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We study the nondeterministic state complexity of basic regular operations on the classes 
of prefix-, suffix-, factor-, and subword-free, -closed, and -convex regular languages and 
on the classes of right, left, two-sided, and all-sided ideal regular languages. For the 
operations of concatenation, intersection, union, reversal, star, and complementation, we 
get tight upper bounds for all considered classes except for complementation on factor- and 
subword-convex languages. Most of our witnesses are described over optimal alphabets. 
The description of a proper suffix-convex language over a five-letter alphabet meeting the 
upper bound 2n for complementation, and obtaining an asymptotically tight bound �(

√
n)

for complementation of unary prefix-free languages are among the most interesting results 
of this paper.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In last three decades, we can observe a new interest in regular languages which have applications in software engineer-
ing, programming languages, and other areas of computer science. However, they are also interesting from the theoretical 
point of view [1–3]. Various properties of this class are now intensively studied. One of them is descriptional complexity 
which studies the cost of description of languages by formal systems such as deterministic and nondeterministic automata 
[4–6], or grammars [7,8].

Rabin and Scott in 1959 [9] defined nondeterministic finite automata (NFAs), described an algorithm known as the 
“subset construction” which shows that every n-state nondeterministic automaton can be simulated by at most 2n-state 
deterministic finite automaton (DFA). In 1962 Yershov [10] then showed that this construction is optimal. Maslov [4] inves-
tigated the state complexity of union, concatenation, and star, and also some other operations.
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The systematic study of the state complexity of operations on regular languages began in the paper by Yu et al. [6]. 
Some special operations were examined as well: proportional removals by Domaratzki [11], shuffle by Câmpeanu et al. 
[12], and cyclic shift by Jirásková and Okhotin [13]. Operational state complexity has been also studied in subclasses of 
regular languages. Prefix- and suffix-free languages were investigated by Han et al. [14,15] and by Jirásková et al. [16,13,17]. 
Brzozowski et al. examined the classes of ideal languages [18], closed languages [19], bifix-, factor-, and subword-free 
languages [20], convex languages [21,22], and star-free languages [23]. Union-free languages were considered by Jirásková 
and Masopust [24]. In some of these classes, the operations have smaller complexity, while in the others, the complexity of 
operations is the same as in the general case of regular languages.

The nondeterministic state complexity of operations was investigated by Holzer and Kutrib [5], and some improvements 
of their results can be found in [25]. Holzer et al. [26] also considered nondeterministic operational state complexity in the 
class of star-free languages, Jirásková and Masopust [24] examined the class of union-free languages, and Han et al. [14,15]
studied the classes of prefix-free and suffix-free languages.

In this paper, we continue this research and study the nondeterministic state complexity of basic regular operations in 
the subclasses of convex languages. In particular, we consider the operations of concatenation, intersection, union, reversal, 
star, and complementation, and we examine the nondeterministic state complexity of these operations in the classes of 
prefix-, suffix-, factor-, and subword-free, -closed, and -convex languages, as well as in the classes of right, left, two-sided, 
and all-sided ideal languages. Thus we study the same classes as Brzozowski et al. [18–21], but from the point of view of 
nondeterministic operational state complexity.

Our results are as follows. The upper bound m + n for concatenation is tight in all four classes of closed (so also convex) 
languages, while in the remaining cases, the complexity of concatenation is m + n − 1. The upper bound mn for intersection 
is tight in all four classes of ideal and closed (so also convex) languages, and its complexity is mn −m −n + 2 on prefix- and 
suffix-free languages, and mn − 2m − 2n + 6 on factor- and subword-free languages. The upper bound m + n + 1 for union 
is tight in all four classes of closed (so also convex) languages, and its complexity is m + n on prefix-free and right-ideal 
languages, m +n −1 on suffix-free and left ideal languages, and m +n −2 on the remaining subclasses. The upper bound n +1
for reversal is tight in all four classes of closed (so also convex) languages, as well as in the classes of suffix-free and left 
ideal languages, and in all the remaining classes, the complexity of reversal is n. The upper bound n + 1 for star is tight in 
all four classes of ideal (so also convex) languages, its complexity is n on prefix- and suffix-free and -closed languages, and 
it is 1 on factor- and subword-closed languages. Most of our witnesses are defined over an optimal alphabet, that is, we are 
able to prove that the corresponding upper bound cannot be met by any language defined over a smaller alphabet.

The most interesting results of this paper are those on the complementation operation. Complementation is an easy 
operation on regular languages represented by deterministic finite automata since to get a DFA for the complement of a 
regular language, it is enough to invert the finality of all states in a DFA for this language. On the other hand, comple-
mentation on regular languages represented by NFAs is an expensive task. We first must apply the subset construction to 
a given NFA, and only after that, we may invert the finality of all states. This gives an upper bound 2n . Sakoda and Sipser 
[27] presented an example of languages over a growing alphabet meeting this upper bound. Birget claimed the result for 
a three-letter alphabet in [28], and later corrected this to a four-letter alphabet. Holzer and Kutrib [5] obtained the lower 
bound 2n−2 for a binary n-state NFA language. Finally, binary n-state NFA languages meeting the upper bound 2n were 
described by Jirásková in [25]. In the case of a unary alphabet, the complexity of complementation is in e�(

√
n ln n) [5,25].

For the nondeterministic state complexity of complementation, Han et al. [14,15] obtained lower bounds 2n−1

and 2n−1 − 1 for prefix-free and suffix-free languages, respectively, and an upper bound 2n−1 + 1 in both classes. The 
questions of tightness remained open. In this paper, we solve both of these open questions, and we prove that in both 
classes, the tight upper bound is 2n−1. To prove tightness, we use a ternary alphabet, and we prove that the ternary al-
phabet is optimal here. Except for factor- and subword-convex languages, we get the exact complexity of complementation 
in all the remaining classes. We describe binary prefix-closed (so prefix-convex) and a suffix-convex language over a five-
letter alphabet which meet the upper bound 2n . In all the other cases, the complexity of complementation is between 2n−2

and 2n−1 + 1. This means that to find our witness suffix-convex language, we required it to be neither free, nor closed, nor 
ideal, that is, we had to define a so-called proper suffix-convex language. Another interesting result on the complementation 
operation is obtaining asymptotically tight bound �(

√
n) for complementation on unary prefix-free languages.

To get lower bounds, we use a lower bound technique described by Birget [29,28]. The technique is known as a fooling-
set method. Although in some cases there is a large gap between the size of a fooling set and the size of minimal 
nondeterministic automaton [30,31], in many other cases, the fooling sets can be used to prove the minimality of non-
deterministic finite automata, and we successfully use this method throughout our paper. In the case of union and reversal, 
where using multiple initial states may save one state, this fooling-set method cannot be used. Instead, its modification 
given by [24, Lemma 4] is used in this paper. Moreover, we state some sufficient conditions for NFAs to guarantee their 
minimality. This allows us to avoid tedious description of fooling sets in several cases.

