize
geometrically equivalent k–faces and hinges around them, i.e. paths along simplices that include
them.

Figure 4: A hinge between F at u and F 0 at u0.

Definition 3.2 (Hinges between equivalent faces) Two k-faces F at vertex u and F 0
at

vertex u0
are said to be equivalent if and only if they are related by a hinge, i.e. if and only if

there exists is a path (ui:pi, �i+1, ui+1:qi+1) 2 E(G) with i = 0 . . .m, u0 = u, um+1 = u0
, such

that :

pi, qi /2
 

iY

j=1

�j

!
(F ) and F 0 =

 
mY

j=1

�j

!
(F ) (1)

where pi = p0, . . . , pm, whereas qi = q1, . . . , qm+1.

When a gluing occurs on port u : p, it ‘covers’ the points u : ⇡ \ {p}. Conversely, a k–face F at
u is covered by all those gluings occurring at ⇡ \ F .

Definition 3.3 (Border face) Given a k-face F at vertex u, consider every F 0
at u0

that is

equivalent to F . Its set of covering semi-edges is

S(G) \
[

u0

(u0 : ⇡ \ F 0).

If this set is non-empty, F is a border face.

Sometimes a hinge can be closed-up into a cyclic hinge in a way that identifies a k–face, with
a rotated/articulated version of itself, as in Fig. 5.

Definition 3.4 (Torsion) A torsion is a hinge around two distinct k-faces F and F 0
at u.

Whilst such torsions may be useful in order to model certain kinds of parallel transport, we
regard them as undesirable in this paper. Here is one tool to chase them out:

Definition 3.5 (Normal form) A path {ui:pi, �i+1, ui+1:qi+1} 2 E(G) with i = 0 . . .m is in

normal form if and only if for all i, �i+1 = spiqi+1 and if the n+1 ports of ui are {pi, r1, . . . , rn},
then those of ui+1 are {qi+1, r1, . . . , rn}.
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Proposition 3.6 A cyclic hinge that can be put in normal form, is torsion-free.

Proof. Say that the hinge has been put in normal form. Pick F a k face at u0 such that
the left equation (1) is verified. In normal form spiqi+1 leaves r1, . . . rn unchanged. Obviously
p0 /2 F , hence sp0q1(F ) = F . And similarly for the next steps. Therefore the F 0 of the right
equation (1) is F . 2

Generally speaking, chasing out torsions is a di�cult thing, because cyclic hinges may be
arbitrary long. Unless we make further assumptions.

Definition 3.7 (Star, Bounded-star) Consider a graph G and a vertex u in G. A vertex u0

in G is said to be a geometrical neighbor of u if and only if they have an equivalent k–face. The
star of u is the subgraph induced by u and its geometrical neighbors. It is denoted Star(G, u).
A graph G is said to be bounded-star of bound s if and only if its hinges are of length less than

or equal to s.

Figure 5: With the black gluing between u and v, the complex has the topology of a pinched ball, i.e.
a doughnut whose hole has collapsed into a point. This constitutes an example of a pseudo-manifold
(well-glued simplices) that is not a discrete manifold (the neighborhood of the pinch is not a ball).
With the red gluing, the complex is torsioned. For instance, the 0–faces {1} and {2} at u are made
equivalent in the sense of Def. 3.2.

4. Causal Dynamics of Complexes

We now recall the essential definitions of CGD, through their constructive presentation, namely
as localizable dynamics. We will not detail, nor explain, nor motivate these definitions in order
to avoid repetitions with [2, 3, 4]. Still, notice that in [2, 3, 4] this constructive presentation is
shown equivalent to an axiomatic presentation of CGD, which establishes the full generality of
this formalism. The bottom line is that these definitions capture all the graph evolutions which
are such that information does not propagate information too fast and which act everywhere
the same, see Fig. 6.

Definition 4.1 (Isomorphism) An isomorphism is specified by a bijection R from V to V
and acts on a graph G as follow:

• V (R(G)) = R(V (G))

• (u : k, �, v : l) 2 E(G) , (R(u) : k,R � � �R�1, R(v) : l) 2 E(R(G))
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F

ff f

Figure 6: A Causal Graph Dynamics. The whole graph evolves in a causal (information propagates
at a bounded speed) and homogeneous (same causes lead to same e↵ects) manner. This was proven
equivalent to applying a local function f to each subdisk of the input graph, producing small output
graphs whose union make up the output graph.

• (u : k) 2 S(G) , (R(u) : k) 2 S(R(G))

Let b be an integer number, and F(S) denote the finite subsets of a set S. We similarly define

the isomorphism R⇤
specified by the isomorphism R as the function acting on graphs G such

that V (G) ✓ F(V.{", 1, ..., b}), so that R⇤({u.i, v.j, ...}) = {R(u).i, R(v).j, ...}.

Definition 4.2 (Consistent) Consider two graphs G and H. Let K = V (G) \ V (H) and

L = V (G) [ V (H). G and H are consistent if and only if for all u : i in K : ⇡, for all v : j in

L : ⇡,

(u : i, �, v : j) 2 E(G) _ (u : i) 2 S(G) () (u : i, �, v : j) 2 E(H) _ (u : i) 2 S(H).

Definition 4.3 (Local Rule) A function f : Dr ! G is called a local rule if there exists some

bound b such that:

• For all disks D and v0 2 V (f(D)) ) v0 ✓ V (D).{", 1, ..., b}.
• For all graphs G and disks D1, D2 ⇢ G, f(D1) and f(D2) are consistent.

• For all disks D and isomorphisms R, f(R(D)) = R⇤(f(D)), with
R⇤({u.i, v.j, ...}) = {R(u).i, R(v).j, ...}.

Definition 4.4 (CGD) [2, 3, 4] A function F from G to G is a localizable dynamics, a.k.a
Causal Graph Dynamics, or CGD, if and only if there exists r a radius and f a local rule from

Dr
to G such that for every graph G in G,

F (G) =
[

v2G

f(Gr
v).

To compute the image graph, a CGD could make use of the information carried out by the
ports of the input graph. Thus, though the correspondence developed, they can readily be
interpreted as “Causal Dynamics of Colored Complexes”. If we are interested in “Causal
Dynamics of (Oriented) Complexes” instead, we need to make sure that F commutes with
vertex-rotations.
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Figure 7: A non-rotation commuting local rule which induces a rotation commuting CGD.

Definition 4.5 (Rotation-commuting dynamics) A CGD F is rotation-commuting if and

only if for all graph G and all rotation sequence r there exists a rotation sequence r⇤ such that

F (rG) = r⇤F (G). Such an r⇤ is called a conjugate of r.

For local rules we will need a stronger version of this:

Definition 4.6 (Strongly-rotation-commuting local rule) A local rule f is strongly-rotation-

commuting if and only if for all intersecting pairs of disks G = D1 [ D2 and for all rotation

sequence r, the conjugate rotation sequences r⇤1 and r⇤2 defined through r⇤i f(Di) = f(rDi),
i = 1, 2 coincide on f(D1) \ f(D2).

When is a CGD rotation-commuting? Can we decide, given the local rule f of a CGD F ,
whether F is rotation-commuting? The di�culty is that being rotation-commuting is a property
of the global function F . Indeed, a first guess would be that F is rotation-commuting if and
only if f is rotation-commuting, but this turns out to be false.

Example 4.7 (Identity) Consider the local rule of radius 1 over graphs of degree 2 which acts
as the identity in every cases but those given in Fig. 7. Because of these two cases, the local
rule makes use the information carried out by the ports around the center of the neighborhood.
It is not rotation-commuting. Yet, the CGD it induces is just the identity, which is trivially
rotation-commuting.

Thus, unfortunately, rotation-commuting F can be induced by non-rotation-commuting f . Still,
there always exists a strongly-rotation-commuting f that induces F .

Proposition 4.8 Let F be a CGD. F is rotation-commuting if and only if there exists a

strongly-rotation-commuting local rule f which induces F .

Proof. (Outline). [(] Trivial.

[)] Given a rotation commuting CGD F induced by some local rule f that is not nec-
essarily strongly rotation commuting itself, we construct a local rule f̃ that is a strongly-
rotation-commuting and still induces F . The construction uses the fact that F is rotation
commuting to force f̃ to adopt an homogeneous behavior over the sets of disks of the form
{rD | r a rotation sequence} (i.e rotation equivalent copies of the same disk). 2

The point of this proposition is that having made this global property, local, makes it decidable.

Proposition 4.9 (Decidability of rotation commutation) Given a local rule f , it is de-

cidable whether f is strongly-rotation-commuting.
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Proof. There exists a simple algorithm to verify that f is strongly-rotation-commuting. Let
r be the radius of f . We can check that for all disk D 2 Dr and for all vertex rotation ru,
u 2 V (D), we have the existence of a rotation sequence r such that f(ruD) = r⇤f(D).
As the graph f(D) is finite, there is finite number of rotation sequences r⇤ to test. Notice that
as f is a local rule, changing the names of the vertices in D will not change the structure of
f(D) and thus we only have to test the commutation property on a finite set of disks. 2

Definition 4.10 (CDC) A Causal Dynamics of Complexes is a rotation-commuting CGD.

5. Pachner Moves

Bistellar moves. Given a tetrahedron �3, there is a canonical way to obtain is border, @�3, as
four glued triangles. In terms of graphs, given a single vertex of degree 4, there is a canonical
way to obtain a graph made of four vertices of degree 3 that represents its border. This works
as follows: 1. Interpret the vertex as a colored tetrahedron; so that each point has a color; 2.
Reinterpret each facet as a vertex, and each gluing along a segment, as an edge between the
ports of colors that of the points opposite the segment. This is the way we obtain:

Definition 5.1 (@�n+1) We call the canonical sphere of dimension n, and denote @�n+1, the

complete graph of size n+ 2 having vertices v0, ..., vn+1 and edges of the form (vi:j, sij, vj:i) for
i 6= j and i, j 2 {0, ..., n+ 1}.

Soundness. All hinges are in normal form hence not torsioned. 2

A triangle H can always be viewed as being a subcomplex of the boundary of a tetrahedron.
Its complement with respect to the tetrahedron yields three other triangles H⇤. More generally
and in terms of graphs, whenever H is a subgraph of @�n+1, we can construct its complement
H⇤ with respect to @�n+1.

When we have a triangle H lying inside a larger complex G, we can decide to replace H by
H⇤ in G. This amounts to subdividing it into three, see Fig. 5. More generally and in terms
of graphs, whenever H is an induced subgraph of @�n+1 and lies inside a larger graph G, we
can decide to replace H by H⇤ in G. A bistellar move does exactly that: it replaces a piece a
sphere by its complement, it is intuitive therefore that it is a homeomorphism:

Definition 5.2 (Bistellar move G.H) Let G be a graph and H be a subgraph of G such that

H is a strict subset of a @�n+1, and (G \H)\ @�n+1 = ;. Let us call s the symmetry sequence

(s01)u2H⇤
. The graph G.H is the graph where H has been replaced by sH⇤

as follows. First,

add sH⇤
to the graph. Second, for each edge e = (v:p, �, u:q) between a vertex v of H and a

vertex u of G \ H, notice there is a unique edge e0 = (v0:p0, �0, v:p) 2 E(s@�n+1), and replace

both e and e0 by the edge (v0 :p0, � � �0, u:q). Similarly, for every semi-edge e = (v : p) of H,

notice there is a unique edge e0 = (v0:p0, �0, v:p) 2 E(s@�n+1), and replace both e and e0 by the

semi-edge (v0:p0). Third, remove the vertices of H.
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Figure 8: a) The canonical sphere of dimension 2. b) The bistellar move obtained by taking as the
subgraph H, the single vertex in gray.

Notice that s flips the orientation of H⇤ relative to H in order to match the orientation of G,
and that the use of s01 for this purpose is without loss of generality, as one should also allow
for vertex rotations.

Shellings. Given a 2–dimensional complex having a triangle with two of its sides on the bound-
ary, we can decide to grow the complex by gluing two sides of a new triangle there. Similarly
and in terms of graphs, whenever a vertex of degree n + 1 has k free ports, we can decide
to connect them with k ports of a new, otherwise unconnected vertex. A graph-local inverse
shelling indeed consists in adding a new vertex to a graph by connecting it to a vertex having
free ports:

Definition 5.3 (Graph-local (inverse) shellings) Let G be a graph and u a vertex of G.

Let S be a subset of at most n free ports of u, i.e. such that (u : p) 2 S(G) for all p 2 S. The

graph G.S is the graph where a fresh vertex v has been added, as well as edges (u : p, s01, v :
s01(p)). We say that G.S is an graph-local inverse shelling of G, and conversely that G is a

graph-local shelling of G.S.

There is di↵erence, however, between this graph-local notion of shelling and the standard
notion of shelling upon complexes. Indeed, as was pointed out in Section 2, in a 2–dimensional
complex two boundary segments may be consecutive without this locality being apparent in
the corresponding graph. Standard inverse shellings are definitely more general, as they allow
gluing a fresh triangle there. Phrased in terms of graphs, they translate into:

Definition 5.4 (Standard (inverse) shellings) Let G be a graph, u be a vertex of G, and F
be a border k-face at u, having exactly n�k covering semi-edges (ui : pi). The graph G.F is the

graph where a fresh vertex v has been added, and each semi-edge (ui : pi) has been replaced by

an edge (ui : pi, s01, v : s01(pi)), without creating any torsion. We say that G.F is an standard
inverse shelling of G, and conversely that G is a standard shelling of G.F .

As an example of this definition, consider filling, with a new tetrahedron v, the hole in the ball
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at the top of Fig. 9 a), as in the top of Fig. 9 c). The 0–face F stands for the geometrical point
that will be covered by v. As the three covering semi-edges of F will be replaced by edges, F
will no longer be a border face. Indeed, although v introduces a new semi-edge, that one is not
a covering semi-edge of F .

Figure 9: The standard inverse shelling obtained via bistellar moves and a graph-local shelling.

Fortunately, standard (inverse) shellings can always be recovered from a succession of rotations,
Bistellar moves, graph-local (inverse) shellings:

Definition 5.5 (Graph-local Pachner moves) We call graph-local Pachner moves the union
of vertex rotations, bistellar moves and graph-local (inverse) shellings.

Proposition 5.6 (Recovering standard shellings) Standard (inverse) shellings are com-

positions of graph-local Pachner moves.

Proof. Consider a graph G with a border k-face F having exactly n � k covering semi-edges
as in Fig. 9 a). We want to perform the standard inverse shelling G.F , adding a fresh vertex v,
using only graph-local Pachner moves. As an intermediate step, consider G0 the graph G.F.S
where S is the set of semi-edges of v, as in Fig. 9 b). The graphs G and G0 are homeomorphic
and have the same border, therefore they are related by a sequence of bistellar moves, as was
shown by [6]. Finally, by a graph-local shelling we obtain G.F as in 9 c). 2

In the setting of simplicial complexes, Pachner moves [15, 14] are well-known to generate all
the homeomorphisms between combinatorial manifolds, and only the homeomorphisms. As a
corollary of the above proposition the same holds true for graph-local Pachner moves:

Definition 5.7 (Discrete manifold) A graph G of degree |⇡| = n + 1 is discrete manifold

if and only if for each vertex u 2 V (G), there exists a sequence of graph-local Pachner moves

sending Star(G, u) onto �n.

Corollary 5.8 (Homeomorphism) Consider M and M 0
two piecewise-linear manifolds, and

let G and G0
be the discrete manifolds obtained as their respective triangulations into simplicial
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Figure 10: An unwanted evolution: sudden collapse in geometrical distance. Left: in terms of com-
plexes. Right: In terms of graph representation.

complexes. M and M 0
are piecewise-linearly homeomorphic if and only if G and G0

are related

by a sequence of graph-local Pachner moves.

Notice that, albeit expensive computationally, it is decidable whether a n < 4–dimensional
complex is homeomorphic to �n, see [13] and [12] (Proposition 3.1). Homeomorphism in
general becomes undecidable for n � 4 [13]. Notice also that discrete manifolds are not always
simplicial complexes. For instance, the self-glued triangle is not a simplicial complex, as points
of the same simplex get identified. In dimension n  2, this remark seems innocuous, as any
discrete manifold is related, via Pachner moves, to a simplicial complex. In dimension n = 3, we
conjecture that this is still the case if and only if each simplex has no more that two identified
points, and that one extra move su�ces to make this true in all cases.

6. Causal Dynamics of Discrete Manifolds

The results in this section crucially rely on the following lemma:

Lemma 6.1 (Past subgraph) [3] Consider F a CGD induced by the local rule f of radius r
(i.e. diameter d = 2r + 1). Consider a graph G, a vertex v in G, a vertex v0 in f(Gr

v), and

a disk F (G)r
0

v0 (i.e. of diameter d0 = 2r0 + 1). Then this disk is a subgraph of F (G2rr0+r+r0
v ).

Notice that the disk G2rr0+r+r0
v has diameter d00 = d0d.

Bounded-star preserving. We will now restrict to CGD so that they preserve the property of
a graph being bounded-star. Indeed, we have seen that graph distance between two vertices
does not always correspond to the geometrical distance between the two triangles that they
represent. With CDC, we were guaranteeing that information does not propagate too fast with
respect to the graph distance, but not with respect to the geometrical distance. The fact that
the geometrical distance is less than or equal to the graph distance is falsely reassuring: the
discrepancy can still lead to unwanted phenomenon as depicted in Fig. 10.

Of course we may choose not to care about geometrical distance. But if we do care, then
we must not let that happen. One solution is to make the graphs are s–bounded-star. This
will relate the geometrical distance and the graph distance by a factor s. As a consequence,
the guarantee that information does not propagate too fast with respect to graph distance
will induce its counterpart in geometrical distance. This will forbid the sudden collapse in
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geometrical distance of Fig. 10. More generally it will enforce a bounded-density of information
principle. Of course, we must then ensure that the CGD we use preserve s–bounded-star graphs:

Definition 6.2 (Bounded-star preserving) A CGD F is bounded-star preserving with bound
s if and only if for all s–bounded-star graph G, F (G) is also s–bounded-star.

Proposition 6.3 Consider F a CGD induced by a local rule f of radius r. F is bounded-star

preserving with bound s = 2r0 if and only if for any s–bounded-star D in D2rr0+r+r0
, F (D) is

also s–bounded-star. Therefore, given a local rule f , it is decidable whether its induced F is

bounded-star preserving.

Proof. [)] Trivial. [(] By contradiction suppose that there is an s–bounded-star graph G
such that F (G) has an hinge h of size s0 = 2r0 + 1, and yet that all s–bounded-star disks of
radius 2rr0 + r + r0 are mapped into s–bounded-star graphs. Next, take v0 in the middle of h,
and v in G such that v0 in f(Gr

v). By Lemma 6.1, h appears in F (G2rr0+r+r0
v ), which contradicts

our hypothesis. 2

Torsion-free preserving. Second, amongst bounded-star preserving CGD, we will restrict to
those that preserve the property of not having torsion.

Definition 6.4 (Torsion-free preserving) An s–bounded-star preserving CGD F is torsion-
free preserving if and only if for all s–bounded-star graph G without torsion, F (G) is without

torsion.

Proposition 6.5 Consider F an s–bounded-star CGD induced by a local rule f of radius r. F
is torsion-free preserving if and only if for any s–bounded-star D in D2rr0+r+r0

without torsion,

F (D) is also without torsion. Therefore, given a local rule f , it is decidable whether its induced

F is torsion-free preserving.

Proof. As for Proposition 6.3. 2

Discrete-manifold preserving. Third, amongst torsion-free bounded-star preserving CGD, we
will restrict to those that preserve the property of being a discrete manifold.

Definition 6.6 (Discrete-manifold preserving) An torsion-free s–bounded-star preserving

CGD F is discrete-manifold preserving if and only if for all s–bounded-star discrete manifold

G, then F (G) is a discrete manifold.

Proposition 6.7 Consider F a torsion-free s–bounded-star preserving CGD induced by a local

rule f of radius r. F is discrete-manifold preserving if and only if for any s–bounded-star
discrete manifold D in D2rr0+r+r0

, F (D) is also a discrete manifold. Therefore, in dimension

n  3, given a local rule f , it is decidable whether its induced F is discrete-manifold preserving.

Proof. As for Proposition 6.3. Checking whether F (G2rr0+r+r0
v ) is a discrete-manifold is indeed

possible in dimension n  3, cf. [13] and [12] (Proposition 3.1). 2

Definition 6.8 (CDDM) A Causal Dynamics of Discrete Manifolds is a torsion-free s–bounded-
star discrete-manifold preserving CGD.
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7. Conclusion

Results in context. In [2, 3, 4] two of the authors, together with Dowek and Nesme, gener-
alized cellular automata theory to arbitrary, time-varying graphs. I.e. they formalized the
intuitive idea of a labeled graph which evolves in time, subject to two natural constraints: the
evolution does not propagate information too fast; and it acts everywhere the same. Some
fundamental facts of Cellular Automata theory were shown to carry through, for instance that
these Causal Graph Dynamics (CGD) admit a characterization as continuous functions and
that their inverses are also CGD.

The motivation for developing these CGD was to “free Cellular Automata o↵ the grid”, so as to
be able to model any situation where agents interact with their neighbors synchronously, leading
to a global dynamics in which the states of the agents can change, but also their topology, i.e. the
notion of who is next to whom. A first motivating example was that of a mobile phone network.
A second example was that of particles lying on a surface and interacting with one another, but
whose distribution influences the topology the surface (cf. Heat di↵usion in a dilating material,
discretized General Relativity [16]). However, CGD seemed quite appropriate for modeling the
first situation (or at least a stochastic version of it), but not the second. Indeed, having freed
Cellular Automata o↵ the grid, one could no longer interpret arbitrary graphs as surface, in
general.

The present paper solves this problem by proposing a rigorous definition of “Causal Dynamics
of Complexes” (CDC) and “Causal Dynamics of Discrete Manifolds” (CDDM). Essentially
this shows that CGD can be “tied up again to complexes and even to discrete manifolds”, at
the cost of additional restrictions: rotation-commutation (CDC), bounded-star preservation,
torsion-free preservation, discrete-manifold preservation (CDDM). The first restriction allows
us to freely rotate simplices. The second restriction allows us to map geometrical distances
into graph distances. The third restriction makes sure that no torsion gets introduced. The
fourth restriction makes sure that the neighborhood of every point remains a ball. The first
and second are decidable independently. Imposing the second makes the third decidable, and
fourth, but in dimensions n < 4 only. An earlier version investigated the 2–dimensional case in
order to gain intuitions [5]. This paper provides its non-trivial generalization to n dimensions:
the third and fourth conditions, for instance, were vacuous in the 2–dimensional case. In order
to tackle it, we translated the notion of manifold homeomorphism the vocabulary of labeled
graphs.

Notice that, since these CDC and CDDM are a specialization of CGD by construction, sev-
eral theoretical results about them follow as mere corollary from [2, 3, 4] – that we have not
mentioned. For instance, CDC/CDDM of radius 1 are universal, composable, characterized
as the set of continuous functions from complexes to complexes with respect to the Gromov-
Hausdor↵-Cantor metric upon isomorphism classes. These results deserve to be made more
explicit, but they already are indicators of the generality of the model.

Comparison with Crystallizations/Gems. This paper conducted a thorough comparison be-
tween discrete geometries and graphs, by investigating the natural encoding of complexes into
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their dual graphs. This encoding was made precise. The discrepancy between geometrical
distance and graph distance was analyzed. The notion of manifold was characterized, through
a graph-local version of Pachner moves. Another, very well-developed correspondence between
simplicial complexes and labeled graphs goes under the name of ‘crystallizations’ [7]. Phrased
in the vocabulary of Def. 2.1, this means restricting to bipartite graphs (i.e. w.r.t. to labels
in ⌃ = {0, 1}, say) that are edge–colored (i.e. edges are between equal ports) and have, as
gluings, the identity. Because this gluing is an even permutation, 0–labeled vertices are ori-
ented one-way, and 1–labeled vertices are oriented the other way. These constraints may seem
cumbersome at first; for instance constructing a sphere becomes much more involved than Def.
5.1. Yet, a closer look shows a key advantage: by construction, crystallizations do not have
torsion. The subset of crystallizations that represent discrete manifolds is usually referred to as
‘gems’ (i.e. graph-encoded manifolds). Homeomorphism between gems can again be captured
by moves. Traditionally the moves that have been studied are the so-called ‘dipole moves’, but
unfortunately these are not graph-local (a global condition needs be checked prior to applica-
tion). Lately, however, [9] developed an equivalent of Bistellar moves, called ‘cross-flips moves’,
which captures homeomorphism between closed discrete manifolds, in a graph-local way. This
has been extended to discrete manifolds with borders in [10] – but the (inverse) shellings are
again not graph-local. Yet, [10] also contains the gems–version the result by [6] that allowed
us to prove that graph-local (inverse) shellings are enough. Thus, all the results of this paper
can readily be ported to crystallizations/gems. Still, there will be a price to pay: the number
of cross-flip moves is in O(2n) [10], whereas bistellar moves grow as O(n).
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Abstract
Modern regular expression matching software features many extensions, some general, while
some are very narrowly specified. Here we consider the generalization of adding a class of
operators which can be described by, e.g. finite-state transducers. Combined with backreferences,
they enable new classes of languages to be matched. The addition of finite-state transducers is
shown to make membership testing undecidable. Following this result, we study the complexity
of membership testing for various restricted cases of the model.

1. Introduction

In this paper we consider generalizations of various common feature additions in practical
regular expression matching software. Notably we include expressions with backreferences
(which we abbreviate REb here), an extension which allows the regular expression to “capture”
literal substrings as part of its matching procedure, and then “backreference” a previously
captured string to match an exact copy of it in a di↵erent position of the string, as investigated
in [3], [5] and [9], for example. Furthermore, in most matching engines (Java, Perl, etc.)
the subexpression (?i) matches the empty string, but enables case-insensitive matching for
a subexpression, meaning that (?i)(.*)\1 matches any ↵1 · · ·↵n�1 · · · �n where, for each i,
↵i and �i are the same letter up to one (perhaps) being lowercase and the other uppercase.
Several similar features exist (such as collating di↵erent representations of Unicode symbols),
which can all be naturally expressed as a transduction of the matched string. To generalize
this we here permit transducer subexpressions, obtained by allowing the application of some
string-to-string transducer to subexpressions. A transducer subexpression t(E) describes the
language of strings obtained by applying the transducer t to the language matched by E. We
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call these extended expressions, obtained by adding backreferences and transducers, regular
expressions with backreferences and transducers (REbt). For the most part, the transducers
considered will be finite-state transducers or restrictions thereof.

Beyond the transducer-like features of existing engines the REbt (and the various restricted
subclasses we consider) can also describe some frequently encountered non-context-free lan-
guages. According to Dassow et al. [4] the three most commonly encountered non-context-
free features in formal languages are reduplication, i.e., the ability to express languages of
the form LRD = {ww | w 2 ⌃⇤}, multiple agreements, described by languages of the form
LMA = {anbncn | n � 1}, and cross agreements, as given by languages of the form LCA =
{anbmcndm | n,m � 1}. The language LRD can be described by REb, but neither LMA nor LCA

can, which for a restricted class of REb follows from the pumping lemma in [3], and can be more
generally derived from [9]. The language matched by the example Java expression (?i)(.*)\1
cannot be matched by any REb either, as is evidenced by the sublanguage {anbAnB | n � 0}
combined with the fact that the languages matched by REb are closed under intersection with
regular languages, as shown in Theorem 21 in [9]. The REbt matching these languages are
quite simple, but the full formalism turns out to be very powerful. This establishes the goal of
the paper, i.e., finding natural restrictions of REbt which can still match LMA and LCA, can be
tested for membership with a computational complexity not too distant from REb, and may
be considered “natural”.

After definitions given in Section 2, and the unrestricted case being shown to have undecidable
membership in Section 3, the remaining sections explore various restrictions: Section 4 forbids
the capture of transducer preimages and considers permitting only non-deleting transducers.
Section 5 forbids transducers in capturing cycles (where a capturing cycle captures a submatch
and then later backreferences this capture as part of another submatch by the same capturing
subexpression), and requires the transducers occurring in captures to be functional. Finally,
Section 6 considers permitting only a single top-level transducer.

2. Definitions

Denote by N the set of natural numbers, excluding 0, N0 = N [ {0}, and by [k], with k 2 N,
the set {j | 1  j  k}. An alphabet is a finite set of symbols. For sets S and T we write
S ] T to denote the union of these sets, assumed to be disjoint. Let " denote the empty
string and ⌃" = ⌃ [ {"}, where ⌃ is an alphabet, and for a string w 2 ⌃⇤, let substr(w)
be the set of all substrings of w, i.e., substr(") = {"}, and if wi 2 ⌃ for 1  i  n, then
substr(w1 . . . wn) = {"} [ {wi . . . wj | 1  i  j  n}, in particular, ", w 2 substr(w). Given a
notion of expressions, defined inductively, we denote by subexps(E) the set of all subexpressions
of the expression E, that is, subexps(E) is the set of expressions used to obtain E inductively,
including duplicate expressions when the same subexpression appears at di↵erent places in E.

For a partial function f : A ! B, let dom(f) denote its domain, range(f) its range, and
g = f [x 7! y] denote the partial function such that g(x) = y but g(z) = f(z) for all z 6= x.
A partial function f with dom(f) = ; is denoted by ?. Let f [x 7! ?] denote the function
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resulting when removing x from the domain of f . For a set A, we denote its cardinality by |A|.
To keep our notion of regular expressions with backreferences and transducers general, we define
it relative to a set ⇥ of string transducers. When we say that ⇥ is a class of transducers we
mean that every element t of ⇥ denotes a transduction L(t) on ⌃⇤ for some alphabet ⌃, i.e., L(t)
is a binary relation L(t) ✓ ⌃⇤ ⇥ ⌃⇤. As a transducer t 2 ⇥ is a denotation of a transduction,
it has  length, namely its length when written down as a string. We denote this length by
|t|. Clearly, classes of transducers that specify the same transductions may di↵er regarding,
e.g. their succinctness, and thus also with respect to their computational complexity.

We say that a transducer t is:

• non-deleting if there is a constant c 2 N such that |u|  c|v| + c for all (u, v) 2 L(t), we
call the smallest such c the non-deletion constant of t,

• non-generating if the transducer defined by the inverse relation L(t)�1 is non-deleting, and
• functional if L(t) is a partial function, i.e., |{v 2 ⌃⇤ | (u, v) 2 L(t)}|  1 for all u 2 ⌃⇤.

Definition 2.1 Let ⇥ be a class of transducers. For input and backreference alphabets ⌃ and �,
↵ 2 ⌃", � 2 �, and t 2 ⇥ a transducer on ⌃, the set of regular expressions with backreferences
and transducers (over ⇥), REbt⌃,�, is obtained inductively from the following subexpressions:
(1) ;; (2) ↵; (3) (F |G); (4) (F · G); (5) (F ⇤); (6) ("� ); (7) ([�F ]�); and (8) t(F ), where
F,G 2 REbt⌃,�. We call the REbt that can be constructed using rules 1–7 regular expressions
with backreferences (REb or REb⌃,�), using 1–5 and 8, regular expressions with transducers
(REt or REt⌃), and, using 1–5, regular expressions (RE or RE⌃).

For E 2 REbt, we denote by |E| the length of E as a string, but letting each transducer symbol
t in |E| contribute length |t| (i.e., not just 1), and by env�,⌃ (or simply env, when � and ⌃ is
understood) the set of all partial functions from � to ⌃⇤. We refer to these partial functions as
environments, since they keep track of which substring, in ⌃⇤, from the input string, is bound
to a given backreference symbol � 2 �. The empty environment, i.e., the partial function in
env with empty domain, is denoted by ?.

Definition 2.2 For E 2 REbt⌃,�, we define the matching relation M(E) ✓ env⌃,� ⇥ ⌃⇤ ⇥
env⌃,� inductively on the structure of E, as follows.

1. ; if E = ;;
2. {(f,↵, f) | f 2 env⌃,�} if E = ↵ with ↵ 2 ⌃";

3. M(F ) [M(G) if E = (F |G);

4. {(f, vw, g) | (f, v, f 0) 2M(F ), (f 0, w, g) 2M(G)} if E = (F ·G);

5. M(") [ {(f, vw, g) | (f, v, f 0) 2 M(F ⇤), (f 0, w, g) 2 M(F )}, or the least fixed point of
M(E) = M(") [M(E · F ), if E = (F ⇤);

6. {(f, w, f 0[� 7! w]) | (f, w, f 0) 2M(F )} if E = ([�F ]�) with � 2 �;

7. {(f, w, f) | f 2 env⌃,�, f(�) = w} if E = ("� );
8. {(f, w, f 0) | (f, v, f 0) 2M(F ), (v, w) 2 L(t)} if E = (t(F )) for some t 2 ⇥.
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The language matched by a REbt E, denoted L(E), is defined as the set L(E) = {w | (?, w, f) 2
M(E), f 2 env⌃,�}.

Let td(E) denote the set of all transducers occurring in E. For technical convenience, we assume
that every transducer in td(E) is referred to only once in E. Hence, two distinct subexpressions
t(F ) and t0(F 0) have t 6= t0 even though we may of course have L(t) = L(t0).
As usual, when writing an expression as a string some parentheses may be elided using the rule
that Kleene closure ‘ ⇤ ’ takes precedence over concatenation ‘ · ’, which takes precedence over
union ‘ | ’. In addition, outermost parenthesis and parenthesis in subexpressions of the form
([�E]�) and ("� ), may be dropped, and E1 · E2 abbreviated as E1E2. Naturally, the brackets
which denote a capturing group may not be elided.

Example 2.3 A simple class of transducers over ⌃⇤, corresponding to finite-state transducers
with only one state, is the set of all t = (↵1 : �1, . . . ,↵k : �k) where k 2 N and ↵1, �1, . . . ,↵k, �k 2
⌃". The transduction denoted by t is

L(t) = {(↵i1 · · ·↵in , �i1 · · · �in) | n 2 N, i1, . . . , in 2 [k]}.

Taking EMA = [1a⇤]1tb("1 )tc("1 ) and ECA = [1a⇤]1[2b⇤]2tc("1 )td("2 ) from REbt{a,b,c,d},{1,2} with
tb = a : b, tc = a : c and td = b : d yields L(EMA) = LMA and L(ECA) = LCA, with LMA and LCA

as given in the introduction.

We often let ⌃ and � indicate arbitrary input and backreference alphabets respectively, and
may then also drop them, writing REbt instead of REbt⌃,�.

The subset REb of REbt is equivalent to the semantics originally given by Aho in [1], which
agrees fully with the behavior of many popular software implementations (e.g. Boost, the .NET
standard library implementation, the PCRE library [2]), and form a superset of many more
(e.g. the Java and Python implementations). The semantics considered by Schmid in [9] is also
closely related, with one di↵erence being that subexpressions of the form [�· · · "� · · · ]� are not
permitted by Schmid (but are here, in Aho, and in most implementations). Schmid also di↵ers
from Aho, while agreeing with other important theoretical work [3], in having "� match the
empty string if � has not yet been captured (i.e. they let L(E) = {w | (?", w, f) 2 M(E)}
where ?"(�) = " for all � 2 �). We again adopt the Aho approach to align with the software
practice, also noting that Aho semantics can simulate the use of ?", by first “initializing” all
symbols from � to " (using a leading sequence of subexpressions [�"]� for all � 2 �).

3. Unrestricted Language Classes

The use of transducers without severe restrictions unsurprisingly gives rise to a Turing complete
formalism. To make this precise, let FST denote the class of all one-way finite-state string
transducers. More precisely, FST is the set of all t = (Q,⌃, q0, �, F ) where (1) Q is a finite
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set of states, (2) ⌃ is the input and output alphabet, (3) q0 2 Q is the initial state, (4) � ✓
Q⇥ ⌃" ⇥ ⌃" ⇥Q is the transition relation, and (5) F ✓ Q is the set of final states.

A computation of such an FST t is a sequence (q1,↵1, �1, q
0
1), . . . , (qn,↵n, �n, q

0
n) of zero or more

transitions, having q0i = qi+1 for all i 2 [n � 1]. The transduction L(t) ✓ ⌃⇤ ⇥ ⌃⇤ consists of
all (v, w) such that there exists a computation (q1,↵1, �1, q

0
1), . . . , (qn,↵n, �n, q

0
n) with q0 = q1,

q0n 2 F , v = ↵1 · · ·↵n and w = �1 · · · �n.

Theorem 3.1 For every recursively enumerable language L there exists an E 2 REbt over FST
such that L(E) = L. Consequently the membership problem is undecidable for REbt over FST.

Proof. For a Turing machine M with input alphabet �, choose a representation of the
configurations of M as strings w 2 ⌃⇤, where ⌃ ◆ �, such that we can construct

• a transducer tinit 2 FST such that (w, c) 2 L(tinit) if c 2 ⌃⇤ is the initial configuration of
M when starting with w 2 �⇤ as input,

• a transducer tacc 2 FST such that (c, c) 2 L(tacc) if c is the concatenation of configurations
of M , with only the last configuration being accepting, and

• a transducer tstep 2 FST such that (c, c0) 2 L(tstep) if M can go from the configuration c
to the configuration c0 in a single step.

This is easy for any reasonable string representation of configurations: tinit adds a tape head
and state at the front, tacc checks for an accepting state, and tstep performs one of a finite
number of constant substring rewritings around the tape head, implementing the rules of M .

Then, take � = {�} and define Eu 2 REbt⌃,� to be

[��⇤]�D([�tinit("� )]�tacc([�tstep("� )]�⇤)),

where D 2 FST deletes the entire input (and outputs ").

Thus, the first subexpression selects and captures any input string w. The subexpressionD(· · · )
simulates a computation of M on w to either fail or, if M accepts, yield ". 2

Corollary 3.2 Theorem 3.1 holds even if E is required to be a REbt over functional non-
generating FSTs.

Proof. The FSTs used in the proof of Theorem 3.1 are already non-generating. Further, we
can, without loss of generality, pick M to be a deterministic Turing machine, at which point
the natural way of constructing the transducers will make them functional. 2

The rest of the paper studies restrictions of REbt which we consider to be natural, and which
make matching more tractable while including REb and retaining the ability to match e.g. LMA

and LCA. Tractability of restrictions must be judged relative to the known NP-completeness
of the uniform membership problem for REb [1], forming a lower bound. The non-uniform
membership problem for REb can be decided in PTIME, and if |�| is bounded, the same holds
true for the uniform membership problem.
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Algorithm 1 Membership decision procedure for REb⌃,�

procedure Membership(w 2 ⌃⇤,E 2 REb⌃,�)
. Returns true if w 2 L(E)
Let env(w) = {f 2 env⌃,� | range(f) ✓ substr(w)}
Let T : env(w)⇥ substr(w)⇥ subexps(E)⇥ env(w)! {true, false}
T (f, v, E, f 0) false for all (f, v, E, f 0) 2 dom(T )
T (f,↵,↵, f) true for all ↵ 2 ⌃" and f 2 env(w)
T (f, ", F ⇤, f) true for all F ⇤ and f
repeat

if T (f, v1, F ⇤, g) ^ T (g, v2, F, f 0) = true for some v1, v2 then and g
T (f, v1v2, F ⇤, f 0) true

if T (f, v1, F, g) ^ T (g, v2, G, f 0) = true for some v1, v2 and g then
T (f, v1v2, F ·G, f 0) true

if T (f, v, F, f 0) _ T (f, v,G, f 0) = true then
T (f, v, F |G, f 0) true

if T (f, v, F, g) = true then
T (f, v, [�F ]�, g[� 7! v]) true

if f(�) = v then
T (f, v, "� , f) true

until no additional function values of T were set to true
return true if T (?, w, E, f) equals true for some f

Lemma 3.3 For E 2 REb⌃,� and w 2 ⌃⇤ we may decide whether w 2 L(E) by using Algo-
rithm 1. This algorithm runs in time polynomial in |w| and |E|, with a polynomial of degree
O(|�|).
Proof. The steps of the algorithm correspond directly to the semantics given in Definition 2.2.

The claimed bound (|w|+ |E|)O(|�|) on the running time can be verified by noting that dom(T )
is of size |env(w)|2|E|�|w|+1

2

�
, and |env(w)|  (1 +

�|w|+1
2

�
)|�|, since a function in env(w) maps

each � 2 � to one of the at most
�|w|+1

2

�
substrings, or leaves it undefined. With |�| bounded,

this makes |dom(T )| polynomial in |w| and |E|, therefore the algorithm can be performed in a
polynomial number of steps (scanning dom(T ) for a way to use one of the rules to set another
cell to true, halting if a full scan results in no new true cells). 2

Further, only regular languages are matched by REt over FST (as the class of regular languages
is closed under FST), but the expressions are succinct.

Lemma 3.4 For E 2 REt over FST it is PSPACE-complete to decide whether " 2 L(E). In
general, uniform membership testing for expressions in REt is PSPACE-complete.

Proof. PSPACE-hardness can be seen by a reduction from the (complement of the) PSPACE-
complete problem Finite Automaton Intersection Emptiness [6], where the instances
are sets of finite automata {A1, . . . , An} and the question is whether L(A1) \ · · · \ L(An) = ;.
For each Ai, i 2 [n], construct the FST ti with L(ti) = {(w,w) | w 2 L(A)}, and let E =
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D(t1(· · · tn(⌃⇤) · · · )) where D is the FST that takes every input to ". Then the intersection is
non-empty if and only if " 2 L(E).

The general problem can be solved in a straightforward way by constructing a product automa-
ton which simulates all active transducers at once. Explicitly constructing such an automaton
requires exponential space (as its states would be the Cartesian product of the states of all
transducers and automata for the subexpressions). However, one can incrementally construct
this product automaton, remembering only a single (product) state and its outgoing transitions
at every step, while doing a nondeterministic search (recall that deterministic and nondeter-
ministic PSPACE are equal) for an accepting path, to solve the problem in PSPACE. 2

4. Limiting Capturing and Deletions

In limiting deletions and nesting of transducers, we find further use for Algorithm 1 after
extending it to handle transducers. A key observation to achieve this, is to note that for any
(f, v, F, f 0) 2 dom(T ) in Algorithm 1, where F contains no captures (and thus f = f 0), the
evaluation of T (f, v, F, f) can be done without knowing the values of T (f, v, F 0, f), for proper
subexpressions F 0 of F , by constructing an NFA that is language equivalent to F (after replacing
backreferences � in F by f(�)). We can thus evaluate simple table cells – cells corresponding
to (maximal) subexpressions without captures – in a separate step before we enter the loop in
Algorithm 1.

In order to do this e�ciently, the nesting of transducer applications must be bounded. We first
formalize the notion of nesting depth.

Definition 4.1 The nesting depth nd(E) of E 2 REbt is defined inductively as nd(E) = 0 if
E 2 REb, and nd(E) = max{1 + nd(F ) | t 2 td(E), t(F ) 2 subexps(E)} otherwise.

Algorithm 2 Membership decision procedure for the subclass of REbt⌃,� in Theorem 4.2

procedure Membership(w 2 ⌃⇤, E 2 REbt⌃,�)
. Returns true if w 2 L(E)
. Modify dom(T ) in Algorithm 1 as follows
Let subexps0(E) ✓ subexps(E), where subexps0(E) includes only (a) subexpressions
that contain captures and (b) their immediate subexpressions.
Let T : env(w)⇥ substr(w)⇥ subexps0(E)⇥ env(w)! {true, false}.
. Evaluate simple cells first, which here includes all transducer applications.
Evaluate T (f, v, F, f 0) for all (f, v, F, f 0) such that F contains no captures.
. . .
repeat

. . .
until no additional function values of T were set to true
return true if T (?, w, E, f) equals true for some f
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Theorem 4.2 For all E 2 REbt⌃,� over FST such that no t(F ) 2 subexps(E) with t 2 td(E)
contains a capture, the non-uniform membership problem can be solved in polynomial time using
Algorithm 2, whereas the uniform membership problem is NP-complete for nd(E) bounded and
PSPACE-complete in general.

Proof. The requirement on subexpressions in td(E) ensures that all (f, v, F, f 0) 2 dom(T ), in
Algorithm 2, are such that v is a substring of w (as in Algorithm 1), and thus our environments
can stay functions from � to substr(w), instead of being functions from � to ⌃⇤. The restriction
on nd(E) is required in order to evaluate cells of the form (f, v, E 0, f 0), where E 0 contains no
captures, in polynomial time (in |E|, where the degree of the polynomial is in O(nd(E))). In the
uniform case membership in REb is NP-complete as it is NP-hard [1] and in NP. For containment
in NP, observe that accepting w requires to guess a particular match. Hence, only a polynomial
(in |E| and |w|) number of cells in T need to be set, bounded by the number of subexpressions
times the number of substrings of w. These cells can be nondeterministically chosen, verifying
the match by applying Algorithm 2 to those cells only. Thus uniform membership is in PSPACE,
and thus PSPACE-complete by Lemma 3.4. 2

Next we restrict the type of transducers allowed in expressions.

Definition 4.3 Let n-REbt denote the set of all E 2 REbt such that all t 2 td(E) are non-
deleting.

In the uniform case the complexity of the membership problem for n-REbt remains quite high,
but it sheds some light on how one may further rein the complexity in.

Lemma 4.4 Uniform membership for E 2 n-REbt over FST is EXPSPACE-hard in general
and PSPACE-hard for all fixed nd(E) � 2.

Proof. For any fixed Turing machine T running in space f(|w|), construct tinit, tstep and tacc as
in the proof of Theorem 3.1. Given an input string w we argue how to construct an expression
E 2 n-REbt such that " 2 L(E) if and only if T accepts w. For a polynomial and exponential
f this characterizes PSPACE and EXPSPACE respectively.

For k 2 N, let Dk 2 FST be a non-deleting transducer such that L(Dk) = {(u, a|u|/k) | u 2 ⌃⇤},
where a is an arbitrarily chosen symbol in ⌃ and ‘/’ denotes integer division. Note that Dk can
be constructed using k + 1 states.

If f is a polynomial, let k = f(|w|) and let

E = Dk([�tinit(w)]�)(Dk([�tstep("� )]�))⇤Dk(tacc("� )).
Then " 2 L(E) if and only if T accepts w using at most f(|w|) tape cells, the simulation
working the same way as in Theorem 3.1, with Dk deleting all remnants of the computation.
Clearly, E can be constructed in polynomial time and has nesting depth 2.

If f is the exponential cn construct E as above, but replace each subexpression Dk(E 0) with the

subexpression D
|w|
c (E 0), i.e., using |w| nested applications of Dc to reduce up to c|w| symbols to

". This makes nd(E) = |w|+ 1, but the reduction remains polynomial. 2
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Lemma 4.5 The uniform membership problem for E 2 n-REbt over any class ⇥ of transducers
can be decided in deterministic space O(|E|2c2nd(E)(|w|+ c)2), where c is the maximum of 2 and
the largest non-deletion constant in td(E), provided that the membership problem (u, v) 2 t, for
transducers t 2 ⇥, can be decided in nondeterministic space O(|t|(|u|+ |v|)).
Proof (sketch). For any string w we can check whether w 2 L(E) in the following way.
Let {t1, . . . , tk} = td(E), and let c be as in the statement of the lemma, i.e. c � 2 and
(u, v) 2 L(ti) implies |u|  c|v| + c for 1  i  k. Let L : N0 ! N0 be the function defined
as L(n) = cnd(E)n + (cnd(E) + cnd(E)�1 + · · · + c). Note that L(n)  cnd(E)(n + c) and let
m(n) = cnd(E)(n+ c).

For E to match w it must do so without any subexpression matching a string longer than L(|w|),
and L(|w|)  m(|w|). This follows by observing that every subexpression is, by definition,
surrounded by at most nd(E) transducers, and by applying the inequality |u|  c|v| + c,
recursively, nd(E) times. A string longer than L(|w|) being matched by a subexpression thus
results in the overall string matched being longer than w.

We can now determine whether w 2 L(E) by performing a nondeterministic search across the
expression, remembering only a single search state (p, f, e) consisting of three things:

1. The current position p reached in E (viewing E as a string).

2. Whenever entering a subexpression a string of length at most m(|w|) is nondeterminis-
tically guessed and recorded in a table f mapping subexpressions to strings, inserting a
marker . in each f(E 0) to record the position up to which the string has been matched so
far.

3. The current environment e 2 env�,⌃, recording the strings so far captured (if any) and
these too never need more space than |�| · (m(|w|) + 1).

Informally, we start in state (p0, f,?) where p0 is the leftmost position in E, setting f to map
E to .w. Then we nondeterministically walk the expression, guessing a new string to enter into
f whenever we enter a subexpression, verifying the guess, updating the parent marker (and the
current environment if a capture), and simulating transducers as needed, whenever we exit a
subexpression. If the rightmost position can be reached with f(E) = w., then w is matched.

A state uses space |E| + |E| ·m(|w|) + |�| · (m(|w|) + 1), so the procedure runs in nondeter-
ministic space O(|E|m(|w| + c)). Note for all transducer evaluations (u, v) 2 t that need to
be decided to determine if w 2 L(E), we have |u|  m(|w| + c), |v|  m(|w| + c), and also
|t|  |E|. Thus, applying Savitch’s theorem [8], we obtain a deterministic procedure for which
O(|E|2c2nd(E)(|w|+ c)2) space is su�cient. 2

Theorem 4.6 Uniform membership for E 2 n-REbt over FST is EXPSPACE-complete in
general and PSPACE-complete for all fixed nd(E) � 2.

Proof. Combine Lemma 4.4 and 4.5. 2

The non-uniform variant of the problem is not surprisingly a bit less complex, but remains
NP-complete.
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Lemma 4.7 The non-uniform membership problem for n-REbt over ⇥ is in NP, provided that
deciding membership is in NP for every ✓ 2 ⇥.

Proof. For any (fixed) E 2 n-REbt, if w is an input string, then we can check whether
w 2 L(E) in nondeterministic polynomial time by the following procedure. Let c be the largest
non-deletion constant in td(E) and m = cnd(E). By the same argument as in Lemma 4.5 no
subexpression (more precisely: none of the matching relations inductively used in matching,
as defined by Definition 2.2) in E matches a string longer than m(|w| + c) when E matches
w. Additionally, fewer than (|w| + c) · |subexps(E)| instances of a subexpression matching a
string longer than m can occur, as such strings contribute to the length of the overall string
matched (the |subexps(E)| accounts for nested subexpressions involved in the match of part of
a substring, or transducer preimage, matched by a larger subexpression).

Start by nondeterministically choosing a string v of length m(|w|+ c)2 · |subexps(E)|, and con-
struct v0 to be a string containing as a substring every string of length at most m (the length
of v0 is thus exponential in m, but is fixed as it depends only on E), and let w0 = vv0. Then
modify Algorithm 1 by adding the following step to the repeat-until loop:

if T (f, u, F, f 0) = true and (u, v) 2 L(t) then
T (f, v, t(F ), f 0) true

The resulting algorithm, applied to the input string |w0|, sets T (?, w, E, f) to true for some f
if and only if E matches w. This procedure runs in nondeterministic polynomial time as w0 is
polynomial in length when E is taken to be fixed (as m is then constant). This works because
any subexpression matching a string of length at most m can find that string in the v0 section
of w0, and the at most (|w| + c) · |subexps(E)| subexpressions matchingbstrings of length at
most m(|w| + c) will have their strings nondeterministically generated in the v section of w0.

2

Lemma 4.8 The non-uniform membership problem for n-REbt⌃,� over ⇥ is NP-hard if ⇥
contains all single state FST.

Proof. We demonstrate NP-hardness by a reduction from the NP-hard Longest Com-

mon Subsequence problem [7], the instances of which are the tuples ({w1, . . . , wm}, n),
{w1, . . . , wm} ✓ L((a|b)⇤), n 2 N, such that there exists a string v of length n which forms a sub-
sequence of wi for all i.Take ⌃ = {a, b,#, x} and � = {guess}, let t be the transducer a : x, b : x
and s the transducer a : a, b : b, " : a, " : b, then the expression Elcs = t([guess(a|b)⇤]guess)(#(s("guess ))⇤
matches the string xn#w1# · · ·#wm if and only if w1, . . . , wm are strings in {a, b}⇤ with a
common subsequence of length n.To see this, note that the initial xn means that a string
w 2 {a, b}n must be captured by the capturing group ‘guess ’. Thus, each wi must be matched
by inserting as and bs into w, making w a common subsequence of each of w1, . . . , wm. As
such any instance of Longest Common Subsequence can be decided by checking whether
xn#w1# · · ·#wm 2 L(Elcs). 2

This expression Elcs, used in the previous proof, will be reused near-verbatim to demonstrate
NP-hardness of membership in fln- and nt-REbt (to be defined in the next section).
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Theorem 4.9 The non-uniform membership problem for n-REbt⌃,� over ⇥ is NP-complete
for every ⇥ containing all single state FST, provided that the membership problem of each
transducer in ⇥ is in NP.

Proof. Combine Lemma 4.7 and 4.8. 2

5. Limiting Nesting and Non-Functional Behavior

In this section we consider restrictions to the way in which REbt may nest the application
of transducers, and in the process also consider the restriction to functional transducers, the
combination of which gives rise to a convenient normal form. The choice of restrictions is driven
by the intuition that the construction in Theorem 3.1 relies on the subexpression [�tstep("� )]�⇤
to match complex languages by the iterated application of tstep. By syntactically avoiding the
iterated application of a transducer to previous output produced by the same transducer, we
obtain a class of languages with much better properties.

Definition 5.1 For E 2 REbt⌃,� (over an arbitrary class of transducers) let ⌃td(E) = ⌃ ]
{ht, it | t 2 td(E)} and define ⌧(E) 2 REb⌃td(E),� as the expression obtained by replacing

every subexpression of the form t(F ), where t 2 td(E), with ht·F ·it. Let ⌧�1 be the inverse
transformation, so ⌧�1(⌧(E)) = E for all E.

Note that each string in L(⌧(E)) is a valid expression in RE⌃td(E)
. Thus, ⌧�1L(⌧(E)) denotes

the set of expressions in REt⌃ obtained by applying ⌧�1 to each expression in L(⌧(E)). Further-
more, L(⌧�1L(⌧(E))) is the union of all languages obtained by applying L to each expression
in ⌧�1L(⌧(E)).

Let us define the first restriction, which forbids the capture of the output of non-functional
transducers.

Definition 5.2 An expression E 2 REbt is functional if every transducer that occurs in a
capturing subexpression is functional (i.e., t 2 td(F ) for some [�F ]� 2 subexps(E) only if t is
functional). We denote the subset of REbt containing precisely the functional expressions as
f-REbt.

Lemma 5.3 In general, L(E) ✓ L(⌧�1L(⌧(E))), but L(⌧�1L(⌧(E))) = L(E) for E 2 f-REbt.

Proof (sketch). Strings w 2 L(⌧(E)) contain substrings of the form htvit, precisely where a
transducer t is applied to obtain strings in L(E). Applying ⌧�1 recovers the transducers (turns
the substrings htvit back into t(v)), and then applying L evaluates all transducers. In general,
L(E) ✓ L(⌧�1L(⌧(E))), since in L(E) subexpressions containing transducers first apply the
transducer before (potentially) copying an output of the transducer, while in L(⌧�1L(⌧(E))),
subexpressions containing transducers may get copied before applying the transducers. Hence,
nondeterministic transducers may turn the copies into di↵erent output strings. However, the
restriction to functional transducers prevents this e↵ect, ensuring equality for E 2 f-REbt. 2
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Example 5.4 In this example we show that the equality L(⌧�1L(⌧(E))) = L(E) of Lemma 5.3
does not hold for REbt in general. Let E = [1f(a⇤)]1"1 , with f given by a : a, a : b. Then
L(⌧(E)) = {hfanifhfanif | n 2 N0}, thus L(⌧�1(hfanifhfanif )) = L(f(an)f(an)) = (a | b)2n,
whereas L(E) = {ww | w 2 L((a | b)⇤)}. That is, in L(E) the transducer is applied before it
gets copied by the capturing group and backreference, whereas ⌧ “hides” the transducer as a
string, letting it be copied before it is applied, after which ⌧�1 is applied to recover the two
transducers obtained by copying, and L then evaluates them independently.

Next we construct a transducer T such that under certain restrictions, expressions over FST
satisfy L(T (⌧(E))) = L(⌧�1(L(⌧(E)))).

Definition 5.5 For c 2 N and E 2 REbt⌃,� over FST, with td(E) = {t1, . . . , tn}, where
ti = (Qi,⌃, q0,i, �i, Fi), for i 2 [n], let TE,c = (Q,⌃0, q0, �, F ) be the transducer defined as
follows: (i) Q = {q 2 (Q1 ] · · ·]Qn)⇤ | |q|  c}; (ii) ⌃0 = ⌃td(E) = ⌃] {ht, it | t 2 td(E)}; (iii)
q0 = "; (iv) F = {"}; and (v) � = �h [ �i [ �" [ �⌃ where:

• �h = {(q, hti , ", q · q0,i) | i 2 [n], q 2 Q, |q|+ 1  c};
• �i = {(q1 · · · qk�1qk, iti , ", q1 · · · qk�1) | i 2 [n], q1 · · · qk 2 Q, qk 2 Fi};
• �" = {(",↵,↵, ") | ↵ 2 ⌃0};
• �⌃ is defined inductively over the length k of state sequences, as follows: for ↵, � 2 ⌃",
(q1 · · · qk,↵, �, q01 · · · q0k) 2 �⌃ if for some ↵0 2 ⌃" and i 2 [n],

- (qk,↵,↵0, q0k) 2 �i; and,

- (q1 · · · qk�1,↵
0, �, q01 · · · q0k�1) 2 �" [ �⌃.

Informally, without the length restriction enforced by c in TE,c, i.e., letting c = 1, we have
L(TE,1(⌧(E))) = L(⌧�1(L(⌧(E)))). Next we define a restriction to ensure that a (finite) value
can be selected for c such L(TE,c(⌧(E))) = L(⌧�1(L(⌧(E)))).

Definition 5.6 An expression E 2 REbt such that every t 2 td(E) occurs only once in E,
is loop-free if L(⌧(E)) contains no subexpression of the form ht· · · ht· · · it · · · it, i.e., there are
no nested subexpressions ht· · · it for any t 2 td(E). We denote the set of all loop-free REbt by
l-REbt.

Lemma 5.7 For E 2 l-REbt⌃,� over FST, we have L(TE,|td(E)|(⌧(E))) = L(⌧�1(L(⌧(E)))).

Proof. Set c to be the maximum number of nested transducers in ⌧�1(v) over any v 2 L(⌧(E)),
i.e., c  |td(E)| by Definition 5.6. We prove that TE,c simulates all transducers running at each
point of an input string. Thus TE,c produces the same output strings as would be obtained by
first having ⌧�1 recover the transducers, and then evaluating them by using L. This can be
seen by induction on the number of transducers in E. Assume TE,c can go from state q1 · · · qk
to q01 · · · q0k while reading v and producing w as output, and that qi (and thus also q0i) is a state
from ti, for i 2 [k]. Then there exists strings v0, . . . , vk, with v0 = w and vk = v, such that
transducer ti, for i 2 [k], can go from state qi to q0i when reading vi and producing vi�1 as
output. Add to this the brackets hti , iti , instructing TE,c when to start and stop and check
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for acceptance of transducer ti, and make TE,c act as the identity (the rules in �") when no
transducers are simulated, to complete the picture.

It is su�cient to pick c to be equal to the |td(E)|, since this is an upper bound for the nesting
depth for pairs of transducer brackets, i.e., symbols of the form ht, it, for strings matched by
⌧(E), given that E 2 l-REbt⌃,�. The transducer TE,c reaches a state sequence q1 · · · qk precisely
when the combined e↵ect of k (distinct) transducers are being simulated by TE,c, and |td(E)|
places an upper bound on the number of transducers being applied simultaneously. 2

Corollary 5.8 For all E 2 fl-REbt⌃,� (i.e. expressions fulfilling both Definitions 5.2 and 5.6)
over FST we have L(E) = L(TE,|td(E)|(⌧(E)), and thus every fl-REbt can be put in a normal
form t(E 0) where E 0 2 REb (i.e. an expression with only a single top-level transducer).

Proof. This result combines Lemma 5.3 with Lemma 5.7. 2

Definition 5.9 Let t-REbt denote the subset of REbt which are in the normal form of Corol-
lary 5.8.

Remark 5.10 Lemma 4.8 demonstrates that non-uniform membership for fl-REbt and thus
t-REbt (both over FST) is NP-hard, since Elcs used in the proof of Lemma 4.8 is in fl-REbt
(although the transducer s in Elcs is not functional, output of s is not captured), and the above
corollary can be used to convert Elcs into an expression t-REbt.

6. The Membership Problem for t-REbt

We show that the class t-REbt, and thus also fl-REbt, has a decidable membership problem,
but it is complex, even with the input string fixed.

Corollary 6.1 (of Lemma 3.4) For E 2 t-REbt⌃,� over FST it is PSPACE-hard to decide
whether " 2 L(E).

Proof. Modify Lemma 3.4 by letting E = D([1⌃⇤]1t1("1 ) · · · tn("1 )) 2 fl-REbt, with t1, . . . , tn
as in the proof of Lemma 3.4.

Then " 2 L(E) i↵ the intersection L(A1) \ . . . \ L(An), again with the Ai as in (the proof
of) Lemma 3.4, is non-empty. The expression E can be converted into t-REbt normal form by
Corollary 5.8. Note that TE,2 (i.e. c = 2) needs to be constructed, and the resulting expression
is therefore polynomial in the size of E. Note that the proof of Lemma 5.7 in fact shows that c
can be chosen as the maximum number of nested transducers in ⌧�1(v) over any v 2 L(⌧(E)),
which in this case is c = 2, instead of |td(E)| = n+ 1. 2

Next we show that the membership problem for t-REbt (and by extension fl-REbt) can be
decided in polynomial space. The approach works by, for a given input string and t(F ) 2
t-REbt, computing the preimage of t on w, and intersecting this regular language with L(F ).
To achieve this within polynomial space, however, it is necessary to not expand captures and
backreferences.
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Definition 6.2 For E 2 REbt⌃,� we define �(E) 2 REt⌃�,; with ⌃� = ⌃ ] {Ji�, Ki�, ⇠� | � 2
�, i 2 [n]}, where n is equal to the maximum number of capturing expressions on the same
capturing symbol, by making the following substitutions in E.

1. Replace every subexpression of the form "� , with ⇠�.
2. Replace the ith subexpression (ordered for example from left to right based on the position

of the opening capturing bracket) of the form [�F ]�, by Ji�·F ·Ki�.
Let ��1 be the inverse transformation of �, i.e. ��1(�(E)) = E, and extend ��1 to sets of
expressions in the obvious way.

For a finite automatonA, over alphabet ⌃, and n 2 N, we define an automaton CA,�,n, which will
be used to determine if L(A)\L(E), for E 2 REb, is non-empty. To simplify our constructions,
and since it will not make our results less general, we assume that A has no "-transitions. Recall
that we use ? to denote the partial function with empty domain.

Definition 6.3 For ⌃� and n as in Definition 6.2, and an automaton A = (Q,⌃, q0, �, F ), let
CA,�,n = (Q0,⌃�, q

0
0, �

0, F 0) be the automaton where Q0 = Q⇥(�! 2Q⇥Q)⇥((�⇥ [n])! 2Q⇥Q),
q0 = (q0,?,?), F 0 = {(q, C,M) 2 Q | q 2 F}, and ((q, C,M),↵, (q0, C 0,M 0)) 2 �0 if one of the
following holds:

1. (q,↵, q0) 2 �, C 0 = C, and M 0 = {(�, i, (p, p00)) | (�, i, (p, p0)) 2M, (p0,↵, p00) 2 �},
2. ↵ = [i�, q = q0, C 0 = C, and M 0 = M [(�, i) 7! {(p, p) | p 2 Q}],
3. ↵ = ]i�, q = q0, M 0 = M [(�, i) 7! ?], and C 0 = C[� 7!M(�, i)] or

4. ↵ = ⇠�, (q, q0) 2 C(�), C 0 = C, and, for all � 2 � and i 2 [n] we have M 0(�, i) = {(p, p00) |
(p, p0) 2M(�, i), (p0, p00) 2 C(�)}.

In the next result we extend L to be also applied to a set of expressions, and to denote the
union of languages defined by the expressions. As the full proof is quite technical, we provide
only a sketch that should be su�cient to convey the idea.

Lemma 6.4 Let A be an automaton, E 2 REb, and n 2 N, with n equal to the the max-
imum number of capturing expressions on the same capturing symbol, in E. Then we have
L(��1(L(CA,�,n) \ L(�(E)))) = L(A) \ L(E).

Proof (sketch). For w 2 L(�(E)), note that L(��1(w)) is a single string in L(E) (as ��1

recovers the captures and backreferences, and L then evaluates them). CA,�,n, running on w
simulates A running on L(��1(w)). This can be demonstrated by induction on the transitions
CA,�,n takes on a string w. Specifically, if CA,�,n reaches (q, C,M) on a prefix v of w then A
reaches q on L(��1(v)) (to aid intuition we extend ��1 to remove unmatched brackets, making
it defined for all v). Start by noting that CA,�,n starts in state (q0,?,?) and A starts in state
q0. The inductive step then follows from the four di↵erent types of transitions in Definition 6.3:

1. This simulates a step where A goes from q to q0 reading ↵ 2 ⌃, updating both the current
state and recording the e↵ect on each state relation in the table M , inductively recording
the behavior of A on this substring if it is later repeated by a backreference.
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2. Here, A takes no step, as the bracket is removed by ��1, but the indicated capture is
initialized to {(p, p) | p 2 Q} in the table M , representing the behavior of A, starting in
any state, on the string " (the string captured so far).

3. In this case, no step in A is taken (as the bracket is removed by ��1), but the corresponding
capture in the table M is transferred to the table C (completing the capture).

4. On the backreference "� the relation recorded in C(�) is retrieved and used to update the
current state, simulating any sequence of transitions A can take from the current state on
the string currently captured with backreference symbol �. 2

Theorem 6.5 The emptiness of L(E) \ L(A), for E 2 REb and A a finite automaton, can be
decided in PSPACE.

Proof. As L(�(E)) and L(CA,�,n) are regular languages, a standard product automaton can be
constructed for L(�(E))\L(CA,�,n). While CA,�,n is potentially large, emptiness can be decided
in polynomial space by performing a nondeterministic search (as nondeterministic polynomial
space equals polynomial space) for an accepting computation by incrementally constructing
each, polynomially sized, state as it is visited, forgetting it again in the next step. 2

Theorem 6.6 The uniform membership problems for t-REbt and fl-REbt (both over FST) are
PSPACE-complete.

Proof. For t-REbt (and thus for fl-REbt) hardness is established in Corollary 6.1. To see
that uniform membership for t-REbt is in PSPACE, consider an expression E = t(F ), for
t 2 FST and F 2 REb. To check whether w 2 L(E), construct a finite automaton A with
L(A) = {v | (w, v) 2 L(t)} (this can be done with standard techniques, producing an automaton
A polynomial in size in |t| · |w|). Then if L(A) \ L(F ) 6= ;, we have w 2 L(E), which we can
check in polynomial space by Theorem 6.5. This procedure extends to fl-REbt by additionally
constructing TE,c, as in Corollary 5.8, in an incremental fashion. 2

A uniform membership problem in PSPACE improves vastly on the unrestricted case, and the
top-level transducer appears to be a very natural formalism. More importantly, fairly minor
further restrictions recover the easier membership problems established for REb.

Theorem 6.7 The uniform and non-uniform membership problem for nt-REbt (where nt-REbt
denotes n-REbt \ t-REbt) is NP-complete.

Proof. Take E = t(F ) 2 nt-REbt and let w be the input string. Since t is nondeleting,
|t| · |w| � max{|v| | (w, v) 2 L(t)}, so we can nondeterministically choose a v with (w, v) 2 L(t)
and apply Lemma 3.3 to check in nondeterministic polynomial time if v 2 L(F ). NP-hardness
in the non-uniform case is established by Lemma 4.8 (see Remark 5.10). 2

7. Summary and Future Work

Summary. We have (i) proposed an extension of regular expressions with backreferences by
additional transducers; (ii) established that this makes membership testing intractable; and
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(iii) explored various restrictions to form a practical basis for use in software. By Example 2.3
all restrictions can match LRD, LMA, and LCA, but o↵er di↵erent levels of membership testing
complexity and expressiveness. For immediate integration in an existing backtracking matching
engine the restriction in Theorem 4.2 appears to be the obvious choice, with no transducer
preimage ever captured, the matching procedure requiring only minor additional work compared
to matching plain REb. Further, the relative tractability of the nondeleting class demonstrates
that one source of intractability is the ability gained by an unrestricted use of transducers to
erase every trace of an arbitrarily complex computation that has been made. However, the
reduction of fl-REbt to t-REbt shows that the latter, despite being very simple, can capture
many natural situations. Small additional restrictions can then be applied to obtain highly
tractable subclasses.

Future work. The precise expressiveness of the classes should be considered, several gaps exist
beyond what follows naturally from what we have done here; f-REbt ⌘ REbt; fl-REbt ⌘ t-REbt;
n-, fl-/t-REbt all being strict subclasses of f-REbt/REbt and strict superclasses of REb. The
subclasses should also be compared with respect to succinctness, and there remain some open
questions regarding computational complexity (e.g. non-uniform membership for t-REbt).
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Abstract

In this paper, we investigate the computational and verification power of bounded-error postse-

lecting realtime probabilistic finite state automata (PostPFAs). We show that PostPFAs using

rational-valued transitions can do di↵erent variants of equality checks and they can verify some

nonregular unary languages. Then, we allow them to use real-valued transitions (magic-coins)

and show that they can recognize uncountably many binary languages by help of a counter and

verify uncountably many unary languages by the help of a prover. We also present some corol-

laries on probabilistic counter automata.

Keywords: Postselection, probabilistic automata, interactive proof systems, unary languages,

counter automata.

1. Introduction

Postselection is the ability to give a decision by assuming that the computation is terminated
with pre-determined outcome(s) and discarding the rest of the outcomes. In [1], Aaronson
introduced bounded-error postselecting quantum polynomial time and proved that it is iden-
tical to the unbounded-error probabilistic polynomial time. Later, postselecting quantum and
probabilistic finite automata models have been investigated in [15, 16, 18, 19]. It was proved
that postselecting realtime finite automata are equivalent to a restricted variant of two-way
finite automata, called restarting realtime automata [17]. Later, it was also shown that these
two automata models are also equivalent to the realtime automata that have the ability to send
a classical bit through CTCs (closed timelike curves) [12, 13].

In this paper, we focus on bounded-error postselecting realtime probabilistic finite automata
(PostPFAs) and present many algorithms and protocols by using rational-valued and real-
valued transitions. Even though PostPFA is a restricted variant of two-way probabilistic finite
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automaton (2PFA), our results may be seen as new evidences that PostPFAs can be as powerful
as 2PFAs.

We show that PostPFAs with rational-valued transitions can recognize di↵erent variants of
“equality” language {anbn | n > 0}. Then, based on these results, we show that they can verify
certain unary nonregular languages. Remark that bounded-error 2PFAs cannot recognize unary
nonregular languages [10].

When using real-valued transitions (so-called magic coins), probabilistic and quantum models
can recognize uncountably many languages by using significantly small space and in polynomial
time in some cases [14, 5, 6, 8]. In the same direction, we examine PostPFAs using real-valued
transitions and show that they can recognize uncountably many binary languages by using an
extra counter. When interacting with a prover, we obtain a stronger result that PostPFAs can
recognize uncountably many unary languages. We also present some corollaries for probabilistic
counter automata.

In the next section, we provide the notations and definitions used in the paper. Then, we present
our results on PostPFAs using rational-valued transitions in Section 3 and on PostPFAs using
real-valued transitions in Section 4. In each section, we also separate recognition and verification
results under two subsections.

As a related work, we recently present similar verification results for 2PFAs that run in poly-
nomial expected time in [8]. Even though here we get stronger results for some cases (i.e.,
PostPFA is a restricted version of 2PFA), if we physically implement PostPFA algorithms and
protocols presented in this paper, the expected running time will be exponential.

2. Background

We assume that the reader is familiar with the basics of fundamental computational models
and automata theory.

For any alphabet A, A⇤ is the set of all finite strings defined on alphabet A including the empty
string and A1 is set of all infinite strings defined on alphabet A. We fix symbols ¢ and $ as
the left and the right end-marker. The input alphabet not containing ¢ and $ is denoted ⌃ and
the set ⌃̃ is ⌃ [ {¢, $}. For any given string w 2 ⌃⇤, |w| is its length, w[i] is its i-th symbol
(1  i  |w|), and w̃ = ¢w$. For any natural number i, binary(i) denotes unique binary
representation.

Our realtime models operate in strict mode: any given input, say w 2 ⌃⇤, is read as w̃ from
the left to the right and symbol by symbol without any pause on any symbol.

Formally, a postselecting realtime probabilistic finite state automaton (PostPFA) P is a 6-tuple

P = (⌃, S, �, s
I

, s
pa

, s
pr

),

where
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• S is the set of states,

• � : S ⇥ ⌃̃⇥ S ! [0, 1] is the transition function described below,

• s
I

2 S is the starting state, and,

• s
pa

2 S and s
pr

2 S are the postselecting accepting and rejecting states (s
pa

6= s
pr

),
respectively.

We call any state other than s
pa

or s
pr

non-postselecting.

When P is in state s 2 S and reads symbol � 2 ⌃̃, then it switches to state s0 2 S with
probability �(s, �, s0). To be a well-formed machine, the transition function must satisfy that

for any (s, �) 2 S ⇥ ⌃̃,
X

s

02S

�(s, �, s0) = 1.

Let w 2 ⌃⇤ be the given input. The automaton P starts its computation when in state s
I

.
Then, it reads the input and behaves with respect to the transition function. After reading the
whole input, P is in a probability distribution, which can be represented as a stochastic vector,
say v

f

. Each entry of v
f

represents the probability of being in the corresponding state.

Due to postselection, we assume that the computation ends either in s
pa

or s
pr

. We denote the
probabilities of being in s

pa

and s
pr

as a(w) and r(w), respectively. It must be guaranteed that
a(w) + r(w) > 0. (Otherwise, postselection cannot be done.) Then, the decision is given by
normalizing these two values: w is accepted and rejected with probabilities

a(w)

a(w) + r(w)
and

r(w)

a(w) + r(w)
,

respectively. We also note that the automaton P ends its computation in non-postselecting
state(s) (if there is any) with probability 1�a(w)�a(r), but the ability of making postselection
discards this probability (if it is non-zero).

By making a simple modification on a PostPFA, we can obtain a restarting realtime PFA
(restartPFA) [17]:

• each non-postselecting state is called restarting state,

• postselecting accepting and rejecting states are called accepting and rejecting states, and
then,

• if the automaton ends in a restarting state, the whole computation is started again from
the initial configuration (state).

The analysis of accepting and rejecting probabilities for the input remains the same and so
both models have the same accepting (and rejecting) probabilities on every input.

Moreover, if we have a(w) + r(w) = 1 for any input w 2 ⌃⇤, then the automaton is simply a
probabilistic finite automaton (PFA) since making postselection or restarting mechanism does
not have any e↵ect on the computation or decision.

Language L ✓ ⌃⇤ is said to be recognized by a PostPFA P with error bound ✏ if
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• any member is accepted by P with probability at least 1� ✏, and,

• any non-member is rejected by P with probability at least 1� ✏.

We can also say that L is recognized by P with bounded error or recognized by bounded-error
PostPFA P .

In this paper, we also focus on one-way private-coin interactive proof systems (IPS) [2], where
the verifier always sends the same symbol to prover. Since the protocol is one-way, the whole
responses of the prover can be seen as an infinite string and this string is called as (membership)
certificate. Since the prover always sends a symbol when requested, the certificates are assumed
to be infinite. The automaton reads the provided certificate in one-way mode and so it can
make pauses on some symbols of the certificate.

Formally, a PostPFA verifier V is a 7-tuple

V = (⌃,⌥, S, �, s
I

, s
pa

, s
pr

),

where, di↵erent from a PostPFA, ⌥ is the certificate alphabet, and the transition function is
extended as � : S ⇥ ⌃̃⇥⌥⇥ S ⇥ {0, 1} ! [0, 1]. When V is in state s 2 S, reads input symbol
� 2 ⌃̃, and reads certificate symbol � 2 ⌥, it switches to state s0 2 S and makes the action
d 2 {0, 1} on the certificate with probability �(s, �, �, s0, d), where the next (respectively, the
same) symbol of the certificate is selected for the next step if d = 1 (respectively, d = 0).

To be a well formed machine, the transition function must satisfy that

for any (s, �, �) 2 S ⇥ ⌃̃⇥⌥,
X

s

02S, d2{0,1}

�(s, �, �, s0, d) = 1.

Let w 2 ⌃⇤ be the given input. For a given certificate, say c
w

2 ⌥1, V starts in state s
I

and
reads the input and certificate in realtime and one-way modes, respectively. After finishing the
input, it gives its decision like a standard PostPFA.

Language L ✓ ⌃⇤ is said to be verified by a PostPFA V with error bound ✏ if the following two
conditions (called completeness and soundness) are satisfied:

1. For any member w 2 L, there exists a certificate, say c
w

, such that V accepts w with
probability at least 1� ✏.

2. For any non-member w /2 L and for any certificate c 2 ⌥1, V always rejects w with
probability at least 1� ✏.

We can also say that L is verified by V with bounded error. If every member is accepted with
probability 1, then it is also said that L is verified by V with perfect completeness.

A two-way probabilistic finite automaton (2PFA) [11] is a generalization of a PFA which can
read the input more than once. For this purpose, the input is written on a tape between two
end-markers and each symbol is accessed by the read-only head of the tape. The head can either
stay on the same symbol or move one square to the left or to the right by guaranteeing not to
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leave the end-markers. The transition function is extended to determine the head movement
after a transition. A 2PFA is called sweeping PFA if the direction of the head is changed only
on the end-markers. The input is read from left to right, and then right to left, and so on.

A 2PFA can also be extended with an integer counter or a working tape – such model is called
two-way probabilistic counter automaton (2PCA) or probabilistic Turing machine (PTM), re-
spectively.

A 2PCA reads a single bit of information from the counter, i.e., whether its value is zero or
not, as a part of a transition; and then, it increases or decreases the value of counter by 1 or
does not change the value after the transition.

The working tape contains only blank symbols at the beginning of the computation and it has
a two-way read/write head. On the work tape, a PTM reads the symbol under the head as a
part of a transition, and then, it overwrites the symbol under the head and updates the position
of head by at most one square after the transition.

Sweeping or realtime (postselecting) variants of these models are defined similarly.

For non-realtime models, the computation is terminated after entering an accepting or rejecting
state. Additionally, for non-realtime postselecting models, there is another halting state for
non-postselecting outcomes.

A language L is recognized by a bounded-error PTM (or any other variant of PTM) in space
s(n), if the maximum number of visited cells on the work tape with non-zero probability is not
more than s(n) for any input with length n. If we replace the PTM with a counter automaton,
then we take the maximum absolute value of the counter.

We denote the set of integers Z and the set of positive integers Z+. The set I = {I | I ✓ Z+}
is the set of all subsets of positive integers and so it is an uncountable set (the cardinality is
@1) like the set of real numbers (R). The cardinality of Z or Z+ is @0 (countably many).

For I 2 I, the membership of each positive integer is represented as a binary probability value:

p
I

= 0.x101x201x301 · · · xi

01 · · · , x
i

= 1 $ i 2 I.

The coin landing on head with probability p
I

is named coin

I

.

3. Rational-valued Postselecting Models

In this section, our recognizers and verifiers use only rational-valued transition probabilities.
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3.1. PostPFA Algorithms

Here we mainly adopt and also simplify the techniques presented in [9, 3, 17]. We start with a
simple language: EQUAL = {0m10m | m > 0}. It is known that EQUAL is recognized by PostPFAs
with bounded error [17, 19], but we still present an explicit proof which will be used in the
other proofs.

Fact 1 For any x < 1
2 , EQUAL is recognized by a PostPFA P

x

with error bound 2x
2x+1 .

Proof. Let w = 0m10n be the given input for some m,n > 0. Any other input is rejected
deterministically.

At the beginning of the computation, P
x

splits the computation into two paths with equal
probabilities. In the first path, P

x

says “A” with probability Pr[A] = x2m+2n, and, in the

second path, it says “R” with probability Pr[R] =

✓
x4m + x4n

2

◆
.

In the first path, P
x

starts in a state, say s
A

. Then, for each symbol 0, it stays in s
A

with
probability x2 and quits s

A

with the remaining probability. Thus, when started in s
A

, the
probability of being in s

A

upon reaching on the right end-marker is

x2 · x2 · · · · · x2
| {z }

m times

· x2 · x2 · · · · · x2
| {z }

n times

= x2m · x2n = x2m+2n.

In the second path, we assume that P
x

starts in a state, say s
R

, and then immediately switches
to two di↵erent states, say s

R1 and s
R2, with equal probabilities. For each 0 until the symbol 1,

P
x

stays in s
R1 with probability x4 and quits s

R1 with the remaining probability. After reading
symbol 1, it switches from s

R1 to s0
R1 and stays there until the right end-marker. Thus, when

started in s
R1, the probability of being in s0

R1 upon reaching on the right end-marker is x4m.

When in s
R2, Px

stays in s
R2 on the first block of 0’s. After reading symbol 1, it switches from

s
R2 to s0

R2, and then, for each 0, it stays in s0
R2 with probability x4 and quits s0

R2 with the
remaining probability. Thus, when started in s

R2, the probability of being in s0
R2 upon reaching

on the right end-marker is x4n. Therefore, when started in state s
R

, the probability of being in
s0
R1 or s0

R2 upon reaching on the right end-marker is

x4m + x4n

2
.

It is easy to see that if m = n, then Pr[A] = Pr[R] = x4m. On the other hand, if m 6= n, then

Pr[R]

Pr[A]
=

x

4m+x

4n

2

x2m+2n
=

x2m�2n

2
+

x2n�2m

2
>

1

2x2

since either (2m� 2n) or (2n� 2m) is a negative even integer.
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On the right end-marker, P
x

enters s
pa

and s
pr

with probabilities Pr[A] and (x · Pr[R]), re-
spectively. Hence, if w is a member, then a(w) is x�1 times of r(w), and so, w is accepted with
probability

x�1

1 + x�1
=

1

x+ 1
.

If w is not a member, then r(w) is at least 1
2x times of a(w), and so, w is rejected with probability

at least
(2x)�1

1 + (2x)�1
=

1

2x+ 1
.

Thus, the error bound ✏ is 2x
2x+1 , i.e.

✏ = max

✓
1� 1

x+ 1
, 1� 1

2x+ 1

◆
= 1� 1

2x+ 1
=

2x

2x+ 1
,

which is less than 1
2 when x < 1

2 . (Remark that ✏ ! 0 when x ! 0.) 2

We continue with language EQUAL-BLOCKS = {0m110m110m210m21 · · · 10mt10mt | t > 0}.

Theorem 3.1 For any x < 1
2 , EQUAL-BLOCKS is recognized by a PostPFA P

x

with error bound

2x
2x+1 .

Proof. Let w = 0m110n110m210n21 · · · 10mt10nt be the given input for some t > 0, where for each
i 2 {1, . . . , t} bothm

i

and n
i

are positive integers. Any other input is rejected deterministically.

Similar to the previous proof, after reading whole input, P
x

says “A” with probability

Pr[A] =
�
x2m1+2n1

�
| {z }

a1

�
x2m2+2n2

�
| {z }

a2

· · ·
�
x2m

t

+2n
t

�
| {z }

a

t

and says “R” with probability

Pr[R] =

✓
x4m1 + x4n1

2

◆

| {z }
r1

✓
x4m2 + x4n2

2

◆

| {z }
r2

· · ·
✓
x4m

t + x4n
t

2

◆

| {z }
r

t

.

Here P
x

can easily implement both probabilistic events by help of internal states. As analyzed
in the previous proof, for each i 2 {1, . . . , t}, either a

i

= r
i

or r
i

is at least 1
2x2 times greater

than a
i

. Thus, if w is a member, then Pr[A] = Pr[R], and, if w is not a member, then

Pr[R]

Pr[A]
>

1

2x2
.

On the right end-marker, P
x

enters s
pa

and s
pr

with probabilities Pr[A] and (x · Pr[R]), re-
spectively. Hence, we obtain the same error bound as given in the previous proof. 2

Let f be the linear mapping f(m) = am + b for some nonnegative integers a and b, and, let
EQUAL-BLOCKS(f) = {0m110f(m1)10m210f(m2)1 · · · 10mt10f(mt

) | t > 0} be a new language.
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Theorem 3.2 For any x < 1
2 , EQUAL-BLOCKS(f) is recognized by a PostPFA P

x

with error

bound

2x
2x+1 .

Proof. Let w = 0m110n110m210n21 · · · 10mt10nt be the given input for some t > 0, where for each
i 2 {1, . . . , t} bothm

i

and n
i

are positive integers. Any other input is rejected deterministically.

In the above proofs, the described automata make transitions with probabilities x2 or x4 when
reading a symbol 0. Here P

x

makes some additional transitions:

• Before starting to read a block of 0’s, P
x

makes a transition with probability x2b or x4b.

• After reading a symbol 0, P
x

makes a transition with probability x2a or x4a.

Thus, after reading a block ofm 0’s, P
x

can be designed to be in a specific event with probability
x2am+2b = x2f(m) or x4am+4b = x4f(m), where m > 0.

Therefore, P
x

is constructed such that, after reading whole input, it says “A” with probability

Pr[A] =
�
x2f(m1)+2n1

�
| {z }

a1

�
x2f(m2)+2n2

�
| {z }

a2

· · ·
�
x2f(m

t

)+2n
t

�
| {z }

a

t

and says “R” with probability

Pr[R] =

✓
x4f(m1) + x4n1

2

◆

| {z }
r1

✓
x4f(m2) + x4n2

2

◆

| {z }
r2

· · ·
✓
x4f(m

t

) + x4n
t

2

◆

| {z }
r

t

.

Then, for each i 2 {1, . . . , t}, if n
i

= f(m
i

), a
i

= r
i

= x4f(m
i

), and, if n
i

6= f(m
i

),

r
i

a
i

=
x

4f(m
i

)+x

4n
i

2

x2f(m
i

)+2n
i

=
x2f(m

i

)�2n
i

2
+

x2n
i

�2f(m
i

)

2
>

1

2x2
.

As in the above algorithms, on the right end-marker, P
x

enters s
pa

and s
pr

with probabilities
Pr[A] and (x · Pr[R]), respectively. Hence, we obtain the same error bound as given in the
previous proofs. 2

As an application of the last result, we present a PostPFA algorithm for language

LOG = {0102110221023 · · · 02m�1
102

m | m > 0},

which was also shown to be recognized by 2PFAs [9].

Theorem 3.3 For any x < 1
2 , LOG is recognized by a PostPFA P

x

with error bound

2x
2x+1 .

Proof. Let 02
0
10m110m21 . . . 10mt be the given input for t > 1, where m1 = 21. The decision

on any other input is given deterministically.

After reading whole input, P
x

says “A” with probability

Pr[A] =
�
x4m1+2m2

�
| {z }

a1

�
x4m2+2m3

�
| {z }

a2

· · ·
�
x4m

t�1+2m
t

�
| {z }

a

t�1



POSTSELECTING PROBABILISTIC FS RECOGNIZERS AND VERIFIERS 73

and says “R” with probability

Pr[R] =

✓
x8m1 + x4m2

2

◆

| {z }
r1

✓
x8m2 + x4m3

2

◆

| {z }
r2

· · ·
✓
x8m

t�1 + x4m
t

2

◆

| {z }
r

t�1

.

In the previous languages, the blocks are nicely separated, but for language LOG the blocks are
overlapping. Therefore, we modify the previous methods. As described in the first algorithm,
P
x

splits the computation into two paths with equal probabilities at the beginning of the
computation. In the first path, the event happening with probability Pr[A] is implemented by
executing two parallel procedures: The first procedure produces the probabilities a

i

’s where i
is odd and the second procedure produces the probabilities a

i

’s where i is even. Similarly, in
the second path, the event happening with probability Pr[R] is implemented by also executing
two parallel procedures. Thus, the previous algorithm is also used for LOG by using the solution
for overlapping blocks. 2

In [9], the following padding argument was given:

Fact 2 [9] If a binary language L is recognized by a bounded–error PTM in space s(n), then
the binary language LOG(L) is recognized by a bounded–error PTM in space log(s(n)), where

LOG(L) = {0(1w1)0
21(1w2)0

22(1w3)0
23 · · · 02m�1

(1w
m

)02
m | w = w1 · · ·wm

2 L}.

Similarly, we can easily obtain the following two corollaries.

Corollary 3.4 If a binary language L is recognized by a bounded-error PostPTM in space s(n),
then the binary language LOG(L) is recognized by a bounded-error PostPTM in space log(s(n)).

Corollary 3.5 If a binary language L is recognized by a bounded-error PostPCA in space s(n),
then the binary language LOG(L) is recognized by a bounded-error PostPCA in space log(s(n)).

3.2. PostPFA Protocols

In this section, we present PostPFA protocols for the following two nonregular unary languages:
UPOWER = {02m | m > 0} and USQUARE = {0m2 | m > 0}. These languages are known to be
verified by 2PFA verifiers [8] and private alternating realtime automata [4]. Here, we use similar
protocols but with certain modifications for PostPFAs.

Theorem 3.6 UPOWER is verified by a PostPFA V
x

with perfect completeness, where x < 1.

Proof. Let w
m

be the m-th shortest member of UPOWER (m > 0) and let w = 0n be the given
string for n > 1. (If the input is empty string or 0, then it is rejected deterministically.)

The verifier expects the certificate to be composed by t > 0 block(s) followed by symbol $,
and each block has form of 0+1 except the last one which is 1. The verifier also never checks a
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new symbol on the certificate after reading a $ symbol. Let c
w

be the given certificate in this
format:

c
w

= u1 · · · ut�1ut

$$⇤,

where for each j 2 {1, . . . , t � 1}, u
j

2 {0+1}, and u
t

= 1. Any other certificate is detected
deterministically, and then, the input is rejected. Let u

w

= u1 · · · ut�1ut

$ and l
j

= |u
j

|.

The verifier checks that (1) l
j

is twice of l
j+1 for each j 2 {1, . . . , t� 2}, (2) each block except

the last one contains at least one 0 symbol, (3) the last block is 1, and (4) |w| = |u
w

|. Remark
that these conditions are satisfied only for members: The expected certificate for w

m

is

c
w

m

= 02
m�1�11| {z }

1st block

02
m�2�11| {z }

2nd block

· · · 1 0001|{z}
···

01|{z}
···

1|{z}
m-th block

$$⇤

and the length of all blocks and a single $ symbol is 2m�1 + 2m�2 + · · ·+ 21 + 20 + 1 = 2m. In
other words, l1 =

|w|
2 , l2 =

|w|
4 , . . . , l

m

= |w|
2m .

At the beginning of the computation, V
x

splits the computation into two paths with equal
probabilities, called the accepting path and the main path. In the accepting path, the compu-
tation ends in s

pa

with probability x

2t and in some non-postselecting state with the remaining
probability. Since there are t blocks, it is easy to obtain this probability. This is the path in
which V

x

enters s
pa

. Therefore, a(w) = x

2t+1 (the accepting path is selected with probability 1
2).

During reading the input and the certificate, the main path checks (1) whether |w| = |u
w

|, (2)
each block of the certificate except the last one contains at least one 0 symbol, and (3) the last
block is 1. If one of checks fails, the computation ends in state s

pr

. The main path also creates

subpaths for checking whether l1 =
|w|
2 , l2 =

l1
2 , . . . , lm�1 =

l

m�2

2 . After the main path starts to
read a block starting with 0 symbol, it creates a subpath with half probability and stays in the
main path with remaining probability. Thus, the main path reaches the right end-marker with
probability 1

2t . On the other hand, the j-th subpath is created with probability 1
2j+1 , where

1  j  t� 1.

The first subpath tries to read 2l1 symbols from the input. If there are exactly 2l1 symbols, i.e.
2l1 = |w|, then the test is successful and the computation is terminated in an non-postselecting
state. Otherwise, the test is failed and the computation is terminated in state s

pr

.

The second path is created after reading l1 symbols from the input. Then, the second subpath
also tries to read 2l2 symbols from the input. If there are exactly 2l2 symbols, i.e. l1+2l2 = |w|,
then the test is successful and the computation is terminated in an non-postselecting state.
Otherwise, the test is failed and the computation is terminated in state s

pr

.

The other subpaths behave exactly in the same way. The last ((t�1)-th) subpath checks whether
l1 + l2 + · · ·+ l

t�2 + 2l
t�1 = |w|. If all previous tests are successful, then l

t�1 =
l

t�2

2 = |w|
2t�1 .

It is clear that if w is a member, say w
m

, and V
x

reads w
m

and c
w

m

, then a(w) = x

2m+1 . On
the other hand, neither the main path nor any subpath enters state s

pr

with some non-zero
probability. Therefore, any member is accepted with probability 1.
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If w is not a member, then one of the checks done by the main path and the subpaths is failed
and so V

x

enters s
pr

with non-zero probability. The probability of being in s
pr

at the end, i.e.
r(w), is at least 1

2t . Thus,

r(w)

a(w)
�

1
2t
x

2t+1

=
2

x
.

Therefore, any non-member is rejected with probability at least 2
2+x

. 2

In the above proof, the verifier can also check deterministically whether the number of blocks
is a multiple of k or not for some k > 1. Thus, we can easily conclude the following result.

Corollary 3.7 UPOWERk = {02km | m > 0} is verified by a PostPFA with perfect completeness.

Theorem 3.8 USQUARE is verified by a PostPFA V
x

with perfect completeness, where x < 1.

Proof. The proof is very similar to the above proof. Let w
m

be the m-th shortest member
of USQUARE (m > 1). Let w = 0n be the given input for n > 3. (The decisions on the shorter
strings are given deterministically.) The verifier expects to obtain a certificate composed by t
blocks:

c
w

= am1bm2am3 · · · dmt$$⇤,

where d is a (b) if t is odd (even). Let u
w

= am1bm2am3 · · · dmt$. The verifier never reads a new
symbol after reading u

w

on the certificate.

The verifier checks the following equalities:

m1 = m2 = · · · = m
t

= t+ 1

and
|w| = m1 +m2 + · · ·+m

t

+ (t+ 1).

If we substitutem1 withm in the above equalities, then we obtain that |w| = (m�1)m+m = m2

and so w = w
m

.

At the beginning of the computation, V
x

splits into the accepting path and the main path with
equal probabilities, and, as a result of the accepting path, it always enters s

pa

with probability
a(w) = x

2t+1 .

In the following paths, if the comparison is successful, then the computation is terminated in a
non-postselecting state, and, if it is not successful, then the computation is terminated in state
s
pr

. The main path checks the equality |w| = m1 +m2 + · · ·+m
t

+ (t+ 1).

For each j 2 {1, . . . , t}, the main path also creates a subpath with probability 1
2 and remains

in the main path with the remaining probability. The j-th subpath checks the equality

|w| = m
j

+m1 + · · ·+m
t

,

where m
j

is added twice.
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If all comparisons in the subpaths are successful, then we have

m1 = m2 = · · · = m
t

= m

for some m > 0. Additionally, if the comparison in the main path is successful, then we obtain
that t = m� 1. Thus, w = w

m

. Therefore, any member is accepted with probability 1 by help
of the proof composed by (m� 1) blocks and the length of each block is m.

If w is not a member, then one of the comparisons will not be successful. (If all are successful,
then, as described above, the certificate should have (m� 1) blocks of length m and the input
has length m2.) The minimum value of r(w) is at least 1

2t+1 and so r(w)
a(w) � 1

x

. Therefore, any

non-member is rejected with probability at least 1
x+1 . 2

4. Postselecting Models Using Magic Coins

In this section, we allow recognizers and verifiers to use real-valued transition probabilities. We
use a fact presented in our previous paper [5].

Fact 3 [5] Let x = x1x2x3 · · · be an infinite binary sequence. If a biased coin lands on head with
probability p = 0.x101x201x301 · · · , then the value x

k

is determined correctly with probability
at least 3

4 after 64k coin tosses, where x
k

is guessed as the (3k+3)-th digit of the binary number
representing the total number of heads after the whole coin tosses.

4.1. Algorithms Using Magic Coins

Previously, we obtained the following result.

Fact 4 [5] Bounded–error linear–space sweeping PCAs can recognize uncountably many lan-
guages in subquadratic time.

For the language L recognized by a sweeping PCA, we can easily design a sweeping PCA that
recognizes LOG(L) by using the same idea given for PostPFAs. Since PostPFAs are equivalent
to restart-PFAs and restart-PFAs can also be implemented by sweeping PFAs, we can reduce
linear space to logarithmic space given in the above result with exponential slowdown, i.e.
padding part of the input can be recognized by restart-PFA with exponential expected time.

Corollary 4.1 Bounded-error log-space sweeping PCAs can recognize uncountably many lan-

guages in exponential expected time.

We can iteratively apply this idea and obtain new languages with better and better space
bounds. We can define LOGk(L) as LOG(LOGk�1(L)) for k > 1 and then we can follow that
LOGk(L) can be recognized by a bounded-error sweeping PCA that uses O(logk(n)) space on the
counter.
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Corollary 4.2 The cardinality of languages recognized by bounded-error sweeping PCAs with

arbitrary small non-constant space bound is uncountably many.

Now, we show how to obtain the same results by restricting sweeping reading mode to the
restarting realtime reading mode or realtime reading mode with postselection. We start with
the recognition of the following nonregular binary language, a modified version of DIMA [5]:

DIMA3 = {020102110221 · · · 1026k�2
1102

6k�1
112

6k
(02

3k�11)2
3k | k > 0}.

Theorem 4.3 For any x < 1
3 , DIMA3 is recognized by linear-space PostPCA P

x

with error

bound

x

1+x

.

Proof. Let w be the given input of the form

w = 0t110t21 · · · 10tm�1110tm11t
0
00t

0
110t

0
21 · · · 10t0n1,

where t1 = 1, m and n are positive integers, m is divisible by 6, and t
i

, t0
j

> 0 for 1  i  m
and 0  j  n. (Otherwise, the input is rejected deterministically.)

P
x

splits computation into four paths with equal probabilities. In the first path, with the help
of the counter, P

x

makes the following comparisons:

• for each i 2 {1, . . . , m2 }, whether 2t2i�1 = t2i,

• for each j 2 {1, . . . , n2}, whether t
0
2j�1 = t02j.

In the second path, with the help of the counter, P
x

makes the following comparisons:

• for each i 2 {1, . . . , m2 � 1}, whether 2t2i = t2i+1,

• whether 2t
m

= t00 (this also helps to set the counter to 0 for the upcoming comparisons),

• for each j 2 {1, . . . , n2 � 1}, whether t02j = t02j+1.

In the third path, P
x

checks whether 1 +
P

m

i=1 ti = n+
P

n

j=1 t
0
j

. In the fourth path P
x

checks,
whether t01 + 1 = n.

It is easy to see that all comparisons are successful if and only if w 2 DIMA3.

If every comparison in a path is successful, then P
x

enters s
pa

with probability x

3 in the path.
If it is not, then P

x

enters s
pr

with probability 1 in the path. Therefore, if w 2 DIMA3, then
w is accepted with probability 1 since r(w) = 0. If w /2 DIMA3, then the maximum accepting

probability is obtained when P
x

enters s
pr

only in one of the paths. That is, r(x)
a(x) =

1
4

3· 14 ·
x

3

= 1
x

.

Thus, w is rejected with probability at least 1
1+x

. The error bound is x

1+x

. 2

Theorem 4.4 Linear-space PostPCAs can recognize uncountably many languages with error

bound

2
5 .

Proof. Let w
k

be the k-th shortest member of DIMA3 for k > 0. For any I 2 I, we define the
following language:

DIMA3(I) = {w
k

| k > 0 and k 2 I}.
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We follow our result by presenting a PostPCA, say P
I,y

, to recognize DIMA3(I), where y < 1
19 .

Let w be the given input of the form

w = 0t110t21 · · · 10tm�1110tm11t
0
00t

0
110t

0
21 · · · 10t0n1,

where t1 = 1, m and n are positive integers, m is divisible by 6, and t
i

, t0
j

> 0 for 1  i  m
and 0  j  n. (Otherwise, the input is rejected deterministically.)

At the beginning of the computation, P
I,y

splits into two paths with equal probabilities. In
the first path, P

I,y

executes the PostPCA P
y

for DIMA3 described in the proof above with the
following modification: in each path of P

y

, if every comparison is successful, then P
y

enters
state s

pa

with probability y

16 (P
y

enters path with probability 1
4 , and then enters state s

pa

with
probability y

4), and, if it is not, then P
y

enters state s
pr

with probability 1.

In the second path, P
I,y

sets the value of counter to T = 1 +
P

m

j=1 ti by reading the part of

the input 0t110t21 · · · 10tm�1110tm1. Remark that if w 2 DIMA3, T is 64k for some k > 0. Then,
P
I,y

attempts to toss coin

I

T times. After each coin toss, if the result is a head (resp., tail),
then P

I,y

moves on the input two symbols (respectively, one symbol). If H is the number of
total heads, then P

I,y

reads (T �H) + 2H = T +H symbols. During attempt to read T +H
symbols, if the input is finished, then the computation ends in state s

pr

with probability 1 in
this path. Otherwise, P

I,y

guesses the value x
k

with probability at least 3
4 (described in details

at the end of the proof) and gives a parallel decision with probability y, i.e., if the guess is 1
(resp., 0), then it enters state s

pa

(resp., s
pr

) with probability y.

If w 2 DIMA3(I), then the probability of entering state s
pa

is
�
4 · y

16

�
in the first path and at

least 3y
4 in the second path. The probability of entering s

pr

in the second path is at most y

4 .
Thus, w is accepted with probability at least 4

5 .

If w /2 DIMA3(I), then we have two cases:

Case 1: w 2 DIMA3. In this case, the probability of entering state s
pa

is
�
4 · y

16

�
in the first path

and at most y

4 in the second path. The probability of entering s
pr

in the second path is at least
3y
4 . Thus, w is rejected with probability 3

5 .

Case 2: w /2 DIMA3. In this case, the probability of entering state s
pr

is at least 1
8 in the first

path and this is at least 4 times of the total probability of entering state s
pa

, which can be at
most

1

2
· 3 · y

16
+

1

2
y =

19y

32
<

1

32
for y < 1

19 . Then, the input is rejected with probability greater than 4
5 .

As can be seen from the above analysis, when w /2 DIMA3, guessing the correct value of x
k

is
insignificant. Therefore, in the following part, we assume that w 2 DIMA3 when explaining how
to guess x

k

correctly. Thus, we assume that w = w
k

:

w
k

= 02
0
102

1
102

2
1 · · · 1026k�2

1102
6k�1

112
6k
(02

3k�11)2
3k

for k > 0. In the second path, P
I,y

tosses coin
I

T = 64k times and it can read 64k +H symbols
from the input. In other words, it reads H symbols from the part w0

k

= (02
3k�11)2

3k
. Here we
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use the analysis similar to one presented in [8]. We can write H as

H = i · 8k+1 + j · 8k + q = (8i+ j)8k + q,

where i � 0, j 2 {0, . . . , 7}, and q < 8k.

Due to Fact 3, x
k

is the (3k + 3)-th digit of binary(H) with probability 3
4 . In other words, x

k

is guessed as 1 if j 2 {4, . . . , 7}, and as 0, otherwise. P
I,y

sets j = 0 at the beginning. We can
say that for each head, it consumes a symbol from w0

k

. After reading 8k symbols, it updates
j as (j + 1) mod 8. When the value of counter reaches zero, P

I,y

guesses x
k

by checking the
value of j. 2

Now we can combine Corollary 3.5 and Theorem 4.4 to obtain new results for hierarchy of
uncountable probabilistic classes.

Corollary 4.5 The cardinality of languages recognized by bounded-error PostPCAs with arbi-

trary small non-constant space bound is uncountably many.

4.2. Protocols Using Magic Coins

In this subsection we proceed with the verification of uncountably many unary languages.

Theorem 4.6 PostPFAs can verify uncountably many unary languages with bounded error.

Proof. See [7] for the proof. 2

Acknowledgements

Dimitrijevs is partially supported by University of Latvia projects AAP2016/B032 “Innovative
information technologies” and ZD2018/20546 “For development of scientific activity of Faculty
of Computing”. Yakaryılmaz is partially supported by ERC Advanced Grant MQC.

References

[1] S. AARONSON, Quantum computing, postselection, and probabilistic polynomial-time. Proceed-
ings of the Royal Society A 461 (2005) 2063, 3473–3482.

[2] A. CONDON, Complexity Theory: Current Research, chapter The complexity of space bounded
interactive proof systems. Cambridge University Press, 1993, 147–190.

[3] A. CONDON, R. J. LIPTON, On the complexity of space bounded interactive proofs (Extended
Abstract). In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science
(FOCS’89). 1989, 462–467.



80 Maksims Dimitrijevs, Abuzer Yakaryılmaz

[4] H. G. DEMIRCI, M. HIRVENSALO, K. REINHARDT, A. C. C. SAY, A. YAKARYIL-
MAZ, Classical and quantum realtime alternating automata. In: S. BENSCH, R. FREUND,
F. OTTO (eds.), Sixth Workshop on Non-Classical Models of Automata and Applications (NCMA
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Abstract
We introduce the concept of mind-changing automata. Basically, the idea is that at the outset
the automaton is partially deterministic. Whenever the automaton encounters a situation for
which it has an undefined transition, it may choose an appropriate transition out of a set of
available transitions. The chosen transition is then added to the transition function. Finally,
whenever the automaton is in a situation for which a transition is defined, it can change its mind
and interchange the transition by an alternative transition from the set of available transitions.
So, the number of transition changes is a natural parameter of the devices considered. We
show that mind-changing finite automata (MCFAs) only accept regular languages. Moreover,
we prove that, from a descriptional complexity point of view, a single mind-change is already
better than nondeterminism, that is, there is a sequence of regular languages (Ln)n�3

accepted by
n-state complete MCFA with a single alternative transition with at most one mind-change such
that any nondeterministic finite automaton accepting Ln requires at least n + log n � 1 states.
We also consider mind-changing pushdown automata proving that the families of languages
induced by the number of mind-changes lie strictly in between the deterministic context-free and
context-free language families and form a proper mind-change hierarchy.

1. Introduction

In linguistics it is generally accepted that language and thought influence each other. As said
by Chomsky [1], “[. . . ] language is a mirror of mind in a deep and significant sense.” Although
language is a mirror of mind, it is not a model of it. States of mind are used by Turing to
model physical processes by abstract machines [5, 6], where the states of mind form a finite
control. Thus, simply speaking, an abstract machine or automaton is a device with a finite
control and an additional storage such as, for example, a pushdown or Turing tape, that can be
manipulated by a finite number of operations. The behavior, that is, the transition function, of
the abstract automaton is programmed and cannot be changed. Hence, the states of mind and
there relation to each other is fixed. It seems that a re-interpretation of the mind’s opinion on
certain states and relations to each other is not possible. This re-interpretation corresponds to
a re-programming of the underlying automaton. In fact, re-programming of an automaton is
possible, whenever a universal machine of the same type exists, as in case of Turing machines.
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But what about other devices such as, for instance, finite automata or pushdown machines,
where no universal device exists? In order to allow also these machines a re-programming
during the computation, we propose a novel approach on mind-changing automata. It turns
out that this approach generalizes the recently introduced concept of one-time nondeterministic
computations [2], which is an alternative interpretation of nondeterminism.

A mind-changing automaton is a device which is partially deterministic at the outset. When-
ever a situation encounters for which the automaton has an undefined transition, it may choose
an appropriate transition out of a set of available transitions. The chosen transition is then
added to the transition function. Finally, whenever the automaton is in a situation for which
a transition is defined, it can change its mind and interchange the transition by an alternative
transition from the set of available transitions. Here an interchanging of transitions is said to be
a mind-change. The initialization or change of a transition is fixed up to the next time when the
automaton decides to change this particular transition again. Then the number of transition
changes is a natural parameter of the considered device. We investigate mind-changing finite
automata (MCFAs) and mind-changing pushdown automata (MCPDAs). First we show that
the mind-changing mechanism for both types of automata can be simulated by nondeterminis-
tic machines of the same type. Thus, MCFAs accept only regular languages and MCPDAs only
context-free sets. Hence in case of MCFAs the question on the descriptional complexity of these
machines arises, while for MCPDAs the question whether the language families induced by a
constant number of mind-changes form a proper hierarchy between the deterministic context-
free and context-free languages arises. For MCFAs we obtain an upper bound on the number of
states an equivalent nondeterministic or deterministic automaton needs to accept the language
under consideration. Since MCFAs without any mind-change operation are shown to charac-
terize the one-time nondeterministic finite automata recently introduced in [2], lower bounds
for one-time nondeterministic automata immediately transfer to MCFAs. Roughly speaking,
one-time nondeterminism means that at the outset the computation is nondeterministic, but
whenever the automaton performs a guess, this guess is fixed for the rest of the computation.
Moreover, we show that a single mind-change is already better than nondeterminism, that is,
there is a sequence of regular languages (Ln)n�3

accepted by n-state complete MCFAs with a
single alternative transition with at most one mind-change such that any deterministic finite
automaton requires at least 2n+logn�1 states, which implies that any nondeterministic finite au-
tomaton accepting these languages requires at least n+log n�1 states. The bound on 2n+logn�1

states for deterministic finite automata is tight for complete MCFAs with a single alternative
transition with at most one mind-change. Finally, for MCPDAs we find the following situation:
the family of languages accepted by MCPDAs without mind-change characterizes the family of
languages accepted by one-time nondeterministic pushdown automata, similarly as in the case
of MCFAs, but for MCPDAs the language family under investigation is a proper superset of the
family of deterministic context-free languages. Moreover, we prove that, from a descriptional
complexity point of view, k + 1 mind-changes are better than k mind-changes for MCPDAs.
To this end, we first show that the mirror language of L

mi

= {wwR | w 2 {a, b}+ } is accepted
by an MCPDA with a single mind-change but cannot be accepted by any MCPDA without
a mind-change, since otherwise L

mi

belongs to the union closure of deterministic context-free
languages, which is known to be not the case [4]. Then considering the (k + 1)-times marked
concatenation of the mirror language one can show that this language is a witness for the
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strict inclusion of the family of languages accepted by MCPDAs with at most k mind-changes
within the family of languages accepted by MCPDAs with at most k + 1 mind-changes. Thus,
MCPDAs form a strict and tight hierarchy dependent on the number of mind-changes within
the family of context-free languages. Finally, we show that there is a context-free language that
requires a non-constant number of mind-changes to be accepted by any MCPDA.

2. Definitions and Preliminaries

Let ⌃⇤ denote the set of all words over the finite alphabet ⌃. The empty word is denoted by �,
and ⌃+ = ⌃⇤ \ {�}. The reversal of a word w is denoted by w

R. For the length of w we
write |w|. For the number of occurrences of a symbol a in w we use the notation |w|a. Set
inclusion is denoted by ✓ and strict set inclusion by ⇢. We write 2S for the power set and |S|
for the cardinality of a set S.