2. Preliminaries

We assume that the reader is familiar with basic notions in formal languages and automata theory. For details and all 
the unexplained notions, the reader may refer to [32–34].
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Let � be a finite non-empty alphabet of symbols (or letters). Then �∗ denotes the set of strings over the alphabet �

including the empty string ε. The length of a string w is denoted by |w|, and the number of occurrences of a symbol a in a 
string w by |w|a . A language is any subset of �∗ . For a finite set X , the cardinality of X is denoted by |X |, and its power-set 
by 2X .

For a language L over an alphabet �, the complement of L is the language Lc = �∗ \ L. The intersection of languages K
and L is the language K ∩ L = {w | w ∈ K and w ∈ L}. The union of languages K and L is K ∪ L = {w | w ∈ K or w ∈ L}. The 
concatenation of languages K and L is the language K L = {uv | u ∈ K and v ∈ L}. The (Kleene) star of a language L is the 
language L∗ = ⋃

i≥0 Li where L0 = {ε} and Li = LLi−1 if i ≥ 1.
A nondeterministic finite automaton (NFA) is a quintuple A = (Q , �, · , s, F ), where Q is a finite non-empty set of states, �

is a finite non-empty input alphabet, the function · is the transition function that maps Q × � to 2Q , s ∈ Q is the start (or 
initial) state, and F ⊆ Q is the set of final (or accepting) states. The transition function is extended to the domain 2Q × �∗
in the natural way. The language accepted by the NFA A is the set of strings L(A) = {w ∈ �∗ | s · w ∩ F 	= ∅}.

In an ε-NFA, we also allow the transitions on the empty string. It is known that the ε-transitions can be removed 
without increasing the number of states in the resulting NFA [32, Theorem 2.2], [34, Theorem 2.3]. Sometimes, we allow an 
NFA to have multiple initial states and use the notation NNFA (an NFA with a nondeterministic choice of initial states) for 
this model; cf. [34].

A state of an NNFA is called a sink state if it has a loop on each symbol. A state q of an NFA A is called a dead state if no 
string is accepted by A from q, that is, if q · w ∩ F = ∅ for every string w . An NFA A is a trim NFA if each state q of A is 
reachable, that is, there is a string u in �∗ such that q ∈ s · u, and, moreover, no state of A is dead.

We say that (p, a, q) is a transition in NFA A if q ∈ p · a. We also say that the state q has an in-transition on symbol a, 
and the state p has an out-transition on symbol a. An NFA is non-returning if its initial state does not have any in-transitions, 
and it is non-exiting if each its final state does not have any out-transitions. To omit a state in an NFA means to remove 
it from the set of states and to remove all its in-transitions and out-transitions from the transition function. To merge two 
states means to replace them by a single state with all in-transitions and out-transitions of the original states.

An NFA A is a (complete) deterministic finite automaton (DFA) if for each state q and each input symbol a, the set q ·a has 
exactly one element. In such a case, we write q instead of {q}. If |q · a| ≤ 1 for each q and a, then A is a partial DFA.

Every NNFA A = (Q , �, · , I, F ) can be converted to an equivalent DFA A′ = (2Q , �, · , I, {S ∈ 2Q | S ∩ F 	= ∅}) by the subset 
construction [9]. The DFA A′ is called the subset automaton of the NFA A.

The nondeterministic state complexity of a regular language L, nsc(L), is the smallest number of states in any NFA for L. 
The nondeterministic state complexity of a unary regular operation f is a function nsc f : N → N defined as nsc f (n) =
max{nsc( f (L)) | L is accepted by an n-state NFA}. The nondeterministic state complexity of a binary regular operation f
is a function nsc f : N2 → N defined as nsc f (m, n) = max{nsc( f (K , L)) | K and L are accepted by m-state and n-state NFAs, 
respectively}. To prove the minimality of NFAs, we use a fooling set lower-bound technique [28,35].

Definition 1. A set of pairs of strings {(x1, y1), (x2, y2), . . . , (xn, yn)} is called a fooling set for a language L if for all i, j
in {1, 2, . . . , n},

(F1) xi yi ∈ L, and
(F2) if i 	= j, then xi y j /∈ L or x j yi /∈ L.

Lemma 2 ([28,35]). Let F be a fooling set for a language L. Then every NNFA for the language L has at least |F | states. �
The reverse of a string w in �∗ is defined by εR = ε and (wa)R = aw R for each a in � and each w in �∗ . The reverse of 

a language L is the language LR = {w R | w ∈ L}. The reverse of an NNFA A = (Q , �, · , I, F ) is the NNFA AR = (Q , �, ·R , F , I)
where q ·R a = {p ∈ Q | q ∈ p · a}; notice that AR is obtained from A by reversing all the transitions, and by swapping the 
roles of the initial and final states.

Let A = (Q , �, · , I, F ) be an NNFA and S, T ⊆ Q . We say that S is reachable in A if there is a string w in �∗ such 
that S = I · w . Next, we say that T is co-reachable in A if T is reachable in AR . Immediately from the definition, we get the 
following result.

Proposition 3. Let T be a co-reachable set in an NNFA A = (Q , �, · , I, F ). Then there is a string w in �∗ such that w is accepted 
by A from each state in T and rejected from each state in Q \ T . �

We use the following lemma to prove a lower bound on the size of NFAs in some cases.

Lemma 4 (cf. [36, Lemma 4]). Let A be an NNFA. If, for each state q of A, the singleton set {q} is reachable and co-reachable in A, 
then A is minimal.

Proof. Let A = (Q , �, · , I, F ). Since {q} is reachable in A, there is a string uq such that I · uq = {q}. Since {q} is co-reachable 
in A, by Proposition 3, there is a string vq accepted by A from and only from the state q. Then {(uq, vq) | q ∈ Q } is a fooling 
set for L(A). By Lemma 2, the NNFA A is minimal. �
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Notice that if A is a trim partial DFA, then for each state q of A, the singleton set {q} is reachable. If moreover AR is a 
partial DFA, then {q} is co-reachable in A. So we get the following result.

Lemma 5 (cf. [36, Lemma 5]). Let A be a trim NFA. If both A and AR are partial DFAs, then A and AR are minimal NFAs. �
The next observation and its corollary are very useful to get lower bounds for complementation.

Proposition 6. Let L be a language accepted by an NFA in which k subsets of the state set are reachable and each of their complements 
is co-reachable. Then nsc(Lc) ≥ k.