We investigate mind-changing finite automata. The basic idea is that at the outset the automa-
ton is partially deterministic. In this way, defined transitions constitute situations for which the
automaton already has an opinion (on how to proceed), while undefined transitions constitute
situations for which the automaton is still irresolute. Whenever the automaton encounters a
situation for which it is irresolute, it can form its opinion by choosing an appropriate transition
out of a set of transitions. The chosen transition is then added to the transition function. Fi-
nally, whenever the automaton is in a situation for which a transition is defined, it can change
its mind and replace some transition already defined by an alternative matching transition from
the set of transitions. In the sequel we will consider the total number of mind changes as a
limited resource.

In order to define mind-changing finite automata formally, we recall some classical definitions.

A nondeterministic finite automaton (NFA) is a system M = hQ,⌃, �, q
0

, F i, where Q is the
finite set of internal states, ⌃ is the finite set of input symbols, q

0

2 Q is the initial state, F ✓ Q

is the set of accepting states, and � : Q⇥ ⌃ ! 2Q is the transition function. In the forthcoming
we sometimes refer to � as a subset of Q⇥⌃⇥Q. A finite automaton M is deterministic (DFA)
if and only if |�(q, a)|  1, for all q 2 Q and a 2 ⌃. In this case we simply write �(q, a) = q

0 for
�(q, a) = {q0} assuming that the transition function is a (partial) mapping � : Q⇥ ⌃ ! Q.

Note that here NFAs as well as DFAs may have a partial transition function.

Next, the idea of mind-changing finite automata is implemented as follows: a mind-changing
finite automaton (MCFA) is a system M = hQ,⌃, �

0

, q

0

, F, T

0

i, where hQ,⌃, �
0

, q

0

, F i is a DFA
reflecting the initial opinion of M , and T

0

✓ Q⇥⌃⇥Q with T

0

\ �

0

= ; is the set of available
alternative transitions.

A configuration of the MCFA M is a triple (q, w, �, T ), where q 2 Q is the current state, w 2 ⌃⇤

is the still unread part of the input, � is the current transition function, and T is the current
set of alternative transitions. The initial configuration for input w is set to (q

0

, w, �

0

, T

0

).
During the course of its computation, M runs through a sequence of configurations. One step
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from a configuration to its successor configuration, denoted by `M , is defined as follows. Let
(q, aw, �, T ) be a configuration for a 2 ⌃. Then we define:

1. (q, aw, �, T ) `M (q0, w, �, T ) if �(q, a) = q

0 (ordinary move),

2. (q, aw, �, T ) `M (q0, w, �[{(q, a, q0)}, T \{(q, a, q0)}) if �(q, a) is undefined and (q, a, q0) 2 T

(form an opinion move), and

3. (q, aw, �, T ) `M (q0, w, �0, T 0) with �

0 = (� [ {(q, a, q0)}) \ {(q, a, q00)} and
T

0 = (T [{(q, a, q00)})\{(q, a, q0)}), if �(q, a) = q

00 and (q, a, q0) 2 T (mind-changing move).

As usual, the reflexive transitive closure of `M is denoted by `⇤
M . The subscript M will be

dropped from `M and `⇤
M if the meaning is clear. Then the language accepted by the MCFA M

with up to k mind changes, for k � 0, is defined as

Lk(M) = {w 2 ⌃⇤ | (q
0

, w, �

0

, T

0

) `⇤
M (q,�, �, T ) for some q 2 F,

using at most k mind-changing moves in the computation }.

Observe, that by definition Lk(M) ✓ Lk+1

(M), for k � 0.

In order to illustrate the definitions we continue with an example.

Example 2.1 Consider the MCFA M = h{1, 2, 3}, {a, b}, �
0

, 1, {3}, T
0

i with the transition
function �

0

(1, a) = �

0

(1, b) = 1, and �

0

(2, a) = �

0

(2, b) = 3 and the set of alternative tran-
sitions T

0

= {(1, a, 2)}. The MCFA M is depicted in Figure 1. Obviously, L
0

(M) = ;, since
the automaton can never change any transition and thus the sole accepting state 3 cannot be
reached.

Whenever the MCFA M decides to make a mind-changing step, that is, exchanging the original
transition (1, a, 1) by (1, a, 2) from T

0

, then the sole accepting state 3 can be reached from 1 via
state 2 by reading either aa or ab. Let us see how this works on input w = baab. To this end
let �0 = (�

0

[ {(1, a, 2)}) \ {(1, a, 1)} and T

0 = (T
0

[ {(1, a, 1)}) \ {(1, a, 2)}. Then an accepting
computation on input w is

(q
0

, w, �

0

, T

0

) = (1, baab, �
0

, T

0

) ` (1, aab, �
0

, T

0

) ` (1, ab, �
0

, T

0

) ` (2, b, �0, T 0) ` (3,�, �0, T 0),

where the sole mind-change appeared at the next to last computation step. Yet there is another
computation on w which is not accepting, since the mind-change appeared too early and the
computation blocks. This non-accepting computation is

(q
0

, w, �

0

, T

0

) = (1, baab, �
0

, T

0

) ` (1, aab, �
0

, T

0

) ` (2, ab, �0, T 0) ` (3, b, �0, T 0).

It is worth mentioning, that although the underlying automata induced by �

0

and �

0 are both
deterministic, there are more then one computation on M , due to the mind-changes. By our
example it is not hard to see that

L

1

(M) = {w 2 {a, b}⇤ | the next to last letter of w is an a }

and moreover Lk(M) = L

1

(M), for k � 1.
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In case we consider the MCFA M

0 = h{1, 2, 3}, {a, b}, �0, q
0

, T

0i, then one observes that

L

0

(M 0) = L

1

(M 0) = b

⇤
a(a+ b)

and Lk(M 0) = {w 2 {a, b}⇤ | the next to last letter of w is an a }, for k � 2. ⌅

1 2 3

a, b

a a, b

Figure 1: The MCFA M = h{1, 2, 3}, {a, b}, �
0

, q
0

, F, T
0

i, where the transitions from �
0

are drawn with
solid arrows and that of T

0

are depicted with dashed arrows.

3. A General Upper Bound

Intuitively, it is clear that the family of languages accepted by MCFAs coincides with the
regular languages. Although the concept of mind changes does do not improve the com-
putational power of ordinary finite automata, the question for the descriptional complexity
of such devices arises. Before we consider these costs (in terms of states) for simulations
of MCFAs by ordinary finite automata in more detail, we recall and adapt some notation
from [2]. Let M = hQ,⌃, �

0

, q

0

, F, T

0

i be an MCFA. A (non)deterministic finite automaton
M

0 = hQ0
,⌃0

, �

0
, q

0
0

, F

0i is compatible with M if and only if (i) Q0 = Q, (ii) ⌃0 = ⌃, (iii) q0
0

= q

0

,
(iv) F 0 = F , and (v) �0(q, a) ✓ �

0

(q, a)[{ p | (q, a, p) 2 T

0

}, for every q 2 Q and a 2 ⌃. If M 0 is
compatible with M , then we write M 0 � M . We further define that M 0 is non-empty compatible
with M , if and only if M 0 is compatible with M and �

0

(q, a) [ { p | (q, a, p) 2 T

0

} 6= ; implies
�

0(q, a) 6= ;, for every q 2 Q and a 2 ⌃. If M 0 is non-empty compatible with M , then we write
M

0 �ne M . Obviously, M 0 �ne M implies M 0 � M , but the converse implication does not hold
in general.

It turns out that the upper bound on the costs for the simulations of an MCFA M by a
DFA depends on the number of DFAs that are non-empty compatible with M , that is, on the
cardinality of the set Dne(M) = {M 0 | M 0 is a partial DFA with M

0 �ne M }. This cardinality
is equal to the nondeterministic degree d(M) of an MCFA M with state set Q and input
alphabet ⌃ that is defined as

d(M) =
Y

(q,a)2Q⇥⌃
|�0(q,a)[{p|(q,a,p)2T0}| 6=0

|�
0

(q, a) [ { p | (q, a, p) 2 T

0

}|.

With this newly introduced notation our next theorem reads as follows:

Theorem 3.1 Let M = hQ,⌃, �
0

, q

0

, F, T

0

i be an n-state MCFA. Then (k + 1) · n · d(M) + 1
states are su�cient for an NFA to accept the language Lk(M), for every k � 0.
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Proof. The computations of M can uniquely be split into up to k+1 sub-computations, where
the sub-computations start at initial time and immediately after mind-changing moves. Every
sub-computation is performed by a DFA that is non-empty compatible with M . The number
of such DFAs is |Dne(M)| = d(M).

Now an NFA M

0 that accepts Lk(M) is constructed as follows. For each DFA N from Dne(M)
we use k + 1 copies and denote them N

0

, N

1

, . . . , Nk. The indexes indicate how many mind-
changing moves have been simulated already. So, M 0 starts in a new initial state q

0
0

, guesses
one of the DFAs from Dne(M), say DFA N , and starts the simulation of M with the copy N

0

.
The copy N

0

is used for the first sub-computation. When the first mind-changing move is to be
performed, M 0 simulates it and continues the computation with a copy of the DFA from Dne(M)
that is obtained by exchanging the transition in N

0

according to the mind change. The index of
the copy of the new DFA is now 1. Note that the jump into the new DFA is a nondeterministic
step of M 0 since it is a nondeterministic step in M . Similarly, the remaining sub-computations
are simulated.

It is straightforward to see that M 0 accepts Lk(M). The number of states of M 0 is calculated
as one new initial state plus (k + 1) · n states for the k + 1 copies of each DFA from Dne(M).
This makes altogether no more than (k + 1) · n · d(M) + 1 states. 2

From Theorem 3.1 and the powerset construction on NFAs we deduce the following result. Note
that we have partial DFAs and the new initial state of M 0 is never reached again. So, at least
one state an be saved in the exponent.

Corollary 3.2 Let M be an n-state MCFA with input alphabet ⌃. Then 2(k+1)·n·d(M)+1 states
are su�cient for a DFA to accept the language Lk(M), for every k � 0.

So, the upper bound on the number of states of a finite automaton accepting Lk(M), for an
MCFA M , depends on the cardinality of Dne(M).

Lemma 3.3 Let M = hQ,⌃, �
0

, q

0

, F, T

0

i be an n-state MCFA. Then Dne(M) contains no
more than n

|⌃|·n DFAs.

Apart from the cardinality of Dne(M) the upper bound on the number of states of a finite
automaton accepting Lk(M), for an MCFA M , depends on the number of mind-changing moves
allowed. Let us first consider the case k = 0. Although an MCFA M cannot do any mind-
changing move, if k = 0, it still can perform moves that form an opinion. With these moves
transitions from the current set T of alternative transitions can be chosen whenever the current
transition function � is undefined. The chosen transitions can be used in the computation of M
but cannot be changed afterwards anymore. This is exactly the same idea that underlies the
concept of one-time nondeterminism, that was recently introduced in [2], and is formalized as
follows. Let M = hQ,⌃, �, q

0

, F i be an NFA and

(q
0

, a

0

a

1

· · · an�1

) `M (q
1

, a

1

a

2

· · · an�1

) `M (q
2

, a

2

a

3

· · · an�1

) `M · · · `M (qn,�)

be a computation of M on input a
0

a

1

· · · an�1

2 ⌃+. A computation is permissible if and only
if n = 1 or (qi, ai) = (qj, aj) implies qi+1

= qj+1

, for all 0  i < j  n � 1. Now, M is said
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to be one-time nondeterministic if and only if it may only perform permissible computations.
In this case we call M a one-time nondeterministic finite automaton (OTNFA). A word w is
permissible acceptable by M if there is a permissible computation that ends in an accepting
state of M . The language accepted by an OTNFA M is

Lp(M) = {w 2 ⌃⇤ | word w is permissible acceptable by M }.

Then we find the following relation between MCFAs without mind-changes and one-time non-
deterministic automata:

Theorem 3.4 For every MCFA M one can e↵ectively construct an OTNFA M

0 with the same
number of states such that Lp(M 0) = L

0

(M) and vice versa.

Proof. Assume that M = hQ,⌃, �
0

, q

0

, F, T

0

i is an MCFA. The OTNFA M

0 = hQ,⌃, �, q
0

, F i
is defined by its transition function

�(q, a) =

(
{�

0

(q, a)} if �
0

(q, a) is defined

{ q0 | (q, a, q0) 2 T

0

} otherwise.

It is not hard to see that a computation of M without mind-changes induces a permissible
computation of M 0 and vice versa. Thus, Lp(M 0) = L

0

(M) as desired.

Now, let M

0 = hQ,⌃, �, q
0

, F i be an OTNFA. An MCFA M = hQ,⌃, �
0

, q

0

, F, T

0

i is con-
structed as follows: �

0

= � \ { (q, a, q0) | q, q

0 2 Q and a 2 ⌃ such that |�(q, a)| � 2 } and
T

0

=
S

(q,a)2Q⇥⌃
|�(q,a)|�2

�(q, a). That is, for all states with two or more a-transitions in M

0, the tran-

sition function �

0

in M on these states and letter a becomes undefined. Moreover, these
a-transitions form the set T

0

such that they can be used once in a move of M that forms an
opinion. Thus, L

0

(M) = Lp(M 0). 2

Now we can deduce upper and lower bounds on MCFA simulations from the corresponding
bounds on OTNFAs. The definition of the nondeterministic degree d(M) of an MCFA M

applies to NFAs as well. For NFAs the set T
0

is always empty.

In [2] itwas shown that every n-state OTNFA M can be simulated by a DFA with at most
(n + 1)d(M) states. Moreover, there is a sequence of regular languages (Ln)n�1

that are ac-
cepted by n-state OTNFAs Mn with d(Mn) = n which have a sole nondeterministic state, that
is nondeterministic only for one input symbol. On the other hand, any DFA accepting a lan-
guage Lp(Mn) requires at least (n+1)n states. By the constructions in the proof of Theorem 3.4,
these upper and lower bound results translate to MCFAs that do not make any mind-change
move at all as follows.

Corollary 3.5 Let M be an n-state MCFA. Then (n + 1)d(M) states are su�cient for a DFA
accepting the language L

0

(M). There is a sequence of regular languages (Ln)n�1

such that Ln

is accepted by an n-state MCFA Mn with d(Mn) = n that has a sole state on which a mind-
change may occur and where all alternative transitions are on the same letter, and any DFA
accepting L

0

(Mn) requires at least (n+ 1)n states.
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4. One Mind-Change on a Single Transition is Already
Better Than Nondeterminism

We consider the case where the MCFA is complete. An MCFA M = hQ,⌃, �
0

, q

0

, F, T

0

i is
complete if the underlying DFA M

0 = hQ,⌃, �
0

, q

0

, F i is complete, that is, |�
0

(q, a)| = 1, for
every q 2 Q and a 2 ⌃. For k = 0 it is obvious that we have L

0

(M) = L(M 0). Thus, in this case
we do not save states when comparing MCFAs and DFAs. Next we investigate a non-trivial
case on MCFAs, where the underlying DFA is complete, k = 1, and T

0

is a singleton set. For
these parameters we find the following situation.

Theorem 4.1 Let M = hQ,⌃, �
0

, q

0

, F, T

0

i be an n-state complete MCFA with |T
0

| = 1. Then
2n+logn�1 states are su�cient and necessary in the worst case for a DFA to accept the lan-
guage L

1

(M).

Proof. Let T

0

= {(q
ndt

, a

ndt

, q

00)}. The MCFA M gives rise to two DFAs M

0

and M

1

. The
DFA M

0

is nothing other then the underlying DFA of M , while the automaton M

1

is M

0

modified by the single transition in T

0

. Let the transition function of M

0

be �

0

and that
of M

1

is referred to as �

1

. By definition, �
1

= (�
0

[ {(q
ndt

, a

ndt

, q

00)}) \ {(q
ndt

, a

ndt

, q

0)} and
T

1

= {(q
ndt

, a

ndt

, q

0)} if �
0

(q
ndt

, a

ndt

) = q

0. Thus, the transition functions of M
0

and M

1

di↵er
on state q

ndt

and letter a
ndt

.

We construct a DFA M

0 = hQ0
,⌃, �0, q0

0

, F

0i with the state set Q

0 = Q ⇥ 2Q, the initial state
q

0
0

= (q
0

, ;), the final states F 0 = (F ⇥ 2Q) [ (Q ⇥ {P ✓ Q | P \ F 6= ; }), and the transition
function �

0 defined as

�

0((q, P ), a) =

(
(�

0

(q, a), �
1

({q} [ P, a)) if (q, a) = (q
ndt

, a

ndt

)

(�
0

(q, a), �
1

(P, a)) otherwise,

where the transition function �

1

is as usual extended to sets of states, and in both cases P ✓ Q.
Next we argue that L(M 0) = L

1

(M).

First we show L(M 0) ✓ L

1

(M). Let w 2 L(M 0). If w is accepted in a state of from F ⇥ 2Q,
then the computation induced by the first component of the states of M 0 gives a computation
in the MCFA M without any mind-change. Thus, this computation in M is also accepting.
Therefore, w 2 L

1

(M). On the other hand, let w be accepted by M

0 by a computation

�

0(q0
0

, w) = �

0((q
0

, ;), w) = (q, P )

where state (q, P ) is in Q⇥ {P ✓ Q | P \F 6= ; }. Hence there is a p 2 P with p 2 F that can
be traced back in the second component of the states in the above mentioned computation ofM 0

to the state �

1

(q
ndt

, a

ndt

) = q

00, that is introduced by the a

ndt

-transition from a state (q
ndt

, P

0),
for some P

0 ✓ Q. Thus, we have �

1

(q00, v) = p, for some su�x v of w. In this way we can split
the computation of M 0 on the word w into three parts w = ua

ndt

v such that

1. �0(q0
0

, u) = �

0((q
0

, ;), u) = (q
ndt

, P

0) with �

0

(q
0

, u) = q

ndt

,

2. �0((q
ndt

, P

0), a
ndt

) = �

0

(q
ndt

, a

ndt

) ⇥ ({�
1

(q
ndt

, a

ndt

)} [ �

1

(P 0
, a

ndt

)) = (q0, {q00} [ P

00) with
�

1

(P 0
, a

ndt

) = P

00, and
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3. �0((q0, {q00} [ P

00), v) = (q, {p} [ P

000) = (q, P ) with �

1

(q00, v) = p and �

1

(P 00
, v) = P

000.

This induces a computation in M with one mind-change as follows:

(q
0

, w, �

0

, T

0

) = (q
0

, ua

ndt

v, �

0

, T

0

) `⇤ (q
ndt

, a

ndt

v, �

0

, T

0

)

` (�
1

(q
ndt

, a

ndt

), v, �
1

, T

1

) = (q00, v, �
1

, T

1

) `⇤ (p,�, �
1

, T

1

).

Since p 2 F , this computation accepts the word w. Thus, we have shown L(M 0) ✓ L

1

(M).

The converse inclusion L

1

(M) ✓ L(M 0) is shown by similar arguments. Thus, L(M 0) = L

1

(M)
and the number of states of M 0 is at most n · 2n, which is equal to 2n+logn.

Next we collapse some states in M

0 that are equivalent. Let q 2 Q and P ✓ Q with q 62 P . We
show that the states (q, P ) and (q, {q} [ P ) are equivalent and thus can be merged in M

0. To
this end we prove by induction that there is no word that distinguishes both states. Observe,
that

(q, P ) 2 F

0 if and only if (q, {q} [ P ) 2 F

0
.

Therefore, both states cannot be distinguished by the empty word. Next consider an arbitrary
word w = av with a 2 ⌃ and v 2 ⌃⇤. We distinguish two cases:

1. If (q, a) = (q
ndt

, a

ndt

), then

�

0((q
ndt

, P ), a
ndt

) = (�
0

(q
ndt

, a

ndt

), {�
1

(q
ndt

, a

ndt

)} [ �

1

(P, a
ndt

))

= �

0((q
ndt

, {q
ndt

} [ P ), a
ndt

)

and thus both states (q, P ) and (q, {q} [ P ) cannot be distinguished by w = a

ndt

v.

2. Otherwise, that is, (q, a) 6= (q
ndt

, a

ndt

), we argue as follows: recall that �
1

(q, a) = �

0

(q, a)
in this case. Then we find

�

0((q, P ), a) = (�
0

(q, a), �
1

(P, a)) = (q0, P 0),

for some q

0 2 Q and P

0 ✓ Q, and

�

0((q, {q} [ P ), a) = (�
0

(q, a), {�
1

(q, a)} [ �

1

(P, a)) = (q0, {q0} [ P

0).

In case q0 2 P

0, both states (q0, P 0) and (q0, {q0}[P

0) are identical and therefore equivalent
anyway. Otherwise, the induction hypothesis applies to the states (q0, P 0) and (q0, {q0}[P 0).
Thus, these states cannot be distinguished by any word, and in particular not by v. Hence,
the original states (q, P ) and (q, {q} [ P ) cannot be distinguished by w = av either.

By identifying all the equivalent states (q, P ) and (q, {q} [ P ) in M

0 we end up with the state
set

Q

0 = { (q, P ) | q 2 Q and P ✓ Q \ {q} }

and an appropriately adapted transition function �

0

and T

0

. This reduces the number of states
to n · 2n�1, which is equal to 2n+logn�1 as stated.
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It remains to be shown that the bound 2n+logn�1 is tight. Define the n-state complete MCFA
M = hQ, {a, b, c}, �

0

, q

0

, F, T

0

i with the state set Q = {0, 1, . . . , n� 1}, initial state q

0

= 0, set
of final states F = {n� 1}, the transition function �

0

defined as

�

0

(i, a) =

(
i+ 1 if 0  i < n� 1

0 otherwise,

�

0

(i, b) =

8
><

>:

0 if i = 0

i+ 1 if 1  i < n� 1

n� 1 otherwise,

�

0

(i, c) =

8
><

>:

0 if i = 0

i+ 1 if 1  i < n� 1

1 otherwise,

and T

0

= {(0, b, 1)}. The MCFA M is depicted in Figure 2. The equivalent DFA M

0 is
constructed as above.

First we show that every state in Q

0 = { (q, P ) | q 2 Q and P ✓ Q \ {q} } is accessible from the
initial state q

0
0

= (0, ;). We split this proof into two cases:

1. Consider an arbitrary state of the form (0, P ) in Q

0. The reachability of these states in
the DFA M

0 is shown by induction of the size of P . The state (0, ;) is obviously reachable
since it is the initial state of M 0. Assume that all state in M

0 of the form (0, P ) with
|P | < k are reachable. Consider P with |P | = k. Let P = {i

1

, i

2

, . . . , ik} such that
1  i

1

< i

2

< · · · < ik  n� 1. Then

�

0((0, {i
2

� i

1

, i

3

� i

1

, . . . , ik � i

1

}), bci1�1)

= �

0((0, {1, i
2

� i

1

+ 1, i
3

� i

1

+ 1, . . . , ik � i

1

+ 1}), ci1�1)

= (0, {i
1

, i

2

, i

3

, . . . , ik})
= (0, P ),

where the state the computation started has k� 1 states in the second component. Thus,
the induction hypothesis applies.

2. Next let (i, P ) be in Q

0, i > 0, and assume P = {i
1

, i

2

, . . . , ik}. Then �

0((0, ;), ai) = (i, ;)
and in general �0((0, {i

1

� i, i

2

� i, . . . , ik � i}), ai) = (i, {i
1

, i

2

, . . . , ik}) = (i, P ), where
subtraction is meant with respect to modulo n, and the computation started with a state
which first component is 0. Then the first case applies.

0 1 2 . . . n� 1

b, c

a

b

a, b, c a, b, c a, b, c

a

c

b

Figure 2: The n-state complete MCFA M = h{0, 1, . . . n � 1}, {a, b, c}, �
0

, q
0

, F, T
0

i with a singleton
set of alternative transitions T

0

used in the lower bound proof such that any DFA accepting L
1

(M)
requires at least 2n+logn�1 states. The transitions from �

0

are drawn with solid arrows and that of T
0

are depicted with dashed arrows.
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Thus, all states in M

0 are reachable.

Next we show that each state in M

0 defines a distinct equivalence class. Consider two distinct
states (q, P ) and (q0, P 0) of M 0. We distinguish two cases:

1. In case P [ {q} 6= P

0 [ {q0} we may assume without loss of generality that there is an i in
(P [ {q}) \ (P 0 [ {q0}). Then �

0((q, P ), an�i�1) 2 F

0, while �

0((q0, P 0), an�i�1) /2 F

0.

2. If P[{q} = P

0[{q0}, then by assumption we have q 6= q

0. We may safely assume q < q

0. Set
q = i

0

and q

0 = i

0
0

. Moreover, let P = {i
1

, i

2

, . . . , ik} with 0  i

1

< i

2

< · · · < ik  n� 1
and P

0 = {i0
1

, i

0
2

, . . . , i

0
k} with 0  i

0
1

< i

0
2

< · · · < i

0
k  n�1. Here for i

0

= 0 we find i

1

� 1
and moreover i0

0

6= 0 and i

0
1

= 0, since 0 2 P [ {q} = P

0 [ {q0}. Then

�

0((q, P ), b) = �

0((0, {i
1

, i

2

, . . . , ik}), b)

=

(
(0, {1} [ {i

1

+ 1, i
2

+ 1, . . . , ik�1

+ 1, n� 1) if ik = n� 1

(0, {1} [ {i
1

+ 1, i
2

+ 1, . . . , ik + 1) otherwise

and

�

0((q0, P 0), b) = �

0((i0
0

, {0, i0
2

, . . . , i

0
k}), b)

=

(
(i00

0

, {1, i0
2

+ 1, . . . , i0k�1

+ 1, n� 1) if ik = n� 1

(i00
0

, {1, i0
2

+ 1, . . . , i0k�1

+ 1, i0k + 1) otherwise,

where i00
0

= i

0
0

+1 if i0
0

6= n�1 and i

00
0

= n�1 if i0
0

= n�1. In both cases the reached states
are inequivalent, because 0 is an element of the former two states (in the first component
of the states), while 0 does not belong to the first or second component of the latter two
states. Thus, we are back to the case above. Finally, if i

0

6= 0, we have – again addition
and subtraction are meant with respect to modulo n – the computations

�

0((q, P ), an�i0) = �

0((i
0

, {i
1

, i

2

, . . . , ik}), an�i0)

= (i
0

+ n� i

0

, {i
1

+ n� i

0

, i

2

+ n� i

0

, . . . , ik + n� i

0

})
= (0, {i

1

� i

0

, i

2

� i

0

, . . . , ik � i

0

})
and

�

0((q0, P 0), an�i0) = �

0((i0
0

, {i0
1

, i

0
2

, . . . , i

0
k}), an�i0)

= (i0
0

+ n� i

0

, {i0
1

+ n� i

0

, i

0
2

+ n� i

0

, . . . , i

0
k + n� i

0

})
= (i0

0

� i

0

, {i0
1

� i

0

, i

0
2

� i

0

, . . . , i

0
k � i

0

}),

which reduces this case to the previously analyzed one.

This shows that all states in M

0 define distinct equivalence classes, and therefore the DFA M

0

is minimal. 2

This immediately gives us that mind-changing is better than nondeterminism from a descrip-
tional complexity point of view.

Theorem 4.2 There is a sequence of regular languages (Ln)n�3

such that Ln is accepted by an
n-state complete MCFA Mn with a single alternative transition with at most one mind-change
such that any NFA accepting L

1

(Mn) requires at least n+ log n� 1 states.
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Proof. Consider the sequence of languages (Ln)n�0

induced by the n-state MCFAs in the
lower bound argument from the proof of the previous theorem. Assume to the contrary that
there are NFAs with strictly less than n+ log n� 1 states accepting the languages Ln. By the
conversion of these nondeterministic devices to equivalent DFAs we get at most an exponential
blow up in the number of states by the powerset construction. If the NFAs we started from
have strictly less than n+ log n� 1 states the equivalent DFAs have at most 2n+logn�2 states,
which contradicts the lower bound of states 2n+logn�1 on DFAs from the previous theorem.
Hence any NFA accepting Ln requires at least n+ log n� 1 states. 2

5. Mind-Changing Pushdown Automata

This section is devoted to generalize the definition of mind-changing finite automata to push-
down automata and to obtain first results on these devices.

Let ⌃ be an alphabet. For convenience, we use ⌃� for ⌃ [ {�}. A nondeterministic pushdown
automaton (NPDA) is a system M = hQ,⌃,�, �, q

0

,?, F i, where Q is a finite set of internal
states, ⌃ is the finite set of input symbols, � is a finite set of pushdown symbols, � is a mapping
from Q ⇥ ⌃� ⇥ � to finite subsets of Q ⇥ �⇤ called the transition function, q

0

2 Q is the
initial state, ? 2 � is the so-called bottom-of-pushdown symbol, which initially appears on the
pushdown store, and F ✓ Q is the set of accepting states.

An NPDA is a deterministic pushdown automaton (DPDA), if there is at most one choice of
action for any possible configuration. In particular, there must never be a choice of using an
input symbol or of using � input. Formally, a pushdown automaton M = hQ,⌃,�, �, q

0

,?, F i
is deterministic if (i) �(q, a, Z) contains at most one element, for all a in ⌃�, q in Q, and Z

in �, and (ii) for all q in Q and Z in �: if �(q,�, Z) is not empty, then �(q, a, Z) is empty for
all a in ⌃.

Now, mind-changing pushdown automata (MCPDA) are systems M = hQ,⌃,�, �
0

, q

0

,?, F, T

0

i,
where hQ,⌃,�, �

0

, q

0

,?, F i is a DPDA reflecting the initial opinion of M , and the finite set
T

0

✓ Q⇥ ⌃� ⇥ �⇥Q⇥ �⇤ with T

0

\ �

0

= ; is the set of available alternative transitions.

A configuration of an MCPDA M is a quintuple (q, w, �, �, T ), where q 2 Q is the current
state, w 2 ⌃⇤ is the still unread part of the input, � the current content of the pushdown store,
the leftmost symbol of � being the top symbol, � is the current transition function, and T is
the current set of alternative transitions. On input w the initial configuration is defined to be
(q

0

, w,?, �

0

, T

0

). One step from a configuration to its successor configuration, denoted as before
by `M , is defined as follows. Let (q, aw, Z�, �, T ) be a configuration for a 2 ⌃� and Z 2 �.
Then we define:

1. (q, aw, Z�, �, T ) `M (q0, w, ��, �, T ) if �(q, a, Z) = (q0, �) (ordinary move),

2. (q, aw, Z�, �, T ) `M (q0, w, ��, � [ {(q, a, Z, q0, �)}, T \ {(q, a, Z, q0, �)}) if �(q, a, Z) is un-
defined and (q, a, Z, q0, �) 2 T (form an opinion move), and

3. (q, aw, Z�, �, T ) `M (q0, w, ��, �0, T 0) with �

0 = (�[ {(q, a, Z, q0, �)}) \ {(q, a, Z, q00, �0)} and
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T

0 = (T [{(q, a, Z, q00, �0)})\{(q, a, Z, q0, �)}), if �(q, a, Z) = (q00, �0) and (q, a, Z, q0, �) 2 T

(mind-changing move).

In order to simplify matters, we require that during any computation the bottom-of-pushdown
symbol appears only at the bottom of the pushdown store.

The language accepted by the MCPDA M with accepting states and up to k mind changes, for
k � 0, is defined as

Lk(M) = {w 2 ⌃⇤ | (q
0

, w,?, �

0

, T

0

) `⇤
M (q,�, �, �, T ) for some q 2 F,

using at most k mind-changing moves in the computation }.

The notion of one-time nondeterminism has been generalized to pushdown automata as well [2].
It turned out that one-time nondeterministic pushdown automata (OTNPDA) are strictly more
powerful that DPDA but still strictly less powerful than NPDA. In particular, Theorem 3.4
can be adapted to pushdown automata straightforwardly. Let L (X) denote the family of
languages accepted by some device of type X, and moreover let L (MCPDAk) denote the
family of languages accepted by MCPDAs with at most k � 0 mind-changing moves. Then we
conclude L (OTNPDA) = L (MCPDA

0

).

The family of languages accepted by OTNPDAs coincides with the (finite) union closure of
the deterministic context-free languages [2]. On the other hand, the context-free languages
{wcx | w, x 2 {a, b}⇤, w 6= x } [7] and the mirror language L

mi

= {wwR | w 2 {a, b}+ } [4] do
not belong to the union closure of the deterministic context-free languages. Since Example 5.2
shows that only one mind-changing move is enough to accept the mirror language we obtain
the following corollary.

Corollary 5.1 The family L (OTNPDA) = L (MCPDA
0

) is strictly included in the family
L (MCPDA

1

).

So, the first mind-changing move matters. Before we turn to the question whether this is true
also for further mind-changing moves, we give the example already mentioned.

Example 5.2 The mirror language Lmi = {wwR | w 2 {a, b}+ } is accepted by some MCPDA
with at most one mind-changing move. To this end, the classical construction to accept the
language works fine. First all symbols read are pushed onto the pushdown store. A possible
mind-changing move now switches the computation to the comparison mode, where the re-
maining input su�x is compared with the pushdown content. Finally, if prefix and su�x of the
input match the computation halts accepting. ⌅

The previous example is generalized in a straightforward manner as follows.

Example 5.3 Let k � 1 be a constant and L be a language that is accepted by some MCPDA
that may perform k mind-changing moves. Then the language L#Lmi is accepted by an MCPDA
with at most k + 1 mind-changing moves, where # is a new symbol.
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Some MCPDA M accepting L#Lmi first simulates an acceptor for L with at most k mind-
changing moves. If it accepts when the # appears in the input, it continues to simulate the
MCPDA of Example 5.2 in order to verify that the su�x belongs to Lmi. Altogether, M

performs no more than k + 1 mind-changing moves. ⌅

Now we are prepared to prove that every mind-changing move matters by showing an infinite
and strict mind-changing hierarchy of language families strictly in between the deterministic
and general context-free languages. The overall proof is by induction on the number of mind-
changing moves. The base of the induction is already available from Corollary 5.1. Assume now
that there is a language accepted by some MCPDA that may perform k mind-changing moves,
but that is not accepted by any MCPDA that may perform no more than k� 1 mind-changing
moves. The next lemma together with Example 5.3 form the induction step.

Lemma 5.4 Let k � 1 be a constant and L be a language that is accepted by some MCPDA
that may perform k mind-changing moves, but that is not accepted by any MCPDA that may
perform no more than k � 1 mind-changing moves. Then the language L#Lmi is not accepted
by any MCPDA with at most k mind-changing moves, where # is a new symbol.

Proof. Contrarily, assume that there is an MCPDA M = hQ,⌃,�, �
0

, q

0

,?, F, T

0

i such that
Lk(M) = L#L

mi

.

The computations of M can uniquely be split into up to k + 1 sub-computations, where the
sub-computations start at initial time and immediately after mind-changing moves. Every sub-
computation is performed by a DPDA that is non-empty compatible with M . The number of
such DPDAs is finite. So, each accepting computation of M is performed with k + 1 DPDAs,
and there are only finitely many, say ` � 1, sequences of k + 1 such DPDAs. We fix these
sequences and consider for each sequence i a separate MCPDA Mi that simulates M but blocks
and rejects whenever the simulation tries to deviatefrom the fixed sequence i. So, we have
Lk(M) =

S
1i` Lk(Mi) = L#L

mi

. The following modifications are done for all Mi, 1  i  `.

First, Mi is modified to M

0
i such that M 0

i accepts only inputs that are accepted by Mi in com-
putations which do not contain any mind-changing move upon and after reading the separating
symbol #. To this end, M 0

i simulatesMi until the symbol # appears in the input and, afterwards,
continues the simulation without mind-changing moves, that is, deterministically. Finally, M 0

i

accepts if the simulation ends accepting. In this way, we have the inclusion Lk(M 0
i) ✓ Lk(Mi).

Let ⌃0 be the alphabet of L. Now M

0
i is modified to M

00
i such that M

00
i accepts only inputs

that are accepted by M

0
i and which belong to the regular language ⌃0⇤#((ab)+(ba)+)+. To

this end, M 00
i directly simulates M

0
i and additionally a DFA in its finite control. So, in par-

ticular, M 00
i works deterministically on input su�xes of the form #{a, b}⇤, and we have the

inclusions Lk(M 00
i ) ✓ Lk(M 0

i) ✓ Lk(Mi).

Next, we are interested in the su�xes #((ab)+(ba)+)+ of words accepted by M

00
i . To this end,

let ⇡ : Lk(M 00
i ) ! #((ab)+(ba)+)+ be the projection that extracts these su�xes from accepted

words, and let Sj = { ⇡(w) | w 2 Lk(M 00
i ) and ⇡(w) 2 #((ab)+(ba)+)j }, for j � 1. Assume that

there are two numbers j

1

, j

2

� 1 with j

2

� 2j
1

such that both sets Sj1 and Sj2 are infinite.
Then M

00
i is once more modified to M

000
i such that M 000

i accepts only inputs whose su�xes belong
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to Sj2 and, moreover, whose su�xes have a prefix that belongs to Sj1 . To this end, M 000
i directly

simulates M

00
i and additionally a finite counter in its finite control. The counter starts with

value 1 and is increased whenever aa appears in the input. Since M

00
i works deterministically

on the su�x, it can check whether it runs through an accepting situation while the counter
value is j

1

and whether the counter value is j
2

at the end of an accepting computation.

Taking a closer look at the su�xes of words in Lk(M 000
i ) shows that they are of the form

#vvRuuR
vv

R, where #vvR 2 Sj1 and u 2 (ba)⇤((ab)+(ba)+)j2/2�j1 . So, the number of factors aa
and bb in the su�xes are fixed. Now, a simple application of Ogden’s lemma where, for example,
the symbols of the last vR are marked, shows that Lk(M 000

i ) is not even a context-free language.
However, M 000

i is an MCPDA and, thus, accepts a context-free language. From the contradiction
we obtain that, for any 1  i  `, there are no two numbers j

1

, j

2

� 1 with j

2

� 2j
1

such that
both sets Sj1 and Sj2 are infinite for M 000

i and, thus, for M 0
i .

Since, for any j � 1, there are infinitely many su�xes #((ab)+(ba)+)j of words from Lk(M),
and there are infinitely many pairs j

1

, j

2

� 1 with j

2

� 2j
1

, we conclude that there is a
j

0

� 1 such that Sj0 is finite for any Lk(M 0
i), 1  i  `. Therefore, we can choose some

fixed su�x v

0

2 #((ab)+(ba)+)j0 \ #L
mi

that does not belong to Sj0 for any Lk(M 0
i). Since,

for any word w from L, the concatenation wv

0

belongs to Lk(M), we conclude that in any
accepting computation on any word wv

0

automaton M performs a mind-changing move while
processing v

0

.

This allows to construct an MCPDA M̂ from M such that Lk�1

(M̂) = L · v
0

. To this end, M̂
simulates M with no more than k � 1 mind-changing moves until the # appears in the input.
For the construction of the remaining computation a general concept of predicting machines
(see [3]) can be used. Basically, the idea is to associate with pushdown symbols information
on whether the remaining input (which is fixed) together with the current state and current
pushdown content yields an accepting computation. Since the remaining computation of M̂ is
performed by no more than two DPDA for which there are only finitely many possibilities, the
concept can be applied.

The last step is to construct an MCPDA M̃ from M̂ such that Lk�1

(M̃) = L. To this end, M̃
simulates M̂ with no more than k � 1 mind-changing moves on inputs from ⌃0⇤. Again, since
the remaining computation of M̂ is performed by a DPDA, the concept of predicting machines
can be used to let M̃ accept if and only if the input has been read and its extension by v

0

would
lead to an accepting computation of M̂ .

We conclude that M̃ accepts L with no more than k � 1 mind-changing moves. From the
contradiction it follows that the assumption that M accepts L#L

mi

with at most k mind-
changing moves is wrong, and the lemma follows. 2

It is worth mentioning that formally we need k new symbols in order to apply Lemma 5.4 k

times. However, it is clear that only one symbol # is su�cient. A simple counter maintained
deterministically in the finite control uniquely identifies the ith occurrence of the symbol # in
the input. So, we have shown the following hierarchy.

Theorem 5.5 For all k � 0, the family L (MCPDAk) is strictly included in L (MCPDAk+1

).
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The infinite and tight mind-changing hierarchy bounds the number of mind-changing moves
by a constant for every family. This raises the natural question whether a constant number of
mind-changing moves is su�cient to accept all context-free languages. In other words, is the
family of context-free languages equal to

S
k�0

L (MCPDAk)? The answer is no.

Theorem 5.6 There is a context-free language not belonging to
S

k�0

L (MCPDAk).

Proof. As witness we use the context-free language L = L

mi

(#L
mi

)⇤. Assume that L belongs
to the union

S
k�0

L (MCPDAk). Then there is some k
0

such that L belongs to L (MCPDAk0).

Now let k0 � k

0

and consider the intersection of L and the regular language {a, b}⇤(#{a, b}⇤)k0 .
The intersection is L

mi

(#L
mi

)k
0
, which is not accepted by any MCPDA with at most k0 mind-

changing moves by Lemma 5.4. Therefore, it is not accepted be any MCPDA with at most k
0

mind-changing moves. Since the intersection trivially belongs to L, we obtain a contradiction
that shows the theorem. 2

In particular, the theorem reveals that there are context-free languages that require infinitely
many mind-changing moves. Altogether, we have

L (DPDA) ⇢ L (MCPDA
0

) ⇢ · · · ⇢ L (MCPDAk) ⇢ L (MCPDAk+1

) ⇢ · · ·

⇢
[

k�0

L (MCPDAk) ⇢ L (NPDA).
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Abstract

The contribution concerns decision procedures in the algebraic theory of regular languages.
Among others, various versions of forbidden patterns or configurations in automata are treated
in the existing literature. Basically, one looks for certain subgraphs of the minimal automaton
of a given language to decide whether this language does not belong to a given significant class of
regular languages. We survey numerous known examples and we build a general theory covering
the most of familiar ones. The chosen formalism differs from existing ones and the general-
ization to ordered automata enables us to reformulate some of known examples in a uniform
shape. We also describe certain sufficient assumptions on the forbidden pattern which ensure
that the corresponding class of languages forms a robust class in the sense of natural closure
properties.

1. Introduction

Certain significant classes of regular languages can be characterized by some kind of forbid-
den patterns, which cannot occur in an automaton recognizing the language. To recall some
examples, we can mention results by Cohen, Perrin and Pin [3] concerning the restriction of
linear temporal logic obtained by considering only the operators “next” and “eventually”. The
useful characterization obtained in that paper is that a language L is expressible by this logic,
denoted by RTL, if and only if the minimal automaton of L does not contain the pattern
from Figure 1. This characterization gave a polynomial time algorithm for testing whether the
language recognized by an n-state deterministic automaton is RTL-definable (see Theorem 4.2
and its Corollary 4.3 in [3]). The technique of forbidden patterns was also used by Schmitz et
al. [4, 14, 15] for the first levels of the Straubing-Thérien hierarchy of the star-free languages.

This paper is focusing on formal theory of forbidden patters for deterministic finite automata,
for which early formalisms were given in [3, 14]. For the purpose of this paper, the basic notion
is a semiautomaton which is a deterministic automaton without initial and final states being
specified. Then a pattern is an (incomplete) semiautomaton over an auxiliar alphabet X with

(A)Both authors were supported by Czech Science Foundation under Grant No. GA15-02862S.
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Figure 1: The forbidden pattern for RTL.

a marked pair of states. An example is on Figure 1 where the auxiliar alphabet is X = {x, y, z}
and the pair of states is (ℓ, o). Now, one can consider the class of all regular languages for
which there exist DFA recognizing the language, such that the automaton does not contain
a pattern where a marked pair of states are different states. In the existing literature, for
example, in [5, 7, 10], the approach of forbidden patterns is considered in various modifications:
one state of the marked pair being final and the second one non-final, considering complete
or incomplete automata, considering the minimal automaton or arbitrary automata, etc. We
would like to develop a unified theory of forbidden patterns which would explain some general
behaviour of these patterns and the classes defined by them and compare the formalisms with
those of numerous known mentioned applications.

Comparing to a notion of forbidden patterns from [3, 14] where patterns are viewed as sub-
graphs of the underlining graph of an automaton under the consideration, in our formalism
we map a pattern into that automaton by a homomorphism of semiautomata. Moreover, we
consider a certain generalization which reflects one of recent directions of the research in alge-
braic theory of regular languages devoted to generalizations of the Eilenberg correspondence.
Clearly, not all natural classes of regular languages are varieties. In particular, it is the case of
some classes studied in papers, where forbidden patterns were applied successfully. Here, we
use a combination of three ideas extending Eilenberg correspondence. Pin’s modification [11]
to positive varieties of languages (classes need not to be closed under complementation) can
be combined with Straubing’s modification [18] to C-varieties (classes are closed only under
preimages in homomorphisms from a fixed category C of homomorphisms). In the mentioned
papers, the corresponding classes of algebraic structures were syntactic ordered monoids and
syntactic homomorphisms, respectively. Of course, in our paper, we deal with automata, thus
we need to use Eilenberg type correspondence between positive C-varieties of regular languages
and C-varieties of ordered semiautomata studied by the authors in [8]. The last notion is a
modification of C-varieties of semiautomata introduced in Chaubard at al [2] as C-varieties of
actions.

In this contribution, we show that every pattern in our formalism satisfying certain assumptions
defines a C-variety of ordered semiautomata. Then, we explain that many examples of forbidden
patterns from the literature are particular instances of our general concept. We also explain
how a certain special scheme of patterns working with final states in the minimal automaton of
a language can be translated into a pattern for the minimal ordered automaton of the language.
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Finally, we show how the well-known characterization of languages from the level 3/2 in the
Straubing-Thérien hierarchy of star-free languages can be expressed naturally using our notion.

Due to the space limitations, omitted proofs can be found in the full version of this paper [9].

2. C-Varieties of Ordered Semiautomata

The aim of this section is to overview a necessary minimum concerning Eilenberg type corre-
spondence between positive C-varieties of languages and C-varieties of ordered semiautomata.
This is a framework in which the notion of forbidden patterns is developed. Note that (positive)
varieties can be seen as a special case, if C is the class of all homomorphisms.

We consider only regular languages in this contribution. The quotient of a language L ⊆ A∗

by words u, v ∈ A∗ is the set u−1Lv−1 = {w ∈ A∗ | uwv ∈ L }. In particular, left quotients are
u−1L = {w ∈ A∗ | uw ∈ L }, u ∈ A∗. The empty word is denoted by λ.

To recall a definition of positive C-varieties of languages from [18], we first need to explain a
role of a category of homomorphisms C. From the point of view of category theory, this C is a
category where objects are free monoids A∗ for a non-empty finite alphabet A and morphisms
are certain monoid homomorphisms among them. We simplify the notation to consider C as a
class of homomorphisms satisfying the following properties:

– For each finite alphabet A, the identity mapping idA : A∗ → A∗ belongs to C.
– If f : B∗ → A∗ and g : C∗ → B∗ belong C, then the composition gf : C∗ → A∗ belongs to C.

Examples of categories C which are used in this setting are: Call consisting of all homomorphisms
between free monoids, Ci consisting of all injective homomorphisms, Cne consisting of all non-
erasing homomorphisms (here only λ is mapped onto λ). Furthermore, by the preimage in
f : B∗ → A∗ of a given L ⊆ A∗, the set f−1(L) = { v ∈ B∗ | f(v) ∈ L } is meant.

A positive C-variety of languages V associates to every non-empty finite alphabet A a class
V(A) of regular languages over A in such a way that

– V(A) is closed under quotients, finite unions and intersections and contains ∅, A∗,
– V is closed under preimages in morphisms from C.

As we already mentioned, if we take C = Call, we get exactly the notion of the positive varieties
of languages. When adding “each V(A) is closed under complements”, we get exactly the notion
of the C-varieties of languages.

To introduce a notion of ordered automata, we explain first that the minimal DFA of a given
language is implicitly ordered. Indeed, for a minimal DFA, one can assign to each state q
its future Fq consisting of all words which are acceptable if q would be the initial state. The
minimality implies that different states have different futures. Now, if we identify states with
their futures, then the relation ⊆ is an order on the minimal automaton (which is compatible
with every action by a single letter, as we explain latter). We prefer to fix this minimal
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(ordered) automaton of a given language, under the name canonical (ordered) automaton,
using the construction of Brzozowski [1]: the canonical automaton of a regular language L is
DL = (DL, A, ·, L, FL), where DL = { u−1L | u ∈ A∗ }, q · a = a−1q, for each q ∈ DL, a ∈ A,
and FL = { q ∈ DL | λ ∈ q }. Then a canonical ordered automaton is OL = (DL, A, ·, L, FL,⊆).

Before we introduce a notion of ordered semiautomaton, we recall some basic terminology from
the theory of ordered sets. By an order ≤ on a set M we mean a reflexive, antisymmetric
and transitive relation. A subset X of M is called upward closed if for every pair of elements
x, y ∈ M , we have that x ≤ y, x ∈ X implies y ∈ X . A mapping f : M → N between two
ordered sets (M,≤) and (N,≤) is called isotone if x ≤ y implies f(x) ≤ f(y) for every pair of
elements x, y ∈ M . For example, the action by each letter a ∈ A in OL is an isotone mapping
and the set FL of all final states is an upward closed subset with respect to ⊆.

A semiautomaton is a triple A = (Q,A, ·), where Q is a finite set of states, A is a finite alphabet
and · : Q×A → Q is a complete transition function. Sometimes we also allow the function · be
a partial function and then we talk about a partial semiautomaton. Furthermore, an ordered
semiautomaton is A = (Q,A, ·,≤), where (Q,A, ·) is a semiautomaton, (Q,≤) is an ordered set
and for every pair of states p ≤ q and a letter a ∈ A we have p · a ≤ q · a. Note that an ordered
semiautomaton has, with the exception of Subsection 5.6, a complete transition function in our
paper. An example of an ordered semiautomaton can be obtained if we omit the initial and
final states in the canonical ordered automaton, i.e., considering OL = (DL, A, ·,⊆) which is
called canonical ordered semiautomaton.

In all cases, the transition function can be extended to a mapping · : Q × A∗ → Q in a usual
way. Since a composition of isotone mappings is isotone, it follows that the action by every
word is an isotone mapping from Q into itself. The definitions of the recognition of the language
is usual, it is enough to assign just an initial state i and a subset of final states F . The only
difference in the case of ordered automata is that F must be an upward closed subset.

To get Eilenberg type correspondence between positive C-varieties of languages and correspond-
ing classes of ordered semiautomata, we need to introduce required closure properties on classes
of ordered semiautomata. Here we give an informal explanation; for missing technical details we
refer to [8]. Each quotient of a language L can be recognized by the same automaton as L if we
change initial and final states in an appropriate way. Therefore this closure property is covered
by the fact that we consider semiautomata instead of automata. Since positive C-varieties of
languages are closed under taking finite unions and intersections, we consider a notion of direct
products of ordered semiautomata which is used for recognition of such languages.

Now, we recall a construction on semiautomata which recognizes the preimage of a language in
a given homomorphism. Let f : B∗ → A∗ be an arbitrary homomorphism and A = (Q,A, ·,≤)
be an ordered semiautomaton. Then f -renaming of A isAf = (Q,B, ·f ,≤) where q·f b = q·f(b),
for every q ∈ Q and b ∈ B. We use the same notation also for the semiautomaton A = (Q,A, ·).

To get an Eilenberg type correspondence, two different classes of semiautomata cannot rec-
ognize the same class of languages. Thus the natural idea is to complete a considered class
by all possible semiautomata recognizing the same languages. Such semiautomata can be ob-
tained using disjoint union, homomorphic image and subsemiautomata. The first one is easily
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understandable. Secondly, a homomorphism of ordered semiautomata and subsemiautomaton
are standard notions if semiautomata are viewed as structures with unary operations given by
letters and one binary relation. Now we are ready to define the basic notion from [8].

A C-variety of ordered semiautomata V associates to every non-empty finite alphabet A a class
V(A) of ordered semiautomata over alphabet A in such a way that

– a one-element semiautomaton over A is in V(A) and this class is closed under disjoint unions
and direct products of pairs, subsemiautomata and homomorphic images,

– for each non-empty finite alphabet B and f ∈ C, f : B∗ → A∗ and A ∈ V(A), we have
Af ∈ V(B) (we say that V is closed under C-renaming).

For each C-variety of ordered semiautomata V, we denote by α(V) the class of regular languages
recognized by these semiautomata, equivalently (α(V))(A) = {L ⊆ A∗ | OL ∈ V(A) }. For each
positive C-variety of regular languages L, we denote by β(L) the C-variety of ordered automata
generated by all ordered semiautomata OL, such that L ∈ L(A) for some alphabet A.

Proposition 2.1 ([8]) The mappings α and β are mutually inverse isomorphisms between the
lattice of all C-varieties of ordered semiautomata and the lattice of all positive C-varieties of
regular languages.

3. Satisfying Configurations

For better understanding of the behaviour of forbidden patterns, we first introduce a notion,
in which the results can be formulated in clearer way. At first, by a family of substitutions E
over a set X , we mean a system of classes EA, where, for each non-empty finite alphabet A, the
class EA is formed by a set of homomorphisms from X∗ to A∗.

Definition 3.1 A configuration K = (G, k, ℓ, E) consists of a finite partial semiautomaton
G = (V,X, ·) over a set of variables X, states k, ℓ ∈ V and a family of substitutions E over X.

One can simplify the notation to consider that E is a category of homomorphism C in the sense
of Section 2. In this case, C is closed under compositions of homomorphisms. The following
definition enables a more general concept of families E connected to C-varieties. We say that E
is closed under extensions by C, if for every g ∈ EB and f ∈ C, f : B∗ → A∗, we have gf ∈ EA.

As an example of E , we can take homomorphisms with constant content, which means that
g ∈ EA if and only if there is C ⊆ A such that g(x), for each x ∈ X , contains exactly the letters
from C. Then this family E is closed under extensions by Call.

Definition 3.2 We say that an ordered semiautomaton A = (Q,A, ·,≤) satisfies the con-
figuration K = (G, k, ℓ, E) if, for each homomorphism g ∈ EA and each homomorphism ϕ :
G → (Q,A, ·)g of the partial semiautomaton G into the semiautomaton (Q,A, ·)g, it holds that
ϕ(k) ≤ ϕ(ℓ). We denote by K(A) the class of all ordered semiautomata over A satisfying K.
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For G = (V,X, ·), the fact that ϕ : G → (Q,A, ·)g is a homomorphism of semiautomata can be
expressed equivalently as ϕ(m) · g(x) = ϕ(m · x), where m ∈ V and x ∈ X are arbitrary such
that m · x is defined in G. Alternatively, we say that ϕ and g are compatible, in this case.

Proposition 3.3 Let K = (G, k, ℓ, E) be an arbitrary configuration and let A be a non-empty
finite set. Then the following hold.

(i) K(A) contains the one-element semiautomaton.
(ii) If G is connected, then K(A) is closed with respect to disjoint unions.
(iii) K(A) is closed with respect to subsemiautomata.
(iv) K(A) is closed with respect to products of pairs.
(v) If E is closed under extensions by C, then K(A) is closed with respect to C-renaming.

Proof. See [9], the full version of this paper. ✷

Note that K(A) is not closed, in general, with respect to homomorphic images as Example 3.4
suggests.