Proof. Let A = (Q , �, · , s, F ) be an NFA and let the subsets S1, S2, . . . , Sk of Q be reachable, and their complements 
be co-reachable. Since Si is reachable, there exists a string ui in �∗ such that s · ui = Si . Since the set Q \ Si is co-
reachable, there is a string vi which is accepted by A from each state in Q \ Si , but rejected from each state in Si . It follows 
that {(ui, vi) | 1 ≤ i ≤ k} is a fooling set for Lc of size k. Hence nsc(Lc) ≥ k by Lemma 2. �
Corollary 7. Let L be a language accepted by an n-state NFA in which each subset of the state set is reachable as well as co-reachable. 
Then nsc(Lc) = 2n. �

If u, v, w, x ∈ �∗ and w = uxv , then u is a prefix of w , x is a factor of w , and v is a suffix of w . If w = u0 v1u1 · · · vnun , 
where ui, vi ∈ �∗ , then v1 v2 · · · vn is a subword of w . A prefix v (suffix, factor, subword) of w is proper if v 	= w .

A language L is prefix-free if w ∈ L implies that no proper prefix of w is in L; it is prefix-closed if w ∈ L implies that 
each prefix of w is in L; and it is prefix-convex if u, w ∈ L and u is a prefix of w imply that each string v such that u is 
a prefix of v and v is a prefix of w is in L. Suffix-, factor-, and subword-free, -closed, and -convex languages are defined 
analogously.

A language L is a right (respectively, left, two-sided, all-sided) ideal if L = L�∗ (respectively, L = �∗L, L = �∗L�∗, L =
L �∗ , where L �∗ is the language obtained from L by inserting any number of symbols to any string in L). Notice that 
the classes of free, closed, and ideal languages are subclasses of convex languages, and the complement of a prefix- (suffix-, 
factor-, subword-) closed language is a right (left, two-sided, all-sided, respectively) ideal language.

3. Properties of finite automata accepting subclasses of convex languages

The following properties of NFAs for prefix- and suffix-free languages are known.

Proposition 8 ([14,15]). Let A be a minimal NFA for a language L. If L is prefix-free (suffix-free), then A is non-exiting (non-
returning). �
Proposition 9 (Necessary conditions for suffix-free DFA, cf. [37, Proposition 4]). Let A = (Q , �, · , s, F ) be a minimal DFA for a non-
empty suffix-free regular language. Then A satisfies the following properties:

(1) A is non-returning;
(2) A has a dead state qd;
(3) for each symbol a in �, there is a state qa 	= qd, such that qa · a = qd;
(4) for each a in �, there is no state q in Q \ {s} such that s · a = q · a.

Proof. We only prove case (3); the remaining three proofs are straightforward. Let |Q | = n and a ∈ �. We must have 
s · an = qd because otherwise some string w would be accepted from the state s · an , so the DFA A would accept strings 
an w and a�w with � < n, which would be a contradiction with suffix-freeness of L(A). Since s 	= qd , there is a state qa with 
qa 	= qd such that qa · a = qd . �

The next lemma provides a sufficient condition for a language to be suffix-free.

Lemma 10 ([16, Lemma 1]). Let A be a non-returning partial DFA that has a unique final state. If each state of A has at most one 
in-transition on every input symbol, then L(A) is suffix-free. �

A simple method for constructing prefix-, suffix-, and factor-free languages follows from the following observation.

Proposition 11 ([20, Proposition 1]). Let L ⊆ �∗ and # /∈ �. Then the language L# is prefix-free, #L is suffix-free, and #L# is factor-
free. �

The next proposition from [38, Proposition 12] shows some features of automata for left and right ideals. We provide a 
proof here.
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Proposition 12. Let L be a regular language accepted by an n-state NFA.
(1) If L is a left ideal, then L is accepted by an NFA of at most n states such that there is a loop on each symbol in its initial state, 

and no transition goes to the initial state from any other state.
(2) If L is a right ideal, then L is accepted by an NFA of at most n states such that there is a unique final sink state from which no 

transition goes to any other state.

Proof. (1) Let A be an NFA for L and s be the initial state. Construct A′ from A by adding a loop on s for each symbol 
and by removing every transition going to s from other states. If w ∈ L(A′), we can split w to two strings u, v such that 
w = uv and there is a computation such that after reading u, the initial state s occurs the last time and during reading v
no added transition is used. So v is accepted in A. Since L(A) is a left ideal, uv ∈ L(A). Therefore w ∈ L(A). If w ∈ L(A), we 
can split w to two strings u, v such that w = uv and there is a computation such that after reading u, the initial state s
occurs the last time and during reading v , no transition goes to s. So every used transition is also in A′ , so v ∈ L(A′). Since 
there is a loop on every symbol in s in A′ , we can read the string u in s and continue by reading v . Therefore uv ∈ L(A′), 
so w ∈ L(A′). So, L(A) = L(A′) and A′ is an NFA with required properties.

(2) Let A be an NFA for L and s be the initial state. Construct A′ from A by adding loops on every symbol in every final 
state and removing every other transition going out of a final state. If w ∈ L(A), then we can split w to two strings u, v such 
that w = uv and there is a computation such that after reading u a final state occurs for the first time. While reading u, 
no transition leaving a final state is used. So u is accepted also in A′ . Since in every final state there is a loop on every 
symbol, the string v can be read in a final state, so w ∈ L(A′). If w ∈ L(A′), then we can split w into two strings u, v such 
that w = uv and there is a computation such that after reading u, a final state occurs for the first time, so during reading u
no transition going from final state is used. So u is accepted also in A. Since L(A) is a right ideal, uv ∈ L(A). So w ∈ L(A). 
So L(A) = L(A′). If A′ has more final states, we can merge them into one to get a desired NFA. �

The following properties of automata accepting closed languages are also known; cf. [39,22]. The proofs are straightfor-
ward.

Proposition 13. Let L be a language accepted by NFA A with the initial state s.
(1) If all the states of A are final, then L is prefix-closed.
(2) If every string which is accepted from a state q of A is also accepted from s, then L is suffix-closed.
(3) If L is prefix-closed and suffix-closed, then L is factor-closed. �

4. Operations on unary convex languages

In this section we investigate the nondeterministic state complexity of basic regular operations on unary free, ideal, 
closed, and convex languages. Notice that in the unary case the prefix-, suffix-, factor-, and subword-free languages coincide. 
The same is true for closed and convex languages. The classes of right, left, two-sided, and all-sided unary ideals coincide 
as well.

Let L be a unary convex language and k be the length of the shortest string in L. If L is infinite, then L = {ai | i ≥ k}. If L
is finite and � is the length of the longest string in L, then L = {ai | k ≤ i ≤ �}. Let t = k for infinite L and t = � for finite L. 
Then the set {(ai, at−i) | 0 ≤ i ≤ t} is a fooling set for L. Thus the minimal partial DFA for L, which has t + 1 states, is a 
minimal NFA for L.

The next theorem provides tight upper bounds for every considered operation and every considered subclass of unary 
convex languages. It summarizes the results of [38, Theorems 11 and 19] and [36, Theorem 7]. All proof details are provided 
here. We use this theorem several times throughout the paper to get the optimality of binary alphabets in our witnesses.

Theorem 14. Let K and L be unary languages accepted by m-state and n-state NFA, respectively. Then

(1) if K and L are free then nsc(K ∪ L) ≤ max{m, n}, nsc(K ∩ L) ≤ min{m, n}, nsc (K L) ≤ m +n − 1, nsc(L∗) ≤ n − 1, and nsc(Lc) ∈
�(

√
n);

(2) if K and L are ideal then nsc(K ∪ L) ≤ min{m, n}, nsc(K ∩ L) ≤ max{m, n}, nsc(K L) ≤ m + n − 1, nsc(L∗) ≤ n − 1, and 
nsc(Lc) ≤ n − 1;

(3) if K and L are closed then nsc(K ∪ L) ≤ max{m, n}, nsc(K ∩ L) ≤ min{m, n}, nsc(K L) ≤ m + n − 1, nsc(L∗) ≤ 1, and nsc(Lc) ≤
n + 1;

(4) if K and L are convex then nsc(K ∪ L) ≤ max{m, n}, nsc(K ∩ L) ≤ max{m, n}, nsc(K L) ≤ m + n − 1, nsc(L∗) ≤ n − 1, and 
nsc(Lc) ≤ n + 1.

All these upper bounds are tight.

Proof. (1)–(3) For every integer n with n ≥ 1 there exist the unary free language {an−1}, the unary ideal language {ai |
i ≥ n − 1}, and the unary closed language {ai | i ≤ n − 1}, all of them with complexity n. If n ≥ 2, then they are the only 
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languages with complexity n in those classes. If n = 1, then also the language ∅ is free, ideal, and closed, and {a}∗ is closed. 
The upper and lower bounds for complexities of operations, except for intersection and complementation of free languages, 
follow.

To get the result for intersection on unary free languages, let K and L be unary free languages accepted by m-state 
and n-state NFAs, respectively. Then K = {ak} with k ≤ m − 1 and L = {a�} with � ≤ n − 1. Hence K ∩ L = ∅ or K ∩ L =
{amin{k,l}}. This gives the upper bound. For tightness, let K = L = {amin{m,n}−1}.

To get the result for complementation on unary free languages, let n ≥ 3 and L = {a}∗ \ {an}. We show that
√

n/3 ≤
nsc(L) ≤ 6

√
n. First consider a lower bound, and let us show that every NFA for L requires at least

√
n/3 states. Assume 

for a contradiction that there is an NFA N for L with less than
√

n/3 states. Then the tail in the Chrobak normal form 
[40, Definition 4.2] of N is of size less than 3 · (

√
n/3)2 [40,41], thus less than n. Since an must be rejected, each cycle 

in the Chrobak normal form must contain a rejecting state. It follows that infinitely many strings are rejected, which is a 
contradiction.

Now let us prove the upper bound. Let m = �√n�, and consider relatively prime numbers m and m + 1. It is known that 
the maximal integer that cannot be expressed as xm + y(m + 1) for non-negative integers x and y is (m − 1)m − 1 = m2 −
m − 1 [6]. Let k = n − (m2 − m − 1). Then 0 < k ≤ 3

√
n. Next, the NFA A shown in Fig. 1 and consisting of a path of length k

and two overlapping cycles of lengths m and m + 1 does not accept an and accepts all strings ai with i ≥ n + 1. It remains 
to accept the shorter strings. To this aim let � = �log n� and let p1, p2, . . . , p� be the first � primes. Then p1 p2 · · · p� > n
and p1 + p2 + · · · + p� = �(�2 ln �) ≤ √

n [42]. Consider an NFA B consisting of an initial state that is connected to � cycles 
of lengths p1, p2, . . . , p� . Let the states in the jth cycle be 0, 1, . . . , p j − 1, where the initial state of B is connected to 
state 1. The state n mod p j is non-final, and all the other states are final. Then this NFA does not accept an , but accepts 
all strings ai with i ≤ n − 1 since we have (i mod p1, i mod p2, . . . , i mod p�) 	= (n mod p1, n mod p2, . . . , n mod p�). Now 
we get the resulting NFA for the language L of at most 6

√
n states as the union of NFAs A and B . This gives the result for 

complementation on unary free languages.

q1 q2 . . . qk 0 1 . . . m − 1 m

Fig. 1. The part of the NFA accepting every string of length more than n.

(4) The upper bound for intersection and union can be verified by the case analysis, where K and L can be finite or 
infinite. The upper bounds for concatenation and complementation follow from the fact that the minimal NFAs can be 
partial DFAs. Now we prove an upper bound for star. Let L be a unary convex language with nsc(L) = n. If L is infinite, 
then L = an−1a∗ , and the language L∗ is accepted by the (n − 1)-state NFA N = ({0, 1, . . . , n − 2}, {a}, · , 0, {0}) where i · a =
{i +1} if i < n −2 and i ·a = {0, n −2} if i = n −2. If L is finite, then there is an integer k such that L = {ai | k ≤ i ≤ n −1}. Then 
the (n − 1)-state NFA for L∗ can be constructed from a minimal partial DFA ({0, 1, . . . , n − 1}, {a}, · , 0, {k, k + 1, . . . , n − 1})
for L by making the state n − 1 initial, adding the transition (n − 1, a, 1), and removing the state 0.

The languages am−1a∗ and an−1a∗ meet the upper bound for intersection, the languages am−1 and an−1 meet the upper 
bound for union and concatenation, the language an−1 meets the upper bound for star, and the language {ai | i ≤ n − 1}
meets the upper bound for complementation. �
5. Concatenation

The nondeterministic state complexity of concatenation on regular languages is m +n and the witness language is defined 
over a binary alphabet [5, Theorem 7]. In the unary case, a lower bound is m + n − 1. It is not known whether the upper 
bound m + n can be met by concatenation of unary languages. We prove that the upper bound m + n is met by ternary 
subword-closed (so subword-convex) languages. We do not know whether or not the ternary alphabet is optimal here. In 
the classes of free and ideal languages, the complexity of concatenation is m +n − 1 with unary witnesses. This summarizes 
our results from the conference papers [38, Theorems 6 and 15] and [36, Theorem 10].

Theorem 15. Let K and L be convex languages accepted by an m-state NFA and an n-state NFA, respectively. Then K L is accepted by 
an NFA with at most m + n states, and this bound is met by ternary subword-closed languages.

Proof. We prove that the upper bound m + n is met by the concatenation of ternary subword-closed languages. Con-
sider the ternary subword-closed languages K and L accepted by NFAs shown in Fig. 2. Consider the set of pairs F =
{(ai, am−1−icban−1) | 0 ≤ i ≤ m − 1} ∪{(am−1cba j, an−1− j) | 0 ≤ j ≤ n − 1}. We have am−1cban−1 ∈ K L and K L ⊆ b∗a∗c∗b∗a∗c∗ . 
Next, no string which has more than m + n − 2 occurrences of a is in K L. Hence the set F is a fooling set for K L, 
so nsc(K L) ≥ m + n by Lemma 2. �



JID:TCS AID:11852 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.251; Prn:28/01/2019; 15:50] P.7 (1-22)

M. Hospodár et al. / Theoretical Computer Science ••• (••••) •••–••• 7
p1 p2 . . . pm

b

a a a

c
c

c

q1 q2 . . . qn

b

a a a

c
c

c

Fig. 2. Ternary subword-closed witnesses for concatenation meeting the upper bound m + n.