Example 3.4 Let K = (G, k, ℓ, Call) be given by Figure 2 (a). We claim that K(A) contains
the ordered semiautomaton given by Figure 2 (b) ordered by the equality. One can show that
identifying p and p′, q and q′, r and r′, one gets an ordered semiautomaton outside K(A). The
details can be found in the full version of this paper.

m n ℓ ≥ kx xy
x

(a) The configuration.

p q r

s

p′ q′ r′

aa

b

b

a, b

a, b

a, b

a, b

a, b

(b) The (ordered) automaton.

Figure 2: An example where K(A) is not closed with respect to homomorphic images.

Let V be a system of ordered semiautomata, i.e., for every alphabet A, a class V(A) of ordered
semiautomata over A is given. We consider

(L (V))(A) = {L ⊆ A∗ | ∃ A ∈ V(A), A recognizes L } ,

the classes of languages recognized by the ordered semiautomata from V. Since the minimiza-
tion of an automaton takes a homomorphic image of an subautomaton, for each V which is closed
on subsemiautomata, we have (L (V))(A) = {L ⊆ A∗ | OL ∈ H(V(A)) }, where H(V(A)) con-
sists of all homomorphic images of ordered semiautomata from V(A). By Proposition 3.3 (iii),
this is the case for each K given by a configuration K. Moreover, having K(A) closed under
homomorphic images, it leads to an effective procedure for deciding whether L ∈ (L (K))(A).

Using Lemma 17 from [8], which proves expected property concerning semi-commutation of the
closure operators with H, we get that H(V) is a C-variety of ordered semiautomata whenever V
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is closed under subsemiautomata, finite products, disjoint unions and C-renaming. As Propo-
sition 3.3 and Example 3.4 suggest, the satisfiability of a configuration in the homomorphic
image is the most problematic property in our approach.

Definition 3.5 The configuration K is H-invariant if it is satisfied in every homomorphic image
of an ordered semiautomaton in which it is satisfied.

Now we can formulate the central statement which is a direct consequence of Proposition 3.3.

Theorem 3.6 Let K = (G, k, ℓ, E) be an H-invariant configuration such that G is connected
and E is closed under extensions by C. Then the class of all ordered semiautomata satisfying
K forms a C-variety of ordered semiautomata.

To fulfill our program we need some robust class of H-invariant configurations.

Definition 3.7 A partial semiautomaton G = (V,X, ·) is acyclic if every cycle in G is a loop.
Furthermore, G is simple if it is acyclic and there is a state n0 ∈ V , which is called a root,
such that for every n ∈ V, n ̸= n0, there is exactly one simple path in G from n0 to n and no
path from n to n0. We say that G is balanced if the following two conditions are satisfied: (i)
for each x, y, z ∈ X and n, n′, m,m′ ∈ V such that n · x = n′ = n′ · y and m · x = m′ = m′ · z
we have y = z; (ii) for each x, y ∈ X and n, n′, m,m′ ∈ V such that n · x = n′ = n′ · y and
m · x = m′ we have m′ · y = m′.

Note that, in a balanced simple semiautomaton, there are not two loops around a single state
labeled by different letters. Also we could mention that the semiautomaton on Figure 2 (a) is
not balanced, because it does not satisfy the condition (ii) from Definition 3.7.

Proposition 3.8 Let K = (G, k, ℓ, Call) be a configuration, where the partial semiautomaton G
is simple and balanced. Then K is H-invariant.

Proof. See [9], the full version of this paper. ✷

4. Forbidden Patterns

In the literature, one meets various kinds of the so-called (forbidden) patterns. The main goal
of this contribution is to analyze these concepts by the notion from the previous section. In the
definition of configuration certain E occurs, however for the comparison to the existing examples
in the literature this general concept is not needed. So, we put E = Call for the purpose of this
section. Alternatively, when one considers languages without the empty word, one takes also
all corresponding homomorphisms, that is E = Cne.

We start by explaining the basic variant of forbidden pattern which is just the simple reformu-
lation of the notion of configuration.
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Definition 4.1 (Variant 1) A pattern P = [G, k ̸≤ ℓ] consists of a partial semiautomaton
G = (V,X, ·) and a pair of states k, ℓ ∈ V . We say that P is present in an ordered semiau-
tomaton A = (Q,A, ·,≤) if there exist a homomorphism g : X∗ → A∗ and a semiautomata
homomorphism ϕ : G → (Q,A, ·,≤)g such that ϕ(k) ! ϕ(ℓ). In the opposite case, we say that
A avoids P.

The definition is simply saying that A avoids P = [G, k ̸≤ ℓ] if and only if the configuration
(G, k, ℓ, Call) is satisfied in A. Based on this reformulation, we can define the most common
used variant of forbidden patterns from the literature.

Definition 4.2 (Variant 2) A pattern P = [G, k ̸= ℓ] is defined as above. The definition “to
be present in A”differs from the previous one having here ϕ(k) ̸= ϕ(ℓ) instead of ϕ(k) ! ϕ(ℓ).

Note that A avoids P = [G, k ̸= ℓ] if and only if both the configurations (G, k, ℓ, Call) and
(G, ℓ, k, Call) are satisfied in A.

We demonstrate that such type of patterns is natural by explaining that identities are covered
by this notion. Consider an arbitrary identity u = v, u, v ∈ X∗. Notice that the identity
is satisfied in a monoid (M, ·) if, for each homomorphism ξ : (X∗, ·) → (M, ·), one has that
ξ(u) = ξ(v). Recall that the syntactic monoid of a regular language L is isomorphic to the
transition monoid of the minimal automaton of L.

Proposition 4.3 Let w = xi1 . . . xim , u′ = xj1 . . . xjn and v′ = xk1 . . . xko be words over the
alphabet X such that j1 ̸= k1. The transition monoid of an semiautomaton A = (Q,A, ·)
satisfies the identity wu′ = wv′ if and only if A avoids the pattern from Figure 3.

Proof. The proof is obvious. ✷

. . .

. . .

. . .

xi1 xim

xj2 xjn

̸=

xj1

xk1

xk2 xko

Figure 3: The forbidden pattern for the identity xi1 . . . ximxj1 . . . xjn = xi1 . . . ximxk1 . . . xko .

For the inequality wu′ ≤ wv′, one uses in the pattern on Figure 3 the sign ̸≤ instead of ̸=.
One can also formulate a modification where C-identity or C-inequality is considered. Since the
semiautomaton on Figure 3 is simple and without loops, Proposition 3.8 can be applied here.

Sometimes a pattern is enriched by a condition that a certain state is final and another one is
non-final.

Definition 4.4 (Variant 3) A pattern P = [G, m, n] consists of a partial semiautomaton G =
(V,X, ·) and a pair of states m,n ∈ V . The pattern P is present in an automaton A =
(Q,A, ·, i, F ) if there exist a homomorphism g : X∗ → A∗ and a semiautomata homomorphism
ϕ : G → (Q,A, ·)g such that ϕ(m) ∈ F and ϕ(n) /∈ F .
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Now we show that this variant also fits into our theory of configurations under special assump-
tion. Some applications are presented in Subsections 5.1 and 5.3.

Proposition 4.5 Let P = [G, m, n] be a pattern such that states m and n are reachable only
by a single letter z from states k and ℓ, respectively, and that the letter z ∈ X is acting just on
these two states k, ℓ. More formally, there exist G ′ = (V ′, X ′, ·), k, ℓ ∈ V ′, m,n ̸∈ V ′ and z ̸∈ X ′

such that G = (V ′∪{m,n}, X ′∪{z}, ◦) where ◦ is the extension of · by the rules k ◦ z = m and
ℓ ◦ z = n. Let D = (Q,A, ·,≤, i, F ) be an ordered automaton and denote AD = (Q,A, ·, i, F )
and OD = (Q,A, ·,≤). Then the following holds:

(i) If OD satisfies the configuration K = (G ′, k, ℓ, Call) then AD avoids P.
(ii) If D is the minimal ordered automaton of some regular language such that OD does not

satisfy the configuration K = (G ′, k, ℓ, Call), then P is present in AD.

Proof. See [9], the full version of this paper. ✷

We finish with a variant which does not fit to our theory of configurations.

Definition 4.6 (Variant 4) A pattern P = [G, k ̸= ℓ, m ̸= n] consists of a partial semiau-
tomaton G = (V,X, ·) and two pairs of states m,n ∈ V and k, ℓ ∈ V . The definition “to be
present in A” differs from Definition 4.2 having both ϕ(m) ̸= ϕ(n) and ϕ(k) ̸= ϕ(ℓ).

The next example shows that the corresponding class of (ordered) semiautomata need not be
closed with respect to the products. This means that avoiding this pattern cannot be equivalent
to satisfying an appropriate family of configurations.

Example 4.7 Consider the pattern P from Figure 4. Let A = {a, b}, K = a∗b, L = aA∗. One
can check that both the canonical ordered automata of K and L avoid P, but P is present in
their product. More details can be found in the full version of this paper.

k ̸= ℓ ̸= m

x

yx

Figure 4: The forbidden pattern giving the class of semiautomata not closed under finite products.

5. Known Examples

In this section, we recall some examples of forbidden patterns from the literature (in the chrono-
logical order) and we discuss how they fit into our notions. Since some of the examples are
results from the algebraic theory of regular languages, they used characterizations based on
Eilenberg correspondence. Moreover, they use pseudoidentities for the characterization of cer-
tain pseudovarieties of finite monoids. Almost all examples in our contribution are of a very
simple setting where pseudoidentities are only products of words and omega power of words.
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We recall that, for every element s of a finite semigroup S, there is the unique idempotent in
the subsemigroup of S generated by the element s. This element is denoted by sω. Moreover,
for a fixed S, one has sω = s|S|!. We mention here formulations which use the fact that the
(ordered) syntactic monoid of a language L is isomorphic to the (ordered) transition monoid
of the minimal (ordered) automaton of L. Anyway, these characterizations are mentioned just
for the completeness and the reader can just ignore them.

5.1. Reversible Languages

The examples are taken from Pin [10]. A language L ⊆ A∗ is reversible if it is recognized by a
deterministic and co-deterministic, possibly not complete, finite automaton with a set of initial
states.

Proposition 5.1 A regular language L ⊆ A∗ is reversible if and only if the ordered transition
monoid ML of the canonical ordered automaton OL for L satisfies the identity xωyω = yωxω

and inequality xω ≤ 1. Moreover,

(i) ML satisfies the first pseudoidentity if and only if OL avoids the pattern on Figure 5 (a).
(ii) ML satisfies the inequality xω ≤ 1 if and only if OL avoids the pattern on Figure 5 (b).

k

ℓ m

n o

̸=y

x
y

x

x y

y x

(a) The pattern for commuting idempotents.

ℓkm n

∈ F ̸∈ F

yxy

x

(b) The pattern for the inequality xω ≤ 1.

Figure 5: The forbidden patterns for reversible languages.

Clearly, the pattern on Figure 5 (a) fits into Definition 4.2. For the pattern on Figure 5 (b),
we can use Proposition 4.5 and we obtain the equivalent pattern on Figure 6 which fits into
Definition 4.1. Moreover, the underlying partial semiautomata on Figure 5 (a) and Figure 6
are simple and balanced. Therefore, by Proposition 3.8 and Theorem 3.6, the class of all semi-
automata which avoid one or both of these patterns forms a variety of ordered semiautomata.
In particular, in the characterization in Proposition 5.1, one can use the condition that there
is an automaton recognizing L which avoids the corresponding pattern.

k ̸≤ ℓx
x

Figure 6: The forbidden pattern for inequality xω ≤ 1 for ordered semiautomata.
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5.2. Locally R- and L-trivial Semigroups

Here we refer to the work of Cohen, Perin and Pin [3] mentioned in the introduction. They deal
solely with semigroups (not with monoids). Recall that the syntactic semigroup of a language L
is the transition semigroup of the canonical semiautomaton of L. So, we can reformulate their
results using our approach taking for E the category Cne of all non-erasing homomorphisms.

Proposition 5.2 Let S be the transition semigroup of an automaton A. Then

(i) S is R-trivial if and only if A avoids pattern on Figure 7 (a).
(ii) S is L-trivial if and only if A avoids pattern on Figure 7 (b).
(iii) S is a locally R-trivial if and only if A avoids pattern on Figure 7 (c).
(iv) S is a locally L-trivial if and only if A avoids pattern on Figure 1 (see Section 1).

k ̸= ℓ

x

y

(a) R-trivial.

k

ℓ m

n o

̸=y

x

y

x

x

y

(b) L-trivial.

k ̸= ℓ

x

y
z z

(c) locally R-trivial.

Figure 7: The forbidden patterns for (locally) R-trivial and L-trivial semigroups.

The class of all semiautomata avoiding the pattern on Figure 7 (a) is H-invariant, although we
cannot use Proposition 3.8 for a non-balanced pattern. Nevertheless, we can slightly modify the
proof of that proposition and we get that the class of all semiautomata which avoid this pattern
form a Cne-variety of semiautomata. Similarly, one can treat the remaining three patterns.

5.3. Concatenation Hierarchies

Here we follow the work by Pin and Weil [13]. It is mentioned that L belongs to the level 1/2 of
the Straubing-Thérien hierarchy if and only if its ordered syntactic monoid satisfies the inequal-
ity 1 ≤ x and that this is equivalent to the fact that the canonical ordered automaton avoids
the pattern from Figure 8 (a). Using Proposition 4.5 one obtains the following reformulation.

Proposition 5.3 A regular language L belongs to the level 1/2 of the Straubing-Thérien hier-
archy if and only if its canonical ordered automaton avoids the pattern from Figure 8 (b).

Trivially, the semiautomaton from Figure 8 (b) is simple and balanced. Therefore, one can
also use in the characterization the condition that there is an automaton recognizing L which
avoids the pattern.

They also recall that a regular language belongs to the level 1/2 of the dot-depth hierarchy
if and only if the ordered syntactic semigroup satisfies the inequality yω ≤ yωxyω. Moreover,
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k ℓ

m n∈ F ̸∈ F

x

y y

(a) The original version.

k ̸≤ ℓ

x

(b) An ordered version.

Figure 8: The forbidden patterns for level 1/2 in the Straubing-Thérien hierarchy.

this is equivalent to the fact that the canonical ordered automaton avoids the pattern from
Figure 9 (a) substituting for x and y non-empty words. In our setting, we get the following
statement.

Proposition 5.4 A regular language L belongs to the level 1/2 of the dot-depth hierarchy if
and only if the canonical automaton of L satisfies the configuration K = (G, k, ℓ, Cne), where G
is a semiautomaton given on Figure 9 (b) and Cne consists of all non-erasing homomorphisms.

k ℓ

m n∈ F ̸∈ F

x

z z

y y

(a) The original pattern.

k ≤ ℓ

y y

x

(b) The configuration.

Figure 9: The forbidden pattern and the corresponding configuration for level 3/2 of the ST hierarchy
and level 1/2 in the dot-depth hierarchy.

One of the characterizations from [13] says that L belongs to the level if and only if the syntactic
ordered monoid of L satisfies all inequalities yω ≤ yωxyω where x and y are words with the
same content. This is equivalent to the fact that the canonical ordered automaton avoids the
pattern from Figure 9 (a) substituting for x and y the words of the same content. Now we
present the formulation of the result using the notion of configuration again. Notice that we
use here the full power of Definition 3.2.

Proposition 5.5 A regular language L belongs to the level 3/2 of Straubing-Thérien hierarchy
of star-free languages if and only if the canonical ordered semiautomaton of L satisfies the
configuration K = (G, k, ℓ, E), where G is a semiautomaton given on Figure 9 (b) and E consists
of homomorphisms with constant content.

One can see that the semiautomaton from Figure 9 (b) is simple and balanced. However, we
cannot use Proposition 4.5 directly, because we do not work with the category Call, but we use
categories Cne and E , respectively. Notice that an apropriate modification of Proposition 4.5 is
possible.

To complete the overview concerning characterization of certain levels of the Straubing-Thérien
hierarchy, we could mentioned that it is well known that the level 1 corresponds to J -trivial
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monoids by a famous result established by Simon [16]. Then one can use the characterizations
from Proposition 5.2, because J -trivial monoids are exactly monoids which are both R-trivial
and L-trivial. This characterization is implicitly contained in Stern [17]. He also considered
the level 1 in the dot-depth hierarchy using graph techniques.

5.4. A Variant of Reversibility

The results of this subsection are taken from Golovkins and Pin [5]. The authors define a
modification of reversible languages, namely they consider the class R consisting of all languages
recognized by automata with at most two absorbing states, such that each letter a ∈ A acts
on non-absorbing states injectively. Let R be the Boolean closure of R. They proved, among
others, the next result.

Proposition 5.6 Let L be a regular language and DL its canonical automaton.

(i) A language L is in R if and only if the pattern from Figure 4 is not present in DL.

(ii) A language L is in R if and only if its syntactic monoid satisfies the identity xωyωxω =
xωyω. Equivalently, the pattern from Figure 10 is not present in DL.

k ℓ ̸= m

x yy

y
x

Figure 10: The forbidden pattern for the class R.

The case of the class R does not suit our theory due to Example 4.7 or due to the fact that this
class is not closed with respect to unions nor intersections. On the other hand, we can state
that the semiautomaton on Figure 10 is simple and balanced. Therefore, this pattern fits to
our theory perfectly.

5.5. Variants of Definite Languages

Iván and Nagy-György in [7] defined forbidden patterns in general. They looked only for
embeddings of a given pattern in a semiautomata. Since all their examples use only the patterns
with two states, they fit to our general theory. They recall the notions of cofinite, definitive,
codefinite and generalized definite languages. The authors formulated characterizations of those
four classes of languages via forbidden patterns. One can easily modify two of four patterns
such that everything suits to Proposition 3.8.
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5.6. Another Variant of Reversibility

Holzer at al. define in [6] another variant of reversibility. They say that a language L is
reversible if it is accepted by a partial co-deterministic finite automaton. They prove the
following characterization.

Proposition 5.7 A language is reversible if and only if its minimal trim automaton avoids the
pattern from Figure 11.

Notice that this concept could not suit to our theory since the class of corresponding languages
is not closed with respect to unions – see [6].

m ̸= n o

x

x

y

Figure 11: The forbidden pattern for another variant of reversibility.

5.7. Sparse Languages

The sparse languages are defined by the density function, which counts the number of words
of length n in L, that is, the function dL : N → N given by dL(n) = |L ∩ An|. A language L is
sparse if dL(n) = O(nk) for some k > 0. Basic results are overviewed in [19, 12], however here
we are interested in the characterization from [12].

Proposition 5.8 Let L ⊆ A∗ be an arbitrary regular language and D′
L be a partial semiau-

tomaton which is the minimal trim automaton of L. Then the language L is sparse if and only
if the partial semiautomaton D′

L does not contain the forbidden pattern from Figure 12 (a) with
the additional assumption that the first letter in g(x) is different from the first letter in g(y).

q

x y

k ≤ ℓ

x

y

(a) The forbidden pattern. (b) The configuration.

Figure 12: The characterization of sparse languages.

Now we introduce a modification of the characterization which fits into our concept of config-
urations. We could point out that the class of sparse languages is not closed under preimages
in all homomorphisms, but just injective homomorphisms. As our final goal is a description of
the positive Ci-variety of sparse languages, we need to add to each V(A) the full language A∗

which are members of each positive C-variety of languages.
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Proposition 5.9 The regular language is sparse or full if and only if the canonical ordered
semiautomaton OL of L satisfies the configuration K = (G, k, ℓ, Ci), where G is given by Fig-
ure 12 (b) and Ci is the category of injective homomorphisms.

Proof. See [9], the full version of this paper. ✷

6. Conclusion

We have introduced a formalism for forbidden patterns which differs from those in the existing
literature. The main difference is that our notion is defined in a more general setting, namely
for ordered automata. Among others, this enables us to reformulate some of known examples
in a new way in Section 5.3. Furthermore, our forbidden patterns or configurations are mapped
into a given automaton in contrast to some mentioned papers, where the pattern is viewed
as a subautomaton. Although the basic ideas are similar, in the other formalisms it is not
sometimes clear which states need to be really different. The main result of the contribution is
the following consequence of Theorem 3.6 and Proposition 3.8.

Theorem 6.1 Let K = (G, k, ℓ, E) be a configuration such that G is connected, balanced and
simple partial semiautomaton and E is closed under extensions by C. Then the class of all
ordered semiautomata satisfying K forms a C-variety of ordered semiautomata.

The examples of configurations satisfying the assumption of the theorem we saw in Section 5.1.

There are some natural questions concerning future applications of this theory of forbidden
patterns. The first goal should be to extend the previous result to broaden the class of con-
figurations because the assumptions in Theorem 6.1 are quite restrictive. We mentioned in
Section 5.2 that such extensions are possible.

There is also an important practical question whether the satisfiability of a configuration can
be algorithmically decided in a given (ordered) automaton A. Surely, it is clear whenever
the family of substitutions E is formed by all homomorphisms, since (i) there are only finitely
many mappings ϕ from K into A, (ii) for every such ϕ and each x ∈ X , one only needs to
check whether there exists a certain word g(x) ∈ A∗ which transforms certain states in A in
a required way. However, the computation of the set of all transitions given by words is the
known construction of the transition monoid of the automaton. Thus the question remains to
be more interesting in cases when E is more exotic family. Note that it is doable in case of
exotic families we mentioned in our paper, namely those from Propositions 5.5 and 5.8.
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Abstract
This paper introduces and studies a combined model of jumping finite automata and sensing

50 ! 30 Watson-Crick finite automata. The accepting power of the new model is compared with

the original models and also with some well-known language families. Furthermore, the paper

investigates changes in the accepting power when restrictions are applied on the model.

1. Introduction

In recent years, several papers studied finite automata models with multiple heads that process
the input string in non-conventional ways (see [1, 2, 7, 8, 9, 10]). Traditionally, when the model
utilizes several heads, either each head works on its own tape, or all heads read the same input
string in a symbol-by-symbol left-to-right way. In contrast, there are also well-established formal
grammars that generate strings in a parallel way, but this process is usually very di↵erent than
the reading with several heads. In grammars, the sentential form is repeatedly rewritten on
several places at once until the process creates the final string. The presented finite automata
models with the non-conventional processing have their behavior set somewhere between the
mentioned models. They utilize several heads, but these heads cooperate on a single tape to
process the single input string. Therefore, every symbol in the input string is read only o nce,
and the heads do not work in the traditional symbol-by-symbol left-to-right way.

The first group of these models is based on jumping finite automata (see [5, 6, 1, 2]). This
concept is in its core focused on discontinuous information processing. In essence, a jumping
finite automaton works just like a classical finite automaton except it does not read the input
string in a symbol-by-symbol left-to-right way. After the automaton reads a symbol, the head
can jump over (skip) a portion of the tape in either direction. Once an occurrence of a symbol
is read on the tape, it cannot be re-read again later. Generally, this model can very easily define
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even non-context-free languages if the order of symbols is unimportant for the language. On
the other hand, the resulting language families of these models are usually incomparable with
the classical families of regular, linear, and context-free languages. When this concept utilizes
multiple heads, the heads can naturally jump on specific positions in the tape, and thus they
can easily work on di↵erent places at once in parallel.

The second group is represented by sensing 50 ! 30 Watson-Crick (WK) finite automata (see
[7, 8, 9, 10, 11]). This is a biology-inspired concept. In essence, a WK automaton also works
just like a classical finite automaton except it uses a WK tape (i.e., double-stranded tape),
and it has a separate head for each of the two strands in the tape. This is therefore a concept
that always naturally uses two heads. In a 50 ! 30 WK automaton, both heads read their
specific strand in the biochemical 50 to 30 direction. In a computing point of view, however, this
means that they read the double strand sequence in opposite directions. Finally, a 50 ! 30 WK
automaton is sensing if the heads sense that they are meeting each other, and the processing
of the input ends if for all pairs of the sequence one of the letters is read. Sensing 50 ! 30 WK
automata generally accept the family of linear languages.

Even though that these concepts are significantly di↵erent, their models sometimes work in a
very similar way. Both concepts are also not mutually exclusive in a single formal model. This
paper defines jumping 50 ! 30 WK automata – a combined model of jumping finite automata
and sensing 50 ! 30 WK automata – and studies their characteristics. We primarily investigate
the accepting power of the model and also the e↵ects of restrictions on the model.

2. Preliminaries

This paper assumes that the reader is familiar with the theory of automata and formal languages
(see [4, 13]). This section recalls only the crucial notions used in this paper.

For a set Q, card(Q) denotes the cardinality of Q, and 2Q denotes the power set of Q. For
an alphabet (finite nonempty set) V , V ⇤ represents the free monoid generated by V under the
operation of concatenation. The unit of V ⇤ is denoted by ". Members of V ⇤ are called strings ;
V

+ = V

⇤�{"}; algebraically, V ⇤ thus is the free semigroup generated by V under the operation
of concatenation. For x 2 V

⇤, |x| denotes the length of x, and alph(x) denotes the set of all
symbols occurring in x; for instance, alph(0010) = {0, 1}. For a 2 V , |x|

a

denotes the number
of occurrences of a in x. Let X and Y be sets; we call X and Y to be incomparable if X 6✓ Y ,
Y 6✓ X, and X \ Y 6= ;.

A general grammar or, more simply, a grammar is quadruple G = (N, T, S, P ), where N and
T are alphabets such that N \ T = ;, S 2 N , and P is a finite set of rules of the form
x ! y, where x, y 2 (N [ T )⇤ and alph(x) \ N 6= ;. If x ! y 2 P and u, v 2 (N [ T )⇤,
then uxv ) uyv [x ! y], or simply uxv ) uyv. In the standard manner, extend ) to )n,
where n � 0; then, based on )n, define )+ and )⇤. The language generated by G, L(G), is
defined as L(G) = {w 2 T

⇤ : S )⇤
w}. We recognize several special cases of grammars: G is

a context-sensitive grammar if every x ! y 2 P satisfies x = ↵A� and y = ↵y� such that
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A 2 N , ↵, � 2 (N [ T )⇤, and y 2 (N [ T )+. G is a context-free grammar if every x ! y 2 P

satisfies x 2 N . G is a linear grammar if every x! y 2 P satisfies x 2 N and y 2 T

⇤
NT

⇤[T ⇤.
G is a regular grammar if every x! y 2 P satisfies x 2 N and y 2 TN [ T .

A finite automaton is a quintuple A = (V,Q, q0, F, �), where V is an input alphabet, Q is a
finite set of states, V \ Q = ;, q0 2 Q is the initial (or start) state, and F ✓ Q is a set of
final (or accepting) states. The mapping � is a transition function. If � : Q⇥ (V [ {"})! 2Q,
then the device is non-deterministic; if � : Q⇥ V ! Q, then the automaton is deterministic. A
string w is accepted by a finite automaton if there is a sequence of transitions starting from q0,
ending in a state in F , and the symbols of the sequence yield w. A language is regular if and
only if it can be recognized by a finite automaton. Let REG, LIN, CF, and CS denote the
families of regular, linear, context-free, and context-sensitive languages, respectively.

2.1. Jumping Finite Automata

A general jumping finite automaton (see [5, 6]), a GJFA for short, is a quintuple M =
(Q,⌃, R, s, F ), whereQ is a finite set of states, ⌃ is an input alphabet, Q\⌃ = ;, R ✓ Q⇥⌃⇤⇥Q
is finite, s 2 Q is the start state, and F ✓ Q is a set of final states. Members of R are referred
to as rules of M . If (p, y, q) 2 R implies that |y|  1, then M is a jumping finite automaton,
a JFA for short. A configuration of M is any string in ⌃⇤

Q⌃⇤. The binary jumping relation,
symbolically denoted by y, over ⌃⇤

Q⌃⇤, is defined as follows. Let x, z, x

0
, z

0 2 ⌃⇤ such that
xz = x

0
z

0 and (p, y, q) 2 R; then, M makes a jump from xpyz to x

0
qz

0, symbolically writ-
ten as xpyz y x

0
qz

0. In the standard manner, extend y to yn, where n � 0; then, based
on yn, define y+ and y⇤. The language accepted by M , denoted by L(M), is defined as
L(M) = {uv : u, v 2 ⌃⇤

, usv y⇤
f, f 2 F}. We say that M accepts w if and only if

w 2 L(M). M rejects w if and only if w 2 ⌃⇤ � L(M).

More recently, double-jumping modes for GJFAs were introduced (see [1]), which perform two
single jumps simultaneously. Both jumps always follow the same rule, however, they are per-
formed on two di↵erent positions on the tape and thus handle di↵erent parts of the input string.
Additionally, these jumps cannot ever cross each other (i.e., the initial mutual order of reading
positions is preserved during the whole accepting process). The specific double-jumping modes
then assign one of the three jumping directions to each of the two jumps – (1) to the left, (2)
to the right, and (3) in either direction. We omit the precise formal definition.

2.2. Watson-Crick Finite Automata

In this part we recall some well-known concepts of DNA computing and related formal language
theory. Readers who are not familiar in these topics should read [11].
Let V be an alphabet and ⇢ ✓ V ⇥ V be its complementary relation. For instance, V =
{A,C,G, T} is usually used in DNA computing with the Watson-Crick complementary relation
{(T,A), (A, T ), (C,G), (G,C)}. The strings built up by complementary pairs of letters are
double strands (of DNA).
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A Watson-Crick finite automaton (or shortly, a WK automaton) is a finite automaton working
on a Watson-Crick tape, that is, a double-stranded sequence (or molecule) in which the lengths
of the strands are equal and the elements of the strands are pairwise complements of each other:
[ a1
b1
][ a2

b2
] . . . [ an

b

n

] = [ a1a2...an
b1b2...bn

] with a

i

, b

i

2 V and (a
i

, b

i

) 2 ⇢ (i = 1, . . . , n). The notation [ w1
w2 ]

is used only for strings w1, w2 with equal length and satisfying the complementary relation ⇢.
The set of all double-stranded strings with this property is denoted by WK

⇢

(V ). For double-
stranded strings for which these conditions are not necessarily satisfied, the notation ( w1

w2 ) is
used throughout the paper. Formally, a WK automaton is M = (V, ⇢, Q, q0, F, �), where V ,
Q, q0, and F are the same as in finite automata, ⇢ ✓ V ⇥ V is a symmetric relation, and the
transition mapping � : (Q⇥ ( V

⇤
V

⇤ )) ! 2Q in such a way that �(q, ( w1
w2 )) (q 2 Q, w1, w2 2 V

⇤) is
non-empty only f or finitely many values of (q, ( w1

w2 )).

The elementary di↵erence between finite automata and WK automata, besides the doubled
tape, is the number of heads. WK automata scan each of the two strands separately with a
unique head. In classical WK automata, the processing of the input sequence ends if all pairs
of the sequence are read with both heads. There are also some restricted variations of WK
automata which are widely used in the literature (see, e.g., [11]):

• N : stateless, i.e., with only one state: if Q = F = {q0};
• F : all-final, i.e., with only final states: if Q = F ;
• S : simple (at most one head moves in a step) � : (Q⇥ (( V

⇤

{"} ) [ ( {"}
V

⇤ )))! 2Q;

• 1 : 1-limited (exactly one letter is being read in a step) � : (Q⇥ (( V

{"} ) [ ( {"}
V

)))! 2Q.

Further variations such as NS, FS, N1, and F1 WK automata can be identified in a straight-
forward way by using multiple constraints.

In 50 ! 30 WK automata (see [7, 8, 9, 10]), both heads start from the 50 end of the appropriate
strand. Physically/mathematically and from a computing point of view they read the double-
stranded sequence in opposite directions, while biochemically they go to the same direction.
A 50 ! 30 WK automaton is sensing if the heads sense that they are meeting (i.e., they are
close enough to meet in the next step or there is a possibility to read strings at overlapping
positions). In sensing 50 ! 30 WK automata, the processing of the input sequence ends if for
all pairs of the sequence one of the letters is read. Due to the complementary relation, the
sequence is fully processed; thus, the automaton makes a decision on the acceptance.

In the usual WK automata, the state transition is a mapping of the form (Q ⇥ ( V

⇤
V

⇤ )) ! 2Q.
In a transition q

0 2 �(q, ( w1
w2 )), we call r

l

= |w1| and r

r

= |w2| the left and right radius of the
transition (they are the lengths of the strings that the heads read from left to right and from
right to left in this step, respectively). The value r = r

l

+ r

r

is the radius of the transition.
Since �(q, ( w1

w2 )) is non-empty only for finitely many triplets of (q, w1, w2), there is a transition
(maybe more) with the maximal radius for a given automaton. Let � be extended by the sensing
condition in the following way: Let r be the maximum of the values r

l

+ r

r

for the values given
in the transition function of the original WK automaton. Then, let �0 : (Q⇥ ( V

⇤
V

⇤ )⇥D)! 2Q,
where D is the sensing distance set {�1, 0, 1, . . . , r,+1}. This set gives the distance of the
two heads between 0 and r, +1 when the heads are further than r, or �1 when the heads are
after their meeting point. Trivially, this automaton is finite, and D can be used only to control
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the sensing (i.e., the appropriate meeting of the heads). To describe the work of the automata,

we use the concept of configuration. A configuration ( w1
w2 )(q, s)(

w

0
1

w

0
2
) consists of the state q, the

actual sensing distance s, and the input [ w1w
0
1

w2w
0
2
] 2 WK

⇢

(V ) in such a way that the first head

(upper strand) has already processed the part w1, while the second head (lower strand) has
already processed w

0
2. A step of the automaton, according to the state transition function, can

be of the following two types:

(1) Normal steps : ( w1
w2y )(q,+1)( xw

0
1

w

0
2
) ) ( w1x

w2 )(q0, s)( w

0
1

yw

0
2
), for w1, w2, w

0
1, w

0
2, x, y 2 V

⇤ with

|w2y| � |w1| > r, q, q0 2 Q, if and only if [ w1xw
0
1

w2yw
0
2
] 2 WK

⇢

(V ) and q

0 2 �(q, ( x

y

),+1), and

s =

(
|w2|� |w1x| if |w2|� |w1x|  r;

+1 in other cases.

(2) Sensing steps : ( w1
w2y )(q, s)(

xw

0
1

w

0
2
) ) ( w1x

w2 )(q0, s0)( w

0
1

yw

0
2
), for w1, w2, w

0
1, w

0
2, x, y 2 V

⇤, if and

only if [ w1xw
0
1

w2yw
0
2
] 2WK

⇢

(V ) and q

0 2 �(q, ( x

y

), s), and s

0 =

(
s� |x|� |y| if s� |x|� |y| � 0;

�1 in other cases.

In the standard manner, extend ) to )n, where n � 0; then, based on )n, define )+

and )⇤. The accepted language, denoted by L(M), can be defined by the final accepting
configurations that can be reached from the initial one: A double strand [ w1

w2 ] is accepted by

a sensing 50 ! 30 WK automaton M if and only if ( "

w2 )(q0, s0)(
w1
"

) )⇤ [ w
0
1

w

0
2
](q

f

, 0)[ w
00
1

w

00
2
], for

q

f

2 F , where [ w
0
1

w

0
2
][ w

00
1

w

00
2
] = [ w1

w2 ] with the proper value of s0 (it is +1 if |w1| > r, elsewhere it is

|w1|); since the full input is processed by the time the heads meet.

From a biochemical point of view, a double-stranded sequence has no distinguishable start
and end. Consequently, each word that is accepted by a WK automaton has a complement-
symmetric pair which is also in the language. This fact does not cause any problem in connection
to formal language theory. For instance, double strands having only A and C in a strand (and
thus having T and G in the other) can represent languages over a binary alphabet: considering
the pair [ A

T

] as letter a and [ C
G

] as letter b in the new alphabet V 0.

At the end, we briefly mention other closely related 50 ! 30 WK automata models. Besides
the sensing version, the papers [7, 8, 9] also define the full-reading sensing version. The formal
definition remains practically identical, however, the automaton continues with the reading
after the meeting point, and both heads have to read the whole strand from the 50 end to the
30 end. The resulting behavior therefore combines some properties of classical WK automata
and sensing 50 ! 30 WK automata. It can be easily seen that the full-reading sensing version
is generally stronger than the sensing version. Lastly, the paper [10] introduces a version of
sensing 50 ! 30 WK automata without the sensing distance. It shows that it is not strictly
necessary to know the precise sensing distance and that we can obtain the same power even if
we are able to recognize only the actual meeting event. Nonetheless, this result does not hold
in general if we consider the restricted variations of these models.



122 Radim Kocman, Benedek Nagy, Zbyněk Křivka, Alexander Meduna

3. Definitions

Considering sensing 50 ! 30 WK automata and full-reading sensing 50 ! 30 WK automata, there
is quite a large gap between their behaviors. The definition of sensing 50 ! 30 WK automata
states that we need to read only one of the letters from all pairs of the input sequence before it
is fully processed. However, this also limits the positioning of the heads because they can read
letters only until they meet. On the other hand, the definition of full-reading sensing 50 ! 30

WK automata allows the heads to traverse the whole input. Nonetheless, this also means that
all pairs of the input sequence will be read twice. Considering other models, jumping finite
automata o↵er a mechanism that allows heads to skip (jump over) some symbols. Moreover, in
some of the recently introduced double-jumping modes, these automata behave very similarly
to 50 ! 30 WK automata. It is therefore our goal to fill the gap by introducing the jumping
mechanism into sensing 50 ! 30 WK automata. We want the heads to be able to traverse the
whole input, but we also want to read all pairs of the input sequence only once.

It is possible to fit the jumping mechanism straightforwardly into the original definition of
sensing 50 ! 30 WK automata. Observe that we are also newly tracking only the meeting event
of the heads and not the precise sensing distance.

Definition 3.1 A sensing 50 ! 30 WK automaton with jumping feature is a 6-tuple M =
(V, ⇢, Q, q0, F, �), where V , ⇢, Q, q0, and F are the same as in WK automata, V \ {#} = ;,
� : (Q ⇥ ( V

⇤
V

⇤ ) ⇥ D) ! 2Q, where D = {�, } indicates the mutual position of heads, and the

transition function assigns a nonempty set only for finitely many triplets of (Q ⇥ ( V

⇤
V

⇤ ) ⇥ D).
We denote the head as I-head or J-head if it reads from left to right or from right to left,

respectively. We use symbol � if the I-head is on the input tape positioned before the J-head;

otherwise, we use symbol  . A configuration ( w1
w2 )(q, s)(

w

0
1

w

0
2
) has the same structure as in sensing

50 ! 30 WK automata; however, s indicates only the mutual position of heads, and a partially

processed input ( w1w
0
1

w2w
0
2
) may not satisfy the complementary relation ⇢. A step of the automaton

can be of the following two types: Let w

0
1, w2, x, y 2 V

⇤
and w1, w

0
2 2 (V [ {#})⇤.

(1) Reading steps: ( w1
w2y )(q, s)(

xw

0
1

w

0
2
) y ( w1{#}|x|

w2
)(q0, s0)(

w

0
1

{#}|y|w0
2
), where q

0 2 �(q, ( x

y

), s), and s

0

is either � if |w2| > |w1x| or  in other cases.

(2) Jumping steps: ( w1
w2v )(q, s)(

uw

0
1

w

0
2
) y ( w1u

w2 )(q, s0)( w

0
1

vw

0
2
), where s

0
is either � if |w2| > |w1u|

or  in other cases.

Note that the jumping steps are an integral and inseparable part of the behavior of the automa-

ton, and thus they are not a↵ected by the state transition function. In the standard manner,

extend y to yn

, where n � 0; then, based on yn

, define y+
and y⇤

. The accepted lan-

guage, denoted by L(M), can be defined by the final accepting configurations that can be reached

from the initial one: A double strand [ w1
w2 ] is accepted by a sensing 50 ! 30 WK automaton

with jumping feature M if and only if ( "

w2 )(q0,�)( w1
"

) y⇤ ( w

0
1
"

)(q
f

, )( "

w

0
2
), for q

f

2 F , where

w

0
1 = a1a2 . . . an, w

0
2 = b1b2 . . . bn, ai, bi 2 (V [ {#}), and either a

i

= # or b

i

= #, f or all

i = 1, . . . , n, for some n � 0.
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From a practical point of view, however, this definition is not ideal. The automaton can
easily end up in a configuration that cannot yield accepting results, and the correct positions
of auxiliary symbols # need to be checked separately at the end of the process. Therefore,
we present a modified definition that has the jumping mechanism integrated more into its
structure. We are also using a simplification for complementary pairs and treat them as single
letters. Such a change has no e↵ect on the accepting power, and this form of input is more
natural for formal language theory.

Definition 3.2 A jumping 50 ! 30 WK automaton is a quintuple M = (V,Q, q0, F, �), where
V , Q, q0, and F are the same as in WK automata, V \ {#} = ;, the state transition function

� : (Q⇥ V

⇤ ⇥ V

⇤ ⇥D)! 2Q, where D = {�, } indicates the mutual position of heads, and �

assigns a nonempty set only for finitely many quadruples of (Q⇥V

⇤⇥V

⇤⇥D). A configuration

(q, s, w1, w2, w3) consists of the state q, the position of heads s 2 D, and the three unprocessed

portions of the input tape: (a) before the first head (w1), (b) between the heads (w2), and

(c) after the second head (w3). A step of the automaton can be of the following four types:

Let x, y, u, v, w2 2 V

⇤
and w1, w3 2 (V [ {#})⇤.

(1) �-reading: (q,�, w1, xw2y, w3) y (q0, s, w1{#}|x|, w2, {#}|y|w3), where q

0 2 �(q, x, y,�),
and s is either � if |w2| > 0 or  in other cases.

(2)  -reading: (q, , w1y, ", xw3) y (q0, , w1, ", w3), where q

0 2 �(q, x, y, ). ]
(3) �-jumping: (q,�, w1, uw2v, w3) y (q, s, w1u, w2, vw3), where s is either � if |w2| > 0 or

 in other cases.

(4)  -jumping: (q, , w1{#}⇤, ", {#}⇤w3) y (q, , w1, ", w3).

In the standard manner, extend y to yn

, where n � 0; then, based on yn

, define y+
and y⇤

.

The accepted language, denoted by L(M), can be defined by the final accepting configurations

that can be reached from the initial one: A string w is accepted by a jumping 50 ! 30 WK

automaton M if and only if (q0,�, ", w, ") y⇤ (q
f

, , ", ", "), for q

f

2 F .

Even though the structure of this definition is considerably di↵erent from Definition 3.1, it is
not hard to show that both models accept the same family of languages.

Proposition 3.3 The models of Definitions 3.1 and 3.2 accept the same family of languages.

Proof. (sketch). This proposition can be proved by construction (from both sides). Let M1 =
(V1, ⇢, Q, q0, F, �1) from Definition 3.1 and M2 = (V2, Q, q0, F, �2) from Definition 3.2. The
states can clearly remain identical. We can define bijection ' : ⇢ ! V2. Let '(a

i

, a

0
i

) = x

i

and
'(b

i

, b

0
i

) = y

i

, where a

i

, a

0
i

, b

i

, b

0
i

2 V1, (ai, a0
i

), (b
i

, b

0
i

) 2 ⇢, x
i

, y

i

2 V2, for all i = 1, . . . , n, n is
a positive integer. Any �1(q, (

a1...an
b

0
1...b

0
m

), s) can be converted into �2(q, x1 . . . xn

, y1 . . . ym, s), for
some n,m � 0, and vice versa. With this transformation, we reason that both models accept
the same inputs. Observe that the reading in the first model marks processed positions in the
configuration with the auxiliary symbol #, and, at the end, the model checks whether each pair
of symbols was read precisely once. On the other hand, the second model allows only correct
transitions that do not violate this reading condition. Furthermore, it keeps only unprocessed
parts of the input in the configuration. Consequently, the second model requires more types of
steps to handle the di↵erent stages of the process. Before the heads meet, either the �-reading
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reads some symbols and marks them (with #) for the other head, or the �-jumping skips some
symbols and leaves them for the other head. After the meeting point, either the  -reading reads
remaining symbols that were previously skipped, or the  -jumping erases marked symbols from
the configuration. Besides that, the reading and jumping behave analogically in both models
and thus give the same resulting accepting power. A rigorous version of this proof is left to the
reader. 2

Hereafter, we primarily use Definition 3.2.

4. Examples

To demonstrate the behavior of the automata, we present a few simple examples.

Example 4.1 Let us recall that L = {w 2 {a, b}⇤ : |w|
a

= |w|
b

} is a well-known non-linear
context-free language. We show that, even though the jumping directions in the model are
quite restricted, we are able to accept such a language. Consider the following jumping 50 ! 30

WK automaton

M = ({a, b}, {s}, s, {s}, �)

with the state transition function �: �(s, a, b,�) = {s} and �(s, a, b, ) = {s}. Starting from
s, M can either utilize the jumping or read simultaneously with both heads (the I-head reads
a and the J-head reads b), and it always stays in the sole state s. Now, consider the inputs
aaabbb and baabba. The former can be accepted by using three �-readings and one  -jumping:

(s,�, ", aaabbb, ") y (s,�,#, aabb,#) y (s,�,##, ab,##) y
(s, ,###, ",###) y (s, , ", ", ").

The latter input is more complex and can be accepted by using one �-jumping, two �-readings,
one  -jumping, and one  -reading:

(s,�, ", baabba, ") y (s,�, b, aabb, a) y (s,�, b#, ab,#a) y
(s, , b##, ",##a) y (s, , b, ", a) y (s, , ", ", ").

It is not hard to see that, by combining di↵erent types of steps, we can accept any input
containing the same number of a’s and b’s, and thus L(M) = L.

Example 4.2 Consider the following jumping 50 ! 30 WK automaton

M = ({a, b}, {s}, s, {s}, �)

with the state transition function �: �(s, a, b,�) = {s}. Observe that this is almost identical
to Example 4.1, however, we cannot use the  -reading anymore. Consequently, we also can-
not e↵ectively use the �-jumping because there is no way how to process remaining symbols
afterwards. As a result, the accepted language changes to L(M) = {anbn : n � 0}.
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Lastly, we give a more complex example that uses all parts of the model.

Example 4.3 Consider the following jumping 50 ! 30 WK automaton

M = ({a, b, c}, {s0, s1, s2}, s0, {s0}, �)

with �: �(s0, a, b,�) = {s1}, �(s1, ", b,�) = {s0}, �(s0, c, c, ) = {s2}, and �(s2, ", c, ) = {s0}.
We can divide the accepting process of M into two stages. First, before the heads meet, the
automaton ensures that for every a on the left side there are two b’s on the right side; other
symbols are skipped with the jumps. Second, after the heads meet, the automaton checks if
the part before the meeting point has double the number of c’s as the part after the meeting
point. Thus, L(M) = {w1w2 : w1 2 {a, c}⇤, w2 2 {b, c}⇤, 2 · |w1|a = |w2|b, |w1|c = 2 · |w2|c}.

5. General Results

These results cover the general behavior of jumping 50 ! 30 WK automata without any fur-
ther restrictions. Let SWK, JWK, GJFA, and JFA denote the language families accepted
by sensing 50 ! 30 WK automata, jumping 50 ! 30 WK automata, general jumping finite
automata, and jumping finite automata, respectively.

Due to space constraints, some of our proofs are only sketched.

Considering the previous results on other models that use the jumping mechanism (see [5, 6,
3, 1]), it is a common characteristic that they define language families that are incomparable
with the classical families of regular, linear, and context-free languages. On the other hand,
sensing 50 ! 30 WK automata (see [7, 8, 9, 10]) are closely related to the family of linear
languages. First, we show that the new model is able to accept all regular and linear languages.
Furthermore, the accepting power goes beyond the family of linear languages.

Lemma 5.1 For every regular language L, there is a jumping 50 ! 30 WK automaton M such

that L = L(M).

Proof. Consider a finite automatonN = (V,Q, q0, F, �1) such that L(N) = L. We can construct
the jumping 50 ! 30 WK automaton M = (V,Q, q0, F, �2) where �2(q, a, ",�) = �1(q, a) for all
q 2 Q, a 2 (V [ {"}). Observe that with such a state transition function the �-reading steps
always look like this: (q,�, w1, aw2, w3) y (q0, s, w1{#}|a|, w2, w3), where q

0 2 �2(q, a, ",�),
w2 2 V

⇤, w1, w3 2 (V [ {#})⇤, and s is either � if |w2| > 0 or  in other cases. There are no
possible  -reading steps. The �-jumping can be potentially used to skip some symbols before
the heads meet; nonetheless, the resulting configuration will be in the form (q, s, w1, w2, w3)
where alph(w1w3) \ V 6= ;. Since there is no way how to read such symbols in w1 and w3, the
configuration cannot yield an accepting result. Consequently, any input string will be read in
M the same way as in N (the remaining #’s will be erased with the  -jumping afterwards).
Thus, L(M) = L(N) = L. 2

Lemma 5.2 For every sensing 50 ! 30 WK automaton M1, there is a jumping 50 ! 30 WK

automaton M2 such that L(M1) = L(M2).



126 Radim Kocman, Benedek Nagy, Zbyněk Křivka, Alexander Meduna

Proof. This can be proved by construction. Consider any sensing 50 ! 30 WK automaton
M1. A direct conversion would be complicated, however, let us recall that LIN = SWK (see
Theorem 2 in [9]). Consider a linear grammar G = (N, T, S, P ) such that L(G) = L(M1). We
can construct the jumping 50 ! 30 WK automaton M2 such that L(M2) = L(G). Assume that
q

f

62 (N [ T ). Define M2 = (T,N [ {q
f

}, S, {q
f

}, �), where B 2 �(A, u, v,�) if A! uBv 2 P

and q

f

2 �(A, u, ",�) if A ! u 2 P (A,B 2 N , u, v 2 T

⇤). By the same reasoning as
in the proof of Lemma 5.1, only the �-reading can be e↵ectively used before the heads meet.
Consequently, it can be easily seen thatM2 reads all symbols in the same fashion as G generates
them. Moreover, the heads of M2 can meet each other with the accepting state q

f

if and only
if G can finish the generation process with a rule A! u. Thus, L(M2) = L(G) = L(M1). 2

Theorem 5.3 LIN = SWK ⇢ JWK.

Proof. SWK ✓ JWK follows from Lemma 5.2. LIN = SWK was proved in [9]. JWK 6✓
LIN follows from Example 4.1. 2

The next two characteristics follow from the previous results.

Theorem 5.4 Jumping 50 ! 30 WK automata without  -reading steps accept linear languages.

Proof. Consider any jumping 50 ! 30 WK automaton M = (V,Q, q0, F, �) that has no possible
 -reading steps. Expanding the reasoning in the proof of Lemma 5.2, if there are no possible
 -reading steps, the �-jumping cannot be e↵ectively used, and we can construct a linear
grammar that generates strings in the same fashion asM reads them. Define the linear grammar
G = (Q, V, q0, R), where R is constructed in the following way: (1) For each p 2 �(q, u, v,�),
add q ! upv to R. (2) For each f 2 F , add f ! " to R. Clearly, L(G) = L(M). 2

Proposition 5.5 The language family accepted by double-jumping finite automata that perform

right-left and left-right jumps (see [1]) is strictly included in JWK.

Proof. First, Theorem 3.18 in [1] shows that jumping finite automata that perform right-left
and left-right jumps accept the same family of languages. Second, Theorem 3.7 in [1] shows
that this family is strictly included in LIN. Finally, Theorem 5.3 shows that LIN is strictly
included in JWK. 2

Even though the model is able to accept some non-linear languages, the jumping directions
of the heads are quite restricted compared to general jumping finite automata. Consequently,
there are some languages accepted by jumping 50 ! 30 WK automata and general jumping
finite automata that cannot be accepted with the other model.

Lemma 5.6 There is no jumping 50 ! 30 WK automaton M such that L(M) = {anbncn :
n � 0}.

Proof. (sketch). It is clear that with a finite memory the automaton can remember only a finite
amount of symbols that were already processed. Intuitively, therefore, for a long enough input
the automaton must be able to repeatedly perform some sequence of steps in some phase that
reads a correlated number of a’s, b’s, and c’s. Nonetheless, in any such a sequence, some head
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has to jump over a portion of the unprocessed input to read b’s, and this head can no longer
read the symbols it skipped. The skipped portion has to contain either all remaining a’s or
c’s. These a’s or c’s can still be read with the other head, but, in order to reach them, this
head would have to skip the other remaining portion of the input. This portion would have to
contain all remaining b’s and also either all remaining c’s or a’s. Consequently, there cannot
be a repeatable sequence of steps that reads distinct symbols from three di↵erent places. 2

Lemma 5.7 There is no jumping 50 ! 30 WK automaton M such that L(M) = {w 2 {a, b, c}⇤ :
|w|

a

= |w|
b

= |w|
c

}.

Proof. (sketch). Assume that there is a jumping 50 ! 30 WK automaton M such that L(M) =
{w 2 {a, b, c}⇤ : |w|

a

= |w|
b

= |w
c

|}. Intuitively, such an automaton must be able to properly
check the number of symbols in any input w = a

n

b

n

c

n, where n is a positive integer. However,
the argument in the sketch of the proof of Lemma 5.6 shows that it is not possible. 2

Proposition 5.8 JWK is incomparable with GJFA and JFA.

Proof. The language {w 2 {a, b}⇤ : |w|
a

= |w|
b

} from Example 4.1 and the language {w 2
{a, b, c}⇤ : |w|

a

= |w|
b

= |w|
c

} from Lemma 5.7 are accepted with (general) jumping finite
automata (see Example 5 in [5]). The language {anbn : n � 0} from Example 4.2 is not
accepted with (general) jumping finite automata (see Lemma 19 in [5]). 2

The last group of results compares the accepting power of the model with the families of
context-sensitive and context-free languages.

Theorem 5.9 JWK ⇢ CS.

Proof. Clearly, the use of two heads and the jumping behavior can be simulated by linear
bounded automata, so JWK ✓ CS. From Lemma 5.6, CS � JWK 6= ;. 2

Lemma 5.10 There are some non-context-free languages accepted by jumping 50 ! 30 WK

automata.

Proof. Consider the following jumping 50 ! 30 WK automaton

M = ({a, b, c, d}, {s}, s, {s}, �)

with the state transition function �: �(s, a, c,�) = {s} and �(s, d, b, ) = {s}. The accepting
process has two stages. First, before the heads meet, the automaton reads the same number
of a’s and c’s. Second, after the heads meet, the automaton reads the same number of d’s and
b’s. Thus, L(M) = {w1w2 : w1 2 {a, b}⇤, w2 2 {c, d}⇤, |w1|a = |w2|c, |w1|b = |w2|d}.
Proof by contradiction. Assume that L(M) is a context-free language. The family of context-
free languages is closed under intersection with regular sets. LetK = L(M)\{a}⇤{b}⇤{c}⇤{d}⇤.
Clearly, there are some strings in L(M) that satisfy this forced order of symbols. Furthermore,
they all have the proper correlated numbers of these symbols. Consequently, K = {anbmcndm :
n,m � 0}. However, K is a well-known non-context-free language (see Chapter 3.1 in [12]).
That is a contradiction with the assumption that L(M) is a context-free language. Therefore,
L(M) is a non-context-free language. 2
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Lemma 5.11 There is no jumping 50 ! 30 WK automaton M such that L(M) = {anbncmdm :
n,m � 0}.

Proof. (sketch). It is clear that with a finite memory the automaton can remember only a finite
amount of symbols that were already processed. As it is known from finite automata, a single
head alone cannot recognize strings anbn or cmdm. Intuitively, therefore, the automaton has to
use both heads to process such a string. But in order to do so, some head has to jump over the
other part (anbn or cmdm). However, since the heads cannot travel back on the tape, there is
no way how to use both heads to process both parts. 2

Theorem 5.12 JWK and CF are incomparable.