The concatenation operation on the classes of prefix- and suffix-free languages was investigated by Han et al. [14, Theo-
rem 3.1], [15, Theorem 4] where the upper bound m + n − 1 was established and a binary prefix-free witness was provided. 
Since no proof for the suffix-free case was given, we provide this proof here. Moreover, we describe a unary subword-free 
witness. We also discuss the case of ideal languages in the next theorem.

Theorem 16. Let K and L be free or ideal languages accepted by an m-state NFA and an n-state NFA, respectively. Then K L is accepted 
by an NFA with at most m + n − 1 states, and this bound is met by unary subword-free and unary all-sided ideal languages.

Proof. In the prefix-free case (cf. [14, Proof of Theorem 3.1]), we may assume that automata A and B are non-exiting 
and have a unique final state. We can merge the final state of A and the initial state of B to get an NFA for K L. In the 
suffix-free case, we may assume that automata A and B are non-returning. To get an NFA for K L from A and B , we add the 
transition (p, a, q) for each final state p of A and each transition (sB , a, q) of B . Next, we make final states of A non-final, 
the initial state of B non-initial, and remove the unreachable state sB . As a result, we get an NFA for K L of m + n − 1 states 
in both cases. This upper bound is met by the concatenation of unary subword-free languages {am−1} and {an−1}.

Let K , L be right ideals accepted by NFAs A = (Q A, �, ·A, sA, { f A}) and B = (Q B , �, ·B , sB , { f B}), respectively; by Propo-
sition 12, we may assume that A and B have a loop on each symbol in the unique final state which has no other 
out-transitions. Construct an (m + n − 1)-state NFA for K L from NFAs A and B by merging the final state of A with the 
initial state of B; the initial state of this NFA is sA and its unique final state is f B .

Let K and L be left ideals accepted by NFAs A = (Q A, �, ·A, sA, F A) and B = (Q B , �, ·B , sB , F B), respectively. By Propo-
sition 12, we may assume that A and B have a loop on each symbol in the initial state which has no other in-transitions. 
Construct the NFA ((Q A ∪ Q B) \ {sB}, �, ·, sA, F B) for K L from NFAs A and B as follows: For every state p in F A , add a loop 
on every symbol and add the transitions (p, a, q) when there is a transition (sB , a, q) in B .

To prove tightness, consider all-sided ideal languages K = {ak | k ≥ m − 1} and L = {ak | k ≥ n − 1}, accepted by m-state 
and n-state NFA, respectively. Then the set {(ai, am+n−2−i) | 0 ≤ i ≤ m +n − 2} is a fooling set for K L, so nsc(K L) ≥ m +n − 1
by Lemma 2. �
6. Intersection

The tight upper bound on the nondeterministic state complexity of intersection is mn and it is met by binary languages 
[5, Theorem 3], as well as by unary languages if gcd(m, n) = 1 [5, Theorem 4]. In this section, we show that the upper 
bound mn is tight in all subclasses of ideal and closed (so also convex) languages, and it is less than mn in all subclasses 
of free languages. Except for subword-free witness that is defined over a growing alphabet, all the remaining witnesses are 
binary. Moreover, the binary alphabet is always optimal. Some results of this section were stated in our conference papers 
[38] and [36]. Here we provide all proofs which were not given before. Moreover, we discuss the binary subword-free case.

Theorem 17. Let K and L be convex languages accepted by an m-state NFA and an n-state NFA, respectively. Then K ∩ L is accepted 
by an NFA with at most mn states, and this bound is met by binary subword-closed and binary all-sided ideal languages. The binary 
alphabet is optimal.

Proof. The upper bound is the same as in the case of regular languages. For tightness, consider the binary all-sided ide-
als K = {w ∈ {a, b}∗ | |w|a ≥ m − 1} and L = {w ∈ {a, b}∗ | |w|b ≥ n − 1} accepted by m-state and n-state DFAs, respectively. 
Let F = {(aib j, am−1−ibn−1− j) | 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1}. Since each string w with |w|a = m − 1 and |w|b = n − 1 is 
in K ∩ L, while no string with |w|a < m −1 or |w|b < n −1 is in K ∩ L, the set F is a fooling set for K ∩ L, so nsc(K ∩ L) ≥ mn.

Next, consider the binary subword-closed languages K = {w ∈ {a, b}∗ | |w|a ≤ m − 1} and L = {w ∈ {a, b}∗ | |w|b ≤ n − 1}
accepted by an m-state and n-state partial DFA, respectively. In a similar way as in the case of ideal languages, we can show 
that the same set F is a fooling set for K ∩ L.

By Theorem 14, the binary alphabet is optimal in both cases. �
The nondeterministic complexity of intersection on prefix- and suffix-free languages was studied by Han et al. [14,15], 

where the tight upper bounds were obtained and a three-letter alphabet was used to prove tightness. The binary witnesses 
were described by Jirásková and Olejár [43]. Here we obtain the tight upper bounds for factor- and subword-free languages. 
To prove tightness, we use a binary alphabet in the factor-free case and a growing alphabet of size m + n − 5 in the 
subword-free case. To show subword-freeness of our witnesses, we use the following proposition.
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Proposition 18. Let A = ({0, 1, . . . , n − 1}, �, · 0, {n − 1}) be an n-state partial DFA such that for all states i and j and each input 
symbol σ in �, we have

(1) i · σ > i whenever i · σ is defined;
(2) if i < j, then i · σ < j · σ whenever i · σ and j · σ are defined.

Then L(A) is subword-free.

Proof. By induction on |w|, we prove the properties (1) and (2) for an arbitrary non-empty string w . Since A is a partial 
DFA, every string w in L(A) has exactly one computation in A. Consider a string w = v0u1 v1u2 · · · vk−1uk vk and its proper 
subword v = v0 v1 · · · vk with |v0| ≥ 0, |vk| ≥ 0, and |ui |, |vi | > 0 if 1 ≤ i ≤ k − 1. Assume that both w and v are in L. This 
means that both w and v have accepting computations in A:

0
v0−→ p1

u1−→ q1
v1−→ p2

u2−→ q2
v2−→ · · · uk−→ qk

vk−→ pk+1 = n − 1 and 0
v0−→ p1

v1−→ p′
2

v2−→ · · · vk−→ p′
k+1 = n − 1.

Since u1 is non-empty, p1 < q1, so p′
2 = p1 · v1 < q1 · v1 = p2, and by induction, p′

k+1 < pk+1 = n − 1, a contradiction. 
Hence L(A) is subword-free. �
Theorem 19. Let m ≥ 5 and n ≥ 3. Let K and L be languages accepted by an m-state NFA and an n-state NFA, respectively.