Proof. JWK 6✓ CF follows from Lemma 5.10. CF 6✓ JWK follows from Lemma 5.11. Lastly,
LIN ⇢ JWK and LIN ⇢ CF. 2

6. Results on Restricted Variations

In this section, we compare the accepting power of unrestricted and restricted variations of
jumping 50 ! 30 WK automata. This paper considers the same standard restrictions as they
are defined for Watson-Crick finite automata. Since these restrictions regulate only the state
control and reading steps of the automaton, the jumping is not a↵ected in any way.

Let JWK denote the language family accepted by jumping 50 ! 30 WK automata. We are
using prefixes N, F, S, 1, NS, FS, N1, and F1 to specify the restricted variations of jumping
50 ! 30 WK automata and appropriate language families.

In the field of DNA computing, the empty string/empty sequence usually does not belong to
any language because it does not refer to a molecule. This paper is not so strict and thus
considers the empty string as a possible valid input. Nonetheless, the following proofs are
deliberately based on more complex inputs to mitigate the impact of the empty string on the
results.

Note that there are some inherent inclusions between language families based on the application
of restrictions on the model. Additionally, several other basic relations can be established
directly from the restriction definitions:

Lemma 6.1 The following relations hold: (i) N JWK ✓ F JWK; (ii) 1 JWK ✓ S JWK;

(iii) F1 JWK ✓ FS JWK; (iv) N1 JWK ✓ NS JWK; (v) NS JWK ✓ FS JWK;

(vi) N1 JWK ✓ F1 JWK.

Proof. These results follow directly from the definitions since the stateless restriction (N) is a
special case of the all-final restriction (F) and the 1-limited restriction (1) is a special case of
the simple restriction (S). 2

Due to space constraints, we present only a quick overview of the results.
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Theorem 6.2 S JWK = JWK.

Proof. (idea). Any general reading step can be replaced with two simple reading steps and a
new auxiliary state that together accomplish the same action. 2

Example 6.3 Consider the following jumping 50 ! 30 WK automaton M = ({a, b, c}, {s, f},
s, {f}, �) with the state transition function �:

�(s, a, b,�) = {s}, �(f, a, b,�) = {f}, �(f, a, b, ) = {f},
�(s, cc, ",�) = {f}, �(s, ", cc,�) = {f}.

It is clear that the first three transitions mimic the behavior of Example 4.1. The other two
transitions ensure that the input is accepted only if it also contains precisely one substring cc.
Therefore, L(M) = {w1ccw2 : w1, w2 2 {a, b}⇤, |w1w2|a = |w1w2|b}.

Theorem 6.4 1 JWK ⇢ JWK.

Proof. (idea). There is no 1 jumping 50 ! 30 WK automaton M such that L(M) = {w1ccw2 :
w1, w2 2 {a, b}⇤, |w1w2|a = |w1w2|b}. 2

Example 6.5 Consider the following 1 jumping 50 ! 30 WK automaton M = ({a, b}, {s, p},
s, {s}, �) with the state transition function �:

�(s, a, ",�) = {p}, �(p, ", b,�) = {s},
�(s, a, ", ) = {p}, �(p, ", b, ) = {s}.

It is not hard to see that the resulting behavior is similar to Example 4.1. The automaton now
reads a’s and b’s with separate steps and uses one auxiliary state that is not final. Consequently,
L(M) = {w 2 {a, b}⇤ : |w|

a

= |w|
b

}.

Theorem 6.6 LIN ⇢ 1 JWK.

Proof. (idea). For every linear grammar G, there is a 1 jumping 50 ! 30 WK automaton M

such that L(G) = L(M). Example 6.5 shows that 1 JWK 6✓ LIN. 2

Theorem 6.7 F JWK ⇢ JWK.

Proof. (idea). There is no F jumping 50 ! 30 WK automaton M such that L(M) = {cancbnc :
n � 0} [ {"}. 2

Example 6.8 Consider the following F (in fact, even N) jumping 50 ! 30 WK automaton
M = ({a, b, c}, {s}, s, {s}, �) with the state transition function �:

�(s, a, b,�) = {s}, �(s, a, b, ) = {s},
�(s, cc, ",�) = {s}, �(s, ", cc,�) = {s}.

This is a slightly modified version of Example 6.3 where the substring cc can occur arbitrarily
many times. Therefore, L(M) = {w 2 {a, b, cc}⇤ : |w|

a

= |w|
b

}. L(M) 62 1 JWK.
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Theorem 6.9 N JWK ⇢ F JWK.

Proof. (idea). From Lemma 6.1, N JWK ✓ F JWK. There is no N jumping 50 ! 30 WK
automaton M such that L(M) = {", a}. 2

Proposition 6.10 FS JWK ⇢ F JWK.

Proof. (idea). There is no FS jumping 50 ! 30 WK automaton M such that that L(M) =
{ccancc : n � 0} [ {"}. 2

Example 6.11 Consider the following FS jumping 50 ! 30 WK automaton M = ({a, b, c},
{s, p}, s, {s, p}, �) with the state transition function �:

�(s, a, ",�) = {p}, �(p, ", b,�) = {s},
�(s, a, ", ) = {p}, �(p, ", b, ) = {s},
�(s, cc, ",�) = {s}, �(s, ", cc,�) = {s},
�(p, cc, ",�) = {p}, �(p, ", cc,�) = {p}.

As a result, L(M) = {w 2 {a, b, cc}⇤ : |w|
a

= |w|
b

or |w|
a

= |w|
b

+ 1}.
This automaton is just a combination of previous approaches from Examples 6.5 and 6.8. Note
that L(M) resembles the resulting language of Example 6.8.

Proposition 6.12 F1 JWK ⇢ FS JWK.

Proof. (idea). There is no F1 jumping 50 ! 30 WK automaton that accepts {aa}⇤. 2

Corollary 6.13 F1 JWK ⇢ 1 JWK.

Theorem 6.14 NS JWK ⇢ REG.

Proof. (idea). For any NS jumping 50 ! 30 WK automaton we can construct a finite automaton
that accepts the same language. 2

Proposition 6.15 N1 JWK ⇢ NS JWK.

Proof. This proof is analogous to that of Proposition 6.12. 2

Corollary 6.16 The following relations hold: (i) NS JWK ⇢ N JWK; (ii) NS JWK ⇢
FS JWK; (iii) N1 JWK ⇢ F1 JWK.

All the obtained results comparing the accepting power of unrestricted and restricted variations
of jumping 50 ! 30 WK automata are summarized in Figure 1.
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S JWK = JWK

1 JWK

LIN

REG

F JWK

FS JWK N JWK

F1 JWK

NS JWK

N1 JWK

Figure 1: A hierarchy of language families closely related to the unrestricted and restricted variations
of jumping 50 ! 30 WK automata is shown. If there is an arrow from family X to family Y in the
figure, then X ⇢ Y . Furthermore, if there is no path (following the arrows) between families X and
Y , then X and Y are incomparable.

7. Conclusion

The results clearly show that, with the addition of the jumping mechanism into the model, the
accepting power was increased above sensing 50 ! 30 WK automata. The model is now able
to accept some non-linear and even some non-context-free languages. On the other hand, the
jumping movement of the heads is restricted compared to jumping finite automata, and this
limits its capabilities to accept languages that require discontinuous information processing.
Considering the comparison with full-reading sensing 50 ! 30 WK automata, the results are
not yet clear. However, we know that there are some languages, like {anbncn : n � 0}, that
cannot be accepted by jumping 50 ! 30 WK automata and that are accepted by full-reading
sensing 50 ! 30 WK automata (see [7, 8, 9]).

If we compare the hierarchies of language families related to the restricted variations of jumping
50 ! 30 WK automata and sensing 50 ! 30 WK automata (see [8, 9, 10]), there are several
noticeable remarks. Most importantly, the 1-limited restriction (1) has a negative impact on the
accepting power, which is usually not the case in sensing 50 ! 30 WK automata. In parts where
several restrictions are combined together, the hierarchy structure resembles sensing 50 ! 30

WK automata without the sensing distance. Nonetheless, almost all restricted variations, with
the exception of NS and N1, are still able to accept some non-linear languages.

Lastly, the reader may notice that the  -jumping can be used only in situations where it is
forced by the current configuration. Furthermore, jumping finite automata usually immediately
erase symbols from the configuration and do not use the auxiliary symbol #. It is therefore a
question whether this part could be safely removed from the model. Without it, the conversion
from Definition 3.1 cannot be straightforward, and it is not clear whether the accepting power
remains identical. Observe that, if we remove #’s, the configuration can create new connected
strings that were not in the original input and for which there can be a possible  -reading step.
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Abstract
We extend the two-sided strictly testable languages to the two-sided testable languages, showing

that for each integer k � 1 and each symmetric binary relation R on ⌃k

, the family 2LT
R

(k)
of k-R-testable languages is obtained as a special kind of Boolean closure of the family of two-

sided strictly k-testable languages. We further study closure and non-closure properties and

prove that all two-sided locally testable languages are even linear languages.

1. Introduction

In 1971 McNaughton and Papert introduced the strictly locally testable and the locally testable
languages [5]. These languages have received much attention in the literature because of their
elegance and simplicity. A language L over ⌃ is called strictly locally testable, if it is strictly
k-testable for some integer k � 1, which means that there are sets A,B,C of words of length k
over ⌃ such that a word w of length at least k belongs to L if and only if its prefix P

k

(w) of
length k belongs to A, its su�x S

k

(w) of length k belongs to B, and the set I
k

(w) of all its
inner factors of length k is a subset of C. Thus, in order to check that a word w belongs to L,
an automaton with a window of size k can be used that simply moves its window from left to
right across w. For a language L on ⌃ to be locally testable it is required that it is k-testable
for some k � 1, which means that membership of a word w of length at least k only depends on
its prefix P

k

(w), its su�x S
k

(w) and its set of inner factors I
k

(w). In fact, the set of k-testable
languages is just the Boolean closure of the set of strictly k-testable languages [5].

The automaton for a (strictly) locally testable language scans its input simply from left to
right, just as classical models of automata, like finite-state automata or pushdown automata.
But already early on researchers were also interested in devices with the ability to scan their
inputs in a more flexible way. This has been achieved in several ways, for example,by two-
way head motion, more than one input head, or a combination thereof. One of the easiest
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combination are two heads, one scanning the input from left to right and the other scanning
it from right to left. If this two-head extension is applied to finite-state automata, a machine
model is obtained that characterizes the linear context-free languages [7]. Pushdown automata
with this two-head extension accept linguistically important languages, describing a family of
mildly context-sensitive languages [6]. What happens if the two-head extension is applied to
the machine model for the (strictly) locally testable languages that memorizes factors of a
certain length? Here it makes no sense that the heads move independently of each other, as
then we would just get the intersection of two (strictly) locally testable languages, which is
itself a (strictly) locally testable language. Thus, the movements of the two heads must be
synchronized and the factors read concurrently must be correlated in some way. This idea has
been formalized in [2], leading to the notion of two-sided strictly locally testable languages.

Here we extend this notion to the two-sided locally testable languages, just as the strictly
locally testable languages were extended to the locally testable languages in [5]. A language L
over ⌃ is called two-sided locally testable, if there exist an integer k � 1 and a symmetric
binary relation R on ⌃k such that L is k-R-testable. This means that all words w 2 L of
length at least k are R-symmetric (see Section 2 for the definition), and that it only depends
on the prefix P

k

(w), the su�x S
k

(w), and the set I
k

(w) of inner factors of length k of the
word w whether w belongs to L. We will see that the family of k-R-testable languages is the
closure of the strictly k-R-testable languages under the operations of union, intersection, and
R-complementation, where the latter only considers R-symmetric words of length at least k.
Further, the family of all two-sided locally testable languages is closed under intersection and
R-complementation, but it is not closed under union. Also we consider closure under the
operations of reversal, concatenation, Kleene star, length-preserving homomorphisms, length-
preserving inverse homomorphisms, and non-erasing inverse homomorphisms.

Concerning the expressive capacity of two-sided locally testable languages, we prove that they
are contained in the even linear languages introduced in [1], extending the corresponding result
on two-sided strictly locally testable languages from [2]. On the other hand, this language
family is incomparable under inclusion to the regular, the deterministic linear, the deterministic
context-free, and the Church-Rosser languages (see [4] for the latter). Finally, we even separate
the two-sided k-testable languages from the k-testable languages by regular example languages.

The paper is structured as follows. After giving the necessary definitions in Section 2, we present
the aforementioned presentation of k-R-testable languages in Section 3, where we also derive
the various closure and non-closure properties described above. In Section 4 we investigate the
expressive capacity of two-sided locally testable languages and discuss decidability results. The
paper closes with a short summary and some open problems for future work.

2. Definitions and Preliminaries

For a finite alphabet ⌃, we use ⌃⇤ (⌃+) to denote the set of all (nonempty) words, and we
use � to denote the empty word. For k � 0 we write ⌃k for the set of all words of lengths at
most k, ⌃k for the set of all words of length k, and ⌃�k for the set of all words of length at
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least k. For a word w 2 ⌃⇤, |w| is used to denote its length. If w = a1a2 · · · an with n � 1 and
a1, a2, . . . , an 2 ⌃, then for 1  i  n and 1  k  n� i, w[i, k] denotes the factor of length k
of w starting at position i, that is, w[i, k] = a

i

a
i+1 · · · ai+k�1. Also we denote w[i, 1] by w[i].

Let P
k

(w) and S
k

(w) be the prefix and the su�x of length k of a word w, respectively, that is,
P
k

(w) = w[1, k] and S
k

(w) = w[|w| � k + 1, k]. Further, let I
k

(w) be the set of all factors of
length k of w except the prefix and the su�x, that is,

I
k

(w) = {u | |u| = k and 9x, y 2 ⌃+ : w = xuy } = {w[i, k] | 2  i  |w|� k }.

These are defined only for |w| � k. If |w| = k, then P
k

(w) = S
k

(w) = w, while I
k

(w) is empty,
whenever |w|  k + 1.

Let k be a positive integer, and let A,B,C ✓ ⌃k. By L(A,B,C) we denote the language
L(A,B,C) = {w 2 ⌃⇤ | |w| � k, P

k

(w) 2 A, S
k

(w) 2 B, and I
k

(w) ✓ C }. A language L ✓ ⌃⇤

is said to be strictly k-testable if there exist finite sets A,B,C ✓ ⌃k such that L \ ⌃�k =
L(A,B,C). We will say that a language L is strictly locally testable if it is strictly k-testable
for some k > 0. As a strictly k-testable language is obtained from the language L(A,B,C) by
possibly adding some words of length at most k � 1, a triple (A,B,C) can be used as a basis
for several di↵erent strictly k-testable languages.

A natural extension of strictly locally testable languages are the two-sided strictly locally testable

languages studied in [2]. Let k be a positive integer. A two-sided strictly k-testable language
L ✓ ⌃⇤ is given through a strictly k-testable language H presented by a triple (A,B,C) and
a (finite) symmetric binary relation R ✓ ⌃k ⇥ ⌃k. Now a word w 2 ⌃�k belongs to L if
w 2 H and if, for all indices i 2 {1, 2, . . . , |w| � k + 1}, (w[i, k], w[|w| + 2 � k � i, k]) 2 R.
We write L(A,B,C,R) for the language L \ ⌃�k of all words of L that have length at least k.
Again, a two-sided strictly k-testable language is obtained from the language L(A,B,C,R) by
possibly adding some words of length at most k � 1. Thus, a four-tuple (A,B,C,R) can be
used as a basis for several di↵erent two-sided strictly k-testable languages. Finally, a language
is two-sided strictly locally testable if it is two-sided strictly k-testable for some k � 1.

Example 2.1 Let ⌃ = {a, b}, and let A = {a, b} = B = C. Then the triple (A,B,C) defines
the strictly 1-testable language L = L(A,B,C) = ⌃+. Now let R ⇢ ⌃ ⇥ ⌃ be defined as
R = {(a, b), (b, a)}, and let L0 = L(A,B,C,R) be the resulting two-sided strictly 1-testable
language. Then a word w 2 ⌃+ belongs to L0 if and only if, for all i = 1, 2, . . . , |w|, the i-th
letter from the left di↵ers from the i-th letter from the right. Thus, L0 is not even regular, as
L0 \ (a⇤ · b⇤) = { anbn | n � 1 } holds. Hence, L0 is in particular not strictly locally testable. ⌅

So far, the membership of a word w is tested by checking whether its prefix, su�x, and its
factors of length k do belong to sets of allowed prefixes, su�xes, and factors. In addition, the
occurring prefix and su�x as well as the occurring factors have to be in relation. In particular,
the test does not depend on whether a factor appears or does not appear. Nor is it possible to
raise conditions like ‘if factor x appears, then factor y has to appear as well.’ A generalization
that addresses such issues is the family of locally testable languages.
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A language L ✓ ⌃⇤ is k-testable for some k � 1 if the following conditions are met [5]:

8x, y 2 ⌃�k : if P
k

(x) = P
k

(y) ^ S
k

(x) = S
k

(y) ^ I
k

(x) = I
k

(y), then (x 2 L () y 2 L).

Observe that also here the definition says nothing about the words of length at most k�1 in L.
A language is called locally testable if it is k-testable for some k � 1.

Here we propose a generalization of these notions to the two-sided context.

Definition 2.2 Let k � 1, let ⌃ be an alphabet, and let R ✓ ⌃k ⇥⌃k

be a symmetric relation.

1. By ⌃�k

R

we denote the set of all words w 2 ⌃⇤
that satisfy the following condition:

|w| � k and 8i 2 {1, 2, . . . , |w|� k + 1}, (w[i, k], w[|w|+ 2� k � i, k]) 2 R,

that is, w is of length at least k and the factor w[i, k] of w of length k starting at position i
and the factor w[|w|+ 2� k� i, k] of w of length k starting at position |w|+ 2� k� i are
in relation R, for all i = 1, 2, . . . , |w|�k+1. We call these words the R-symmetric words.

2. A language L ✓ ⌃⇤
is k-R-testable, if L \ ⌃�k ✓ ⌃�k

R

, that is, all words in L that are of

length at least k are R-symmetric, and the following conditions are met:

8x, y 2 ⌃�k

R

: if P
k

(x) = P
k

(y) ^ S
k

(x) = S
k

(y) ^ I
k

(x) = I
k

(y), then (x 2 L () y 2 L).

3. A language L ✓ ⌃⇤
is called two-sided k-testable if there exists a symmetric binary relation

R ✓ ⌃k ⇥ ⌃k

such that L is k-R-testable.

4. A language L ✓ ⌃⇤
is called two-sided locally testable if it is two-sided k-testable for some

k � 1.

Example 2.3 The language L = { adnb, aenc | n � 1 } is two-sided strictly 2-testable, but it
is not two-sided strictly 1-testable. However, this language is two-sided 1-testable. For the
symmetric binary relation R = {(a, b), (b, a), (a, c), (c, a), (d, d), (e, e)}, we have

⌃�1
R

= {w 2 {a, b, c, d, e}�1 | 8i = 1, 2, . . . , |w| : (w[i] = a i↵ w[|w|+ 1� i] 2 {b, c})
and if w[i] 2 {d, e}, then w[i] = w[|w|+ i� i] }.

Now L = {w 2 ⌃�1
R

| P1(w) = a ^ (I1(w) = {d} ^ S1(w) = b) _ (I1(w) = {e} ^ S1(w) = c) }.
Actually, L is the union of the two-sided strictly 1-testable languages L1 = { adnb | n � 1 } and
L2 = { aenc | n � 1 }. ⌅

We will denote the family of strictly k-testable languages by SLT(k) and the class of strictly
locally testable languages by SLT. For the family of two-sided strictly k-testable (two-sided
strictly locally testable) languages we write 2SLT(k) (2SLT).

Similarly, we omit the infix S when we denote the families of non-strictly locally testable
languages, that is, we write LT(k) for the family of k-testable languages, LT for the family of
locally testable languages, 2LT

R

(k) for the family of two-sided k-R-testable languages, 2LT(k)
for the family of two-sided k-testable languages, and by 2LT we denote the family of all two-sided
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locally testable languages. If the relation R is fixed, then we also use the notations LT
R

(k) for
one-sided k-R-testable languages. Note that a given relation R ✓ ⌃k⇥⌃k implies the constant k.
Therefore, the family 2LT

R

is equal to 2LT
R

(k) and the family LT
R

is equal to LT
R

(k).

In [2] it is shown that SLT(k) ( 2SLT(k) for all k � 2 and that 2SLT(k) ( 2SLT(k + 1) for
all k � 1. Also it is known that LT(k) ( LT(k + 1) [5]. In Section 4 below we will establish
the corresponding result for two-sided k-testability, but here we already observe the following
inclusions.

Lemma 2.4 For all k � 1, 2LT(k) ✓ 2LT(k + 1).

3. Closure Properties

Before we turn to explore the expressive capacity of two-sided locally testable languages in
more detail, we study their basic closure properties in order to provide some tools for further
proofs. So, in this section we consider the closure properties of the families 2LT, 2LT(k), and
2LT

R

(k), for k � 1. We start with technical considerations.

Let k � 1, let ⌃ be an alphabet, and let R ✓ ⌃k ⇥ ⌃k be a symmetric relation. For all words
u, v 2 ⌃k and all subsets C ✓ ⌃k, we define

L
R

(u, v, C) = {w 2 ⌃�k

R

| P
k

(w) = u, S
k

(w) = v, and I
k

(w) = C },

and for a k-R-testable language L ✓ ⌃⇤, we define

triple(L) = { (u, v, C) | u, v 2 ⌃k and C ✓ ⌃k such that L
R

(u, v, C) \ L 6= ; }.

If (u, v, C) 2 triple(L), then by definition L
R

(u, v, C) \ L 6= ;. So, there is a word w 2 ⌃�k

R

with P
k

(w) = u, S
k

(w) = v, I
k

(w) = C that belongs to L and to L
R

(u, v, C). Since L is
k-R-testable, all words w0 2 ⌃�k

R

with P
k

(w0) = u, S
k

(w0) = v, I
k

(w0) = C belong to L as well.
We conclude that L

R

(u, v, C) ✓ L if (u, v, C) 2 triple(L). Thus, we have the representation
L = F

L

[
S

(u,v,C)2triple(L) LR

(u, v, C), where F
L

= {w 2 L | |w|  k � 1 }.

On the other hand, it is easily seen that the union of any finite number of languages of the
form L

R

(u, v, C) is a k-R-testable language.

Lemma 3.1 Let k � 1, let ⌃ be an alphabet, and let R ✓ ⌃k ⇥ ⌃k

be a symmetric relation. If

L =
S

m

i=1 LR

(u
i

, v
i

, C
i

), then L belongs to 2LT
R

(k).

If L ✓ ⌃⇤ is a two-sided strictly k-testable language, then there exist a symmetric binary
relation R on ⌃k, sets A,B,C ✓ ⌃k, and a finite subset F ✓ ⌃k�1 such that

L = F [ {w 2 ⌃�k

R

| P
k

(w) 2 A, S
k

(w) 2 B, and I
k

(w) ✓ C }.

Hence, L can be written as L = F [
S

u2A,v2B,C

0✓C

L
R

(u, v, C 0), which implies that L is k-R-
testable. Thus, we have the following inclusions.
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Corollary 3.2 For all k � 1, 2SLT(k) ✓ 2LT(k) and 2SLT ✓ 2LT.

Now we turn to the Boolean operations union and intersection and a variant of the operation
of complementation, called R-complementation. Let k � 1, let ⌃ be an alphabet, and let
R ✓ ⌃k ⇥ ⌃k be a symmetric binary relation. For a k-R-testable language L ✓ ⌃⇤, the R-

complement is the set Lc

R

= (⌃k�1\Lc)[ (⌃�k

R

\Lc), that is, it contains all words of length at
most k� 1 that do not belong to L, and it contains all R-symmetric words that do not belong
to L. It is easily seen that Lc = Lc

R

[ (⌃�k r ⌃�k

R

).

Proposition 3.3 Let k � 1, let ⌃ be an alphabet, and let R ✓ ⌃k⇥⌃k

be a symmetric relation.

Then the family 2LT
R

(k) is closed under the Boolean operations intersection and union and

under the operation of R-complementation.

Proof. Let L,L1, L2 ✓ ⌃⇤ be k-R-testable languages.

The union L1 [ L2 is represented by F
L1 [ F

L2 [
S

(u,v,C)2(triple(L1)[ triple(L2))
L
R

(u, v, C). By
Lemma 3.1 it follows that L1 [L2 2 2LT

R

(k). Similarly, the intersection L1 \L2 is represented
by (F

L1 \ F
L2) [

S
(u,v,C)2(triple(L1)\ triple(L2))

L
R

(u, v, C), which shows that L1 \ L2 2 2LT
R

(k).
Finally, for the R-complement Lc

R

we have

Lc

R

=
⇣
⌃k�1 [ ⌃�k

R

⌘
r L = (⌃k�1 r F

L

) [

0

@
[

(u,v,C) 62triple(L)

L
R

(u, v, C)

1

A .

Since the number of triples (u, v, C) that do not belong to triple(L) is finite, Lemma 3.1 shows
that Lc

R

2 2LT
R

(k). 2

Proposition 3.4 For all k � 1, the families 2LT(k) and 2LT are closed under intersection and

R-complementation.

Proof. Let R1, R2 ✓ ⌃k ⇥⌃k be two symmetric binary relations. Then R\ = R1 \R2 is also a
symmetric binary relation on ⌃k. Moreover, ⌃�k

R\
= ⌃�k

R1
\⌃�k

R2
. Therefore, if L1 2 2LT

R1(k) and
L2 2 2LT

R2(k), then L1 \ L2 2 2LT
R\(k), which gives the closure of 2LT(k) under intersection.

By Proposition 3.3, the family 2LT
R

(k) is closed under R-complementation for any symmetric
binary relation R ✓ ⌃k ⇥ ⌃k, and so the family 2LT(k) is closed under R-complementation.

Finally, let k1, k2 � 1 and let L1 2 2LT(k1) and L2 2 2LT(k2). For k = max{k1, k2} we obtain
L1 2 2LT(k) and L2 2 2LT(k) by Lemma 2.4. In this way, the closures of the family 2LT follow
from the closures of 2LT(k). 2

To establish closure under intersection, we used the fact that ⌃�k

R1\R2
= ⌃�k

R1
\⌃�k

R2
for any k � 1

and any two symmetric binary relations R1, R2 on ⌃k. A similar argument does not hold for
union, as ⌃�k

R1
[ ⌃�k

R2
is in general a proper subset of ⌃�k

R1[R2
.

Example 3.5 Let ⌃ = {a, b}, k = 1, R1 = {(a, a)} and R2 = {(b, b)}. Then ⌃�1
R1

= a+ and

⌃�1
R2

= b+, but ⌃�1
R1[R2

= {w 2 ⌃+ | 8i = 1, 2, . . . , |w| : w[i] = w[|w| + 1 � i] }, which also

contains the word w = abba /2 ⌃�1
R1

[ ⌃�1
R2
. ⌅
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In fact, the families 2LT and 2LT(k) are not closed under union.

Proposition 3.6 For all k � 1, the families 2LT(k) and 2LT are not closed under union.

Proof. Let k = 1 and ⌃ = {a, b, c}. We take R1 = {(a, a), (b, c), (c, b)} and define the
language L1 as follows:

L1 = {w 2 ⌃�1
R1

| P1(w), S1(w) 2 {a, b, c}, I1(w) ✓ {a, b, c} }
= {w | w 2 {a, b, c}⇤, 8i = 1, 2, . . . , |w| : w[i] = a ) w[|w|+ 1� i] = a and

w[i] = b ) w[|w|+ 1� i] = c and w[i] = c ) w[|w|+ 1� i] = b }.

Similarly, we take R2 = {(a, a), (b, b), (c, c)} and define the language L2 as follows:

L2 = {w 2 ⌃�1
R2

| P1(w), S1(w) 2 {a, b, c}, I1(w) ✓ {a, b, c} }
= {w | w 2 {a, b, c}⇤, 8i = 1, 2, . . . , |w| : w[i] = w[|w|+ 1� i] }.

Clearly, L1 2 2LT
R1(1) and L2 2 2LT

R2(1) and, hence, L1, L2 2 2LT(1) ✓ 2LT.

Now assume that the union L1[L2 belongs to the family 2LT. Then there are an integer k � 1
and a symmetric binary relation R on {a, b, c}k such that L1 [ L2 belongs to 2LT

R

(k).

We consider the word v1 = akbkakckak. Since v1 2 L1, the relation R necessarily contains the
pairs (ak�ibi, ciak�i), (ciak�i, ak�ibi), (bk�iai, aick�i), and (aick�i, bk�iai) for all 0  i  k.

Since v2 = akckakckak belongs to L2, the relation R also contains the pairs (ak�ici, ciak�i) and
(ciak�i, ak�ici) for all 0  i  k.

This implies that also the word w = akbkakckakckakckak belongs to {a, b, c}�k

R

. Moreover, since
P
k

(w) = P
k

(v1), Sk

(w) = S
k

(v1), and I
k

(w) = I
k

(v1), the word w belongs to the k-R-testable
language L1 [L2. However, as w /2 L1 and w /2 L2, this is a contradiction. Hence, we conclude
that neither 2LT(k) nor 2LT are closed under union. 2

The closure under reversal is easily seen by reversing all factors and the components of R. Here
a pair (u, v) 2 R is called non-redundant for L, if there exist a word w 2 L and an index i such
that w[i, k] = u and w[|w|+ 2� k � i, k] = v.

Proposition 3.7 For all k � 1, the families 2LT(k) and 2LT are closed under reversal. For a

language L 2 2LT
R

(k), its reversal LR

belongs to 2LT
R

(k) if and only if, for all pairs (u, v) 2 R
that are non-redundant for L, the pair (uR, vR) belongs to R.

Proof. Consider a k-R-testable language L. For any factor u of length k from some word
w 2 L, the factor uR appears in wR and vice versa. Moreover, for 1  i  |w| � k + 1,
whenever the factors w[i, k] and w[|w| + 2 � k � i, k] of w 2 L are in relation R, the factors
(w[|w|+2�k� i, k])R and (w[i, k])R of wR are in relation R

r

= { (uR, vR) | (u, v) 2 R }. So, LR

is k-R
r

-testable. This shows the assertion for 2LT(k) and 2LT.

Finally, let L 2 2LT
R

(k). Then, in order to have LR 2 2LT
R

(k), it is necessary and su�cient
that (uR, vR) 2 R for all pairs (u, v) 2 R that are non-redundant for L. 2

Next, we turn to the operations of concatenation and Kleene star.
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Proposition 3.8 For all k � 1, the families 2LT(k) and 2LT are neither closed under concate-

nation nor under Kleene star. There exist an alphabet ⌃ and a symmetric relation R ✓ ⌃k⇥⌃k

such that the family 2LT
R

(k) is neither closed under concatenation nor under Kleene star.

Proof. Let k = 1 and ⌃ = {a, b, c}. We choose R = {(a, a), (b, c), (c, b)} and consider the
language

L = {w 2 ⌃�1
R

| P1(w), S1(w) 2 {a, b, c}, I1(w) ✓ {a, b, c} }
= {w | w 2 {a, b, c}⇤, 8i = 1, 2, . . . , |w| : w[i] = a ) w[|w|+ 1� i] = a and

w[i] = b ) w[|w|+ 1� i] = c and w[i] = c ) w[|w|+ 1� i] = b }.

The language L is 1-R-testable and belongs to all families in question. Let ` � 1 be a pos-
itive integer and let R0 ✓ {a, b, c}` ⇥ {a, b, c}` be a symmetric relation, and assume that the
concatenation L · L or the iteration L⇤ belongs to the family 2LT

R

0(`) ✓ 2LT(`) ✓ 2LT.

Since a+ 2 L and b`c` 2 L, the word w = b`c`a2` belongs to the concatenation L ·L as well as to
the iteration L⇤. Therefore, the relation R0 necessarily contains the pairs (b`�ici, a`), (a`, b`�ici),
(c`�iai, cia`�i) for all 0  i  `.

Now consider the word w0 = b`c`+1a2`+1 2 ⌃�`

R

0 . Since P
`

(w0) = P
`

(w), S
`

(w0) = S
`

(w), and
I
`

(w0) = I
`

(w), we conclude that w0 2 L · L or w0 2 L⇤. However, since in any word from L
the number of occurrences of the letter b is equal to the number of occurrences of c, the same
is true for L · L and L⇤. Since w0 includes ` occurrences of the letter b but (`+ 1) occurrences
of the letter c, the word w0 can neither belong to L · L nor to L⇤, a contradiction. 2

Turning to the operation of applying homomorphisms, we see that even the restriction to
length-preserving homomorphisms does not yield a positive result.

Proposition 3.9 For all k � 1, the families 2LT(k) and 2LT are not closed under length-

preserving homomorphisms. There exist a binary alphabet ⌃ and a symmetric relation

R ✓ ⌃k ⇥ ⌃k

such that the family 2LT
R

(k) is not closed under length-preserving homomor-

phisms.

Proof. The non-closure result is shown by using the two-sided strictly 1-testable language L0

over the alphabet {a, b} from Example 2.1, whose non-empty words have the property that the
i-th letter from the left di↵ers from the i-th letter from the right. Let h : {a, b}⇤ ! {a}⇤ be the
length-preserving homomorphism that is defined by h(a) = h(b) = a. Since all words from L0

have even length, h(L0) = { a2n | n � 1 }, which is not even two-sided locally testable. So, h(L0)
does not belong to 2LT. 2

Finally, we consider inverse homomorphisms. In this case, the edge between closure and non-
closure is sharp. While the families 2LT(k) as well as 2LT are closed under length-preserving
inverse homomorphisms, this closure property is lost when the restriction of the homomorphisms
is relaxed to being only �-free, just as it happens for the two-sided strict testability (cf. [2]).

Proposition 3.10 For all k � 1, the families 2LT(k) and 2LT are closed under length-

preserving inverse homomorphisms. For a language L 2 2LT
R

(k), its preimage h�1(L)
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with respect to a length-preserving homomorphism h belongs to 2LT
R

(k) if and only if

{ (x, y) | (h(x), h(y)) 2 R is non-redundant for L } is contained in R.

Proof. Consider a two-sided locally testable language L over an alphabet ⌃ and let h : �⇤ ! ⌃⇤

be a length-preserving homomorphism mapping from some alphabet � to ⌃.

In order to represent h�1(L), it su�ces to consider prefixes, su�xes, and factors whose homo-
morphic images are factors that appear in the representation of L. More precisely,

8w 2 ⌃�k 8w0 2 ��k : if P
k

(w) = h(P
k

(w0)) ^ S
k

(w) = h(S
k

(w0)) ^ I
k

(w) = h(I
k

(w0)),
then (w 2 L () w0 2 h�1(L)).

In other words, if language L is k-R-testable, then its preimage h�1(L) is k-R
h

-testable, where
R

h

= { (u, v) | (h(u), h(v)) 2 R }.

Finally, if h is a length-preserving homomorphism from ⌃⇤ to ⌃⇤, and if L ✓ ⌃⇤ belongs to
2LT

R

(k), then the language h�1(L) also belongs to 2LT
R

(k) if and only if, for all pairs (u, v) 2 R
that are non-redundant for L, each pair (x, y) 2 (h�1(u), h�1(v)) belongs to R. 2

As mentioned before, the restriction to non-erasing homomorphisms is not su�cient to obtain
a positive closure result.

Proposition 3.11 For all k � 1, the families 2LT(k) and 2LT are not closed under �-free in-

verse homomorphisms. There exist a binary alphabet ⌃ and a symmetric relation R ✓ ⌃k ⇥ ⌃k

such that the family 2LT
R

(k) is not closed under �-free inverse homomorphisms.

Proof. Once more, we utilize the language L0 over the alphabet {a, b} from Example 2.1,
whose non-empty words have the property that the i-th letter from the left di↵ers from the
i-th letter from the right. It is a two-sided strictly 1-testable language and all of its words have
even lengths.

Let h : {a, b}⇤ ! {a, b}⇤ be the �-free homomorphism defined by h(a) = aa and h(b) = b, and
assume that the language h�1(L0) belongs to some family 2LT

R

(`). Since the word a2`+2b2`+2

belongs to L0, the word w = a`+1b2`+2 belongs to h�1(L0). Therefore, the relation R necessarily
contains the pairs (a`�ibi, b`) and (b`, a`�ibi) for all 0  i  `.

Now consider the word w0 = a`+1bb2`+2 that is from ⌃�`

R

. Since P
`

(w0) = P
`

(w), S
`

(w0) = S
`

(w),
and I

`

(w0) = I
`

(w), we conclude w0 2 h�1(L). However, the word h(w0) = a2`+2bb2`+2 of odd
length does not belong to L0. This contradiction shows that h�1(L0) does not belong to 2LT.

2

4. Expressive Capacity

Here we turn to the study of the expressive capacity of two-sided locally testable languages
with respect to other important language families. It is not hard to see that even the strongest
family under consideration does not contain the regular languages, as, for example, the regular
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language (aa)⇤ is not two-sided locally testable [2]. On the other hand, Example 2.1 reveals that
there is even a two-sided strictly 1-testable languagewhich is not regular. Before we continue
with such relationships we show an upper bound for the expressive capacity. To this end,
we improve the result from [2] that all two-sided strictly locally testable languages are even
linear context-free by showing that the family 2LT is a proper subfamily of the even linear
languages. Recall that a language L ✓ ⌃⇤ is called even linear if it is generated by a grammar
G = (V,⌃, S, P ) such that all productions in P are of the form (A ! uBv), where A,B 2 V
and u, v 2 ⌃⇤ satisfying |u| = |v|, or of the form (A ! w), where A 2 V and w 2 ⌃⇤ [1]. The
family of even linear languages is denoted by ELIN.

Theorem 4.1 The family 2LT is properly included in ELIN.

Proof. Since the family of even linear languages includes the regular languages, but not all
regular languages are two-sided locally testable, we can immediately conclude that not all even
linear languages are two-sided locally testable.

So, it remains to be shown that each two-sided locally testable language is even linear. For
each L 2 2LT, there are an integer k � 1 and a symmetric binary relation R on ⌃k, where ⌃ is
the alphabet of L, such that L belongs to 2LT

R

(k). From above we know that each two-sided
locally testable language L can be represented as L = F [

S
(u,v,C)2triple(L) LR

(u, v, C), where

F ✓ ⌃k�1 and L
R

(u, v, C) = {w 2 ⌃�k

R

| P
k

(w) = u, S
k

(w) = v, and I
k

(w) = C }. Since
the set triple(L) is finite and the family ELIN is closed under union, it is su�cient to construct
even linear grammars for the sets L

R

(u, v, C). This, however, can be done similarly to the
construction of a linear grammar for a two-sided strictly k-testable language (see [2]). 2

We continue by collecting some more or less immediate relationships of the family of two-sided
locally testable languages. The next example from [2] is a slight modification of Example 2.1,
where Lpal is defined to be the language of palindromes Lpal = {w 2 ⌃⇤ | w = wR }.

Example 4.2 Let k = 1, let ⌃ = {a, b}, and let R ⇢ ⌃⇥ ⌃ be defined as R = {(a, a), (b, b)}.
Then ⌃�1

R

consists of all those non-empty words for which the i-th letter from the left coincides
with the i-th letter from the right, that is, ⌃�1

R

= Lpal \⌃+. So, Lpal is (strictly) 1-testable. ⌅

Recall that the language Lpal is not a Church-Rosser language [3]. On the other hand, the
regular language (aa)⇤ is not two-sided locally testable. If it was, then there would be k � 1
and a relation R such that (aa)⇤ is k-R-testable. In this case R = {(ak, ak)}, and hence, also
unary words of odd lengths would belong to the language considered, a contradiction. In fact,
for a unary language L ✓ a⇤, it is easily seen that it is two-sided k-testable if and only if it is
strictly k-testable.

Corollary 4.3 For all k � 1, the families 2LT and 2LT(k) are incomparable to the families of

regular, deterministic linear, deterministic context-free, and Church-Rosser languages. There

exist a binary alphabet ⌃ and a symmetric relation R ✓ ⌃k ⇥ ⌃k

such that the family 2LT
R

(k)
is incomparable to the families of regular, deterministic linear, deterministic context-free, and

Church-Rosser languages.
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Before we discuss the inclusions depicted in Figure 1 below we present the following relationships
to two-sided strictly locally testable languages, which corresponds to the situation in the one-
sided setting [5]. Here 2SLT

R

(k) is used to denote the family of two-sided strictly k-testable
languages that are based on the fixed symmetric relation R.

Theorem 4.4 For each k � 1 and each symmetric relation R ✓ ⌃k ⇥ ⌃k

, the family 2LT
R

(k)
is the closure of the family 2SLT

R

(k) under union, intersection, and R-complementation.

Proof. By Proposition 3.3, the family 2LT
R

(k) is closed under the operations considered.
Since 2SLT

R

(k) ✓ 2LT
R

(k), it is su�cient to show that every language from 2LT
R

(k) can
be represented as a combination of languages from 2SLT

R

(k) using the operations of union,
intersection, and R-complementation.

Recall from above that each language L 2 2LT
R

(k) has a representation of the form L = F
L

[S
(u,v,C)2triple(L) LR

(u, v, C), where F
L

is a set of strings of lengths less than k and L
R

(u, v, C) =

{w 2 ⌃�k

R

| P
k

(w) = u, S
k

(w) = v, and I
k

(w) = C }. Since triple(L) is a finite set, it remains
to be shown that any language L

R

(u, v, C) with (u, v, C) 2 triple(L) can be represented as a
combination of languages from 2SLT

R

(k) using the above operations.

Starting with the two-sided strictly k-testable language L({u}, {v}, C,R) we obtain the inclu-
sion L

R

(u, v, C) ✓ L({u}, {v}, C,R). The problem to cope with is that there may be words w in
the latter language such that I

k

(w) ⇢ C. These words do not belong to L
R

(u, v, C). However,
the set of these words can be filtered out by building the intersection of the R-complements of
all languages L({u}, {v}, C 0, R), where the intersection is taken over all proper subsets C 0 of C,
that is,

T
C

0⇢C

Lc

R

({u}, {v}, C 0, R).

So, we have the representation L
R

(u, v, C) = L({u}, {v}, C,R) \
T

C

0⇢C

Lc

R

({u}, {v}, C 0, R).
Thus, each language L 2 2LT

R

(k) is a finite combination of two-sided strictly k-testable lan-
guages with respect to the relation R. 2

Since the families 2LT(k) and 2LT are not closed under union, a similar characterization in terms
of two-sided strictly locally testable languages does not exist. However, for every language L
from these families, there are an integer k � 1 and a symmetric relation R ✓ ⌃k ⇥ ⌃k such
that L 2 2LT

R

(k). This implies that L has a representation as a combination of two-sided
strictly k-testable languages and, thus, belongs to the closure of 2SLT

R

(k) with respect to the
operations of union, intersection, and R-complementation. So, we have the following corollary,
where by R-Boolean closure we mean the closure under the operations of union, intersection,
and R-complementation.

Corollary 4.5 Let k � 1.

1. The family 2LT is properly included in the R-Boolean closure of 2SLT.

2. The family 2LT(k) is properly included in the R-Boolean closure of 2SLT(k).

3. The R-Boolean closure of 2LT coincides with the R-Boolean closure of 2SLT.

4. The R-Boolean closure of 2LT(k) coincides with the R-Boolean closure of 2SLT(k).
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In order to give evidence for the inclusions of Figure 1, we note that all inclusions depicted follow
for structural reasons. Moreover, recall that all one-sided locally testable families depicted are
subsets of the regular languages, while even the two-sided strictly 1-testable languages include
a non-regular language. This shows the properness of the inclusions between the variants of
one-sided and two-sided testable families. The properness of the inclusions of 2LT

R

(k) in 2LT(k)
and of LT

R

(k) in LT(k) is trivial, since the latter contain languages based on di↵erent relations.
So, the hierarchical inclusions remain to be shown. Here we can apply witness languages that
also separate the levels of the hierarchy of strictly locally testable languages.

For all k � 1, let L
k

be the finite language L
k

= {ak, ak+1} and let R
k

be the symmetric binary
relation R

k

= {(ak, ak)}.

Lemma 4.6 For all k � 1, L
k+1 2 LT

Rk+1
(k + 1)r 2LT(k).

Proof. The language L
k+1 belongs to LT

Rk+1
(k + 1), since

P
k+1(a

k+1) = S
k+1(a

k+1) = ak+1 = P
k+1(a

k+2) = S
k+1(a

k+2)

and I
k+1(ak+1) = I

k+1(ak+2) = ;. Any other word w from {a}�k+2 has a non-empty set I
k+1(w).

On the other hand, assume that L
k+1 is a two-sided k-testable language. Then the underlying

relation R necessarily contains the pair (ak, ak). However, since

P
k

(ak+2) = S
k

(ak+2) = ak = P
k

(ak+3) = S
k

(ak+3)

and I
k

(ak+2) = I
k

(ak+3) = {ak}, the word ak+3 belongs to the language as well, a contradiction.
2

Thus, we can draw the following conclusions.

Corollary 4.7 1. The (two-sided) k-testable languages form an infinite ascending hierarchy

with respect to the parameter k.

2. For all k � 1, there exist symmetric relations R
k

= {(ak, ak)} such that the families

2LT
Rk
(k) (LT

Rk
(k)) form an infinite ascending hierarchy with respect to the parameter k.

3. For all k � 1, LT(k) ( 2LT(k), but 2LT(k) = SLT(k) for unary languages.

4. All families depicted in Figure 1 that are not connected by a path are incomparable.

Above we have argued that the locally testable languages are properly contained in the two-
sided locally testable languages, as the former only contain regular languages, while the latter
contain some non-regular languages. In the case of strict testability, it has been observed in [2]
that there are even regular languages that are two-sided strictly testable, but not (one-sided)
strictly testable. Here we show a corresponding result for k-testability.

Theorem 4.8 For all k � 2, LT(k) ( 2LT(k) \ REG.

Proof. Let us first consider the case of k = 2. We take ⌃ = {a, b, c, d} and

R2 = {(ab, aa), (aa, ab), (bd, da), (da, bd), (db, bd), (bd, db),
(bc, cb), (cb, bc), (bc, db), (db, bc), (cb, bd), (bd, cb)}.
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2LT(1) 2LTR1(1)

LT(1) LTR1(1)

2LT(k) 2LTRk(k)

LT(k) LTRk(k)

2LT

LT

Figure 1: Inclusion structure of two-sided and one-sided locally testable language families. The arrows
indicate strict inclusions. The dashed lines are used to express the infinite hierarchies dependent on
the window size k. The families 2LT

Rk(k) and LT
Rk(k) depend on fixed binary symmetric relations

R
k

✓ ⌃k⇥⌃k. There are such relations that witness the inclusions depicted. All families not connected
by a path are incomparable.

Now we choose u = ab, v = aa, and C = {bc, cb, bd, db, da}, and define the language L2 as

L2 = L
R2(u, v, C) = {w 2 ⌃�2

R2
| P2(w) = u, S2(w) = v, and I2(w) = C }.

Then
L2 = { abdbx1bx2b · · · bxn

bdaa | n � 1, x1, x2, . . . , xn

2 {c, d}, 9i : x
i

= c },
as the only allowed inner factor that ends in a is the factor da, the only other factor of
length two that is in relation with da is bd, and as the inner factors bc and cb must oc-
cur. By definition L2 is two-sided k-testable, and it is obviously a regular language. Now
w1 = abdbcbdaa 2 L2, while w2 = abcbdbdaa 62 L2. However, P2(w2) = ab = P2(w1),
S2(w2) = aa = S2(w1), and I2(w2) = C = I2(w1), which implies that L2 is not 2-testable,
that is, L2 2 (2LT(2) \ REG)r LT(2).

On the other hand, it is easily seen that L2 is 3-testable, as it consists of all words w satisfying
P3(w) = abd, S3(w) = daa, and I3(w) 2 {I, I [ {dbd}, I [ {cbc}, I [ {cbc, dbd}}, where I is the
minimal set of required infixes I = {bdb, dbc, cbd, bda}.

For k � 3, we choose the language

L
k

= { ak�1bk�1dbk�1x1b
k�1 · · · bk�1x

n

bk�1dak | n � 1, x1, x2, . . . , xn

2 {c, d}, 9i : x
i

= c }.

Then w1 = ak�1bk�1dbk�1cbk�1dak 2 L
k

, but w2 = ak�1bk�1cbk�1dbk�1dak 62 L
k

, although
P
k

(w1) = ak�1b = P
k

(w2), Sk

(w1) = ak = S
k

(w2), and

I
k

(w1) = { aibk�1�i | 1  i  k� 2 }[{ bidbk�1�i, bicbk�1�i, bidak�1�i | 0  i  k� 1 } = I
k

(w2).
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Thus, L
k

is not k-testable. By taking u = ak�1b, v = ak, C = I
k

(w1) and by choosing a
corresponding symmetric binary relation R

k

on ⌃k, it can be shown that L
k

= L
Rk
(u, v, C),

that is, L
k

2 (2LT(k)\REG)rLT(k). However, it can be shown that the language L
k

is locally
(2k � 1)-testable. 2

A corresponding result does not hold for k = 1.

Theorem 4.9 2LT(1) \ REG = LT(1).

Currently, we do not yet know whether 2LT\REG contains any l anguages that are not locally
testable.

Let L ✓ ⌃⇤ be a two-sided locally testable language that is given through a symmetric binary
relation R ✓ ⌃k ⇥ ⌃k, a finite set F

L

✓ ⌃k�1, and the set

triple(L) = { (u, v, C) | u, v 2 ⌃k and C ✓ ⌃k such that L
R

(u, v, C) \ L 6= ; },

that is, L = F
L

[
S

(u,v,C)2triple(L) LR

(u, v, C). Then the membership problem for L, that is, the
question of whether a given word w 2 ⌃⇤ belongs to L, is obviously decidable is linear time.
As emptiness and finiteness are decidable for linear languages, Theorem 4.1 implies that these
problems are also decidable for two-sided locally testable languages.

The language L is universal, that is, L = ⌃⇤, if and only if
S

(u,v,C)2triple(L) LR

(u, v, C) = ⌃�k

and L
F

= ⌃k�1. The latter is easily tested, and the former implies in particular that all
words of length at least k are R-symmetric, that is, R = ⌃k ⇥ ⌃k, which is easily tested, too.
If R = ⌃k ⇥ ⌃k, then L is actually a locally testable language, and therewith regular, which
means that the question of whether L = ⌃⇤ is decidable.

Theorem 4.10 Universality is decidable for two-sided locally testable languages.

The universality problem can be seen as a special case of the following Regular Inclusion Prob-

lem:

INSTANCE: A regular language S ✓ ⌃⇤ and a two-sided locally testable language
L ✓ ⌃⇤.

QUESTION: Is S contained in L?

In fact, this problem is decidable.

Theorem 4.11 The Regular Inclusion Problem is decidable for two-sided locally testable lan-

guages.

Given a regular language S and a two-sided locally testable language L, we can decide whether L
is contained in S. In fact, we can construct an even linear grammar for the language L (as the
proof of Theorem 4.1 is constructive), and from a DFA for S, we easily obtain a DFA for the
complement Sc = ⌃⇤ r S of S. Hence, we can construct a linear grammar G for the language
L \ Sc. Now L ✓ S if and only if L(G) = L \ Sc is empty, which is decidable. From this
observation and from Theorem 4.11 we get the following decidability result.
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Corollary 4.12 The following Regular Equality Problem is decidable:

INSTANCE: A regular language S ✓ ⌃⇤
and a two-sided locally testable language L.

QUESTION: Is S = L?

It remains currently open whether we can decide regularity for two-sided locally testable lan-
guages. Finally we turn to the inclusion and equivalence problems for two-sided locally testable
languages.

Theorem 4.13 Let k � 1, let ⌃ be a finite alphabet, and let R be a symmetric binary relation

on ⌃k

. Then the inclusion problem is decidable for k-R-testable languages.

Proof. Let L1 = F
L1 [

S
(u,v,C)2triple(L1)

L
R

(u, v, C) and L2 = F
L2 [

S
(x,y,D)2triple(L2)

L
R

(x, y,D)
be two k-R-testable languages over ⌃. Then L1 ✓ L2 if and only if the following conditions are
satisfied:

1. F
L1 ✓ F

L2 , and

2. triple(L1) ✓ triple(L2).

Obviously, these conditions are checked easily. 2

Hence, it follows that for k-R-testable languages equivalence is decidable. Actually, we can
extend the above result slightly as follows.

Theorem 4.14 Let k � 1, let ⌃ be a finite alphabet, and let R1 and R2 be two symmetric binary

relations on ⌃k

such that R1 ✓ R2. Then it is decidable whether a k-R1-testable language L1

is contained in a k-R2-testable language L2.

If L1 is a k-R1-testable and L2 is a k-R2-testable language on the same alphabet ⌃, but R1 ✓ R2

does not hold, then in order to check L1 ✓ L2, also LR1(u, v, C) ✓ ⌃�k

R2
must be checked for each

(u, v, C) 2 triple(L1). We currently do not see how this can be done algorithmically. Thus, it
remains open whether inclusion (or equivalence) is decidable for the classes 2LT(k) and 2LT.

5. Conclusions, Open and Untouched Questions

We have extended the two-sided strictly locally testable languages of [2] to the two-sided locally
testable languages. We have shown that the latter are obtained as the R-Boolean closure of the
former, and we have established some closure and non-closure properties. Further, extending
the results of [2], it can be shown that two-sided k-testable languages are learnable in the limit
from positive data. Some problems that remain open for future work include the following.

Inside the Boolean closure: How about the union closure of 2SLT(k), etc? For example,
the language over alphabet {a, b} whose words have to have both factors ak and bk belongs
to LT(k), but does not have a representation as union of languagesfrom 2SLT(k). So, the union
closure is properly contained in the Boolean closure.
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Separation by regular languages: For each fixed integer k � 2, we have seen that there
exists a regular language L

k

that is two-sided k-testable, but not k-testable. However, as L
k

is k0-testable for some integer k0 > k, it remains open whether we can separate the family of
(one-sided) locally testable languages from the family of two-sided locally testable languages
by a regular language.

Decidability: We have seen that emptiness, finiteness, containment of a given regular set, and
equality to a given regular set are decidable for two-sided locally testable languages. Further,
inclusion and equivalence are decidable for k-R-testable languages, but it remains open whether
these problems are decidable for two-sided locally testable languages in general.
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Frantǐsek Mráz Friedrich Otto Martin Plátek
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Abstract
We present a transformation from several types of monotone deterministic two-way restarting
list automata (RLAs) that do not have any type of correctness preserving property into several
types of monotone deterministic RLAs that satisfy the complete strong correctness preserving
property. These types of automata provide new characterizations for the class LRR of left-
to-right regular languages, which are suitable for the (lexical) disambiguation of the syntactic
analysis of individual LRR-languages and for the localization of syntactical errors.

1. Introduction

The motivation for this paper and some other related papers is to give a theoretical background
for an environment that supports lexicalized syntax of natural languages based on constraints.
The first goal of these papers are techniques for lexical disambiguation. Here we show that
the class LRR of left-to-right regular languages of [17] can be characterized by several types
of constrained two-way restarting list automata (RLAs), and that some of them yield fully
(lexically) disambiguated syntactic analysis with almost continuous constituents (reductions in
contextual form, see below) for LRR-languages. This result can be used to present a technique
for lexical disambiguation and syntactic analysis for all context-free languages (see [14]).

We present a transformation from several types of monotone deterministic RLAs that do not
have any type of correctness preserving property into several types of monotone deterministic
RLAs that satisfy the complete strong correctness preserving property. These types of au-
tomata provide new characterizations for the class LRR, which are suitable for the (lexical)
disambiguation of the syntactic analysis of individual LRR-languages and for the localization of
syntactical errors. A first such transformation, which was also mentioned in [14], was described
in detail in the technical report [15]. As we have found a serious gap in the description of this
transformation, we present a di↵erent, much simplified, transformation in the current paper.