(1) If K and L are prefix- or suffix-free, then K ∩ L is accepted by an NFA with at most mn − (m + n − 2) states, and this bound is 
met by binary languages in both cases.

(2) If K and L are factor- or subword-free, then the language K ∩ L is accepted by an NFA with at most mn −2(m +n −3) states, and 
this bound is met by binary factor-free languages and subword-free languages over an alphabet of size m + n − 5 if m ≥ 5 and n ≥ 3.

The binary alphabet is optimal in the cases of prefix-, suffix-, and factor-free languages.

Proof. We first prove the upper bounds. Let A and B be minimal NFAs for K and L, respectively. We may assume that 
the state sets of A and B are {0, 1, . . . , m − 1} and {0, 1, . . . , n − 1}, respectively, with the initial state 0 in both automata. 
Construct the product automaton A × B for K ∩ L. If K and L are prefix-free with the final states m −1 and n −1 respectively, 
then all states (m − 1, j) with 0 ≤ j ≤ n − 2 and all states (i, n − 1) with 0 ≤ i ≤ m − 2 are dead, so we can omit them. 
If K and L are suffix-free, then A and B are non-returning, so all states in the first row and first column, except for (0, 0), 
are unreachable. Since every factor-free language is both prefix-free and suffix-free, all the three upper bounds follow from 
these observations.

We first describe binary factor-free witnesses. Then, prefix- and suffix-free witnesses will be obtained from them. Let K
and L be the languages accepted by the NFAs A and B shown in Fig. 3. Every string w in K begins and ends with a, 
and |w|b mod (m − 2) = (m − 3). Every proper factor v of w which begins and ends with a has a computation in A which 
starts or ends in 2. However, in such a case, |v|b mod (m − 2) 	= (m − 3), so v /∈ L. Hence the language K is factor-free. 
Next, every string in L has exactly n − 1 occurrences of a, but every proper factor of every string in L has less than n − 1
occurrences of a. Hence L is factor-free. Construct the product automaton A × B and omit all the unreachable and dead 
states to get a trim NFA N for K ∩ L. Since the NFA N and its reverse N R are partial DFAs, the NFA N is minimal by 
Lemma 5. So we have nsc(K ∩ L) = mn − 2(m + n − 3).

Next, let K and L be the languages accepted by (n + 1)-state and (m + 1)-state NFA from Fig. 3. Then the left quotients 
of K and L by the string a, that is, the languages a−1 K and a−1L, are prefix-free and meet the upper bound mn −(m +n −2). 
Similarly, the right quotients Ka−1 and La−1 are suffix-free witnesses meeting the same upper bound.

To describe a subword-free witness, let � = {a} ∪ {bk | 2 ≤ k ≤ m − 2} ∪ {c� | 2 ≤ � ≤ n − 2}. Let K and L be languages 
accepted by partial DFAs A = ({0, 1, . . . , m − 1}, �, · , 0, {m − 1}) and B = ({0, 1, . . . , n − 1}, �, ◦ , 0, {n − 1}), where for each i
(0 ≤ i ≤ m − 2), j (0 ≤ j ≤ n − 2), k (2 ≤ k ≤ m − 2), and � (2 ≤ � ≤ n − 2), we have

i · a = i + 1, j ◦ a = j + 1,
0 · bk = k and (k − 1) · bk = m − 1, 0 ◦ bk = 1 and (n − 2) ◦ bk = n − 1,
0 · c� = 1 and (m − 2) · c� = m − 1, 0 ◦ c� = � and (� − 1) ◦ c� = n − 1.

Fig. 4 shows the automata A and B in the case of m = 5 and n = 6. By Proposition 18, K and L are subword-free. Construct 
the product automaton A × B for K ∩ L. To get a trim NFA, omit all the unreachable and dead states; see Fig. 5 for an 

0A 1 2 3 . . . m − 3 m − 2 m − 1
a b b b b

b

a

b a

0B 1 . . . n − 2 n − 1
a a a

b b

a

Fig. 3. Binary factor-free witnesses for intersection meeting the upper bound mn − 2(m + n − 3).
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0A 1 2 3 4
a a a a

c2, c3, c4

b2

b3

b2

b3

c2, c3, c4

0B 1 2 3 4 5
a a a a a

b2,b3

c2

c3

c4

c2

c3

c4

b2,b3

Fig. 4. Subword-free witnesses for intersection meeting the upper bound mn − 2(m + n − 3); m = 5,n = 6, |�| = m + n − 5.

illustration in the case of m = 5 and n = 6. The resulting trim NFA has mn − 2(m + n − 3) states, it is a partial DFA, and its 
reverse is a partial DFA as well. By Lemma 5, this NFA is minimal. �

Now we show that the upper bound mn is asymptotically tight for binary subword-free languages in the case of m = n.

Proposition 20. Let n ≥ 4. There exist binary subword-free languages K and L accepted by n-state NFAs such that every NFA for K ∩ L
has at least (n2 + 3n)/6 states.

Proof. Let k = �(n −1)/3�. Let K be the language accepted by NFA A = ({0, 1, . . . , n −1}, {a, b}, · , 0, {n −1}), with transitions 
defined as follows:

i · a = i + 1 if 0 ≤ i ≤ n − 2,
i · b = i + 2 if 0 ≤ i ≤ 2k − 2 and i is even,
i · b = i + 1 if n − k − 1 ≤ i ≤ n − 2.

Fig. 6 shows the NFA A in the case of n = 13. By Proposition 18, K is subword-free. Let L be accepted by the NFA B obtained 
from AR by renaming each state i to n − 1 − i if 0 ≤ i ≤ n − 1. We have L = K R , so L is subword-free as well. To prove 
that nsc(K ∩ L) ≥ (n2 + 3n)/6, consider the product automaton A × B . Construct an NFA N from this product automaton 
by omitting all the unreachable and dead states. The state (0, 0) is the initial state of N , and each state ( j, j) on the main 
diagonal is reached from (0, 0) by the string a j . Next, each state (2i, i) with 1 ≤ i ≤ k is reached from (2i − 2, i − 1) by b
and the state (2i + j, i + j) with 0 ≤ j ≤ n − 1 − 3i is reached from (2i, i) by a string a j . Notice that N is a partial DFA 
and N = N R since K ∪ L = LR ∪ K R . By Lemma 5, the NFA N is minimal. The total number of singleton sets that are reachable 
and co-reachable is 

∑k
i=0 n − 3i = (k + 1)(2n − 3k)/2 ≥ (n2 + 3n)/6. �

0,0

1,1

2,1

3,1

1,2

2,2

3,2

1,3

2,3

3,3

1,4

2,4

3,4

4,5

a

b2

b3

c2

c3

c4

b2

b3

c4

c3

c2

a a a

a a a

a

Fig. 5. The product NFA for intersection of languages from Fig. 4.

a a a a a a a a a,b a,b a,b a,b
b b b b

Fig. 6. A binary subword-free language K meeting the bound (n2 + 3n)/6 on nsc(K ∩ K R ); n = 13.
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7. Union

The union of languages K and L accepted by an m-state NFA and an n-state NFA, respectively, is accepted by an NFA with 
at most m + n + 1 states, and this upper bound is known to be tight in the binary case [5, Theorem 1]. Let us emphasize 
that the union can be accepted by an NNFA of m + n states, and therefore the fooling set method described in Lemma 2
cannot be used here because the size of a fooling set for L provides a lower bound on the number of states in any NNFA 
for L. If we insist on having just one initial state, then the following modification of a fooling set method can be used.

Lemma 21 ([24, Lemma 4]). Let A and B be disjoint sets of pairs of strings and let u and v be two strings such that A ∪B, A ∪{(ε, u)}, 
and B ∪ {(ε, v)} are fooling sets for a language L. Then every NFA for L has at least |A| + |B| + 1 states. �

In this section, we show that the upper bound m +n +1 can be met by the union of binary subword-closed (so subword-
convex) languages. Next we prove that the complexity of union is m + n on the classes of prefix-free and right ideal 
languages, it is m + n − 1 on suffix-free and left ideal languages, and it is m + n − 2 on the remaining subclasses of con-
vex languages. All our witnesses are defined over a binary alphabet which is always optimal. The next result is from our 
conference paper [38]. Here we provide a simplified proof.

Theorem 22. Let K and L be convex languages accepted by an m-state NFA and an n-state NFA, respectively. Then the language K ∪ L
is accepted by an NFA of at most m + n + 1 states, and this bound is met by binary subword-closed languages. The binary alphabet is 
optimal.

Proof. The upper bound is the same as for regular languages. For tightness, consider subword-closed, so subword-convex, 
languages K = {w ∈ {a, b}∗ | |w|a ≤ m − 1} and L = {w ∈ {a, b}∗ | |w|b ≤ n − 1}. Let

A = {(bnai, am−1−ib) | 0 ≤ i ≤ m − 1},
B = {(abn−1− j, b jam) | 0 ≤ j ≤ n − 1},
u = ambn−1, and
v = am−1bn .

In each string in K ∪ L, either the number of occurrences of a is at most m − 1 or the number of occurrences of b is at 
most n −1. It follows that A ∪B, A ∪{(ε, u)}, and B∪{(ε, v)} are fooling sets for K ∪ L. By Lemma 21, nsc(K ∪ L) ≥ m +n −1. 
The binary alphabet is optimal by Theorem 14, cases (3) and (4). �

The results in the next theorem are from our conference papers [38,36]. Here we fix an error in the proof of 
[36, Theorem 9]. For the sake of completeness, we also give the other proofs, simplified if possible.

Theorem 23. Let m, n ≥ 3. Let K and L be languages accepted by an m-state NFA and an n-state NFA, respectively.
(1) If K and L are prefix-free or right ideal languages, then K ∪ L is accepted by an NFA of at most m + n states, and this bound is 

tight in the binary case.
(2) If K and L are suffix-free or left ideal languages, then K ∪ L is accepted by an NFA of at most m + n − 1 states, and this bound 

is tight in the binary case.
(3) If K and L are factor-free or two-sided ideal languages, then K ∪ L is accepted by an NFA of at most m + n − 2 states, and this 

bound is met by binary subword-free and binary all-sided ideal languages.
The binary alphabet is always optimal.

Proof. (1) If K and L are prefix-free, then we may assume that NFAs A and B are non-exiting and have a unique final state. 
To get an (m + n)-state ε-NFA for K ∪ L from A and B , add a new initial (non-final) state connected through ε-transitions 
to sA and sB , make the states sA and sB non-initial, and merge the final states of A and B .

In [14] it is claimed that the upper bound m + n is met by the union of prefix-free languages K = (am−1)∗b and L =
(cn−1)∗d, and a set P of pairs of strings of size m +n is described in [14, Proof of Theorem 3.2]. The authors claimed that P
is a fooling set for K ∪ L. However, the language K ∪ L is accepted by an NNFA of m + n − 1 states. Therefore P cannot be a 
fooling set for K ∪ L; indeed, both mismatched concatenations of the pairs (ε, am−1b) and (am−1, b) are in K , so in K ∪ L.

To prove tightness correctly, consider languages K and L accepted by m-state and n-state NFAs A and B , respectively, 
shown in Fig. 7. Notice that K is prefix-free since every string in K ends with b while every proper prefix of every string 
in K is in a∗ . Similarly, L is prefix-free. Let

A = {(am−1+i, am−2−ib) | 0 ≤ i ≤ m − 2} ∪ {(am−2b, ε)},
B = {(bn−1+ j, bn−2− ja) | 0 ≤ j ≤ n − 2}.
u = bn−2a, and
v = am−2b.

We have {a2m−3b, am−2b, b2n−3a, bn−2a} ⊆ K ∪ L. Next, every string in K ∪ L starting with a has (m − 2) mod (m − 1)

consecutive occurrences of a followed by b, and every string starting with b has (n − 2) mod (n − 1) consecutive occur-
rences of b followed by a. This means that the sets A ∪ B, A ∪ {(ε, u)}, and B ∪ {(ε, v)} are fooling sets for K ∪ L. By 
Lemma 21, nsc(K ∪ L) ≥ m + n.
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p0A . . . pm−2 pm−1 q0B . . . qn−2 qn−1
a a

a

b b b

b

a

Fig. 7. Binary prefix-free witnesses for union meeting the upper bound m + n.

If K and L are right ideals, then we may assume that NFAs A and B have exactly one final sink state. We can get 
an ε-NFA for K ∪ L from NFAs A and B by merging the final states of A and B and by adding a new initial state connected 
to the initial states of A and B through ε-transitions. To prove tightness, let K ′ and L′ be the languages over {a, b} accepted 
by NFAs A and B from Fig. 7. Set K = K ′ · {a, b}∗ and L = L′ · {a, b}∗ . Then K and L are right ideals accepted by m-state 
and n-state NFAs obtained from A and B , respectively, by adding the loop on a and b in the final states pm−1 and qn−1. We 
prove that nsc(K ∪ L) ≥ m + n exactly the same way as in the case of prefix-free languages.

(2) If K and L are suffix-free, then we may assume that NFAs A and B are non-returning. We can get an (m +n −1)-state 
NFA for K ∪ L from A and B by merging their initial states. Consider the same prefix-free languages K and L as in case (1). 
Then the languages K R and LR are suffix-free, and they are accepted by m-state and n-state NFAs AR and B R , respectively. To 
get an NFA for K R ∪ LR , we merge the initial states of AR and B R . For each state q of the resulting automaton, the singleton 
set {q} is reachable, as well as co-reachable. By Lemma 4, this NFA is minimal. Hence we get nsc(K R ∪ LR) ≥ m + n − 1.