In [14] it is shown that restarting automata with the complete (weak) correctness preserving
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property are sensitive to the size of their windows, which provides us with a tool for measur-
ing the complexity of analysis by reduction (see below). For natural languages as well as for
programming languages, this type of complexity is fairly low. On the other hand, even within
the three lower classes of the Chomsky hierarchy, this type of complexity is not bounded [14].
Let us note that similar correctness preserving properties hold for (Marcus) contextual gram-
mars (see, e.g., [9]) and for pure grammars (see, e.g., [10]). Contextual and pure grammars are
motivated by linguistic considerations similar to our considerations.

In addition to presenting the new transformation, we also enhance the result by requiring the
automata obtained to be in the so-called strong cyclic form (see, e.g., [5]). The strong cyclic
form is a useful notion which, together with the complete strong correctness preserving property,
supports the localization of syntactical errors and error recovery (see, e.g., [16]).

In order to formulate our results in quite a general form, we consider the two-way restarting list
automaton that combines the features of a restarting automaton (see, e.g., [12]) with those of
a list automaton [7]. A two-way restarting list automaton (RLA) M is a one-tape automaton
with a finite-state control and a read/write window of a fixed finite size. This window can
move in both directions along the tape (that is, a list of items) containing a word delimited by
sentinels. The RLA M uses an input alphabet and a working (basic) alphabet that includes
the input alphabet. It can decide (in general non-deterministically) to rewrite the contents of
its window: it may delete some items from the list and/or replace some items. In addition, M
can perform restart operations. A restart causes M to move its window to the left end of the
tape, so that the first symbol it contains is the left sentinel, and to reenter its initial state.

We recall some constraints that are typical for restarting automata, and we outline ways for
new combinations of constraints. These constraints include the use of deletions instead of
rewritings, the restriction to contextual deletions, the complete strong correctness preserving
property (CSCPP), and the requirement that the automata are in strong cyclic form. The
CSCPP is an important property of analysis by reduction. It guarantees that, in a sequence
of transformations w1 ! w2 ! · · · ! wn, all words w1, w2, . . . , wn belong to the language
considered if at least one of them belongs to that language. Further, the property of being in
strong cyclic form is an important constraint, which states that an automaton can only accept
or reject once it has reduced the length of the given input to the size of its window [5]. In
particular, we show that the power of monotone deterministic two-way restarting list automata
(det-mon-RLAs) to accept input languages does not decrease, if we use the corresponding type
of automaton which, instead of performing (length-reducing) rewrites, can only delete symbols,
which are in the so-called (Marcus) contextual form, and which are additionally in the strong
cyclic form. In fact, we will establish this result for RLAs that use the restart operation
(det-mon-RLWC) and for the same type of RLAs that do not use the restart operation. This
strengthens a result from [8] in several ways, which states that det-mon-RLWW-automata
are equivalent to det-mon-RLWD-automata with respect to the input languages they accept
(see Section 3 for the corresponding definitions). Let us recall that det-mon-RLWW-automata
characterize an important class of languages – the class LRR of left-to-right regular languages
that was introduced and studied in [17]. This characterization was shown in [13].

Let us remark that for the characterization of the class DCFL of deterministic context-free
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languages by (one-way) deterministic monotone RLAs that only delete symbols we need the
operation restart [7]. In this sense the language class LRR is more robust than the class DCFL.

This paper is structured as follows. In Section 2 we introduce the two-way restarting list
automaton (RLA) and establish various basic notions on computations of RLAs. In Section 3
we introduce RLWW-automata as special types of RLAs, present some constraints for them,
and derive the aforementioned results on monotone deterministic RLAs. Finally, Section 4
summarizes the main results. The paper concludes with Section 5, in which our results are
commented on and problems for future work are presented.

2. Definitions

By ⇢ we denote the proper subset relation, and P(S) denotes the power set of a set S. Through-
out the paper, � will denote the empty word, and N and N+ will denote the set of all non-
negative integers and the set of all positive integers, respectively. Further, for an alphabet �
and an integer k 2 N+, �k denotes the set of all words of length k over �, and �k is the set
of all words over � of length at most k. We will sometimes use regular expressions instead of
the corresponding regular languages. We start with the definition of the two-way restarting list
automaton.

Definition 2.1 A two-way restarting list automaton, an RLA for short, is a one-tape machine
that is described by an 8-tuple M = (Q,⌃,�,⇤,�, q0, k, �). Here Q is the finite set of states,
⌃ is the finite input alphabet, � is the finite working alphabet that includes ⌃, the symbols
⇤,� 62 � are the markers for the left and right border of the work space, respectively, q0 2 Q is
the initial state, k � 1 is the size of the read/write window, and

� : Q⇥ PC(k) !
P((Q⇥ ({MVR,MVL} [ {W(v), SL(v) | v 2 PC(n)

, 0  n  k})) [ {Restart, Accept, Reject})

is the transition function. Here PC(k) := (⇤ · �k�1) [ �k [ (�k�1 ·�) [ (⇤ · �k�2 ·�) is the
set of possible contents of the read/write window of M .

The transition function describes seven di↵erent types of transition steps (or operations), where
we assume that M is in state q 2 Q and that it sees the word u 2 PC(k) in its read/write window:

1. A move-right step (q, u) ! (q0,MVR) assumes that (q0,MVR) 2 �(q, u), where q

0 2 Q and
u 6= �. This move-right step causes M to shift the read/write window one position to the
right and to enter state q

0.

2. A move-left step (q, u) ! (q0,MVL) assumes that (q0,MVL) 2 �(q, u), where q

0 2 Q and
u 62 ⇤ ·�⇤ · {�,�}. It causes M to shift the read/write window one position to the left and
to enter state q

0.

3. A rewrite step (q, u) ! (q0,W(v)) assumes that (q0,W(v)) 2 �(q, u), where q

0 2 Q, v 2
PC(k), |v| = |u|, and the sentinels are at the same positions in u and v (if any). It causes
M to replace the contents u of the read/write window by the string v, and to enter state q

0.
The window does not change its position.
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4. An SL-step (q, u) ! (q0, SL(v)) assumes that (q0, SL(v)) 2 �(q, u), where q

0 2 Q and
v 2 PC(k0) for some k

0
< k, v is shorter than u, containing all sentinels from u. It causes

M to replace u by v, to enter state q

0, and to shift the window by |u| � |v| items to the
left – but to the left sentinel ⇤ at most (the contents of the window is ‘completed’ from
the left; the distance to the left sentinel decreases if the window position was not already
at ⇤, while the distance to the right sentinel is preserved unless the window was near the
left sentinel ⇤, in which case the distance to the right sentinel may decrease).

5. A restart step (q, u) ! Restart assumes that Restart 2 �(q, u). It causes M to move its
read/write window to the left end of the tape, so that the first symbol it sees is the left
sentinel ⇤, and to reenter the initial state q0.

6. An accept step (q, u) ! Accept assumes that Accept 2 �(q, u). It causes M to halt and
accept.

7. A reject step (q, u) ! Reject assumes that Reject 2 �(q, u). It causes M to halt and reject.

A configuration of an RLA M is a string ↵q�, where q 2 Q, and either ↵ = � and � 2
{⇤} · �⇤ · {�} or ↵ 2 {⇤} · �⇤ and � 2 �⇤ · {�}; here q represents the current state, ↵� is the
current contents of the tape, and it is understood that the window contains the first k symbols
of � or all of � when |�|  k. A restarting configuration is of the form q0⇤w�, where w 2 �⇤;
if w 2 ⌃⇤, then q0⇤w� is an initial configuration. We see that any initial configuration is also
a restarting configuration and that any restart transfers M into a restarting configuration.

In general, the RLAM is nondeterministic, that is, there can be two or more steps (instructions)
with the same left-hand side (q, u), and thus, there can be more than one computation for an
(input) word. If this is not the case, then M is deterministic. We will use the prefix det- to
denote deterministic RLAs.

An input word w 2 ⌃⇤ is accepted by M , if there is a computation which starts with the initial
configuration q0⇤w� and ends by executing an accept step. By L(M) we denote the language
consisting of all input words accepted by M ; we say that M recognizes (accepts) the input
language L(M).

A basic (or characteristic) word w 2 �⇤ is accepted by M , if there is a computation which starts
with the restarting configuration q0⇤w� and ends by executing an accept step. By LC(M)
we denote the language consisting of all basic words accepted by M ; we say that M recognizes
(accepts) the basic (characteristic) language LC(M). Obviously, LC(M) \ ⌃⇤ = L(M).

In the following we only consider finite computations of RLAs which end either by an accept
or a reject step.

– Cycles, tails: Any finite computation of an RLA M consists of certain phases. A phase,
called a cycle, starts in a restarting configuration, the window moves along the tape performing
non-restarting steps until a restart step is performed, which completes the current cycle. Thus,
after each cycle a new restarting configuration is reached. If no further restart step is performed,
any finite computation necessarily finishes in a halting configuration – such a phase is called a
tail.
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– Cycle-rewritings: By the notation q0⇤u� `c
M q0⇤v� we denote a cycle of M that begins

with the restarting configuration q0⇤u� and ends with the restarting configuration q0⇤v�.
Through this relation we define the relation of cycle-rewriting by M . We write u )c

M v i↵
q0⇤u� `c

M q0⇤ v� holds. The relation u )c⇤
M v is the reflexive and transitive closure of

u )c
M v.

We point out that the cycle-rewriting is a very important feature of RLAs.

– Reductions: If u )c
M v is a cycle-rewriting by M such that |u| > |v|, then u )c

M v is called
a reduction by M .

Often we will (implicitly) use the following obvious fact.

Fact 1 (Error Preserving Property for basic languages of RLAs).
Let M be an RLA. If u )c⇤

M v and u /2 LC(M), then v /2 LC(M).

Observe that this fact only concerns the basic language of an RLA. In general, the Error
Preserving Property does not apply to the input language of an RLA, as a cycle-rewriting
u )c

M v may rewrite a word u containing non-input symbols (and which therefore does not
belong to the input language of M) into a word v that belongs to the input language L(M).
We can apply a similar observation to the following fact.

Fact 2 (Correctness Preserving Property for basic languages of det-RLAs).
Let M be a deterministic RLA. If u )c⇤

M v and u 2 LC(M), then v 2 LC(M).

We remark that both these properties are based on the operation of restart.

2.1. Further Refinements and Constraints on RLAs

Here we introduce some constrained types of rewriting steps.

A delete-left step (q, u) ! (q0,DL(v)) is an SL-step (q, u) ! (q0, SL(v)) such that v is a proper
subsequence of u, containing all sentinels from u (if any). Thus, a delete-left step is an SL-step
which can only delete symbols.

A contextual-left step (q, u) ! (q0,CL(v)) is an SL-step (q, u) ! (q0, SL(v)), where u =
v1u1v2u2v3 and v = v1v2v3 for some v1, u1, v2, u2, v3, such that v contains all sentinels from u

(if any). Thus, a contextual-left step is a delete-left step which can delete at most two fac-
tors. This corresponds to an inverse of the operation of context-adjoining used in contextual
grammars [9].

The set OG = {MVR, MVL, W, SL, DL, CL, Restart} represents the set of types of steps (op-
erations), which can be used for characterizations of subclasses of RLAs. This set does not
contain the operations Accept and Reject, corresponding to halting steps, as they are used for
all RLAs. For a set T ✓ OG, we denote by T-automata the subset of RLAs which only use
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transition steps from the set T[{Accept,Reject}. For example, {MVR,W}-automata are RLAs
which only use move-right steps, W-steps, accept steps, and reject steps.

– Monotonicity of rewritings: We introduce various notions of monotonicity as important
types of constraints for computations of RLAs. They are useful for characterizations of the
class of (deterministic) context-free languages.

Let M be an RLA, and let C = Ck, Ck+1, . . . , Cj be a sequence of configurations of M , where
Ci+1 is obtained from Ci by a single transition step of M for all k  i < j. We say that C is a
subcomputation of M .

Let RW ✓ {W, SL, DL, CL}. Then we denote by W (C,RW ) the maximal subsequence of C,
which contains those configurations from C that correspond to RW -steps (that is, those con-
figurations in which a transition step of one of the types from the set RW is applied). We say
that W (C,RW ) is the rewriting sequence of C determined by RW .

Let C be a subcomputation of an RLA M , and let Cw = ⇤↵q�� be a configuration from C.
Then |� � | is the right distance of Cw, which is denoted by Dr(Cw).

We say that a rewriting sequence W (C,RW ) = (C1, C2, . . . , Cn) is RW-monotone if Dr(C1) �
Dr(C2) � · · · � Dr(Cn).

A subcomputation C of M is RW -monotone if W (C,RW ) is RW -monotone. We say that M
is RW -monotone if each of its (sub-) computations is RW -monotone. Further, we say that
M is monotone, abbreviated by the prefix mon-, if it is {W, SL, DL, CL}-monotone, that is,
it is monotone with respect to any type of (allowed) rewriting for the corresponding type of
automaton.

Finally, we call M completely monotone if Dr(C1) � Dr(C2) holds whenever configuration C2

can be obtained by a single step from configuration C1.

We close this subsection with an observation on complete monotonicity.

Fact 3 Let M be a {MVR,SL,W}-automaton. Then M is completely monotone.

Notations. For any class B of automata, L(B) will denote the class of input languages that are
recognized by automata from B and LC(B) will denote the class of basic languages that are
recognized by automata from B.

Remark on PDA. It is not hard to see that a {MVR,SL,W}-automaton with a window of
size 1 is a type of normalized pushdown automaton. The top of the pushdown is represented
by the position of the window, and the content of the pushdown is represented by the part of
the tape between the left sentinel and the position of the window. In fact, in a very similar way
the pushdown automaton was introduced by Chomsky [4]. A {MVR,SL,W}-automaton with a
window of size k � 2 can be interpreted as a pushdown automaton with a k-lookahead and
with a limited look under the top of the pushdown. A deterministic PDA can be simulated by
a det-{MVR,SL,W}-automaton with a window of size 1.
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auxiliary symbols possible (-WW) no auxiliary symbols (-W)

SL-steps
DL-steps
only

CL-steps
only

SL-steps
DL-steps
only

CL-steps
only

MVL-steps (RL-) RLWW RLWWD RLWWC RLW RLWD RLWC
no MVL-steps, rewrite
followed by restart (R-)

RWW RWWD RWWC RW RWD RWC

Table 1: Di↵erent variants of RLWW-automata

3. RLWW-Automata

Here we first describe RLWW-automata and some of their subclasses in our terminology.

An RLWW-automaton M is a {MVR,MVL, SL,Restart}-automaton, which uses an SL-step ex-
actly once in each cycle and at most once in each tail computation. We see that for RLWW-
automata, all cycle-rewritings are reductions.

From the above statements we see that the input language and the basic language recognized
by an RLWW-automaton is a context-sensitive language. In the following we will explicitly
introduce various notions and notation for subclasses of RLWW-automata.

An RLW-automaton is an RLWW-automaton the working alphabet of which coincides with
its input alphabet. Note that in this situation, each restarting configuration is necessarily an
initial configuration.

An RLWD-automaton is an RLW-automaton all rewrite steps of which are DL-steps, and an
RLWC-automaton is an RLWD-automaton all rewrite steps of which are CL-steps. Further, an
RLWWC-automaton (that is, an RLWW-automaton in Marcus contextual form) is an RLWW-
automaton all rewrite steps of which are CL-steps. Similarly, an RLWWD-automaton is an
RLWW-automaton all rewrite steps of which are DL-steps. Observe that when concentrating
on input languages, then DL- and CL-steps ensure that no auxiliary symbols can ever occur on
the tape; if, however, we are interested in basic languages, then auxiliary symbols can play an
important role even though a given RLWW-automaton uses only DL- or CL-steps. Therefore,
we distinguish between RLWWC- and RLWC-automata and between RLWWD- and RLWD-
automata.

An RWW-automaton is an RLWW-automaton which restarts immediately after executing a
rewrite step and does not use any MVL-steps. From these automata, we obtain RW-, RWD-,
RWC -, RWWD-, and RWWC-automata. Table 1 gives an overview of the various subclasses
of RLWW-automata defined above.

For our investigations the following notions play an important role, since they formulate cor-
rectness preserving properties also for RLAs that do not use the restart operation.

Definition 3.1 Let M be an RLA.

(a) M is said to satisfy the Complete Weak Correctness Preserving Property (CWCPP) for its
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basic (input) language if, for each accepting computation C0, C1, . . . , Cn of M , uj 2 LC(M)
(uj 2 L(M)) for all j = 0, 1, . . . , n, where uj is the contents of the tape in configuration
Cj (0  j  n).

(b) M is said to satisfy the Complete Strong Correctness Preserving Property (CSCPP) for
its basic (input) language if, for each computation C0, C1, . . . , Cn of M , we have that
uj 2 LC(M) (uj 2 L(M)) for all j = 0, 1, . . . , n, if ui 2 LC(M) (ui 2 L(M)) for some i.
Here uj is the contents of the tape in configuration Cj (0  j  n).

In contrast to Fact 1 and Fact 2, the Complete Weak and Strong Correctness Preserving
Properties do not depend on the operation of restart. They express the fact that, in an accepting
computation, each and every operation of the automatonM considered preserves the property of
the tape contents to belong to the language LC(M) (L(M)), that is, no intermediate information
is stored on the tape. This is an important novelty of these notions. We illustrate them by a
simple example.

Example 3.2 In [12], Example 3, an RWW-automaton M is presented that accepts the input
language L = { anbnc, anb2nd | n � 0 }. Given a word a

m
b

n
x as input, where m,n � 2

and x 2 {c, d}, M either performs the cycle q0⇤a

m
b

n
x� `c

M q0⇤a

m�1
Cb

n�1
x� or the cycle

q0⇤a

m
b

n
x� `c

M q0⇤a
m�1

Db

n�2
x�, where C and D are auxiliary symbols, in this way guessing

whether x = c or x = d. In the former case it then repeatedly performs CL-steps rewriting
aCb into C, in this way checking whether m = n, and it accepts on reaching the tape contents
⇤Cc�, while in the latter case it repeatedly performs CL-steps rewriting aDbb into D, in this
way checking whether m = 2n, and it accepts on reaching the tape contents ⇤Dd�. Thus,
we see that in an accepting computation of M , all but the initial configuration contain an
occurrence of an auxiliary symbol, which shows that M does not satisfy the Complete Weak
Correctness Preserving Property for its input language.

On the other hand, a deterministic RLW-automaton M

0 for L can proceed as follows. In each
cycle, it first scans the given input completely and checks whether the last letter is a c or a d,
and then it can either delete a factor ab or a factor abb, respectively. Thus, the (accepting)
computations of this automaton M

0 are much more transparent than those of the RWW-
automaton M . In fact, the det-RLW-automaton M

0 satisfies the Complete Strong Correctness
Preserving Property for its input language.

Actually, we have the following result due to the fact that RLW-automata have identical input
and working alphabets.

Fact 4 (Equality of Languages for RLW-Automata).
For each RLW-automaton M , L(M) = LC(M).

Note that if an RLWW-automaton M starts its accepting computation in a restarting configu-
ration with a word w on its tape, then w belongs to its basic language LC(M). However, if M
performs an SL-step during a tail computation, the resulting tape contents need not belong to
its basic language. This is illustrated by the following simple example.
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Example 3.3 Let M be the RLWC-automaton with a window of size 2 on ⌃ = {a, b, c} that
works as follows:

(1) M scans its tape from left to right, counting the number of occurrences of the letter b

modulo two.

(2) If it encounters an occurrence of the letter c, then M deletes the first occurrence of the
letter c. If there is no other c after the one deleted, then M accepts; otherwise it restarts.

(3) If M does not encounter any occurrence of the letter c, then it deletes the last letter and
accepts, if the number of occurrences of the letter b is an uneven number.

It is not hard to see that M is deterministic and monotone and that

LC(M) = L(M) = {w 2 ⌃+ | |w|c � 1 or (|w|c = 0 and |w|b ⌘ 1 mod 2) }.

For the input w1 = aacbb 2 L(M), M executes an accepting tail computation that contains a
CL-step which rewrites the word w1 into the word z1 = aabb 62 L(M) (see (2)). This means
that M does not satisfy the CWCPP for its basic (input) language.

On the other hand, for the input w2 = aabb 62 L(M), M executes a rejecting tail computation
that contains a CL-step that rewrites the word w2 into the word z2 = aab 2 L(M) (see (3)).
For this reason the Error Preserving Property (see Fact 1) has been formulated only for cycle-
rewritings.

However, we can easily modify M into an RLWW-automaton M

0 such that it performs exactly
the same cycles as M , but it never rewrites during any tail computation. Hence, we have the
following simple, but very important facts that illustrate that the computations of RLWW-
automata can be transparent with respect to their basic languages.

Fact 5 (Complete Weak Correctness Preserving Property for RLWW-Automata).
For each RLWW-automaton M , there exists an RLWW-automaton M

0 such that M 0 satisfies
the Complete Weak Correctness Preserving Property for its basic language and u `c

M w i↵
u `c

M 0 v.

By Fact 4 this means that each RLW-automaton can be turned into an RLW-automaton that
satisfies the Complete Weak Correctness Preserving Property for its input language, too.

Fact 6 (Complete Strong Correctness Preserving Property for det-RLWW-
Automata).
For each deterministic RLWW-automaton M , there exists a deterministic RLWW-automaton
M

0 such that M

0 satisfies the Complete Strong Correctness Preserving Property for its basic
language and u `c

M w i↵ u `c
M 0 v.

Again by Fact 4 this means that each deterministic RLW-automaton can be turned into a deter-
ministic RLW-automaton that satisfies the Complete Strong Correctness Preserving Property
for its input language, too.



158 Frantǐsek Mráz, Friedrich Otto, Martin Plátek

3.1. Robustness of Monotone Deterministic RLAs

The notion of monotonicity has been considered in various papers. The following results have
been established, where DCFL denotes the class of deterministic context-free languages and
LRR denotes the class of left-to-right regular languages from [17].

Theorem 3.4 [6, 13]

(a) DCFL = L(det-mon-RWC) ( L(det-mon-RLWC).

(b) LRR = L(det-mon-RLWW) = L(det-mon-RLWD).

In the following, we will improve upon the result in (b) above by showing that, for any det-mon-
RLWW-automaton Ma, there is even an equivalent det-mon-RLWC-automaton Mb. While the
det-mon-RLWW-automaton Ma will in general not even satisfy the Error Preserving Property
for its input language (cf. Fact 1), the det-mon-RLWC-automaton Mb can be made to fulfill
the Complete Strong Correctness Preserving Property for its input language (Fact 6) and,
moreover, all its rewrite steps are just contextual deletions. This means in particular that in
general the reductions of Ma and Mb will di↵er substantially.

Theorem 3.5 For each det-mon-RLWW-automaton Ma, there exists a det-mon-RLWC-auto-
maton Mb such that L(Ma) = L(Mb).

Proof. Let Ma = (Q,⌃,�,⇤,�, q0, k, �) be a det-mon-RLWW-automaton. Then the language
L = L(Ma) belongs to the class LRR (Theorem 3.4 (b)). Hence, according to the proof of
Theorem 2.1 of [17], there exists a deterministic sequential right-to-left transducer G such that
L1 = G(L) is a deterministic context-free language. In fact, proceeding from right to left, G
outputs a pair of the form (a, pa) for each letter a read, where pa is some additional information
that depends on the su�x already read by G. Further, we see from Theorem 3.4 (a) that there
exists a det-mon-RWC-automaton M1 for the language L1. By combining the transducer G and
the det-mon-RWC-automaton M1, we obtain a {MVR,MVL,W,CL,Restart}-automaton M2 for
the language L1 that works as follows:

(1) Given a word w 2 ⌃⇤ as input, M2 first rewrites w from right to left by replacing each
letter a by the pair (a, pa) that the right-to-left transducer G produces on input w for this
letter a. Thus, the input w is rewritten into the word G(w), and in this phase, only MVR-,
MVL-, and W-steps are used.

(2) Once the input has been rewritten completely, M2 simulates the det-mon-RWC-automaton
M1 on the word G(w). During this phase, MVR-, CL-, and Restart-steps are used.

Thus, M2 accepts on input w i↵ M1 accepts on input G(w), that is, i↵ w 2 L.

Next we simulate M2 by a det-mon-RLWC-automaton M3. Essentially, M3 behaves like M2

without actually doing the rewrites in phase (1). So in this phase M3 simply reads the word w

from right to left simulating the transducer G in its finite-state control, just remembering the
output produced by G for all the letters currently inside the window. This is enough for starting
the simulation of M1 in phase (2), but as soon as the window must move right, information on
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the result of G for the new letter that enters the window is missing. However, here we can use
the symmetric (that is, right-to-left) variant of the following lemma, which is taken from [1],
pages 212–213.

Lemma 3.6 Let A be a deterministic finite-state acceptor. For each word x and each
integer i, 1  i  |x|, let qA(x, i) be the state of A after processing the prefix of
length i of x. Then there exists a deterministic two-way finite-state acceptor B such
that, for each input x and each i 2 {2, 3, . . . , |x|}, the following condition is satisfied:
- when B starts its computation on x in state qA(x, i) with its head on the i-th letter of x,

then B finishes its computation in state qA(x, i� 1) with its head on the (i� 1)-st letter
of x.

Now we can describe the det-mon-RLWC-automaton M3. Each cycle of the det-mon-RWC-
automaton M1 on input G(w) is simulated by a cycle of M3 on input w as follows:

(1) First M3 simulates phase (1) of the computation of M2 without doing the rewrites. In this
way it determines the k leftmost letters of G(w) in its finite-state control, where k is the
size of the window of M1.

(2) Next M3 simulates the behaviour of M1 on input G(w) step by step until it reaches a con-
figuration in which M1 applies a CL-step in the current cycle. Each time M3 must simulate
a MVR-step, it runs the two-way finite-state automaton B from the symmetric variant of
Lemma 3.6 that corresponds to the deterministic right-to-left sequential transducer G in
order to recover the value of G for the new rightmost letter in its window. Note that at the
beginning of the simulation M3 knows the part of G(w) that is contained in the window
of M1 (see (1)). Hence, by using B it is able to satisfy this condition for each successive
step.

(3) Finally, M3 simulates the current CL-step of M1 by deleting the appropriate symbols, that
is, it executes a CL-step as well.

For a word w = a1a2 · · · an 2 L, where a1, a2, . . . , an 2 ⌃, the word G(w) 2 L1 has the form
G(w) = (a1, p1)(a2, p2) · · · (an, pn). If n is su�ciently large, then on the word G(w), the det-
mon-RWC-automaton M1 executes a reduction G(w) )c

M1
z that deletes (one or) two factors

from G(w), that is, z has the form

z = (a1, p1)(a2, p2) · · · (ar, pr)(ar+i+1, pr+i+1)(ar+i+2, pr+i+2) · · ·
(ar+i+s, pr+i+s)(ar+i+s+j+1, pr+i+s+j+1)(ar+i+s+j+2, pr+i+s+j+2) · · · (an, pn).

Here the factors

(ar+1, pr+1)(ar+2, pr+2) · · · (ar+i, pr+i) and (ar+i+s+1, pr+i+s+1) · · · (ar+i+s+j, pr+i+s+j)

are deleted, which implies that i + j > 0 and r + i + s + j � r = s + i + j  k.
As M1 satisfies the Correctness Preserving Property for its input language (see Fact 2),
the word z belongs to the language L1 = G(L), which implies that z = G(x), where
x = a1a2 · · · arar+i+1ar+i+2 · · · ar+i+sar+i+s+j+1ar+i+s+j+2 · · · an 2 L.

Given the word w as input, the automaton M3 executes the reduction w )c
M3

x. In the next
cycle, it starts with the tape contents x, first simulating the deterministic right-to-left sequential
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transducer G on x. As G is deterministic, and as the word x belongs to the language L, we see
that on input x, G produces the word G(x) = z. Thus, the SL-step of M3 on x occurs at the
same position as the SL-step of M1 on z.

It follows that L(M3) = L and that the CL-steps of M3 just correspond to the CL-steps of M1.
Hence, we see that M3 is also monotone. This completes the proof of Theorem 3.5. 2

Corollary 3.7 For each det-mon-RLWC-automaton Mr, there exists a det-mon-
{MVR,MVL,CL}-automaton M such that L(M) = L(Mr), and M has the Complete
Strong Correctness Preserving Property for its input language L(M).

Proof. It is not hard to see that each det-mon-RLWC-automaton Mr can be simulated by
a det-mon-{MVR,MVL,CL}-automaton M , which simply copies all move and CL-steps of Mr,
but that replaces all restart steps of Mr by a series of MVL-steps, where the last one transfers
M into the initial state on seeing the left sentinel. 2

On the other hand, we also have the following simulation.

Proposition 3.8 For each det-mon-{MVR,MVL, SL}-automaton Ma, there exists a det-mon-
RLWW-automaton Mb such that L(Ma) = L(Mb).

Proof. Let Ma be a det-mon-{MVR,MVL, SL}-automaton with a set of states Q, an input
alphabet ⌃, a tape alphabet �, and a window of size k � 1. We describe an RLWW-automaton
Mb with input alphabet ⌃ and tape alphabet � [ { [q, a] | q 2 Q, a 2 � } that has a window of
size k + 1. This RLWW-automaton works as follows:

1. On an input word w 2 ⌃⇤, Mb simulates the MVR- and MVL-steps of Ma until Ma is to
execute an SL-step.

2. An SL-step �a(q, u) ! (q0, v) ofMa is simulated byMb by executing the SL-step �b(q, uc) !
(q0, v[q0, c]), where u 2 �k, v 2 �⇤ satisfying |v| < |u|, and c 2 �, and then Mb restarts
immediately. Thus, Mb executes the same SL-step as Ma, but it encodes the state of Ma

reached by that SL-step together with the letter immediately to the right of the rewritten
factor. Here some technical adjustments must be made in case u is the su�x of the current
tape contents, that is, it is followed by the right sentinel � only. In that case the state
information is encoded together with the last letter of v or, in case that v = �, with the
first letter to the left of u (and v).

3. After a restart Ma scans the tape and looks for the rightmost occurrence of a pair of the
form [q0, c] on the tape. As the SL-steps of Mb just simulate the SL-steps of Ma, Mb is
monotone, and hence, the information on the last SL-step executed before the current cycle
is encoded in the rightmost of these code symbols. After locating [q0, c], the automaton
Mb continues the simulation from state q0 while ignoring the state information in any pair
[q̄, c̄] it sees on the tape.

It is now easily seen that Mb is a det-mon-RLWW-automaton satisfying L(Mb) = L(Ma). 2

Let us note that in general a det-mon-{MVR,MVL, SL}-automaton does not ensure any type of
correctness preserving property for its input language.
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In summary, the results above yield the following identities, where the prefix cscpp- denotes
the Complete Strong Correctness Preserving Property.

Corollary 3.9 LRR = L(det-mon-RLWW) = L(det-mon-cscpp-RLWC)
= L(det-mon-{MVR,MVL,SL}) = L(det-mon-cscpp-{MVR,MVL,SL})
= L(det-mon-cscpp-{MVR,MVL,CL}).

3.2. Strong Cyclic Form

Here we carry some restricted forms of restarting automata called weak cyclic form (wcf)
(see [11]) and strong cyclic form (see [5]) over to RLAs. An RLA M is said to be in weak
cyclic form if |uv|  k for each accepting configuration ⇤uqv� of M , where k is the size of the
read/write window of M . Thus, before M can accept, it must erase su�ciently many letters
from its tape. Further, M is said to be in strong cyclic form if |uv|  k for each accepting and
and each rejecting configuration ⇤uqv� of M , where k is the size of the read/write window
of M . Thus, before M can halt, either accepting or rejecting, it must erase su�ciently many
letters from its tape. We express the latter property by the prefix scf-.

Theorem 3.10 For each det-mon-RLWC-automaton M , there is a det-mon-RLWC-automaton
Mscf in strong cyclic form such that L(M) = L(Mscf) and, for all u )c

M v, also u )c
Mscf

v.

Proof. Let M be a det-mon-RLWC-automaton. The set of words z for which M , starting from
the restarting configuration q0 ⇤ z�, will execute an accepting tail computation is a regular
sublanguage Lsim of L(M). Analogously, the set of words z for which M , starting from the
restarting configuration q0 ⇤ z�, will execute a rejecting tail computation (or get stuck in a
configuration to which no operation applies) is a regular sublanguage Lnsim of the complement
of L(M). From the Pumping Lemma for regular languages we conclude that there exists a
constant c such that, for each word z1 2 Lsim, if |z1| � c, then z1 has a factorization of the form
z1 = uvw such that |v| � 1, |vw|  c, and uv

i
w 2 Lsim for each i � 0. Analogously, for each

word z2 2 Lnsim, if |z2| � c, then z2 has a factorization of the form z2 = uvw such that |v| � 1,
|vw|  c, and uv

i
w 2 Lnsim for each i � 0.

Let A+ and A� be DFAs for the languages Lsim and Lnsim, respectively. Now the det-mon-
RLWC-automaton Mscf has a window of size k

0 = max{k, c + 1}, where k is the size of the
window of the automaton M . It will proceed as follows:

1. Every word w 2 L(M) satisfying |w|  k

0 is accepted immediately, and every word z 62
L(M) satisfying |z|  k

0 is rejected immediately.

2. Starting from a restarting configuration of the form q0⇤z�, where |z| > k

0, Mscf first scans
its tape from left to right, simulating both the DFAs A+ and A� in parallel. If one of
them would accept, then z = uvw, where |v| � 1, |vw| < c, and uw is accepted by the
same DFA. Hence, Mscf simply cuts the infix v from z by performing a CL-step at the end
of the tape.

3. If none of A+ or A� accepts the word z, then Mscf returns to the left end of the tape
and simulates the cycle that M would execute starting from the corresponding restarting
configuration.
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Observe that, for each word z, starting from the restarting configuration q0⇤z�, M either
executes a complete cycle, or it accepts, which means that z 2 Lsim, or it rejects (or gets
stuck), which means that z 2 Lnsim. As M is deterministic, these three cases are mutually
disjoint. Thus, Mscf accepts the same language as M , and as it simulates all the CL-steps
of M , we see that the required property holds for all cycle rewritings of M . Further, as the
delete operations of Mscf that are obtained from the application of the Pumping Lemma are
all executed at the right end of the tape, we see that all computations of Mscf are monotone.
Finally, it follows immediately from the construction that Mscf is in strong cyclic form. 2

Thus, the det-mon-RLWC-automaton M from Example 3.3 can be turned into an equivalent
automaton Mscf of the same type that is in strong cyclic form and that avoids the rewrites that
M executes in tail computations.

The above proof can also easily be adapted to yield the following result.

Proposition 3.11 For each det-mon-{MVR,MVL, SL}-automaton Ma, there exists a det-mon-
{MVR,MVL, SL}-automaton Mb in strong cyclic form such that L(Ma) = L(Mb). Moreover, if
Ma has the CSCPP, then so does Mb.

4. The Main Results

The results of the previous subsections are summarized in the following corollaries.

Corollary 4.1 For all Y 2 {�, scf, scf-cscpp}, the following holds:

L(det-mon-RLWW) = L(det-mon-Y-RLW) =
L(det-mon-Y-RLWD) = L(det-mon-Y-RLWC) = LRR.

Let us note that (deterministic) RLWC-, RLWD-, and RLW-automata can always be modified
to satisfy the Complete Weak (Strong) Correctness Preserving Property for input and basic
languages, while RLWW-automata do in general not satisfy this property for both types of
languages. The RLWW-automata can be modified to satisfy CSCPP only for basic languages.

Corollary 4.2 For all X 2 {{MVR,MVL, SL}, {MVR,MVL,DL}, {MVR,MVL,CL}} and all
Y 2 {�, scf, scf-cscpp}, the following holds:

L(det-mon-Y-X) = LRR.

The latter corollary shows characterizations of the language class LRR by automata with the
Complete Strong Correctness Preserving Property on the one hand and without any type of
correctness preserving property on the other hand. Moreover, these automata work without
the operation of restart while preserving the remaining sets of operations. In that way the
language class LRR is more robust than the class DCFL of deterministic context-free languages
(see, e.g., [7]).
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5. Conclusion

For RLAs, we have two types of associated languages. The first type are the basic languages.
For lexicalized syntax, basic languages have a similar meaning as the sets of sentential forms
for Chomsky’s phrase-structure grammars. Basic languages are (implicitly) recognized by cat-
egorial grammars ([2, 3]). Categorial grammars are typical formal grammars for lexicalized
syntax. The second type of languages are the input languages. Input languages correspond to
those languages which are commonly used in automata theory. We have introduced RLWW-
automata and RLW-automata as special types of RLAs. We have shown that determinis-
tic RLWW-automata can be easily transformed into deterministic RLWW-automata with the
CSCPP for basic languages, and that deterministic RLW-automata can be easily transformed
into deterministic RLW-automata with the CSCPP for both basic and input languages. As
another step we have presented a transformation from monotone deterministic RLAs without
the operation restart into monotone deterministic RLWW-automata with the CSCPP for basic
languages. Then the technical main result was a transformation from monotone determinis-
tic RLWW-automata to monotone deterministic RLWC-automata with the CSCPP for basic
and input languages. Further, we have given a transformation from monotone determinis-
tic RLWC-automata with the CSCPP for basic and input languages to monotone deterministic
RLAs without the operation restart satisfying the CSCPP for input languages. Finally, we have
presented a transformation of all the above classes of automata into corresponding automata
in the strong cyclic form.

Monotone deterministic RLWC-automata in strong cyclic form ensure a deterministic analysis
by reduction for any LRR-language, and for any word (sentence) from such a language, this
analysis by reduction yields an unambiguous parsing into a system of immediate constituents
which are given by individual reductions and by the final irreducible sentence. We have seen
that det-mon-cscpp-scf-{MVR,MVL,CL}-automata have this ability, too.

Moreover, monotone deterministic RLWC-automata in strong cyclic form ensure a deterministic
analysis by reduction for the complement of any LRR-language. Again, this also holds for det-
mon-cscpp-scf-{MVR,MVL,CL}-automata. This property can be used for the localization of
syntactical errors and for syntactic error recovery.

In the future, we plan to study monotone deterministic RLWC-automata in strong cyclic form
that have a minimal look-ahead window and minimal reductions for a given LRR-language.
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[11] F. MRÁZ, M. PLÁTEK, M. PROCHÁZKA, On special forms of restarting automata. Grammars
2 (1999), 223–233.

[12] F. OTTO, Restarting automata. In: Z. ÉSIK, C. MARTÍN-VIDE, V. MITRANA (eds.), Re-
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Abstract
In this paper, we continue the research on networks of evolutionary processors where the filters
belong to several special families of regular languages. These subregular families are defined
by restricting the resources needed for generating or accepting them (the number of states of
the minimal deterministic finite automaton accepting a language of the family as well as the
number of non-terminal symbols or the number of production rules of a right-linear grammar
generating such a language). We insert the newly defined language families into the hierachy
of language families obtained by using as filters languages of other subregular families (such
as ordered, non-counting, power-separating, circular, su�x-closed regular, union-free, definite,
combinational, finite, monoidal, nilpotent, or commutative languages).

1. Introduction

Networks of language processors have been introduced in [3] by E. Csuhaj-Varj

´

u and A. Sa-

lomaa. Such a network can be considered as a graph where the nodes represent processors
which apply production rules to the words they contain. In a derivation step (an evolutionary
step), any node derives from its language all possible words as its new language. In a communi-
cation step, any node sends those words to other nodes which satisfy an output condition given
as a regular language (called the output filter) and any node adopts words sent by the other
nodes if the words satisfy an input condition also given by a regular language (called the input
filter). The language generated by a network of language processors consists of all (terminal)
words which occur in the languages associated with a given node.

Inspired by biological processes, in [1] a special type of networks of language processors was
introduced. The nodes of such networks are called evolutionary processors because the allowed
productions model the point mutation known from biology. The productions of a node allow
that one letter is substituted by another letter, letters are inserted, or letters are deleted;
the nodes are then called substitution nodes, insertion nodes, or deletion nodes, respectively.
Results on networks of evolutionary processors can be found, e. g., in [1], [2], [11]. For instance,
in [2], it was shown that networks of evolutionary processors are complete in that sense that
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they can generate any recursively enumerable language.

In [4], the generative capacity of networks of evolutionary processors was investigated for cases
that all filters belong to a certain subfamily of the set of all regular languages. It was shown that
the use of filters from the family of ordered, non-counting, power-separating, circular regular,
su�x-closed regular, union-free, definite, and combinational languages is as powerful as the use
of arbitrary regular languages and yields networks which can generate all recursively enumerable
languages. The use of filters which are only finite languages allows only the generation of regular
languages, but not all regular languages can be generated. If filters are used which are monoids,
nilpotent languages, or commutative regular languages, the same family of languages is obtained
which contains non-context-free languages but not all regular languages.

In [5], networks were considered where the filters are accepted by deterministic finite automata
with at most two states and which are all defined over the whole network alphabet.

In this paper, we continue the research on networks of evolutionary processors where the filters
are restricted by further bounded resources, namely the number of non-terminal symbols or the
number of production rules which are necessary for generating the languages. Additionally, we
consider filters which are accepted by deterministic finite automata over an arbitrary alphabet
with a bounded number of states.

2. Definitions

We assume that the reader is familiar with the basic concepts of formal language theory
(see, e. g., [12]). and recall here only some notations used in the paper.

Let V be an alphabet. By V ⇤ we denote the set of all words (strings) over the alphabet V
(including the empty word �). For a natural number k, we denote by V k the set of all words
over the alphabet V with length k. The cardinality of a set A is denoted by |A|.

A phrase structure grammar is a quadruple G = (N, T, P, S) where N is a finite set of non-
terminal symbols, T is a finite set of terminal symbols, P is a finite set of production rules
which are written as ↵ ! � with ↵ 2 (N [T )⇤ \T ⇤ and � 2 (N [T )⇤, and S 2 N is the axiom.
A grammar is context-free if, for any rule ↵ ! �, the left-hand side ↵ consists of a non-terminal
symbol only: ↵ 2 N . A grammar is right-linear if it is context-free and, for any rule ↵ ! �,
the right-hand side � contains at most one non-terminal symbol and this is at the right end of
the word: � 2 T ⇤ [ T ⇤N . A special case of right-linearity is regularity where each rule contains
exactly one terminal symbol (with the only possible exception S ! �): � 2 T [ TN . The
language L(G) generated by a grammar G is the set of all words which consist of terminal
symbols and which are derivable from the axiom S by a successive substitution of the non-
terminal symbols according to the rules of the grammar.

Regular and right-linear grammars generate the same family of languages (the regular lan-
guages). Therefore, also right-linear grammars are often called regular. In the context of
descriptional complexity, when the number of non-terminal symbols or the number of produc-
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tion rules which are necessary for generating a language are considered then there is a di↵erence
whether a language is generated by means of regular or right-linear rules. We use in this paper
right-linear grammars.

By REG , CF , and RE , we denote the families of languages generated by regular, context-free,
and arbitrary phrase structure grammars, respectively.

A finite automaton is a quintuple A = (V, Z, z0, F, �) where V is an alphabet called the input
alphabet, Z is a non-empty finite set of elements which are called states, z0 2 Z is the so-called
start state, F ✓ Z is the set of accepting states, and � : Z ⇥ V ! P(Z) is a mapping which is
also called the transition function where P(Z) denotes the power set of Z (the set of all subsets
of Z). A finite automaton is called deterministic if every set �(z, a) for z 2 Z and a 2 V is a
singleton set.

The transition function � can be extended to a function �⇤ : Z⇥V ⇤ ! P(Z) where �⇤(z,�) = {z}
and

�⇤(z, va) =
[

z

02�⇤(z,v)

�(z0, a).

We will use the same symbol � in both the original and extended version of the transition
function.

Let A = (V, Z, z0, F, �) be a finite automaton. A word w is accepted by the finite automaton A
if and only if the automaton has reached an accepting state after reading the input word w:

�(z0, w) \ F 6= ;.

The family of the language accepted by finite automata is also the family of the regular language.

For a language L over V , we set

Comm(L) = {a
i1 . . . ain | a1 . . . an 2 L, n � 1, {i1, i2, . . . , in} = {1, 2, . . . , n}},

Circ(L) = {vu | uv 2 L, u, v 2 V ⇤},
Suf (L) = {v | uv 2 L, u, v 2 V ⇤}.

In [4], the following restrictions for regular languages are considered. In order to relate our
results of this paper to the results there, we explain here those special regular languages. Let L
be a language and V = alph(L) the minimal alphabet of L. We say that the language L, with
respect to the alphabet V , is

• monoidal if L = V ⇤,

• combinational if it has the form L = V ⇤A for some subset A ✓ V ,

• definite if it can be represented in the form L = A[V ⇤B where A and B are finite subsets
of V ⇤,

• nilpotent if L is finite or V ⇤ \ L is finite,

• commutative if L = Comm(L),
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• circular if L = C irc(L),

• su�x-closed if the relation xy 2 L for some words x, y 2 V ⇤ implies that also the su�x y
belongs to L or equivalently, L = Suf (L),

• non-counting (or star-free) if there is an integer k � 1 such that, for any x, y, z 2 V ⇤, the
relation xykz 2 L holds if and only if also xyk+1z 2 L holds,

• power-separating if for any word x 2 V ⇤ there is a natural number m � 1 such that either
the equality Jm

x

\ L = ; or the inclusion Jm

x

✓ L holds where Jm

x

= {xn | n � m},
• ordered if L is accepted by some finite automaton A = (Z, V, �, z0, F ) where (Z,�) is a
totally ordered set and, for any a 2 V , z � z0 implies �(z, a) � �(z0, a),

• union-free if L can be described by a regular expression which is only built by product
and star.

Among the commutative, circular, su�x-closed, non-counting, and power-separating languages,
we consider only those which are also regular.

By FIN , MON , COMB , DEF , NIL, COMM , CIRC , SUF , NC , PS , ORD , and UF , we denote
the families of all finite, monoidal, combinational, definite, nilpotent, regular commutative,
regular circular, regular su�x-closed, regular non-counting, regular power-separating, ordered,
and union-free languages, respectively.

In this paper, families of languages are of special interest which are defined by bounding the
resources which are necessary for accepting or generating these languages.

Let RLG be the set of all right-linear grammars and DFA the set of all deterministic finite
automata. Further, let G = (N, T, P, S) 2 RLG and A = (V, Z, z0, F, �) 2 DFA. Then we
define the following measures of descriptional complexity:

Var(G) = |N |, Prod(G) = |P |, State(A) = |Z|.

For these complexity measures, we define the following families of languages (we abbreviate the
measure Var by V , the measure Prod by P , and the measure State by Z):

RLV

n

= { L | 9G 2 RLG : L = L(G) and Var(G)  n } ,
RLP

n

= { L | 9G 2 RLG : L = L(G) and Prod(G)  n } ,
REGZ

n

= { L | 9A 2 DFA : L = L(A) and State(A)  n } .

The relations between the considered families are investigated, e. g., in [7], [8], [13], [14], [15],
and [16]. They are illustrated in Figure 1.

An edge label in Figure 1 refers to the paper where the respective inclusion is proved. The
proper inclusions where no reference is given in the figure as well as the incomparabilities are
proved in [15].

Regarding the families defined by bounded resources, we note the following relations: K
i

⇢ K
i+1

for K 2 {RLV ,RLP ,REGZ} and i � 1 as well asRLP

2i ⇢ RLV

i

and REGZ

i

⇢ RLV

i

.
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Figure 1: Hierarchy of subregular language families

Theorem 2.1 The inclusion relations presented in Figure 1 hold. An arrow from an entry X
to an entry Y depicts the proper inclusion X ⇢ Y ; if two families are not connected by a
directed path, then they are incomparable.

We call a production ↵ ! � a

– substitution if |↵| = |�| = 1,

– deletion if |↵| = 1 and � = �.

The productions are applied like context-free rewriting rules. We say that a word v derives a
word w, written as v =) w, if there are words x, y and a production ↵ ! � such that v = x↵y
and w = x�y. In order to indicate also the applied rule p, we write v =)

p

w.

We introduce insertion as a counterpart of deletion. We write � ! a, where a is a letter. The
application of an insertion � ! a derives from a word w any word w1aw2 with w = w1w2 for
some (possibly empty) words w1 and w2.

We now present the basic concept of this paper, the networks of evolutionary processors (NEPs
for short).
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Definition 2.2 Let X be a family of regular languages.

(i) A network of evolutionary processors with filters from the family X is a tuple

N = (V,N1, N2, . . . , Nn

, E, j)

where
– V is a finite alphabet,
– N

i

= (M
i

, A
i

, I
i

, O
i

) for 1  i  n are the processors where
– M

i

is a set of rules of a certain type: M
i

✓ {a ! b | a, b 2 V } or
M

i

✓ {a ! � | a 2 V } or M
i

✓ {� ! b | b 2 V },
– A

i

is a finite subset of V ⇤,
– I

i

and O
i

are languages from X over some subset of the alphabet V ,
– E is a subset of {1, 2, . . . , n}⇥ {1, 2, . . . , n}, and
– j is a natural number such that 1  j  n.

(ii) A configuration C of N is an n-tuple C = (C(1), C(2), . . . , C(n)) where C(i) is a subset
of V ⇤ for 1  i  n.

(iii) Let C = (C(1), C(2), . . . , C(n)) and C 0 = (C 0(1), C 0(2), . . . , C 0(n)) be two configurations
of N . We say that C derives C 0 in one

– evolutionary step (written as C =) C 0) if, for 1  i  n, C 0(i) consists of all
words w 2 C(i) to which no rule of M

i

is applicable (no left-hand side of a rule is
present in the word w; since the empty word is always a subword, insertion rules can
always be applied) and of all words w for which there are a word v 2 C(i) and a
rule p 2 M

i

such that v =)
p

w holds,
– communication step (written as C ` C 0) if, for 1  i  n,

C 0(i) = (C(i) \O
i

) [
[

(k,i)2E

(C(k) \O
k

\ I
i

).

The computation of an evolutionary network N is a sequence of configurations

C
t

= (C
t

(1), C
t

(2), . . . , C
t

(n)), t � 0,

such that
– C0 = (A1, A2, . . . , An

),
– for any t � 0, C2t derives C2t+1 in one evolutionary step,
– for any t � 0, C2t+1 derives C2t+2 in one communication step.

(iv) The language L(N ) generated by N is defined as

L(N ) =
[

t�0

C
t

(j)

where C
t

= (C
t

(1), C
t

(2), . . . , C
t

(n)), t � 0 is the computation of N .

Intuitively, a network with n evolutionary processors is a graph consisting of nodes N1, . . . , Nn

(also called processors) and a set of edges given by E such that there is a directed edge from
node N

k

to node N
i

if and only if (k, i) 2 E.

Any processor N
i

consists of a set M
i

of evolutionary rules, a set A
i

of words, an input filter
I
i

, and an output filter O
i

. We say that N
i

is
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• a substitution node if M
i

✓ {a ! b | a, b 2 V } (by any rule, a letter is substituted by
another one),

• a deletion node if M
i

✓ {a ! � | a 2 V } (by any rule, a letter is deleted), or

• an insertion node if M
i

✓ {� ! b | b 2 V } (by any rule, a letter is inserted).

Every node has rules from one type only. The input filter I
i

and the output filter O
i

control
the words which are allowed to enter and to leave the node, respectively. With any node N

i

and any time moment t � 0, we associate a set C
t

(i) of words (the words contained in the node
at time t). Initially, N

i

contains the words of A
i

. In an evolutionary step, we derive from C
t

(i)
all words by applying rules from the set M

i

. In a communication step, any processor N
i

sends
out all words from the set C

t

(i) \ O
i

(which pass the output filter) to all processors to which
a directed edge exists (only the words from C

t

(i) \ O
i

remain in the set associated with N
i

)
and, moreover, it receives from any processor N

k

such that there is an edge from N
k

to N
i

all
words sent by N

k

and passing the input filter I
i

of N
i

, i. e., the processor N
i

gets in addition
all words of C

t

(k) \O
k

\ I
i

. We start with an evolutionary step and then communication steps
and evolutionary steps are alternately performed. The language consists of all words which are
in the node N

j

(also called the output node, j is chosen in advance) at some moment t, t � 0.

If two networks of evolutionary processors generate the same language, we say that the networks
are equivalent to each other.

For a family X, we denote the family of languages generated by networks of evolutionary
processors where all filters are of type X by E(X). We consider the filters independently from
the environment. A filter language belongs to some family X if it belongs to it with respect to
its smallest alphabet, not necessarily to the the alphabet of all letters which might occur in the
node or even in the entire network. A word passes a filter if it is an element of the language
representing the filter otherwise it does notmpass the filter.

The following theorem is known (see, e. g., [2]).

Theorem 2.3 E(REG) = RE.

As an extension to Lemma 1 from [4], we have the following result.

Lemma 2.4 Let X and Y be two families of languages such that X ✓ Y . Then the inclusion

E(X) ✓ E(Y )

holds.

Proof. Let X and Y be two language families with X ✓ Y . Further, let L be a language
generated by a network N with all filters from the family X. Then the network N has also all
filters from the family Y . Hence, L 2 E(Y ), which yields the inclusion. 2
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3. Results

We first consider the number of non-terminal symbols su�cient for generating a language. We
obtain that any recursively enumerable language is generated by a network of evolutionary
processors were each filter is generated by a right-linear grammar with only one non-terminal
symbol.

Theorem 3.1 We have E(RLV

i

) = RE for all natural numbers i � 1.

Proof. Every combinational language can be generated by a regular grammar with only one
non-terminal symbol: For generating a language V ⇤A, the rules S ! vS for every letter v 2 V
and S ! a for every letter a 2 A are su�cient ([15]). According to Lemma 2.4, the chain of
inclusions

COMB ✓ RLV

1 ✓ RLV

2 ✓ · · · ✓ REG

implies the chain of inclusions

E(COMB) ✓ E(RLV

1 ) ✓ E(RLV

2 ) ✓ · · · ✓ E(REG).

In [4], the relation E(COMB) = RE was proved. Hence, together with Theorem 2.3, we also
have E(RLV

i

) = RE for all natural numbers i � 1. 2

We now consider networks where the filters are accepted by deterministic finite automata with
a bounded number of states. In [4] and [5], such networks have been considered where the filters
are even more restricted, namely that every filter of a network over an alphabet V is accepted by
a complete deterministic finite automaton whose input alphabet is also V . Here, we consider the
filters independently of each other. Therefore, the families investigated previously are special
cases of the families studied in the present paper. The generative capacity of networks where
the filters are arbitrary languages from a family REGZ

i

with i � 1 is not smaller than the
generative capacity of networks where the filters are languages from the family REGZ

i

but such
that all deterministic finite automata representing the filters of a network have the same input
alphabet.

For networks with filters which are accepted by deterministic finite automata with two states
all defined over the same alphabet, the computational completeness was already shown in [5]. If
we generalize the filters to languages over an arbitrary alphabet, the generative capacity cannot
be smaller. Therefore, we obtain the same result here which can also be proved analogously to
Theorem 3.1.

Theorem 3.2 We have E(REGZ

i

) = RE for all natural numbers i � 2.

Proof. Every combinational language can be accepted by a deterministic finite automaton
with two states only:
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A language V ⇤A with an alphabet V and a subset A ✓ V is accepted by an automaton whose
transition graph is as follows ([15]):

z0start z1

V \ A
A

A

V \ A

According to Lemma 2.4, the chain of inclusions

COMB ✓ REGZ

2 ✓ REGZ

3 ✓ · · · ✓ REG

implies the chain of inclusions

E(COMB) ✓ E(REGZ

2 ) ✓ E(REGZ

3 ) ✓ · · · ✓ E(REG).

Since E(COMB) = RE = E(REG) ([4] and Theorem 2.3), also the relation E(REGZ

i

) = RE
holds for every natural number i � 2. 2

For networks with filters which are accepted by deterministic finite automata with one state
only, the situationnis di↵erent. If all automata are defined over the same alphabet, then a
proper subset of the family E(MON ) is obtained ([4]). If arbitrary alphabets are allowed, the
two families coincide, as is stated in the next theorem.

Theorem 3.3 We have E(REGZ

1 ) = E(MON ).

Proof. The inclusion MON ⇢ REGZ

1 ([15]) implies also the inclusion E(MON ) ✓ E(REGZ

1 )
(Lemma 2.4). We now prove that the inverse inclusion E(REGZ

1 ) ✓ E(MON ) holds as well.

Every language of the family REGZ

1 is the empty set or a monoidal language. A network with
filters in REGZ

1 which contains empty sets as filters can be transformed into a network which
has only monoidal languages as filters and which generates the same language ([4]), which can
be seen as follows.

If the input filter of a node N is the empty set, then no word can enter this node. Thus,
we can remove all edges that lead to the node N and set the input filter to an arbitrary
monoidal language without changing the language generated. If the output filter of a node
is the empty set, then no word can leave this node. If this is the case for a node N which
is not the output node, then this node N is useless in that sense that it does not contribute
to the language generated. So, we can eliminate this node together with all incident edges
without changing the language. If the output node has an empty output filter, then we replace
this filter by the language V ⇤ where V is the alphabet of the network, delete all outgoing
edges, and add a new edge to this node itself (or to a new node N 0 = (;, ;, V ⇤, V ⇤) and back
if loops should be avoided). This new network generates the same language and has only
monoidal filters. Hence, also the inclusion E(REGZ

1 ) ✓ E(MON ) holds, and, thus, also the
equality E(REGZ

1 ) = E(MON ). 2
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We finally investigate networks where the filters are restricted by the number of production rules
necessary for generating the filters. Here, we obtain an infinite hierarchy. Further inclusion
relations and incomparability results are proved in the sequel.

Theorem 3.4 The proper inclusions FIN ⇢ E(RLP

1 ) and MON ⇢ E(RLP

1 ) hold.

Proof. Let L be a finite language. This language is generated by the NEP with the unique
node

Nf = (;, L, ;, ;).
Hence, FIN ✓ E(RLP

1 ). Let V be an alphabet. The language V ⇤ is generated by the NEP with
the unique node

Nm = ({ � ! a | a 2 V }, {�}, ;, ;).
Hence, MON ✓ E(RLP

1 ). Since the family E(RLP

1 ) contains finite and monoidal languages
and FIN \MON = ;, each inclusion is proper. 2

Theorem 3.5 The proper inclusion E(RLP

1 ) ⇢ E(FIN ) holds.

Proof. According to Theorem 2.1 and Lemma 2.4, we obtain the inclusion E(RLP

1 ) ✓ E(FIN ).
A witness language for the properness is

L = {a2, a3, a5, a6} [ { an | n � 8 }.

In [6], it was shown that the language L belongs to the family E(FIN ).

Assume that it also belongs to the family E(RLP

1 ). A filter which is generated by a right-linear
grammar with one rule contains at most one word. If a node has an empty input filter, then any
edge leading to this node can be removed and this input filter can be replaced by a singleton
set without changing the generated language. Nodes which are not the output node and which
have an empty output filter do not contribute to the generated language and can therefore be
removed from the network without changing the generated language. Since the language L is
infinite, the output node contains the rule � ! a. If the output node has an empty output filter,
then also the word a4 /2 L is generated by the network which is a contradiction. Otherwise, the
output filter is a singleton set (as well as all other filters by our construction) and therefore a
code ([12]). But in [6], it was also shown that the language L cannot be generated by a network
with codes as filters. Thus, L /2 E(RLP

1 ). 2

The idea from the previous proof will be generalized for proving further results.

Lemma 3.6 For any natural number i � 1, let V
i

be an alphabet with i pairwise di↵erent
letters:

V
i

= {a1, a2, . . . , ai}.
Further, let

L
i+1 =

i+1[

k=1

(V 3k�1
i

[ V 3k
i

) [
[

n�3(i+1)+2

V n

i

.

Then
L
i+1 2 (E(RLP

i+1) \ E(FIN ) \ NIL \ COMM ) \ E(RLP

i

).
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Proof. Let i � 1 be a natural number. The language L
i+1 is generated by a network with two

nodes where each filter belongs to the family E(RLP

i+1):

M1 = { � ! x | x 2 V
i

},
A1 = V

3(i+1)+1
i

,
I1 = V ⇤

i

,
O1 = V ⇤

i

//

M2 = ;,

A2 =
i+1S
k=1

(V 3k�1
i

[ V 3k
i

),

I2 = V ⇤
i

,
O2 = V ⇤

i

//

The second node is the output node which provides the ‘finite’ part of the language L
i+1 itself.

The first node provides the ‘infinite’ part of the language L
i+1. The language V ⇤

i

can be
generated by the i+ 1 regular rules S ! x for x 2 V

i

and S ! �. Hence, L
i+1 2 E(RLP

i+1).

The language L
i+1 is also generated by a network with the unique node

N = ({ � ! x | x 2 V
i

},
i+2[

k=1

V 3k�1
i

, ;,
i+1[

k=1

V 3k
i

).

From the part
i+1S
k=1

V 3k�1
i

, the part
i+1S
k=1

V 3k
i

is generated which then leaves the network and

cannot be further derived. From the part V
3(i+2)�1
i

= V
3(i+1)+2
i

, the words of the set V n

i

with n � 3(i+ 1) + 2 will successively be generated because no word from these can leave the
network. Hence, L

i+1 2 E(FIN ).

The complement of the language L
i+1 is

L̄
i+1 = V ⇤

i

\ L
i+1 = {�} [

[

0ki+1

V 3k+1
i

which is a finite language. Therefore, the language L
i+1 is nilpotent.

Since every set V k

i

for k � 0 is commutative and union preserves commutativity, the lan-
guage L

i+1 is also commutative.

Assume that L
i+1 2 E(RLP

i

). Since the language L
i+1 is infinite and every letter of V

i

occurs in
an arbitrary number, the network contains the rules � ! x for every letter x 2 V

i

. If the output
node has no rules then its input filter must cover infinitely many words of the language L

i+1 (all
with a finite number of exceptions which can be present in the output node in the beginning).
Also in this language (the input filter), every letter of V

i

occurs in an unbounded number.
Therefore, any right-linear grammar generating the filter needs, for any letter x 2 V

i

, a rule
which produces the letter x independently from all other letters and in an unbounded number.
Finally, also a terminating rule is necessray. Hence, i rules are not su�cient for generating the
filter. If the output node has rules, then its output filter must contain all words of the set

i+1[

k=1

V 3k
i
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because these words are present in the node at some time (they belong to the generated lan-
guage L

i+1) but, from these, no word may be derived, otherwise words (of length 3k + 1
with 1  k  i + 1) would be generated which do not belong to the language L

i+1. But also
such a filter cannot be achieved if only i rules are allowed for generating the filter. Therefore,
we obtain L

i+1 /2 E(RLP

i

). 2

The previous lemma is now used to prove an infinite hierarchy.

Theorem 3.7 For all natural numbers i � 1, the proper inclusion E(RLP

i

) ⇢ E(RLP

i+1) holds.

Proof. Let i � 1 be a natural number. The inclusion E(RLP

i

) ✓ E(RLP

i+1) follows from
Theorem 2.1 and Lemma 2.4. A witness language for the properness is the language L

i+1 as
was shown in Lemma 3.6. 2

We now prove some incomparability results.

Theorem 3.8 Each of the families E(FIN ), REG, and CF is incomparable to every fam-
ily E(RLP

i

) for i � 2.

Proof. Due to the inclusion relations E(FIN ) ⇢ REG ⇢ CF and E(RLP

i

) ⇢ E(RLP

i+1), it
su�ces to show that, for all i � 2, there is a language which belongs to the set E(FIN )\E(RLP

i

)
and that there is a language in the family E(RLP

2 ) which is not context-free. From Lemma 3.6,
we know that L

i+1 2 E(FIN ) \ E(RLP

i

) for i � 1.

A witness language for the other case is

L = { a2n | n � 1 }.

This language is not context-free and we now prove that it belongs to the family E(RLP

2 ). The
language L is accepted by the following network where the output node is N3 = (M3, A3, I3, O3):

M1 = {� ! b},
A1 = {a},
I1 = {a}⇤,
O1 = {ab}⇤

//

M2 = {b ! a},
A2 = ;,
I2 = {ab}⇤,
O2 = {a}⇤

oo

//

M3 = ;,
A3 = ;,
I3 = {a}⇤,
O3 = {a}⇤

In the first node, the number of letters is doubled: starting from a string a2
n
with n � 0,

the string (ab)2
n
is produced (words with less than 2n letters b cannot leave the node yet;

words with 2n letters b but not the correct form and words with more than 2n letters b can
not be derived to a string anymore which could leave the node). The second node receives a
word (ab)2

n
with n � 0 and substitutes all occurrences of b by a, obtaining the word a2

n+1

with n � 0, which is then sent to the third node (the output node) and to the first node (where
its length is again doubled before it can leave the node again).

The network contains the filters {a}⇤ and {ab}⇤. These sets are generated by the right-linear
grammars G

w

= ({S}, {a, b}, {S ! w, S ! �}, S) with w 2 {a, ab}. Thus, L 2 E(RLP

2 ). 2

Theorem 3.9 The family NIL is incomparable to every family E(RLP

i

) for i � 1.
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Proof. Due to the inclusion relations E(RLP

i

) ⇢ E(RLP

i+1) for i � 1, it su�ces to show
that, for all i � 1, there is a language which belongs to the set NIL \ E(RLP

i

) and that
there is a language in the family E(RLP

1 ) which is not nilpotent. From Lemma 3.6, we know
that L

i+1 2 NIL \ E(RLP

i

) for i � 1.

A witness language for the other case is

L = { ckacmbcn | k � 1,m � 1, n � 1 }.

This language is not nilpotent (both the languages L and {a, b, c}⇤ \ L are infinite). However,
it is generated by the network with the unique node N = ({� ! c}, {ab}, ;, ;) and, therefore,
it belongs to the family E(RLP

1 ). 2

Theorem 3.10 The family COMM is incomparable to every family E(RLP

i

) for i � 1.

Proof. Due to the inclusion relations E(RLP

i

) ⇢ E(RLP

i+1) for i � 1, it su�ces to show that,
for all i � 1, there is a language which belongs to the set COMM \ E(RLP

i

) and that there
is a language in the family E(RLP

1 ) which is not commutative. From Lemma 3.6, we know
that L

i+1 2 COMM \ E(RLP

i

) for i � 1.

A witness language for the other case is

L = {ab}.

This language is not commutative but finite and therefore, according to Theorem 3.4, it belongs
to the family E(RLP

1 ). 2

Theorem 3.11 The family E(MON ), E(NIL), E(COMM ), and E(REGZ

1 ) are incomparable to
every family E(RLP

i

) for i � 2.

Proof. Due to the equalities

E(MON ) = E(NIL) = E(COMM )

proved in [4] and
E(MON ) = E(REGZ

1 )

provedd in Theorem 3.3 as well as the inclusion relations

E(RLP

i

) ⇢ E(RLP

i+1)

for i � 1, it su�ces to show that, for all i � 2, there is a language which belongs to the
set E(MON ) \ E(RLP

i

) and that there is a language in the family E(RLP

2 ) which does not
belong to the family E(MON ). From Lemma 3.6, we know that L

i+1 2 E(FIN ) \ E(RLP

i

)
for i � 1. Since E(FIN ) ⇢ E(MON ) (see [4]), we have, for every i � 1, also

L
i+1 2 E(MON ) \ E(RLP

i

).

A witness language for the other case is

L = {a}⇤{b}.
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This language belongs to the family RLP

2 (it is generated by a regular grammar with an axiom S
and the two rules S ! aS and S ! b) and also to the family E(RLP

2 ) since it is generated by
the following network where the node N2 = (M2, A2, I2, O2) is the output node:

M1 = {� ! a},
A1 = {b},
I1 = {a}⇤{b},
O1 = {a}⇤{b}

//

M2 = ;,
A2 = {b},
I2 = {a}⇤{b},
O2 = {a}⇤{b}

oo

Assume that the language L can also be generated by a network with monoidal filters. Since
the number of the letter a in the words of this language is unbounded, there is the rule � ! a
in some node of the network. In an evolutionary step, it cannot be avoided that a letter a is
inserted after the letter b or that the letter b is inserted before the last letter a. By means of
monoidal filters, it cannot be avoided that such words reach the output node (if a word anb
can enter the output node then also the word ban). Hence, also other words than those of the
language L would be generated which is a contradiction. 2

4. Conclusions

We have investigated networks of evolutionary processors where the filters belong to subregular
language families which are defined by restricting the resources needed for generating or ac-
cepting them (the number of states of the minimal deterministic finite automaton accepting a
language of the family, the number of non-terminal symbols, or the number of production rules
of a right-linear grammar generating such a language). We have inserted the newly defined
language families into the hierachy of language families obtained by using languages of other
subregular families as filters (such as ordered, non-counting, power-separating, circular, su�x-
closed regular, union-free, definite, combinational, finite, monoidal, nilpotent, or commutative
languages) which was published in [4]. The hierarchy with the new results is shown in Figure 2.

Theorem 4.1 The relations shown in Figure 2 hold.

In [6], networks of evolutionary processors were investigated were the filters are ideals or special
codes. It remains for future research to compare those language families obtained there to the
ones obtained here.

In [10], an accepting variant of networks of evolutionary processors was introduced where one
node contains a word (the input word) and all other nodes are empty in the beginning and
the input word is accepted if at some moment some word arrives in a distinguished node. It
was shown that accepting networks with regular filters can accept all recursively enumerable
languages. The power of some subregular filters was studied in [9]. The results di↵er from those
obtained for generating networks. Therefore, also for accepting networks, the e↵ect of using
filters from subregular language families defined by bounded ressources should be investigated.
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RE = E(REG) = E(PS ) = E(NC ) = E(ORD)
= E(DEF ) = E(CIRC ) = E(UF ) = E(SUF )

= E(COMB)
3.1
= E(RLV

i

)
i�1

3.2
= E(REGZ

i

)
i�2

CF

REG

E(FIN )

E(RLP

1 )

FIN

NIL

E(NIL) = E(COMM )

= E(MON )
3.3
= E(REGZ

1 )

COMM

MON

E(RLP

2 )

...

E(RLP

n

)

3.4

3.5

3.4

3.7

3.7

3.7

Figure 2: Hierarchy of language families by NEPs with filters from subregular families. An arrow from
a language family X to a language family Y stands for the proper inclusion X ⇢ Y . If two families X
and Y are not connected by a directed path, then the families are incomparable. The labels at the
arrows or equality signs refer to the theorems where the respective relation is shown.
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Abstract
Restarting automata have been introduced as a formal model for the analysis by reduction,
and it is well known that this model is very expressive under investigation. Here we introduce
new variants of restarting automata, where the move-right operation is replaced by a jump
operation, which is a restriction on language recognition. Fortunately, we will see that they also
have a surprisingly large expressive power. In this work, several variants of jumping restarting
automata are investigated, with respect to the computational power. First, we prove that the
jumping restarting automata that are allowed to use auxiliary symbols can accept all growing
context-sensitive languages. For these automata with auxiliary symbols, the variant that may
keep on reading after performing a rewrite step can accept a language that is even not growing
context-sensitive. Further, we will see that the deterministic and monotone versions of the
jumping restarting automata with auxiliary symbols have the same expressive power as the
corresponding types of general restarting automata. Finally, we show that for the types without
auxiliary symbols the general restarting automata are strictly more expressive than jumping
restarting automata.

1. Introduction

The restarting automaton was invented as a formal model for the analysis by reduction, which
is a linguistic technique that is used to check the correctness of sentences of natural languages
through sequences of local simplifications [2]. Such an automaton consists of a finite-state
control and a flexible tape with end markers, on which a read/write window of a fixed positive
size operates. Based on the state and the window content, the automaton may perform a
move-right step, which shifts the window one position to the right and changes the state. It
may also execute a rewrite step, which replaces the content of the window by a word that is
strictly shorter, places the window immediately to the right of the newly written word, and
changes the state. Finally, it may perform a restart step, which moves the window back to the
left end of the tape and resets the automaton to its initial state, or it may make an accept step.
Observe that a rewrite step shortens the content of the tape, and it is assumed that the length
of the tape is shortened accordingly. In addition, it is required that before a restart operation
can be executed, exactly one rewrite must have taken place, that is, the automaton can be
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seen as working in cycles, where each cycle begins with the window at the left end of the tape
and the finite-state control being in the initial state, then some move-right steps are executed,
then a single rewrite step is performed, then again some move-right steps may be executed,
and finally the cycle is completed by a restart step. Thus, a computation consists of a finite
sequence of cycles that is followed by a tail computation, which consists of a number of move-
right steps, possibly a single rewrite step, and which is completed by an accept step or ends by
reaching a configuration for which no further step is defined. In the latter case we say that the
current computation halts without acceptance. Many well-known classes of formal languages,
like the regular languages REG, the deterministic context-free languages DCFL, the context-free
languages CFL, the Church-Rosser languages CRL, and the growing context-sensitive languages
GCSL have been characterized by various types of restarting automata. An overview on various
types of restarting automata is given by [8].

In this work, we introduce new variants of restarting automata, where the move-right operation
is replaced by a jump operation. This means that in such an operation, the automaton jumps
ahead on the tape to the first position where the next step of the computation is defined.
This kind of operation was previously introduced and studied in the case of finite automata
(see, e.g., [5]). Following the same fundamental idea, instead of move-right steps, a jumping
restarting automaton is able to directly jump to the position of rewrite by performing a so-called
jump-right step, so that the computational time can be significantly reduced. However, in a
jump-right step, the automaton may skip across some letters in the prefix of input, which is a
restriction on language recognition. Fortunately, we will see that jumping restarting automata
have a surprisingly large expressive power.

This paper is structured as follows. In Section 2, we recall some basic notions concerning
restarting automata, and in Section 3, we introduce the concept of jumping restarting auto-
mata. Further, in Section 4, we present a variant of jumping restarting automata, so-called
fast jumping restarting automata, and study their expressive power. Then, in Section 5, we
investigate the monotone versions of fast jumping restarting automata, and compare them to
the corresponding types of general restarting automata. Finally, the paper closes with a short
summary and some problems for future work.

2. Restarting Automata

We assume that the reader is familiar with the standard notions and concepts of theoretical
computer science. Throughout the paper, we will use |w| to denote the length of a word w,
and � to denote the empty word. Further, P(X) denotes the power set of a set X, and Pfin(X)
denotes the set of all finite subsets of X. In addition, let N denote the set of natural numbers.

A restarting automaton (RRWW-automaton for short) is a one-tape machine that is defined
as an 8-tuple M = (Q,⌃,�, c, $, q0, k, �), where Q is a finite set of states, ⌃ is a finite input
alphabet, � is a finite tape alphabet containing ⌃, the symbols c, $ 62 � serve as markers for
the left and right border of the work space, respectively, q0 2 Q is the initial state, k 2 N+ is
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the size of the read/write window, and

� : Q⇥ PC(k) ! Pfin(Q⇥ ({MVR} [ PC(k�1)) [ {Restart,Accept})

is the transition function. Here PC(k) is the set of possible contents of the read/write window
of M , where PC(0) = {�} and, for i � 1,

PC(i) = (c · �i�1) [ �i [ (�i�1 · $) [ (c · �i�2 · $),

and

�i =
i[

j=0

�j

, and PC(k�1) =
k�1[

i=0

PC(i)
.

The function � describes four di↵erent types of transition steps:

(1) A move-right step has the form (q0,MVR) 2 �(q, u) (also written as (q, u) ! (q0,MVR)),
where q, q

0 2 Q and u 2 PC(k), u 6= $. If M is in state q and sees the string u in its
read/write window, then this move-right step causes M to shift the read/write window
one position to the right and to enter state q0. However, if the content u of the read/write
window is only the symbol $, then no move-right step is possible.

(2) A rewrite step has the form (q0, v) 2 �(q, u) (also written as (q, u) ! (q0, v)), where
q, q

0 2 Q, u 2 PC(k), u 6= $, and v 2 PC(k�1) such that |v| < |u|. It causes M to replace
the content u of the read/write window by the string v, and to enter state q

0. Further,
the read/write window is placed immediately to the right of the string v. However, some
additional restrictions apply in that the border markers c and $ must not disappear from
the tape nor that new occurrences of these markers are created. Further, the read/write
window must not move across the right border marker $, that is, if the string u ends
in $, then so does the string v, and after performing the rewrite operation, the read/write
window is placed on the $-symbol.

(3) A restart step has the form Restart 2 �(q, u) (also written as (q, u) ! Restart), where
q 2 Q and u 2 PC(k). It causes M to move its read/write window to the left end of the
tape, so that the first symbol it contains is the left border marker c, and to reenter the
initial state q0.

(4) An accept step has the form Accept 2 �(q, u) (also written as (q, u) ! Accept), where
q 2 Q and u 2 PC(k). It causes M to halt and accept.

For every q 2 Q and u 2 PC(k), if �(q, u) = ;, then M necessarily halts in a corresponding
situation, and we say thatM rejects in this case. Further, the letters in �\⌃ are called auxiliary
symbols.

A configuration of M is a string ↵q�, where q 2 Q, and either ↵ = � and � 2 {c} · �⇤ · {$} or
↵ 2 {c} ·�⇤ and � 2 �⇤ · {$}; here q 2 Q represents the current state, ↵� is the current content
of the tape, and it is understood that the read/write window contains the first k symbols of � or
all of � when |�|  k. A restarting configuration is of the form q0cw$, where w 2 �⇤; if w 2 ⌃⇤,
then q0cw$ is an initial configuration. Thus, initial configurations are a particular type of
restarting configurations. Further, we use Accept to denote the accepting configurations, which
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are those configurations that M reaches by executing an accept instruction. A configuration
of the form ↵q� such that �(q, �1) = ;, where �1 is the current content of the read/write
window, is a rejecting configuration. A halting configuration is either an accepting or a rejecting
configuration. By `

M

we denote the single-step computation relation that M induces on the
set of configurations, and its reflexive and transitive closure `⇤

M

is the computation relation
of M

In general, the automaton M is nondeterministic, that is, there can be two or more instructions
with the same left-hand side (q, u), and thus, there can be more than one computation for an
input word. If this is not the case, the automaton is deterministic. We use the prefix det- to
denote deterministic classes of restarting automata.

Any finite computation of a restarting automaton M consists of certain phases. A phase, called
a cycle, starts in a restarting configuration, the head moves along the tape performing move-
right operations and a rewrite operation until a restart operation is performed and thus, a
new restarting configuration is reached. If no further restart operation is performed, any finite
computation necessarily finishes in a halting configuration – such a phase is called a tail. We
require that M performs exactly one rewrite operation during any cycle – thus each new phase
starts on a shorter word than the previous one. During a tail at most one rewrite operation
may be executed.

An input w 2 ⌃⇤ is accepted by M , if there exists a computation of M which starts with the
initial configuration q0cw$, and which finally ends with executing an accept instruction. The
language L(M) accepted by M is the set that consists of all input strings that are accepted
by M , that is,

L(M) = {w 2 ⌃⇤ | q0cw$ `⇤
M

Accept }.

A restarting automaton is called an RWW-automaton if it makes a restart immediately after
performing a rewrite operation. In particular, this means that it cannot perform a rewrite step
during the tail of a computation. An RRWW-automaton is called an RRW-automaton if its tape
alphabet � coincides with its input alphabet ⌃, that is, if no auxiliary symbols are available. It
is an RR-automaton if it is an RRW-automaton for which the right-hand side v of each rewrite
step (q0, v) 2 �(q, u) is a scattered subword of the left-hand side u. Analogously, we obtain the
RW-automaton and the R-automaton from the RWW-automaton. For a type X of restarting
automata, let L(X) denote the class of languages that are accepted by the restarting automata
of type X.

We complete this section with an example of an RR-automaton.

Example 2.1 Let M1 = (Q,⌃,�, c, $, q0, k, �) be the RR-automaton that is defined by taking
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Q = {q0, q1, q2, qr}, � = ⌃ = {a, b, c, d}, and k = 3, where � is defined as follows:

t1 : (q0, caa) ! (q0,MVR), t10 : (q1, bc$) ! Restart,

t2 : (q0, cab) ! (q0,MVR), t11 : (q1, bbc) ! Restart,

t3 : (q0, aaa) ! (q0,MVR), t12 : (q2, bbd) ! Restart,

t4 : (q0, aab) ! (q0,MVR), t13 : (q2, d$) ! Restart,

t5 : (q0, abb) ! (q1, b), t14 : (q2, bd$) ! Restart,

t6 : (q0, abb) ! (q2,�), t15 : (q0, abc) ! (q
r

, c),

t7 : (q1, bbb) ! (q1,MVR), t16 : (qr, $) ! Restart,

t8 : (q2, bbb) ! (q2,MVR), t17 : (q0, cc$) ! Accept,

t9 : (q1, c$) ! Restart, t18 : (q0, cd$) ! Accept.

It is easily seen that L(M1) = { anbnc | n � 0 } [ { anb2nd | n � 0 }. In each cycle M1 guesses
the su�x of input, and correspondingly removes the factor ab or abb. Finally, it moves to the
right end of the tape in order to verify its guess.

3. Jumping Restarting Automata

In earlier works, restarting automata have been shown to be quite expressive (see, e.g., [4, 8]).
Here we introduce a new variant – jumping restarting automata.

In analogy to a general restarting automaton, a jumping restarting automaton is also defined
as an 8-tuple M = (Q,⌃,�, c, $, q0, k, �), and it works in a quite similar way. Instead of move-
right steps, a jumping restarting automaton moves by performing jump-right steps of the form
(q, JMR) 2 �(p, u) (also written as (p, u) ! (q, JMR)). This means that if M is in state p and
sees the string u in its read/write window, then this jump-right step causes M to enter state q,
and to jump right to the nearest factor v, such that �(q, v) 6= ;. Note that the nearest factor
v can include some symbols of current factor u. If the tape does not contain such a factor v

that satisfies this condition, then the automaton halts and rejects. In a jump-right step the
read/write window moves at least one position to the right. Here we use the prefix J to denote
the types of jumping restarting automata.

We continue with an example of a JRR-automaton for the language L(M1) from Example 2.1.
By y

M

we denote the single-step computation relation that a jumping restarting automaton M

induces on the set of configurations, and by y⇤
M

we denote its reflexive and transitive closure.

Example 3.1 Let M2 = (Q,⌃,�, c, $, q0, k, �) be the JRR-automaton that is defined by taking
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Q = {q0, q1, q2, q3, q4, q5, qr}, � = ⌃ = {a, b, c, d}, and k = 5, where � is defined as follows:

t1 : (q0, caaaa) ! (q1, JMR), t11 : (q3, bbbbd) ! Restart,

t2 : (q0, caaab) ! (q1, JMR), t12.x : (q2, xc$) ! Restart for x 2 {�, b, bb, bbb},
t3 : (q0, caabb) ! (q1, JMR), t13.x : (q3, xd$) ! Restart for x 2 {�, b, bb, bbb},
t4 : (q1, aabbb) ! (q2, abb), t14 : (q4, bbbc$) ! Restart,

t5 : (q1, aabbb) ! (q3, ab), t15 : (q5, bbbd$) ! Restart,

t6 : (q1, aabbc) ! (q
r

, c), t16 : (qr, $) ! Restart,

t7 : (q0, cabbd) ! (q
r

, cd), t17 : (q0, cabc$) ! Accept,

t8 : (q2, bbbbb) ! (q4, JMR), t18 : (q0, cc$) ! Accept,

t9 : (q3, bbbbb) ! (q5, JMR), t19 : (q0, cd$) ! Accept.

t10 : (q2, bbbbc) ! Restart,

We see that in each cycle M2 directly jumps to the boundary between a- and b-symbols, then
it nondeterministically removes ab or abb, and finally it jumps to the right end of the tape in
order to verify its guess for su�x. For example, M2 can execute the following computation on
the input aaabbbbbbd, where we write y for y

M2 :

q0caaabbbbbd$ y caq1aabbbbbbd$ y caabq3bbbd$ y q0caabbbbd$
y cq1aabbbbd$ y cabq3bd$ y q0cabbd$
y cdq

r

$ y q0cd$ y Accept.

We now investigate the relation between general restarting automata and jumping restarting
automata. First, we establish the following inclusion result.

Lemma 3.2 For each type X 2 {R,RR,RW,RRW,RWW,RRWW}, L(JX) ✓ L(X).

Proof. Let M be a jumping restarting automaton. We will construct a general restarting
automaton M

0 that proceeds as follows. M 0 performs rewrite, restart, and accept steps exactly
as M . In order to simulate a jump-right transition of M , M 0 moves its read/write window from
left to right across the tape. If M 0 discovers the left-hand side of a transition t of M , then it
executes the transition that corresponds to t; otherwise, it halts and rejects. 2

In fact, also the converse inclusions hold.

Lemma 3.3 For each type X 2 {R,RR,RW,RRW,RWW,RRWW}, L(X) ✓ L(JX).

Proof. Let M = (Q,⌃,�, c, $, q0, k, �) be a general restarting automaton. For M we build
up a jumping restarting automaton M

0 = (Q0
,⌃,�, c, $, q0, k + 1, �0) such that L(M 0) = L(M).

First, we consider the case that X is a type with a single R, that is, after rewriting M must
immediately restart. The main problem in simulating M is the fact that we have to ensure
that in each jump-right step, M 0 moves exactly one position to the right. To do this, M 0 needs
a read/write window that is larger than that of M , so that when simulating a transition of
M , it can look ahead for the window content in the next step of M . Assume that in a cycle,
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M reaches the rewrite configuration ca1a2 · · · al�1ql+1alal+1 · · · an$ by performing the following
move-right transitions:

t1 : (q1, ca1 · · · ak�1) ! (q2,MVR),
t2 : (q2, a1 · · · ak) ! (q3,MVR),

...
t

l�1 : (ql�1, al�2 · · · ak+l�3) ! (q
l

,MVR),
t

l

: (q
l

, a

l�1 · · · ak+l�2) ! (q
l+1,MVR),

and the rewrite transition that will be executed is of the form

t

l+1 : (ql+1, al · · · ak+l�1) ! (q
l+2, v),

where v is a scattered subword of the factor a
l

· · · a
k+l�1. In order to simulate this cycle of M ,

�

0 contains the following jump-right transitions:

t

0
1 : (q1, ca1 · · · ak�1ak) ! (q2, JMR),
t

0
2 : (q2, a1 · · · akak+1) ! (q3, JMR),

...
t

0
l�1 : (ql�1, al�2 · · · ak+l�3ak+l�2) ! (q

l

, JMR),
t

0
l

: (q
l

, a

l�1 · · · ak+l�2ak+l�1) ! (q
l+1, JMR),

and the rewrite transition for all x 2 �

t

0
l+1 : (ql+1, al · · · ak+l�1x) ! (q

l+2, vx).

Analogously, the tail computation can also be dealt with.

Finally, we consider the case that X is a type with double R, that is, after rewriting M is able to
perform move-right steps. As the window size of M 0 is larger than that of M , after performing
a rewrite step M

0 skips across the prefix of the window content in next step of M . Therefore,
M

0 has to store the prefix in its finite-state control. To do this, we introduce the following
additional states of M 0:

Q

rw

= {q̂
a

| q 2 Q, a 2 �}.
If � contains a rewrite transition of the form

(p, u) ! (q, v),

then �

0 contains the following rewrite transitions for all x 2 �:

(p, ux) ! (q̂
x

, vx).

In addition, let z = z1z2 . . . zkzk+1 be the window content after performing the above rewrite
step. M 0 can just combine the transitions ofM on the window contents xz1z2 . . . zk�1, z1z2 . . . zk,
and z2z3 . . . zkzk+1 by using the same technique in the proof of Theorem 6 from [9], which
completes our proof. 2

Together Lemma 3.2 and 3.3 yield the following equality result.

Theorem 3.4 For each type X 2 {R,RR,RW,RRW,RWW,RRWW}, L(JX) = L(X).

Obviously, the above equality result also holds in the deterministic case.
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4. Fast Jumping Restarting Automata

In Section 3, jumping restarting automata have been introduced. However, we see that without
any restriction on jump-right operation, the computational power does not change, with respect
the corresponding variants of restarting automata. Here we introduce fast jumping restarting
automata, where the number of jump-right steps in a cycle is restricted.

In each cycle (or tail computation) a fast jumping restarting automaton is allowed to perform
at most one jump-right step before rewrite (or accept), and in tail phase it can perform at
most one jump-right step before accept. Further, for the automata of types with RR, there
exists a constant c 2 N, such that after rewriting the automaton is allowed to execute at most c
jump-right steps. This means that in each cycle the number of steps performed is bounded by a
constant. Note that the automaton M2 from Example 3.1 is actually a fast jumping restarting
automaton. Here we use the prefix FJ to denote the types of fast jumping restarting automata.

As a fast jumping restarting automaton can perform at most one jump-right step before rewrite,
it may skip across some letters in the prefix of the input, which can be seen as a restriction for
computation. Hence, the following result is easily obtained.

Corollary 4.1 For each type X 2 {R,RR,RW,RRW,RWW,RRWW}, L(FJX) ✓ L(JX).

In this section, we study the expressive power of fast jumping restarting automata. We begin
with FJRWW-automata, and establish the following inclusion result.

Theorem 4.2 GCSL ✓ L(FJRWW).

Proof. In [7] it is shown that the language class GCSL is characterized by length-reducing
two-pushdown automata (TPDA for short). This means that for each language L 2 GCSL, there
exists a length-reducing TPDA P such that L = L(P ).A TPDA with pushdown windows of size
l is a nondeterministic automaton T = (Q,⌃,�, �, l, q0, Z0, t1, t2, F ), where Q is a finite set of
states, ⌃ is a finite input alphabet, � is a finite tape alphabet including ⌃, q0 2 Q is the initial
state, Z0 2 �\⌃ is the bottom marker of the pushdown stores, t1, t2 2 (�\⌃)⇤ is the preassigned
content of the first and second pushdown store, respectively, F ✓ Q is the set of final states,
and � is the transition function. In [7] it was claimed that a TPDA can be transformed in a
standard form to start the computation with empty string on the first pushdown and the input
on the second one. To each triple (q, u, v), where q 2 Q is a state, u 2 �l [ {Z0} · �<l is the
content of the topmost part of the first pushdown, and v 2 �l [ �<l · {Z0} is the content of the
topmost part of the second pushdown, it associates a finite set of triples from Q⇥ �⇤ ⇥ �⇤. A
TPDA is called length-reducing, if |u0

v

0| < |uv| holds for all transitions (q, u0
, v

0) 2 (p, u, v).

A configuration of a TPDA is described by uqv, where q 2 Q is the actual state, u 2 �⇤ is the
content of the first pushdown store with the first symbol of u at the bottom and the last symbol
of u at the top, and v 2 �⇤ is the content of the second pushdown store with the last symbol of v
at the bottom and the first symbol of v at the top. Observe that the input for a TPDA is provided
as a part of the initial content of the second pushdown. Let P = (Q,⌃,�, �, l, q0, Z0, t1, t2, F ) be
a length-reducing TPDA. In order to prove the above inclusion, we construct an FJRWW-auto-
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matonM = (Q0
,⌃,�0

, c, $, q00, k, �
0) such that L(M) = L(P ). In order to simulate a computation

of P , for the letters on the tape, M has to distinguish between the contents of the first and
second pushdown stores, and remember the state before restart, as it forgets the state after
performing a restart step. To do this, let �0 be defined as

�0 = ⌃ [ { â | a 2 � } [ { [â, q] | a 2 �, q 2 Q }.

Then a configuration uaqv of P can be encoded by tape content cû[â, q]v$, where u, v 2 �⇤,
a 2 �, q 2 Q, and û is a copy of u that consists of marked symbols.It is easily seen that
the position of [â, q] corresponds to the boundary between the contents of the first and second
pushdown stores, and q is the current state of P . In each cycle M directly jumps to the symbol
of the form [â, q], and let this symbol stand in the middle of the read/write window. If we set
k = 2l, then M can see the actual state of P , and the top l symbols on the first and second
pushdown stores of P , so that M can simulate the following operation of P . In addition, for
each transition (q, u0

, v

0) 2 (p, u, v) of P it holds that |u0
v

0| < |uv|. Hence, M is able to simulate
P in length-reducing fashion. 2

It is still open whether or not the above inclusion is proper. By using the same technique, we can
prove that det-FJRWW-automata can simulate deterministic length-reducing TPDAs. It is well-
known that the language class CRL is characterized by deterministic length-reducing TPDAs
[7], which coincide with general det-(R)RWW-automata [6]. Hence, the following equality result
can be immediately given.

Theorem 4.3
CRL = L(det-FJRWW) = L(det-FJRRWW)

= L(det-JRWW) = L(det-JRRWW)
= L(det-RWW) = L(det-RRWW).

We see that deterministic fast jumping restarting automata with auxiliary symbols are as
expressive as the corresponding types of general restarting automata.

Now we turn to FJRRWW-automata. In [1] the Gladkij language is defined as

L

Gl

= {w#w

R#w | w 2 {a, b}⇤ },

and it is well-known that L
Gl

/2 GCSL. For the language L

Gl

we have the following result.

Proposition 4.4 L

Gl

2 L(FJRRWW).

Proof. We will construct an FJRRWW-automaton M that accepts the language L

Gl

. This
means that for an input of the form u#v#w M can determine whether u = w = v

R. We
only consider the case that |u|, |v| and |w| are much larger than the window size k of M . In
this case M has to alternatingly shorten these strings, and during this process it compares
the corresponding parts of them. At the beginning of a cycle, the read/write window is on
the prefix of u, and here M rewrites some letters of u, and in the next cycle it jumps to the
boundary between the infix v and su�x w and rewrites some letters of them, where these two
stages are repeated alternatingly. However, as M directly jumps to the position of rewrite, and
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there are two #-symbols, it has to ensure that it jumps to the second one. To do this, M has
to rewrite the first #-symbol in order to distinguish it from the second one.

Let M = (Q,⌃,�, c, $, q0, k, �) be an FJRRWW-automaton that proceeds as follows. First, M
jumps to the first #-symbol, and combines the first #-symbol with the su�x letter u

r

of u into
a special symbol of the form [u

r

,#]. Then M replaces the first two symbols u1 and u2 of u by
an auxiliary of the form [u1, u2, 1]. In the following cycle it jumps to the boundary between
the infix v and the su�x w. Let u = u1u2 . . . ur

, v = v1v2 . . . vr, and w = w1w2 . . . wr

. If the
u1 = v

r

= w1 and u2 = v

r�1 = w2, then M replaces v
r�1vr by an auxiliary symbol of the form

[v
r�1, vr, 2], and replaces w1w2 by an auxiliary of the form [w1, w2, 3]. Then, M removes the

symbol [u1, u2, 1], and in the following cycle removes the symbols [v
r�1, vr, 2] and [w1, w2, 3].

Therefore, we can describe the above process by the following sequence

cu1u2 . . . ur

#v1 . . . vr�1vr#w1w2 . . . wr

$ (0)
! cu1u2 . . . ur�1[ur

,#]v1 . . . vr�1vr#w1w2 . . . wr

$ (1)
! c[u1, u2, 1]a3 . . . ur�1[ur

,#]v1 . . . vr�1vr#w1w2 . . . wr

$ (2)
! c[u1, u2, 1]a3 . . . ur�1[ur

,#]v1 . . . vr�2[vr�1, vr, 2]#[w1, w2, 3]w3 . . . wr

$ (3)
! ca3 . . . ur�1[ur

,#]v1 . . . vr�2[vr�1, vr, 2]#[w1, w2, 3]w3 . . . wr

$ (4)
! ca3 . . . ur�1[ur

,#]v1 . . . vr�2#w3 . . . wr

$ (5)

Of course, M often needs to guess which operation it should perform. For a window content c↵
on a restarting configuration, if ↵ 2 ⌃⇤, M has to guess whether the first #-symbol is already
rewritten in the form [a,#], or whether the symbols of the form [a, b, 2] and [a, b, 3] are already
removed. Thus, on Stage (1), (2) and (4) after rewriting M has to jump to the first and second
#-symbols in order to verify its guess. It is rather clear that after a rewrite step M needs at
most two jump-right steps, and this is bounded by a constant. The above process is repeated,
until all letters of u, v and w are erased, and the symbol [a,#] is rewritten in [#]. Finally, M
accepts on the tape content c[#]#$. If M discovers that there are more than two #-symbols,
or that the second # is rewritten, then it halts and rejects. 2

The above result separates the class GCSL from the class L(FJRRWW). Hence, we immediately
obtain the following consequence.

Theorem 4.5 GCSL ( L(FJRRWW).

Note that it remains open whether or not the language L

Gl

can be accepted by an FJRWW-
automaton. Now we investigate the relation between fast jumping restarting automata without
auxiliary symbols and the corresponding types of general jumping restarting automata. To do
this, we consider the following example language:

L0 = { aicajbl | i, j, l � 0, i+ j = l } [ { aidajbl | i, j, l � 0, 2(i+ j) = l }.

For the following result, we need the so-called error preserving property (see, e.g., [3]), which
states that for each restarting automaton M = (Q,⌃,�, c, $, q0, k, �) , if q0cu$ `c

⇤
M

q0cv$ holds
and u /2 L(M), then v /2 L(M), either.
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Lemma 4.6 L0 /2 L(FJRRW).

Proof. We assume that there exists an FJRRW-automaton M = (Q,⌃,�, c, $, q0, k, �) such
that L0 = L(M). For an input of the form a

i

xa

j

b

l (x 2 {c, d}), here we choose i, j, l > 2k. As
the length of the input is greater than the size of read/write window of M , and as the language
L0 is not regular, the input cannot be accepted in a tail computation, and M needs to shorten
both prefix a

i

xa

j and the su�x b

l in order to compare the numbers of a- and b-symbols. Here
we distinguish between two cases.

(1) In each cycle, M will have the option to either execute a rewrite step on the restarting
configuration or jump to the right. We assume that M directly jumps to the boundary
between the prefix and the su�x. As i, j, l > 2k, the symbol x 2 {c, d} cannot be in
the read/write window at the beginning of a cycle, and also not in the window when it
stands on the boundary between the prefix and the su�x. Therefore, M can only guess
the value of x, and then it removes correspondingly many a- and b-symbols. However,
without auxiliary symbols M cannot remember its guess after a restart step. Therefore,
an input a

i

ca

i

b

2i+r

/2 L0 can be reduced to the word a

r

ca

r

b

2r 2 L0 for 0 < r < i, which
contradicts the error preserving property.

(2) In order to solve the above problem, M can first jump to the symbol x, and then based
on the value of x it removes a corresponding number of a- and b-symbols. However, as in
each cycle a fast jumping restarting automaton is allowed to execute at most one jump-
right step before rewrite, M must perform a rewrite step on a factor of the form a

r

xa

t

for r + t+ 1 = k. It follows that in the same cycle, M cannot shorten the segments of a-
and b-symbols anymore. Further, after restarting M reenters the initial state q0, and it is
not able to remember the value of x, as in a rewrite step the factor arxat is replaced by
a shorter string v consisting of only input symbols. In addition, in such a rewrite step,
the number of b will not be changed, while the number of a-symbols is reduced, or the
symbol x or some a-symbols are replaced by other input symbols, which also leads to a
contradiction with the error preserving property.

2

Based on Lemma 4.6 the following proper inclusion result can be obtained.

Theorem 4.7 For each type X 2 {R,RR,RW,RRW},

(1) L(FJX) ( L(JX),
(2) L(det-FJX) ( L(det-JX).

Proof. It is rather clear that the above inclusions follow from the definition of (fast) jumping
restarting automata. In order to prove their properness, we construct a det-R-automaton M

that accepts the language L0, and it proceeds as follows. For an input of the form a

i

xa

j

b

l

(x 2 {c, d}), in each cycle, M moves from left to right. On seeing the symbol x, it stores the
value of x in its finite-state control, and continues moving to the boundary between a- and
b-symbols. According to the value of x, M removes correspondingly many a- and b-symbols,
and then restarts. Note that the symbol x will not be deleted, and finally M accepts on the
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L((J)R)

L((J)RWW)

L((J)RRWW)

L(FJRRWW)

L((J)RR)

L(FJRWW)

L(FJRR)

L(FJR)

L((J)RW)

L(FJRW)

L((J)RRW)

L(FJRRW)

GCSL

Figure 1: Hierarchy of classes of languages that are computed by the various types of (fast) jumping
restarting automata. A dotted arrow denotes an inclusion, and a solid arrow denotes a proper inclusion.

tape content cx$. It is easily seen that L0 = L(M). Further, by Theorem 3.4, it follows that
L0 2 L(det-JR), and by Lemma 4.6, it follows that L0 /2 L(FJRRW), which completes this
proof. 2

Obviously, the relations between various types of general restarting automata without auxiliary
symbols carry over to the corresponding types of fast jumping restarting automata, which are
separated from each other by the same languages given in [3, 8]. The inclusion results obtained
on fast jumping restarting automata and deterministic versions of them are summarized in
Figure 1 and 2, respectively.

5. Monotone Fast Jumping Restarting Automata

There are many restricted types of restarting automata. Here we restate the notion of mono-
tonicity for restarting automata [3]. Let C = ↵q� be a rewrite configuration of a restarting
automaton M , that is, a configuration in which a rewrite step can be applied. Then |�| is
called the right distance of C, which is denoted by D

r

(C). A sequence of rewrite configura-
tions S = (C1, C2, . . . , Cn

) is called monotone if D
r

(C1) � D

r

(C2) � · · · � D

r

(C
n

), that is,
if the distance of the place of rewriting to the right end of the tape does not increase from
one rewrite step to the next. A computation of a restarting automaton M is called monotone
if the sequence of rewrite configurations that is obtained from the cycles of that computation
is monotone. Observe that here the rewrite configuration which corresponds to the possible
rewrite step that is executed in the tail of the computation considered is not taken into account.
Finally, a restarting automaton M is called monotone if all its computations that start with
an initial configuration are monotone. We use the prefix mon- to denote monotone types of
restarting automata. In this section, we consider monotone fast jumping restarting automata.
We begin with mon-FJRWW-automata, and establish the following inclusion result.
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L(det-(J)R)

L(det-(J)RWW)

L(det-(J)RRWW)

L(det-FJRRWW)

L(det-(J)RR)

L(det-FJRWW)

L(det-FJRR)

L(det-FJR)

L(det-(J)RW)

L(det-FJRW)

L(det-(J)RRW)

L(det-FJRRW)

CRL

Figure 2: Hierarchy of classes of languages that are computed by the various types of deterministic
(fast) jumping restarting automata. An arrow denotes a proper inclusion, and a solid line denotes an
equality relation.

Lemma 5.1 L(mon-RWW) ✓ L(mon-FJRWW).

Proof. Let M = (Q,⌃,�, c, $, q0, k, �) be a mon-RWW-automaton. We will construct a
mon-FJRWW-automaton M

0 such that L(M 0) = L(M). The main problem in simulating M is
the fact that in each cycle, M 0 is allowed to perform only at most one jump-right step, after
which it must immediately execute a rewrite/restart step, while M is able to move right along
the tape to the right end. Here we apply the simulation technique that is used in the proof of
Theorem 4.2. In order to simulate move-right transitions of M , M 0 has to store the current
state of M on the tape, as it cannot remember the state after a rewrite/restart step. Further,
each rewrite operation must be strictly length-reducing. In order to satisfy this condition, M 0

combines two move-right steps of M in a single step, and thus it needs a read/write window
that is larger than M . Then, M 0 rewrites two letters on the tape in an auxiliary symbol with
the current state of M , i.e., of the form [a, b, q], where a, b 2 �, and q 2 Q. As M is monotone,
in each cycle M

0 can directly jump to the rightmost symbol of the form [a, b, q], and on seeing
the current state of M it continues simulating the rest computation of M . 2

In [3] it is shown that the language class CFL is characterized by mon-(R)RWW-automata.
Hence, the following result can be easily obtained.

Theorem 5.2
CFL = L(mon-FJRWW) = L(mon-FJRRWW)

= L(mon-JRWW) = L(mon-JRRWW)
= L(mon-RWW) = L(mon-RRWW).

It is easy to see that the simulation technique used in the proof of Lemma 5.1 can also be applied
in the deterministic case.Further, it is well-known that the language class DCFL coincides with
the classes of languages that are computed by det-mon-R(R)(W)(W)-automata [3]. Note that
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a fast jumping restarting automaton without auxiliary symbols is not able to apply the above
simulation technique, as it cannot store the current state of M on the tape. Hence, we can
establish the following result.

Theorem 5.3 For each type X 2 {R,RR,RW,RRW,RWW,RRWW},

DCFL = L(det-mon-FJRWW) = L(det-mon-FJRRWW)
= L(det-mon-X) = L(det-mon-JX).

We see that monotone fast jumping restarting automata with auxiliary symbols have the same
computational expressive power as general restarting automata of corresponding types, and
this is also true in the deterministic case.

Now we turn to the monotone fast jumping restarting automata without auxiliary symbols.
As the det-R-automaton for the language L0 given in the proof of Theorem 4.7 is actually
monotone, the following proper inclusions can be easily obtained.

Theorem 5.4 For each type X 2 {R,RR,RW,RRW},

(1) L(mon-FJX) ( L(mon-JX),
(2) L(det-mon-FJX) ( L(det-mon-JR).

It is rather clear the relations between various types of general monotone restarting automata
without auxiliary symbols carry over to the corresponding types of fast jumping restarting
automata, which are separated from each other by the same languages given in [3, 8]. However,
the relations between deterministic fast jumping restarting automata without auxiliary symbols
are still unknown. Further, in [8] it was claimed that the class DCFL is a proper subset of the
class L(mon-R), and the language L4 = { anbm | 0 < n  m  2n } 2 L(mon-R) \ DCFL.
Obviously, the language L4 can also be accepted by a mon-FJR-automaton. Hence, we have the
following incomparability result.

Theorem 5.5 The language class DCFL is incomparable to the language classes L(mon-FJR),
L(mon-FJRR), L(mon-FJRW), and L(mon-FJRRW) with respect to inclusion.

Finally, we summarize the inclusion relations between the classes of languages that are accepted
by various types of monotone jumping restarting automata in the diagram in Figure 3.

6. Conclusions

We have studied the class of languages that are computed by various types of (fast) jumping
restarting automata, both in deterministic case as well as in the nondeterministic case. We
have seen that FJRWW-automata can accept all languages from the class GCSL, which is even
strictly contained in the class L(FJRRWW). Further, the class CRL can be characterized by
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L(mon-(J)R)

L(mon-(J)RWW)

L(mon-(J)RRWW)

L(mon-FJRRWW)

L(mon-(J)RR)

L(mon-FJRWW)

L(mon-FJRR)

L(mon-FJR)

L(mon-(J)RW)

L(mon-FJRW)

L(mon-(J)RRW)

L(mon-FJRRW)

CFL

L(det-mon-(J)R(R)(W)(W)) L(det-mon-FJR(R)WW)
DCFL

L(det-mon-FJR(R)(W))

Figure 3: Inclusions between the language classes defined by various types of (fast) jumping restarting
automata. An arrow denotes a proper inclusion, a solid line denotes an equality relation, and classes
that are not connected through a sequence of arrows are incomparable with respect to inclusion.

det-FJR(R)WW-automata just like general det-R(R)WW-automata. Then, we have proved that
(monotone) fast jumping restarting automata that are not allowed to use auxiliary symbols
have a weaker expressive power than the corresponding types of general restarting automata.
Finally, we have obtained that the class of languages that are accepted by mon-FJR(R)WW

coincides with the class CFL, and this is also true in the deterministic case, which means that
these automata are expressive exactly as (det-)mon-R(R)WW. In addition, it is easily seen
that (fast) jumping restarting automata have the same closure properties as general restarting
automata.

However, it is still open whether the inclusion GCSL ✓ L(FJRWW) is proper. Further, it
remains to derive a characterization of the classes of languages that are computed by the fast
jumping restarting automata without auxiliary symbols. In particular, the inclusion relation
between the class REG and the class of languages that are computed by these automata without
auxiliary symbols is still unknown.
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Abstract

We cast new light on the existing models of 1-way deterministic topological automata by in-
troducing a new, convenient model, in which, as each input symbol is read, an interior system
of an automaton known as a configuration continues to evolve in a topological space by ap-
plying continuous transition operators one by one. The acceptance and rejection of a given
input are determined by observing the interior system after the input is completely processed.
Such automata naturally generalize 1-way finite automata of various types, including determin-
istic, probabilistic, and measure-many quantum finite automata. We examine the strengths and
weaknesses of the power of this new automata model when recognizing formal languages. We
investigate tantalizing e↵ects of various topological features of our topological automata by an-
alyzing the behaviors of the automata when di↵erent kinds of topological spaces and continuous
maps, which are used respectively as configuration spaces and transition operators, are provided
to the automata.

Keywords: topological automata, topological space, continuous map, compact, quantum finite
automata, probabilistic finite automata

1. Topological Automata as Input Acceptors

Finite-state automata (finite automata, or even automata) are one of the simplest and the most
intuitive mathematical models used to describe “mechanical procedures,” each of which depicts
a finite number of “operations” in order to determine the membership of any given input word to
a fixed language. Over decades of their study, these machines have found numerous applications
in the fields of engineering, physics, biology, and even economy (see, e.g., [4]). Each machine
reads input symbols one by one and then processes them by changing a status of the machine’s
interior system step by step. In particular, a one-way1 (or real-time) finite automaton receives

1Here, we use the term “1-way” to exclude the use of �-moves, which are particular transitions of the machine
with its tape head staying still, where � refers to the empty string. On the contrary, finite automata that make
�-moves are sometimes called 1.5-way finite automata.
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streamlined input data and processes it piece by piece by applying operations predetermined
for each of the input symbols. For such a machine, a computation is a description of a series of
“evolutions” of the interior system.

To cope with numerous computational problems, various types of finite automata have been
proposed in the past literature as their appropriate computational models. In the 1970s, many
features of the existing 1-way finite automata were generalized into so-called “topological au-
tomata” (see [3] for early expositions and references therein). Topological automata embody
characteristic features of various types of finite automata and this fact has helped us take a
unified approach toward the study of formal languages and automata theory. The analysis of
topological features of the topological automata thus guides us to a better understanding of
the theory itself.

Back in the time of 1970s, Brauer (see references in [3]) and Ehrig and Kühnel [3] discussed
topological automata as a topological generalization ofMealy machines, which behave as “trans-
ducers,” which simply produce outputs from inputs. In contrast, following a discussion of
Bozapalidis [2] on a generalization of stochastic functions and quantum functions (see also
[10]), Jeandel [5] studied another type of topological automata that behave as “acceptors” of
inputs. Jeandel’s model naturally generalizes not only probabilistic finite automata [9] but also
measure-once quantum finite automata [8]. The main motivation of Jeandel’s work, nonethe-
less, was to study a nondeterministic variant of quantum finite automata and he thus used
his topological automata to obtain an upper-bound of the language recognition power of non-
deterministic quantum finite automata. Concerning the types of “inputs” fed into topological
automata, in contrast, Ehrig and Kühnel [3] applied a quite general framework to inputs, which
are taken from arbitrary compactly generated Hausdor↵ spaces, whereas Jeandel [5] used the
standard framework with finite alphabets and languages generated over them. Jeandel further
took “measures” (which assign real numbers to final configurations) to determine the accep-
tance or rejection of inputs. Since we are more concerned with the computational power of
topological automata in comparison with the existing finite automata, we wish to make our
model as simple and intuitive as possible by introducing, unlike the use of measures, sets of
accepting and rejecting configurations, into which the machine’s interior system finally falls.

Given an input string over a fixed alphabet ⌃, the evolution of an interior status of our topo-
logical automaton is described in the form of a series of configurations, which constitutes a
computation of the machine. A list of transition operators thus serves as a “program”, which
completely dictates the behaviors of the machine on each input. Since arbitrary topological
spaces can be used as configuration spaces, topological automata are no longer “finite-state”
machines; however, they evolve sequentially as they read input symbols one by one until they
completely read the entire inputs and final configurations are observed once (referred to as an
“observe once” feature). Moreover, our topological automata enjoy a “deterministic” nature
in the sense that which transition operators are applied to the current configurations is com-
pletely determined by input symbols alone. This gives rise to “1-way deterministic topological
automata” (or 1dta’s, in short). Although their tape heads move in one direction from the left
to the right, 1dta’s turn out to be quite powerful in recognizing formal languages.

This paper intends to shed new light on the basic structures of topological automata and the
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acting roles of their transition operators that force configurations to evolve consecutively. For
this purpose, we start our study with a suitable abstraction of 1-way finite automata using
arbitrary topological spaces for configurations and arbitrary continuous maps for transitions.
Such an abstraction serves as a skeleton to construct our topological automata. We call this
skeleton an automata base.

In general, the choice of topologies significantly a↵ects the computational power of topological
automata. As shown later, the trivial topology induces the language family composed only of ;
and ⌃⇤ (for each fixed alphabet ⌃) whereas the discrete topology allows topological automata
to recognize arbitrary complex languages. All topologies on a fixed space V form a complete
lattice; thus, it is possible to classify the topologies according to the endowed power of associated
topological automata.

Our study on topological automata may be focused on achieving the following four goals.

1. Understand how various choices of topological spaces and continuous maps a↵ect the
computational power of underlying machines by clarifying the strengths and weaknesses
of the language recognition power of the machines.

2. Determine what kinds of topological features of topological automata nicely characterize
the existing finite automata of various types by examining the descriptive power of such
features.

3. Explore di↵erent types of topological automata to capture fundamental properties (such
as closure properties) of formal languages and finite automata.

4. Find useful applications of topological automata to other fields of science.

In Section 2, we will formulate our basic model of 1dta’s. These automata are naturally induced
from automata bases and they can express numerous types of the existing 1-way finite automata.
Through Section 3, we will discuss basic properties of the 1dta’s, including closure properties
and the elimination of two endmarkers. Following an exploration of such basic properties, we
will compare di↵erent topologies in Section 4 by measuring how much computational power is
endowed to underlying topological automata. In Section 5, we will show that unique features of
well-known topological concepts, such as compactness and equicontinuity, help us characterize
1-way deterministic finite automata (or 1dfa’s). We will lay out a necessary and su�cient
condition on a topological space for which underlying machines are no more powerful than
1dfa’s. In Section 6, we will consider a nondeterministic variant of our topological automata
(called 1nta’s) by introducing multi-valued transition operators. It is known that, for weak
machine models, nondeterministic machines can be easily simulated by deterministic ones. By
formalizing this situation, we will argue what kind of topology makes 1nta’s simulated by 1dta’s.

We strongly hope that this work initiates a systematic study on the significant roles of topologies
played by topological automata and also it leads to better understandings of ordinary finite
automata in the end.
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2. A Basic Model of Our Topological Automata

One-way (deterministic) topological automata can represent many of the existing 1-way finite
automata. We begin our study of such powerful automata by describing their “basic” frame-
work, which we intend to call an automata base.

Let Z, R, and C respectively indicate the sets of all integers, of all real numbers, and of all
complex numbers. We denote by N the set of all nonnegative integers (or natural numbers) and
set N+ to be N � {0}. For any two integers m and n with m  n, an integer interval [m,n]Z
expresses the set {m,m + 1,m + 2, . . . , n} in contrast with a real interval [↵, �] for ↵, � 2 R.
We further abbreviate [1, n]Z as [n] for any number n 2 N+.

Given a set X, the notation P(X) denotes the power set of X, i.e., the set of all subsets of X,
and P(X)+ expresses P(X)� {;}. A monoid C is a semigroup with an identity I in C and an
associative binary operator � on C.

2.1. Topologies and Automata Bases

In 1970s, topological automata were sought to take inputs from arbitrary topological spaces
(e.g., [3]). Although such a general treatment of topological automata provides a bird-eye
view of a topological landscape of a standard setting of formal languages and automata theory,
as noted in Section 1, we wish to limit our interest within fixed discrete alphabets because
our intention is to compare the language recognition power of topological automata with the
existing finite automata that deal only with languages over small discrete alphabets.

Hereafter, an alphabet refers to a nonempty finite set ⌃ of “symbols” (or “letters”) and a string
over alphabet ⌃ is a finite sequence of symbols in ⌃. The length |x| of string x is the number of
all occurrences of symbols in x. The empty string is a special string of length 0 and is denoted
by �. Given two strings x and y, x is an initial segment of y if y = xz holds for a certain string
z. For each number n 2 N, ⌃n denotes the set of all strings of length exactly n; moreover, we
set ⌃⇤ =

S
n2N ⌃

n and a language o ver ⌃ is a subset of ⌃⇤. A language is called unary (or tally)
if it is defined over a single-letter alphabet. Given a language L over ⌃, we use the same symbol
L to denote its characteristic function; that is, for any x 2 ⌃⇤, L(x) = 1 if x 2 L, and L(x) = 0
otherwise. For two languages A and B over ⌃, the notation AB denotes {xy | x 2 A, y 2 B}.
In particular, when A is a singleton {s}, we write sB in place of {s}B. Similarly, we write As
for A{s}.
To discuss structures of topological automata, we first introduce a fundamental notion of “au-
tomata base,” which is a skeleton of various topological automata introduced in Section 2.2.
For this purpose, we want to review basic terminology in the theory of general topology (or
point-set topology). Given a set V of points, a topology T

V

on V is an axiomatic2 collection
of subsets of V , called open sets. Hence, T

V

is a subset of P(V ). With respect to V , the

2There are three axioms for TV to satisfy. (1) ;, V 2 TV . (2) Any (finite or infinite) union of sets in TV is
also in TV . (3) Any finite intersection of sets in TV belongs to TV .
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complement of each open set of V is called a closed set. Moreover, a clopen set is a set that
is both open and closed. Clearly, ; and V are clopen with respect to V . A neighborhood of
a point x in V is a set in T

V

that contains x. Often, we write N
x

to indicate a neighborhood
of x. A topological space is a pair (V, T

V

). When T
V

is clear from the context, we call V a
topological space. For a practical reason, we implicitly assume that V 6= ; throughout this
paper. For two topological spaces (V

1

, T
V1) and (V

2

, T
V2), we say that (V

2

, T
V2) is finer than

(V
1

, T
V1) (also (V

1

, T
V1) is coarser than (V

2

, T
V2)) if both V

1

✓ V
2

and T
V1 ✓ T

V2 . In such a case,
we write (V

1

, T
V1) v (V

2

, T
V2), or simply T

V1 v T
V2 if V

1

and V
2

are clear from the context. For
a topological space V , a basis of its topology T

V

is a set B of subsets of V such that every
open set in T

V

is expressed as a union of sets of B. Given two topological spaces V and W ,
the product topology (or Tychono↵ topology) T

V⇥W

on the Cartesian product V ⇥ W is the
topology induced by the basis {A⇥ B | A 2 T

V

, B 2 T
W

}. We write T+

V

for T
V

� {;}.
There are two typical topologies on V : the trivial topology T

trival

(V ) = {;, V } and the discrete
topology P(V ). Notice that any topology T

V

on V is located between T
trival

(V ) and P(V ).

Take a point set V and consider all possible topologies on V . Let T (V ) denote the collection
of all topologies T

V

on V . This set T (V ) forms a complete lattice in which the meet and the
join of a collection A of topologies on V correspond to the intersection of all elements in A and
the meet of the collection of all topologies on V that contain every element of A.

A map B from a topological space V to another W is said to be continuous if, for any v 2 V
and any neighborhood N of B(v), there exists a neighborhood N 0 of v satisfying B(N 0) ✓ N ,
where B(N 0) = {B(w) | w 2 N 0}. Given a set B of continuous maps, the notation CB(V )
denotes the set of all continuous maps in B on V (i.e., from V to itself) together with a certain
given topology, expressed as T

CB(V )

. When B is the set of all continuous maps on V , we often
omit subscript B from CB(V ) and T

CB(V )
.

We are now ready to introduce a fundamental concept of automata base used as a foundation
to our model of topological automata. A triplet (V ,B,O) is called an automata base if V , B,
and O satisfy the following three conditions (1)–(3). (1) V is a set of topological spaces (which
are called configuration spaces). (2) B is a set of continuous maps (called transition operators)
from any space V in V to itself for which (i) (CB(V ), �) is a monoid with a multiplication
operator �, (ii) � is also a continuous map on CB(V ), (iii) (V, •) is a left act3 over CB(V ) with
�, and (iv) • must be a continuous map on V . (3) O is a set of observable pairs (E

acc

, E
rej

),
both of which are clopen sets in a certain space V in V (where E

acc

and E
rej

are respectively
called by an accepting space and a rejecting space). For our convenience, a pair (V ,B) is briefly
called a sub-automata base. For operators A,B in B and a point v of V , we simply write A(v)
or even Av for A • v and abbreviate A � B as AB. Note that AB(v) = (A � B)(v) = A(B(v))
for every v 2 V .

We say that an automata base (V ,B,O) is reasonable if V , B, and O are all nonempty. In
the rest of this paper, we implicitly assume that (V ,B,O) is reasonable. Given an operator B,
we say that O is closed under B if (B(E

1

), B(E
2

)) 2 O holds for any (E
1

, E
2

) 2 O. Given a

3A left act satisfies that (B1 �B2) • v = B1 • (B2 • v) and I • v = v
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“property”4 P associated with topological spaces, we say that V satisfies P if all topological
spaces in V satisfy P .

2.2. One-Way Deterministic Topological Automata

Formally, let us introduce our model of topological automata, each of which reads input symbols
taken from a fixed alphabet, modifies configurations in a deterministic manner, and finally
observes the final configurations to determine the acceptance or rejection of the given inputs.
This model is called “observe once” because we observe only the final configuration.

Hereafter, let (V ,B,O) denote an arbitrary reasonable automata base. Here, we use two end-
markers |c (left endmarker) and $ (right endmarker) that surround each input string x as |cx$.

Basic Model of (V ,B,O)-1dta’s Assuming an arbitrary input alphabet ⌃ with |c, $ /2 ⌃, let
us define a basic model of our topological automata. An 1-way (observe-once5) deterministic
(V ,B,O)-topological automaton with the endmarkers (succinctly called a (V ,B,O)-1dta) M is
a tuple (⌃, {|c, $}, V, {B

�

}
�2ˇ

⌃

, v
0

, E
acc

, E
rej

), where ⌃̌ = ⌃[{|c, $}, V is a configuration space in
V with a certain topology T

V

on V , v
0

(2 V ) is the initial configuration, each B
�

is a transition
operator in B acting on V , and (E

acc

, E
rej

) is an observable pair in O for V satisfying the
exclusion principle: E

acc

and E
rej

are disjoint (i.e., E
acc

\ E
rej

= ;). For convenience, let
E

non

= V � (E
acc

[ E
rej

).

Notice that the use of the endmarkers helps us avoid an introduction of a special transition
operator associated with � (the empty string). Without endmarker, by contrast, 1dta’s must
read input strings with no help of two endmarkers.

Our definition of 1dta’s is di↵erent from the existing ones, as stated in Section 1, in the following
ways. Ehrig and Kühnel [3] took compactly generated Hausdor↵ spaces for our ⌃ and V .
Jeandel [5] took a metric space for V and also used a measure, which maps V to R instead of
our observable pair (E

acc

, E
rej

).

As another possible formulation of transition operators, we may use a single map B : ⌃̌⇥V ! V
instead of a series {B

�

}
�2ˇ

⌃

. Such a map was used by, e.g., Ehrig and Kühnel [3]; however, as
pointed out in [3], B is no longer continuous, and thus we need additional requirements.

Configurations and Computation. Let x = x
1

x
2

· · · x
n

be an input string of length n in
⌃⇤. We set x̃ = x

0

x
1

· · · x
n

x
n+1

to be an endmarked input string, which includes x
0

= |c (left
endmarker) and x

n+1

= $ (right endmarker).

4This informal term “property” is used in a general sense throughout this paper, not limited to “topological
properties,” which usually means the “invariance under homeomorphisms.”

5It is possible to consider an observe-many model of 1dta in which, at each step, the 1dta checks if, at each
step, the current configuration falls into Eacc [ Erej .
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The machine M works as follows. A configuration of M on x is a point of V . A configuration
in E

acc

(resp., E
rej

) is called an accepting configuration (resp., a rejecting configuration). Both
accepting and rejecting configurations are simply called halting configurations. We begin with
the initial configuration v

0

2 V , which is the 0th configuration of M on x. In the first step,
we apply B|c and obtain v

1

= B|c(v0). For an index i 2 [n], we assume that v
i

is the ith
configuration of M on x. In step i + 1 (0  i  n), the i + 1st configuration v

i+1

is obtained
from v

i

by applying the operator B
x

i

corresponding to x
i

; that is, v
i+1

= B
x

i

(v
i

). For any
series �

1

, �
2

, . . . , �
j�1

, �
j

2 ⌃̌, we abbreviate as B
�1�2···�

j

the multiplication B
�

j

B
�

j�1 · · ·B�2B�1 .
Notice that, since B is a monoid with the multiplication, B

�1�2···�
j

also belongs to B. The final
configuration v

n+2

is obtained from v
n+1

by v
n+2

= B
$

(v
n+1

) and it coincides with B|cx$(v0).
The obtained series of configurations, (v

0

, v
1

, . . . , v
n+2

), is called a computation of M on the
input x. When a 1dta has no endmarker, by contrast, a computation (v

0

, v
1

, . . . , v
n+1

) is simply
generated by v

i

= B
x

i

(v
i�1

) for each i 2 [n], and the final configuration v
n+1

coincides with
B

x

(v
0

).

Acceptance and Rejection. Finally, we determine the acceptance and the rejection of input
strings by checking whether the final configuration v

n+2

falls into E
acc

and E
rej

, respectively.
We say that M accepts (resp., rejects) x if v

n+2

2 E
acc

(resp., v
n+2

2 E
rej

). We say that M
recognizes L if, for every string x 2 ⌃⇤, the following two conditions are met: (1) if x 2 L,
then M accepts x and (2) if x /2 L, then M rejects x. We use the notation L(M) to denote the
language that is recognized by M .

We define (V ,B,O)-1DTA to be the family of all languages, each of which is defined over a
certain alphabet ⌃ and is recognized by a certain (V ,B,O)-1dta.

Two 1dta’s M
1

and M
2

having the common ⌃ and V are said to be (computationally) equivalent
if L(M

1

) = L(M
2

).

2.3. Conventional Finite Automata are 1dta’s

Our topological-automata framework naturally extends the existing 1-way finite automata of
various types. To see this fact, let us demonstrate that typical models of 1-way finite automata
can be nicely fit into our framework.

As concrete examples, we here consider only the following four types of finite automata.

(i) Deterministic Finite Automata. A 1-way deterministic finite automaton (or a 1dfa)
with two endmarkers can be viewed as a special case of (V ,B,O)-1dta when V equals {[k] |
k 2 N+} with the discrete topology, B contains all maps from [k] to [k] for each k 2 N+, and
O contains all nonempty partitions (E

acc

, E
rej

) of [k] for each k 2 N+. Languages recognized
by 1dfa’s are called regular and REG denotes the set of all regular languages.
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(ii) Probabilistic Finite Automata [9]. A stochastic matrix is a nonnegative-real matrix in
which every column6 sums up to exactly 1. A bounded-error 1-way probabilistic finite automaton
(or 1pfa) is a special case of (V ,B,O)-1dta, where V = {[0, 1]k | k 2 N+} (in which each point of
[0, 1]k is expressed as a column vector), B is composed of all k⇥k stochastic matrices, and O is
the set of all pairs (E

acc

, E
rej

), each of which is defined as the inverse images of projections onto
unit basis vectors in [0, 1]k. The notation 1BPFA denotes the set of all languages recognized
by 1pfa’s with bounded-error probability. When we consider unbounded-error probability, we
write SL to denote the set of all stochastic languages (i.e., languages that are recognized by
1pfa’s with unbounded-error probability). It is known that 1BPFA = REG [9] and REG $ SL
since L

<

= {ambn | m,n 2 N,m < n} is in SL.

(iii) Measure-Many Quantum Finite Automata [6]. A bounded-error measure-many
1-way quantum finite automaton (or 1qfa) is a (V ,B,O)-1dta, where V contains all sets V of
the form (C1)k ⌦ [0, 1]⌦ [0, 1] and B consists of all maps T defined in [11] as

T (v, �
1

, �
2

) =

✓
⇧

non

Bv, sgn(�
1

)
q

�2

1

+ k⇧
acc

Bvk2
2

, sgn(�
2

)
q
�2

2

+ k⇧
rej

Bvk2
2

◆
, (1)

where sgn(�) = +1 if � � 0 and �1 if � < 0, for a certain k ⇥ k unitary matrix B and 3
projections ⇧

acc

, ⇧
rej

, and ⇧
non

onto di↵erent unit basis vectors. Concerning bounded-error
1qfa’s, we set E

acc

= {(v, �
1

, �
2

) 2 V | �
1

� 1 � "} and E
rej

= {(v, �
1

, �
2

) 2 V | �
2

� 1 � "}
for each constant " 2 [0, 1/2). Let O express the set of all such pairs (E

acc

, E
rej

). For basic
properties of T , see [11, Appendix]. We write MM-1QFA to denote the collection of all languages
recognized by 1qfa’s with bounded-error probability. It is known that MM-1QFA $ REG [6].

(iv) Deterministic Pushdown Automata. A 1-way deterministic pushdown automaton
(or a 1dpda)M can be seen as a (V ,B,O)-1dta when (V ,B,O) satisfies the following properties.
Let V = {[k]⇥?�⇤ | k 2 N+,� : alphabet}, where ? is a distinguished bottom marker not in
�. Let B be composed of all maps of the form B(q,?z) = (µ

1

(q, z
n

),?z
1

z
2

· · · z
n�1

µ
2

(q, z
n

))
for two functions µ

1

: [k] ⇥ � ! [k] and µ
2

: [k] ⇥ � ! �l, where z = z
1

z
2

· · · z
n

and l 2 N+.
Intuitively, B simulates a series of moves in which M reads one symbol and then makes a single
non-�-move followed by a certain number of �-moves. Let O consist of all pairs (E

acc

, E
rej

)
with E

acc

= Q
1

⇥?�⇤ and E
rej

= Q
2

⇥?�⇤, where Q
1

and Q
2

are partitions of [k]. We write
DCFL for the class of these languages.

3. Basic Properties of (V ,B,O)-1dta’s

We have introduced the model of (V ,B,O)-1dta’s in Section 2.2. We will begin with exploring
basic properties of those (V ,B,O)-1dta’s and their language families (V ,B,O)-1DTA.

6Unlike the standard definition, in accordance with our topological automata, we apply each stochastic
matrix to column vectors from the left, not from the right in the early literature.
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3.1. Elimination of Endmarkers

In many cases, it is possible to eliminate endmarkers from a 1dta M without changing the
languages recognized by M . A simple way to do so is to modify the initial configuration, say,
v
0

of M to a new initial configuration B|c(v0) using an operator B|c of M . Even if we stick to
the same v

0

, a slight modification of all operators B
�

of M provides the same e↵ect as shown
in the following lemma.

We say that a set B of operators is continuously invertible if every operator B in B is invertible
and its inverse B�1 is in B and continuous.

Lemma 3.1 Let (V ,B,O) be any reasonable automata base. Assume that B is continuously
invertible. For every (V ,B,O)-1dta M = (⌃, {|c, $}, V, {B

�

}
�2ˇ

⌃

, v
0

, E
acc

, E
rej

), there exists an-
other equivalent (V ,B,O)-1dta N with the same ⌃, V , v

0

, E
acc

, and E
rej

but no left-endmarker.

Proof. We define a new set of operatorsB0
�

for each symbol � 2 ⌃[{$}. DefineB0
�

= B�1

|c B
�

B|c

for any � 2 ⌃ and let B0
$

= B
$

B|c. The desired N reads an input x$ and behaves exactly as M
does by applying {B

�

}
�2⌃[{$}. 2

We can eliminate $ as well by slightly changing observable pairs of M .

Lemma 3.2 Let (V ,B,O) be any reasonable automata base. Assume that B is continuously
invertible and that O is closed under all operators in B. For every (V ,B,O)-1dta M , there
exists its equivalent (V ,B,O)-1dta N with the same ⌃, V , B

�

, and v
0

but no right-endmarker.

Proof. We define a new observable pair (E 0
acc

, E 0
rej

) of N by setting E 0
acc

= {v 2 V | B
$

(v) 2
E

acc

} and E 0
rej

= {v 2 V | B
$

(v) 2 E
rej

}. Clearly, E 0
acc

and E 0
rej

are disjoint because so
are E

acc

and E
rej

. Since B
$

is invertible and B�1

$

is continuous, E 0
acc

and E 0
rej

are written as
{B�1

$

(v) | v 2 E
acc

} and {B�1

$

(v) | v 2 E
acc

}, respectively. Since B�1

$

is in B and O is closed
under B�1

$

, it follows that (E 0
acc

, E 0
rej

) 2 O. 2

3.2. Closure Properties

We discuss a few closure properties of (V ,B,O)-1DTA. We say that O is symmetric if, for
any pair (A,B) 2 O, (B,A) also belongs to O. An automata base (V ,B) is said to be closed
under product if, for any V

1

, V
2

2 V and any B
1

, B
2

2 B, the following holds. We first define
“products” of them by setting V = V

1

⇥ V
2

and B = B
1

⇥ B
2

and by taking the associated
product topology T

V

= T
V1⇥V2 . We also require these V and B to be in V and O, respectively.

Next, we say that (V ,O) is closed under left-union product if (E
acc

, E
rej

) 2 O, where E
acc

=
(V

1

⇥ E
2,acc

) [ (E
1,acc

⇥ V
2

) and E
rej

= E
1,rej

⇥ E
2,rej

. Similarly, we can define the notion of
the closure under right-union product by swapping the roles of two subscripts “acc” and “rej”
in the above definition.
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Lemma 3.3 Let (V ,B,O) be any reasonable automata base.

1. If O is symmetric, then (V ,B,O)-1DTA is closed under complementation.

2. If (V ,B) is closed under product and (V ,O) is closed under left-union product, then
(V ,B,O)-1DTA is closed under union.

3. If (V ,B) is closed under product and (V ,O) is closed under right-union product, then
(V ,B,O)-1DTA is closed under intersection.

Ambainis et al. [1] proved that MM-1QFA is not closed under union. Hence, the premise of the
above lemma is needed.

Proof. (1) The closure property of (V ,B,O)-1DTA under complementation can be obtained
simply by exchanging between E

acc

and E
rej

since O is symmetric.

(2) For each i 2 {1, 2}, we take a language L
i

over ⌃ recognized by a certain (V ,B,O)-
1dta M

i

= (⌃, {|c, $}, V
i

, {B
i,�

}
�2ˇ

⌃

, v
i,0

, E
i,acc

, E
i,rej

). Let L = L
1

[ L
2

. For (V
1

, B
1,�

) and
(V

2

, B
2,�

), we consider (V,B
�

) defined by V = V
1

⇥ V
2

and B
�

= B
1,�

⇥ B
2,�

. Moreover, set
v
0

= (v
1,0

, v
2,0

), E
acc

= (V
1

⇥ E
2,acc

) [ (E
1,acc

⇥ V
2

), and E
rej

= E
1,rej

⇥ E
2,rej

. For any initial
segment z of x$, B|cz(v0) = (B

1,|cz(v1,0), B2,|cz(v2,0)). It thus follows that (i) B|cx$(v0) 2 E
acc

if
and only if either B

1,|cx$(v1,0) 2 E
1,acc

or B
2,|cx$(v2,0) 2 E

2,acc

and (ii) B|cx$(v0) 2 E
rej

if and
only if both B

1,|cx$(v1,0) 2 E
1,rej

and B
2,|cx$(v2,0) 2 E

2,rej

. Finally, we define the desired N as
(⌃, {|c, $}, V, {B

�

}
�2ˇ

⌃

, v
0

, E
acc

, E
rej

).

(3) Similar to (1) in principle, but we need to exchange the roles of “acc” and “rej”. 2

3.3. Computational Power Endowed by the Trivial and Discrete
Topologies

We briefly discuss the language recognition power endowed to 1dta’s by the trivial topology as
well as the discrete topology. In fact, while the trivial topology makes 1dta’s recognize only
trivial languages, the discrete topology makes them powerful enough to recognize all languages.
This latter fact, in particular, assures us to be able to characterize any language family by an
appropriate choice of topologies for 1dfa’s.

Proposition 3.4 Let (V ,B,O) be a reasonable automata base has the trivial topology T
trival

(V )
for each V 2 V. For any (V ,B,O)-1dta M with an alphabet ⌃, L(M) is either ; or ⌃⇤.

Proof. Given an automata base (V ,B,O) in the lemma, let us consider any (V ,B,O)-1dta
M = (⌃, {|c, $}, V, {B

�

}
�2ˇ

⌃

, v
0

, E
acc

, E
rej

). Since E
acc

is clopen with respect to T
trival

(V ), it
must be either ; or V . The same holds for E

rej

. Hence, M either accepts all strings or rejects
all strings. Thus, L(M) is either ⌃⇤ or ;. 2

In contrast, the discrete topology provides underlying automata with enormous computational
power, as shown below.
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Proposition 3.5 There is a reasonable automata base (V ,B,O) with the discrete topology for
each V 2 V such that, for any language L, there is a (V ,B,O)-1dta that recognizes L. This is
true for the 1dta model with or without endmarkers.

3.4. Slender Topological Automata

Let us consider a (V ,B,O)-1dta M = (⌃, {|c, $}, V, {B
�

}
�2ˇ

⌃

, v
0

, E
acc

, E
rej

) for a given automata
base (V ,B,O). There is a case where configurations generated (or visited) by M starting with
v
0

may not cover all points in V . In this case, V itself does not seem to characterize the
actual behavior of M , because the points that cannot be visited by M may satisfy a completely
di↵erent property from the rest of the points. Therefore, when we discuss the true power of
topologies used to define 1dta’s, it must be desirable to leave out all points that are not visited
by M and to be focused on the set of all points that M can reach. This conclusion makes us
introduce a new notion of slender 1dta’s, which can visit all points in V . Formally, we say that
the 1dta M is slender if, for every point v 2 V , there exists a string x 2 ⌃⇤ for which either
B|cx(v0) = v or B|cx$(v0) = v holds.

We show how to build, for any given 1dta, its equivalent slender 1dta. The normalization of
M is defined to be a (V̂

M

, B̂
M

, Ô
M

)-1dta, denoted by M
norm

, which is obtained from M in the
following way. First, we define B0 to be the union of {B|c, B$

} and the closure of {B
x

| x 2 ⌃⇤}
under functional composition. We define V

M

= {v
0

, B|c(v0), BB|c(v0), B$

BB|c(v0) | B 2 B0 �
{B|c, B$

}} with its subspace topology T
V

M

induced by T
V

(namely, T
V

M

= {A \ V
M

| A 2 T
V

}).
Notice that (V

M

, T
V

M

) and (V, T
V

) may be quite di↵erent in nature. We further set V̂
M

= {V
M

}.
To define B̂

M

, we need to restrict the domain of each operator B 2 B0 onto V
M

. We write the
obtained map as B̂. The desired B̂

M

is set to be the family of all operators B̂ induced from
operators B in B0. Finally, we set Ô

M

to be {(E
acc

\ V
M

, E
rej

\ V
M

)}. It thus follows that all
points of V

M

are visited by M while reading certain input strings over the alphabet ⌃.

Lemma 3.6 (1) M
norm

is slender. (2) M
norm

is computationally equivalent to M .

Proof. (1) We first claim that M
norm

is slender. Let v 2 V
M

. We then obtain v = v
0

,
v = BB|c(v0), or v = B

$

BB|c(v0) for a certain B 2 B0 � {B|c, B$

}. By the definition of B0, there
is an x 2 ⌃⇤ such that B = B

x

for a certain x 2 ⌃⇤. We then conclude that v = v
0

, v = B|cx(v0),
or v = B|cx$(v0).

(2) Next, we want to show by induction on n 2 N that B̂|cx(v0) = B|cx(v0) and B̂|cx$(v0) = B|cx$(v0)
for any x 2 ⌃n. This yields the computational equivalence between M

norm

and M . Let x 2 ⌃n

and consider B|cx(v0). Note that v
0

2 V
M

. Assume that B̂|cx(v0) = B|cx(v0) 2 V
M

. Take any

� 2 ⌃ [ {$}. Since B̂
�

(w) = B
�

(w) for any w 2 V
M

, it follows by the induction hypothesis
that B̂|cx�(v0) = B̂

�

(B̂|cx(v0)) = B̂
�

(B|cx(v0)) = B
�

(B|cx(v0)) = B|cx�(v0). In particular, we obtain

B̂|cx$(v0) = B|cx$(v0). 2

Notice that, for any slender 1dta, since ⌃⇤ is countable, its associated topological space is also
countable.
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Lemma 3.7 If (V ,B,O)-1dta M = (⌃, {|c, $}, V, {B
�

}
�2ˇ

⌃

, v
0

, E
acc

, E
rej

) is slender and B con-
tains B0 (which is defined earlier), then M

norm

is also a (V ,B,O)-1dta.

Proof. Since M is slender, we obtain V
M

= V and thus T
V

M

= T
V

. For any B̂ 2 B̂
M

, since B
contains B0, there is another operator B0 2 B0 such that B̂ equals B0 restricted to V

M

. Since
V
M

= V , we obtain B̂ = B0. Thus, Ô
M

= {(E
acc

, E
rej

)}. 2

4. Computational Strengths of Properties on Topologi-
cal Spaces

Since topological spaces give fundamental grounds to topological automata, we want to com-
pare the strengths of two di↵erent “properties” of the topological spaces by comparing the
computational power of the corresponding topological automata. For instance, the Hausdorf
separation axiom is one of those properties.

For our purpose, we further restrict our attention on slender 1dta’s. Given a property P , we
say that an automata base (V ,B,O) meets P if every slender (V ,B,O)-1dta M satisfies P . Let
P
1

and P
2

be two properties on point sets. We say that P
2

is at least as computationally strong
as P

1

, denoted by P
1


comp

P
2

, if, for any reasonable automata base (V
1

,B
1

,O
1

) that meets P
1

,
there exists another reasonable automata base (V

2

,B
2

,O
2

) meeting P
2

such that every slender
(V

1

,B
1

,O
1

)-1dta has a computationally equivalent slender (V
2

,B
2

,O
2

)-1dta. Notice that P
1

is
always at least as computationally strong as P

1

itself. Moreover, P
2

is said to be computationally
stronger than P

1

if P
1


comp

P
2

and P
2

6
comp

P
1

.

For two properties P
1

and P
2

, we say that P
2

supersedes P
1

, denoted by P
1

v P
2

, exactly when,
for every automata base (V ,B,O), if it meets P

1

, then it also meets P
2

. The following lemma
is trivial.

Lemma 4.1 For two properties P
1

and P
2

, if P
1

v P
2

, then P
1


comp

P
2

.

In what follows, we present two results concerning topological indistinguishability. Let (V, T
V

)
be any topological space. Two points x and y of V are topologically distinguishable if there
exists an open set N 2 T

V

such that either (i) x 2 N and y /2 N or (ii) x /2 N and y 2 N . Oth-
erwise, they are topologically indistinguishable. The Kolmogorov separation axiom (or simply,
the Kolmogorov condition) dictates that any pair of distinct points of V are topologically distin-
guishable. Any space that satisfies the Kolmogorov condition is called a Kolmogorov space. For
example, let us consider (V, T

V

) with V = {1, 2, 3} and T
V

= {;, {1, 2}, {2}, {2, 3}, {1, 2, 3}}.
This (V, T

V

) is a Kolmogorov space but it does not have the discrete topology on V . While the
discrete topology always satisfies the Kolmogorov condition, the trivial topology violates the
same condition.

The next proposition shows a clear di↵erence between the trivial topology and any topology
that violates the Kolmogorov condition.
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Theorem 4.2 There is a topology not satisfying the Kolmogorov separation axiom and it is
computationally stronger than the trivial topology.

Proof. Consider the language ZERO = {0n | n 2 N} over the binary alphabet ⌃ = {0, 1}.
By Proposition 3.4, ZERO cannot be recognized by any (V ,B,O)-1dta’s having the binary
alphabet for any reasonable automata base (V ,B,O) with every V in V having the trivial
topology. Here, we want to prove the existence of an automata base (V ,B,O) and a (V ,B,O)-
1dta M = (⌃, {|c, $}, V, {B

�

}
�2ˇ

⌃

, v
0

, E
acc

, E
rej

) satisfying that (i) V consists of finite topological
spaces violating the Kolmogorov condition and (ii) M recognizes ZERO. Since the trivial
topology provides only {;,⌃⇤}, the topology on V is computationally stronger.

Let us define the desired 1dta M as follows. Let V = {0, 1, 2} and T
V

= {;, V, {0}, {1, 2}} so
that (V, T

V

) cannot satisfy the Kolmogorov condition. We define B|c = B
$

= I and B
0

(n) = n
and B

1

(n) = min{n+1, 2} for any n 2 V . Clearly, B
�

is continuous for each � 2 ⌃̌. Moreover,
we set v

0

= 0, E
acc

= {0}, and E
rej

= {1, 2}. It is immediate that M accepts all strings of the
form 0n for n 2 N and rejects all the strings containing 1. Therefore, M recognizes ZERO.
Finally, we set V = {V }, B = {B

�

| � 2 ⌃̌}, and O = {(E
acc

, E
rej

)}. 2

In certain cases, we cannot reduce the size of E
acc

and E
rej

down to one.

Lemma 4.3 Let (V ,B,O) be any reasonable automata base. Consider any slender (V ,B,O)-
1dta M with V , E

acc

, and E
rej

. If V satisfies the Kolmogorov condition but does not have the
discrete topology, then neither E

acc

nor E
rej

can be a singleton.

In the proof of Theorem 4.2, we have used finite topologies, each of which is composed of a
finite number of open sets. We argue that any finite topology provides topological automata
with no more recognition power than 1dfa’s.

Proposition 4.4 Let (V ,B,O) be any reasonable automata base with finite topologies. Any
language recognized by a certain (V ,B,O)-1dta is a regular language.

Proof. Let M = (⌃, {|c, $}, V, {B
�

}
�2ˇ

⌃

, v
0

, E
acc

, E
rej

) be any (V ,B,O)-1dta with a finite
topology T

V

. We want to convert M into another equivalent 1dfa N . For any two points
v, w 2 V , we define a binary relation ⌘ as: v ⌘ w if and only if v and w are topologically
indistinguishable. We first show that this relation ⌘ is an equivalence relation on V . Clearly,
v ⌘ v holds. If v ⌘ w, then w ⌘ v holds. Assume that v ⌘ w and w ⌘ z. If v 6⌘ z, then there
is an open set A 2 T

V

such that either (v 2 A and z /2 A) or (v /2 A and z 2 A). Without loss
of generality, we assume that v 2 A and z /2 A. Since v ⌘ w, we obtain w 2 A. This means
that z 6⌘ w, a contradiction.

Next, we consider a set V/⌘ of all equivalence classes. Given a point v 2 V , let [v] = {w 2
V | v ⌘ w}. It follows that V/⌘ = {[v] | v 2 V }. We claim that |V/⌘| is finite. If V/⌘ is
an infinite set, then we can take an infinite subset S of V such that any two distinct points
are topologically distinguishable. There must be an infinite number of open sets in T

V

. This
contradicts the finiteness of T

V

. Thus, |V/⌘| must be finite. Let m = |V/⌘|.
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We choose v
0

, v
1

, . . . , v
m�1

2 V such that [v
i

] 6= [v
j

] for any distinct pair i, j 2 [0,m � 1]Z.
We define a new 1dfa N = (Q,⌃, {|c, $}, �, v

0

, Q
acc

, Q
rej

) as follows. Let Q = {v
0

, v
1

, . . . , v
m�1

}.
The transition function � : Q⇥ ⌃̌ ! Q is defined as: �(v

i

, �) = v
j

if and only if there are points
w

i

, w
j

2 V such that [v
i

] = [w
i

], [v
j

] = [w
j

], and B
�

(w
i

) = w
j

. We set Q
acc

= {v
i

| [v
i

] \E
acc

6=
;} and Q

rej

= {v
i

| [v
i

] \ E
rej

6= ;}.
For any initial segment z of x$, we claim that B|cz(v0) 2 E

acc

if and only if �⇤(v
0

, |cz) 2 Q
acc

,
where �⇤(q, w) denotes an inner state obtained just after reading w, starting in state q.

Next, we claim that [v] = [w] implies [B
�

(v)] = [B
�

(w)]. Assume that [B
�

(v)] 6= [B
�

(w)]. Take
a neighborhood N of B

�

(v) satisfying B
�

(w) /2 N . Choose another neighborhood N 0 of v such
that B

�

(N 0) ✓ N . Since w 2 N 0, we obtain a contradiction.

Finally, we claim that there is no index i 2 [0,m�1]Z such that [v
i

]\E
acc

6= ; and [v
i

]\E
rej

6= ;
because, otherwise, there are two distinct points w

1

, w
2

2 [v
i

] satisfying that w
1

2 E
acc

and
w

2

2 E
rej

, and thus w
1

6⌘ w
2

, a contradiction.

Since N can simulate M , we conclude that L(M) = L(N). 2

5. Compactness, Equicontinuity, and Regularity

In general topology, the notion of compactness of topological spaces plays an important role.
This notion also makes a significant e↵ect on the computational complexity of 1dta’s. For a
metric space V and a topological automaton M , Jeandel claimed in [5, Theorem 3] that, using
our notation, the compactness of V

M

and B̂
M

yields the regularity of the language recognized by
M . In contrast, our topological automata use arbitrary topologies, not limited to metric spaces;
therefore, we need to show a more general statement, which gives a necessary and su�cient
condition for the regularity of languages.

With an appropriate index set I, a collection {W
i

}
i2I of open subsets of V is called a covering

if V ✓ S
i2I Wi

. A subcovering of {W
i

}
i2I is a collection {W

j

}
j2B for a certain subset J of I

satisfying that V ✓ S
j2J Wj

. When J is a finite set, the subcovering is said to be finite. A
topological space (V, T

V

) is called compact if every open covering of V has a finite subcovering.
Recall that the set CB(V ) is assumed to have a topology, denoted by T

CB(V )

. We say that
a sub-automata base (V ,B) is compact if, for any V in V , V is compact and CB(V ) is also
compact.

A uniform structure on V is a collection � of subsets of V ⇥ V satisfying that, for any U 2 �
and any W ✓ V ⇥ V , (i) {(v, v) | v 2 V } ✓ U , (ii) U ✓ W implies W 2 �, (iii) W 2 � implies
U \W 2 �, (iv) there exists a set W 0 2 � for which W 0 �W 0 ✓ U , and (v) U�1 2 �, where
W 0 �W 0 = {(v, w) | 9z 2 V [(v, z), (z, w) 2 W 0]} and U�1 = {(w, v) | (v, w) 2 U}. For the set
C(V ) of all continuous maps on V , a subset F of C(V ) is uniformly topologically equicontinuous
if, for any element A of a uniform structure on V , the set {(u, v) 2 V 2 | 8f 2 F [(f(u), f(v)) 2
A]} is also an element of the uniform structure. A uniform structure � on V is said to be
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compatible with a given topology T
V

if A 2 T
V

holds for every set A ✓ V exactly when, for any
x 2 A, there is a set U 2 � satisfying that U [x] ✓ A, where U [x] = {y 2 V | (x, y) 2 U}. A
topological space (V, T

V

) is uniformizable if there exists a uniform structure compatible with the
topology T

V

. We say that a sub-automata base (V ,B) is uniformly topologically equicontinuous
if, for any V 2 V , CB(V ) is uniformly topologically equicontinuous.

Next, we show one of our main theorems, which gives a necessary and su�cient condition on
(V ,B,O), ensuring that (V ,B,O)-1DTA = REG.

Theorem 5.1 For any language L, the following two statements are logically equivalent. (1)
L is regular. (2) There is a reasonable automata base (V ,B,O) such that every element in V is
uniformizable, (V ,B) is compact and uniformly topologically equicontinuous, and L is recognized
by a certain (V ,B,O)-1dta.

To prove this theorem, we need the following lemma.

Lemma 5.2 Let (V ,B,O) be any reasonable automata base such that V’s elements are
uniformizable. If (V ,B) is compact and uniformly topologically equicontinuous, then
(V ,B,O)-1DTA ✓ REG.

Proof. Assume that (V ,B) is compact and uniformly topologically equicontinuous and that
V ’s elements are uniformizable. Let L be any language in (V ,B,O)-1DTA over an alphabet
⌃. Take any (V ,B,O)-1dta M that recognizes L. We consider the normalization of M , say, a
(V̂

M

, B̂
M

, Ô
M

)-1dta M̂ , defined in Section 3.4, with V̂
M

= {V
M

}. Let T̂
M

indicate the subspace
topology, restricted to V

M

, induced from T
V

(i.e., T̂
M

= {P \ V
M

| P 2 T
V

}). It then follows
that, since V is compact, V

M

must be compact.Let M̂ = (⌃, {|c, $}, V
M

, {B
�

�2ˇ

⌃

, v
0

, E
acc

, E
rej

),
provided that (E

acc

, E
rej

) 2 Ô
M

and B
�

2 B̂
M

for all � 2 ⌃̌. Hereafter, we want to show that
L is a regular language by converting M̂ into an equivalent 1dfa N .

By the uniformizability of V
M

, there exists a uniform structure �
M

of V
M

that is compatible
with T̂

M

. The uniform topological equicontinuity also implies that (*) for any C ✓ V ⇥ V in
�

M

, the set RC = {(u, v) 2 V 2 | 8� [(B
�

(u), B
�

(v)) 2 C]} is a subset of C.

To eliminate the right-endmarker, we define E$

r

= {v 2 V
M

| B
$

(v) 2 E
r

} for each r 2
{acc, rej} and consider T $ = {W 2 T̂

M

| 9r 2 {acc, rej}[W \ E$

r

= ;]}. Here, we claim that
V
M

=
S

W2T $ W .

By the compatibility of �
M

with T̂
M

, for each W 2 T̂
M

, we have a point w 2 V
M

and a set C 2
�

M

satisfying C[w] ✓ W . We define P = {(w,C) | w 2 V
M

, C 2 �
M

, 9W 2 T $[C[w] ✓ W ]}.
It follows that V

M

=
S

(w,C)2P C[w]. Hence, {C[w] | (w,C) 2 P} is a covering of V
M

.

By the compactness of V
M

, we can choose a finite subcovering {P
i

}
i2[t] of VM

for a certain
number t 2 N+. Next, we define a binary relation ⌘ on V

M

as: v ⌘ w if and only if there exists
an i 2 [t] such that v, w 2 P

i

and v, w /2 P
j

for any j 2 [m] � {i}. We want to show that ⌘
is an equivalence relation on V

M

. Clearly, v ⌘ v. If v ⌘ w, then w ⌘ v holds. If v ⌘ w and
w ⌘ z, then we obtain v ⌘ z.
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If we define [v] = {w 2 V
M

| v ⌘ w} for every v 2 V
M

, then the set V
M

/⌘ of all equivalence
classes coincides with {[v] | v 2 V

M

}. It is easy to show that V
M

/⌘ is a finite set. Let
m = |V

M

/⌘| and take m distinct points v
0

, v
1

, v
2

, . . . , v
m�1

2 V
M

such that V
M

/⌘ equals
{[v

0

], [v
1

], . . . , [v
m�1

]}.
Finally, we define the desired 1dfa N = (Q,⌃, {|c, $}, �, q

0

, Q
acc

, Q
rej

) as follows. Let Q =
{v

0

, v
1

, . . . , v
m�1

}. Let Q
acc

= {v
i

2 Q | v
i

2 E
acc

} and Q
rej

= {v
i

2 Q | v
i

2 E
rej

}. Moreover,
we define � as: �(v

i

, �) = v
j

if and only if there are w
i

, w
j

2 V
M

such that v
i

⌘ w
i

, v
j

⌘ w
j

,
and B

�

(w
i

) = w
j

. We claim that � is a well-defined function from Q ⇥ ⌃̌ to Q. Assume
that �(v

i

, �) = v
j

and �(v
k

, �) = v
j

. There are four points w
i

, w
j

, w0
j

, w
k

such that v
i

⌘ w
i

,
v
j

⌘ w
j

⌘ w0
j

, v
k

⌘ w
k

, B
�

(w
i

) = w
j

, and B
�

(w
k

) = w0
j

. By Statement (*), for any C 2 �
M

,
(w

j

, w0
j

) 2 C implies (w
i

, w
k

) 2 C. Since {P
i

}
i2[t] is a subset of {C[w] | (w,C) 2 P}, it follows

that w
i

⌘ w
k

.

By the definition of N , we conclude that M̂ accepts (resp., rejects) x if and only if N accepts
(resp., rejects) x. Therefore, L(M̂) = L(N) follows. This complete the proof of the lemma. 2

Proof Sketch of Theorem 5.1. As seen in Section 2.2, any 1dfa can be viewed as a (V ,B,O)-
1dta of the particular form. By the definition of such a 1dta, it follows that V ’s points are
uniformizable and (V ,B) is compact and uniformly topologically equicontinuous. Combining
this with Lemma 5.2, we immediately obtain the desired characterization of regular languages
in terms of 1dta’s. 2

The condition of compactness in Theorem 5.1 is needed because, without it, 1dta’s can recognize
non-regular languages.

Lemma 5.3 Let V = {(Z,P(Z))}, B = {B|c, B$

, B
a

, B
b

} with ⌃ = {a, b}, B|c = B
$

= I,
B

a

(n) = n + 1, and B
b

(n) = n � 1 for all n 2 Z, and O = {(E
acc

, E
rej

)} with E
acc

= {0} and
E

rej

= Z � {0}. The sub-automata base (V ,B) is uniformly topologically equicontinuous but
not compact. There exists a (V ,B,O)-1dta that recognizes the language Equal = {w 2 {a, b}⇤ |
#

a

(w) = #
b

(w)}, where #
a

(w) indicates the number of all occurrences of symbol a in string w.

6. Multi-Valued Operators and Nondeterminism

Nondeterminism is a ubiquitous feature, which appears in many fields of computer science.
Jeandel [5] considered such a feature for his model of topological automata. Here, we define
a nondeterministic version of our (V ,B,O)-1dta’s, called 1-way nondeterministic topological
automata (or 1nta’s), in such a way that it naturally extends the standard definition of 1-way
nondeterministic finite automata (or 1nfa’s), each of which nondeterministically chooses one
next state out of a predetermined set of possible states at every step.

Unlike the previous sections, we now introduce multi-valued operators, which map each element
to “multiple” elements. Formally, a multi-valued operator is a map from each point x of a given
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topological space (V
1

, T
V1) to a certain number of points of another topological space (V

2

, T
V2).

Although this operator can be seen as an ordinary map from V
1

to P(V
2

), we customarily express
such a multi-valued map as B : V

1

! V
2

. A multi-valued operator is said to be continuous
if, for any x 2 V

1

and for any neighborhood N of B(x), there exists a neighborhood N 0 of x
satisfying B(N 0) ✓ N .

Next, we define an extended automata base to be a tuple (V ,B,O) in which B consists of
continuous multi-valued operators B : V ! V for sets V 2 V . Given an extended automata
base (V ,B,O), a (V ,B,O)-1nta M is a tuple (⌃, {|c, $}, V, {B

�

� 2 ⌃̌, v
0

, E
acc

, E
rej

) such that
B

�

is a multi-valued continuous operator from V to V for each � 2 ⌃̌. This M works as
follows. On input x (which is given as |cx$ on an input tape), we apply B⇧

|cx$ to v
0

, where
B

�

⇧ B
⌧

(v) = B
�

(B
⌧

(v)) (=
S

w2B
⌧

(v)

B
�

(w)) and B⇧
|cx$ = B

$

⇧ B
x

n

⇧ · · · ⇧ B
x2 ⇧ B

x1 ⇧ B|c if
x = x

1

x
2

· · · x
n

. We say that M accepts an input x if B⇧
|cx$(v0)\E

acc

6= ; and that M rejects x

if B⇧
|cx$(v0) ✓ E

rej

. Given a class T of subsets of V , the notation co-T expresses the class of the
complements of sets in T (with respect to V ).

It is known that nondeterministic finite automata can be simulated by deterministic ones using
exponentially more inner states. In the following lemma, for a given topological space (V, T

V

),
we expand V to T+

V

so that (T+

V

, T �(T+

V

)) forms a topological space for an appropriately chosen
topology T �(T+

V

). Following Michael [7], we here take T �(T+

V

) as the topology on T+

V

that
is generated by the bases {[A]+, [A]� | A 2 T

V

}, where [A]+ = {X 2 T+

V

| X ✓ A} and
[A]� = {X 2 T+

V

| X \ A 6= ;}. This topology is known as the Vietoris topology, adapted to
T+

V

.

Lemma 6.1 Let (V ,B,O) be any extended automata base. There exists an automata base
(V 0,B0,O0) with V 0 = {(T+

V

, T �(T+

V

)) | V 2 V} such that, for any (V ,B,O)-1nfa M with v
0

and
V , there is an equivalent (V 0,B0,O0)-1dta N , provided that {v

0

} 2 T+

V

.

Proof. From a given extended automata base (V ,B,O), we define B0 and O0 as follows. Let
B0 = {B0 : T+

V

! T+

V

| B 2 B}, where B0(W ) =
S

w2W B(w) for any element W 2 T+

V

, and let
O0 = {(E 0

1

, E 0
2

) 2 T+

V

⇥ T+

V

| V 2 V , E 0
1

\ E 0
2

= ;, E 0
1

, E 0
2

2 T �(T+

V

) \ co-T �(T+

V

), 9(E
1

, E
2

) 2
O s.t. 8A

1

2 E 0
1

[A
1

\ E
1

6= ;] ^ 8A
2

2 E 0
2

[A
2

✓ E
2

]}.
Next, we argue that (V 0,B0,O0) forms a proper automata base. Let B be any multi-valued
continuous operator in B and take its corresponding operator B0. We want to show that B0 is
continuous. Let B0(W ) = U for U,W 2 T+

V

and consider any open set S in T �(T+

V

) containing
U . Without loss of generality, we assume that S is either [U ]� or [U ]+ because U is an open
set in T+

V

. If S = [U ]�, then we take R = [W ]�. For any Y 2 R, it follows that B0(Y ) ✓ U ,
and thus B0(Y ) 2 S. In contrast, if S = [U ]+, then we take R = [W ]+. For any Y 2 R, since
W \ Y 6= ;, we obtain U \ B0(Y ) 6= ;; hence, B0(Y ) 2 S.

Let M = (⌃, {|c, $}, V, {B
�

}
�2ˇ

⌃

, v
0

, E
acc

, E
rej

) be any given (V ,B,O)-1dta with {v
0

} 2 T+

V

. We
then define N = (⌃, {|c, $}, T+

V

, {B0
�

}
�2ˇ

⌃

, v0
0

, E 0
acc

, E 0
rej

), where v0
0

= {v
0

}.
By induction on the length of any input string w 2 {|c} [ |c⌃⇤ [ |c⌃⇤$, we want to show that
B⇧

w

(v
0

) = B0
w

(v0
0

). For the basis case, since B⇧
|c (v0) = B|c(v0) and B0

|c(v
0
0

) =
S

w2v00
B|c(w) =
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B|c(v0), B⇧
|c (v0) = B0

|c(v
0
0

) follows. In the induction step, we assume that B⇧
|cx(v0) = B0

|cx(v
0
0

).
Consider an input string xa. Let U

x

= B⇧
|cx(v0). It then follows that B⇧

|cxa(v0) = B
a

⇧ B⇧
|cx(v0) =S

w2U
x

B
a

(w) and that B0
|cxa(v

0
0

) =
S

w2B0
|cx(v

0
0)
B

a

(w) =
S

w2U
x

B
a

(w). Thus, we obtain

B⇧
|cxa(v0) = B0

|cxa(v
0
0

), as requested.

The above fact implies that v 2 B⇧
|cx$(v0) if and only if v 2 B0

|cx$(v
0
0

). Let us define E 0
acc

=

{E 0 2 T �(T+

V

) \ co-T �(T+

V

) | 8A 2 E 0[A \ E
acc

6= ;]}. Note that B⇧
|cx$ \ E

acc

6= ; if and only if
B0

|cx$(v
0
0

)\E 0
acc

6= ;. Therefore, x is accepted by M if and only if x is accepted by N . Similarly,

for the rejection of x, we define E 0
rej

= {E 0 2 T �(T+

V

) \ co-T �(T+

V

) | 8A 2 E 0[A ✓ E
rej

]}. 2
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[3] H. EHRIG, W. KÜHNEL, Topological automata. RAIRO - Theoretical Informatics and Appli-
cations – Informatique Thorique et Applications 91 (1974) R-3, 73–91.

[4] J. HOPCROFT, R. MOTWANI, J. ULLMAN, An Introduction to Automata Theory, Languages,
and Computation (2nd edition). Addison-Wesley, Reading MA, 2001.

[5] E. JEANDEL, Topological automata. Theory of Computing Systems 40 (2007), 397–407.

[6] A. KONDACS, J. WATROUS, On the power of quantum finite state automata. In: Proc. of the
38th Annual Symposium on Foundations of Computer Science (FOCS’97). IEEE, 1997, 66–75.

[7] E. MICHAEL, Topologies on spaces of subsets. Transactions of the American Mathematical So-
ciety 71 (1951), 152–182.

[8] C. MOORE, J. CRUTCHFIELD, Quantum automata and quantum languages. Theoretical Com-
puter Science 237 (2000), 275–306.

[9] M. O. RABIN, Probabilistic automata. Information and Control 6 (1963), 230–245.

[10] T. YAMAKAMI, Analysis of quantum functions. International Journal of Foundations of Com-
puter Science 14 (2003), 815–852.

[11] T. YAMAKAMI, One-way reversible and quantum finite automata with advice. Information and
Computation 239 (2014), 122–148.



Author Index

Arrighi, Pablo, 31

Berglund, Martin, 49

Chouteau, Clément, 31

Dimitrijevs, Maksims, 65
Drewes, Frank, 49

Facchini, Stefano, 31

Guillon, Bruno, 11

Holzer, Markus, 83

Křivka, Zbyněk, 117
Klíma, Ondřej, 99
Kocman, Radim, 117
Kutrib, Martin, 83, 133

Li, Yongming, 181

Martiel, Simon, 31
Meduna, Alexander, 117
Mráz, František, 149

Nagy, Benedek, 117

Otto, Friedrich, 133, 149

Plátek, Martin, 149
Polák, Libor, 99

Sempere, José M., 29

Truthe, Bianca, 165

van der Merwe, Brink, 49

Wang, Qichao, 181

Yakaryılmaz, Abuzer, 65
Yamakami, Tomoyuki, 197