If K and L are left ideals, we may assume by Proposition 12 that NFAs A and B have a loop on each symbol in the initial 
state which has no other in-transitions. We can get an (m + n − 1)-state NFA for K ∪ L from NFAs A and B by merging the 
initial states. To prove tightness, consider two left ideals shown in Fig. 8. Let

F = {(ai,am−1−i) | 0 ≤ i ≤ m − 1} ∪ {(b j,bn−1− j) | 1 ≤ j ≤ n − 2} ∪ {(bn−1,abn−2)}.
We have {am−1, bn−1, bn−1abn−2} ⊆ K ∪ L. Next, no string in a∗ (b∗) of length different from m − 1 (n − 1) is in K ∪ L, and 
if 0 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 2, then ai · bn−1− j /∈ K ∪ L and ai · abn−2 /∈ K ∪ L. It follows that the set F is a fooling set 
for K ∪ L, so nsc(K ∪ L) ≥ m + n − 1.

(3) If K and L are factor-free, then they are both prefix- and suffix-free. To get an (m +n − 2)-state NFA for K ∪ L from A
and B , we merge their initial states, and then we merge their final states. The upper bound m + n − 2 is met by binary 
subword-free languages {am−1} and {bn−1} since the NFA for their union, resulting from the construction above, as well as 
its reverse, are partial trim DFAs, so this NFA is minimal by Lemma 5.

If K and L are two-sided ideals, then they are left ideals and also right ideals, and we may assume by Proposition 12
that A and B have properties claimed there. To get an (m +n −2)-state NFA for K ∪ L from NFAs A and B , merge their initial 
and final states. For tightness, consider all-sided ideals K = {w ∈ {a, b}∗ | |w|a ≥ m − 1} and L = {w ∈ {a, b}∗ | |w|b ≥ n − 1}. 
Notice that the set of pairs of strings {(ai, am−1−i) | 0 ≤ i ≤ m − 1} ∪ {(b j, bn−1− j) | 1 ≤ j ≤ n − 2} is a fooling set for K ∪ L.

The optimality of a binary alphabet follows from Theorem 14 for all classes. �

p0 p1 . . . pm−2 pm−1
a a a a

b

�

q0 q1 . . . qn−2 qn−1
b b b b

a

�

Fig. 8. Binary left ideal witnesses for union meeting the upper bound m + n − 1.

8. Reversal

The upper bound on the nondeterministic state complexity of reversal is n + 1 [5, Theorem 10] and it is met by the 
binary language shown in Fig. 13 (left) [25, Proof of Theorem 2]. In this section, we prove that the upper bound n + 1 is 
tight for suffix-free languages, left ideals, and all four classes of closed (so, also convex) languages. Otherwise, the tight 
upper bound is n. Except for subword-closed case where we use a growing alphabet of size 2n − 2, all our witnesses are 
defined over binary or unary alphabets which are always optimal. Similarly as for the union operation, we need to use a 
modified fooling set method described in Lemma 21 in some cases.

The results in the next theorem, except for binary factor-closed witness, are from our conference papers [38,36]. Here 
we provide a detailed proof for free languages, cf. [36, Theorem 12], the proof for ideal languages which was missing in 
[38, Theorem 17], we improve the result for factor-closed languages [38, Theorem 9] by describing a binary witness, and 
give a simplified proof for subword-closed languages.

Theorem 24. Let n ≥ 5. Let L be a suffix-free, left ideal, or closed language accepted by an n-state NFA. Then LR is accepted by 
an NFA with at most n + 1 states, and this bound is met by a binary suffix-free, binary left ideal, binary factor-closed language, and a 
subword-closed language over an alphabet of size 2n − 2. The binary alphabet is always optimal.



JID:TCS AID:11852 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.251; Prn:28/01/2019; 15:50] P.12 (1-22)

12 M. Hospodár et al. / Theoretical Computer Science ••• (••••) •••–•••
0A 1 . . . n − 4 n − 3

n − 2 n − 1

b a a a

a
a

b

b

Fig. 9. A binary suffix-free witness for reversal meeting the upper bound n + 1.

Proof. The upper bound is the same as for regular languages. To get tightness in the suffix-free case, let L be the language 
accepted by the NFA A shown in Fig. 9. Since every string in L contains both a and b, but every proper suffix of every string 
in L is in a∗ ∪ b∗ , the language L is suffix-free. Now we show that every NFA for LR needs at least n + 1 states. Let

A = {(an−3, an−4b)} ∪ {(ai, an−4−ib) | 1 ≤ i ≤ n − 4} ∪ {(an−4b, ε)},
B = {(bb, ba), (b, a)},
u = ba, and v = an−4b.

Notice that {a2n−7b, an−4b, bbba, ba} ⊆ LR . Moreover, in every string in LR starting with a, the number of consecutive a’s 
modulo (n − 3) is (n − 4), and the string continues with b. Next, the string bba is not in LR . Finally, every string in LR

contains both a and b, and no string in LR starts with bba. It follows that A ∪ B, A ∪ {(ε, u)}, and B ∪ {(ε, v)} are fooling 
sets for LR . By Lemma 21, we have nsc(LR) ≥ n + 1.

Now, we describe a left ideal witness. Let K be the language accepted by the NFA A shown in Fig. 9. Set L = {a, b}∗K . 
Then L is a left ideal accepted by the n-state NFA obtained from A by adding the loop on a and b in the initial state. We 
prove that nsc(LR) ≥ n + 1 exactly the same way as in the case of suffix-free languages.

Next, let us describe a factor-closed witness. Let L be the language accepted by the NFA shown in Fig. 10 where the only 
two transitions on b are (0, b, n − 2) and (n − 1, b, n − 2). Since each state of A is final, the language L is prefix-closed by 
Proposition 13 (1). Next, for each transition (i, σ , j) there is the transition (0, σ , j) in A. Hence if a string is accepted by A
from a state i, then it is accepted also from the initial state 0. Therefore L is suffix-closed by Proposition 13 (2). Since L is 
prefix-closed and suffix-closed, it is factor-closed by Proposition 13 (3). Let

A = {(ban−1−i, ai) | 0 ≤ i ≤ n − 2},
B = {(b, an−1)},
u = an−1, and v = an−2.

Notice that {ban−1, an−1, an−2} ⊆ LR , no string in LR has more than n − 1 consecutive a’s, and ban−2 /∈ LR . It follows that 
A ∪B, A ∪ {(ε, u)}, and B ∪ {(ε, v)} are fooling sets for LR . By Lemma 21, nsc(LR) ≥ n + 1. The binary alphabet is optimal 

0A 1 2 . . . n − 2 n − 1
a a a a a

a a,b a

b

Fig. 10. A binary factor-closed witness for reversal meeting the upper bound n + 1.

in all cases since the reversal of every unary language is the same language.

Finally, we describe a subword-closed witness. Let L be the language accepted by the NFA shown in Fig. 11. Let
A = {(b1 · · ·bi−1bi+1 · · ·bn−1, ai) | 2 ≤ i ≤ n − 1} ∪ {(b1a2, ε)},
B = {(b2b3 · · ·bn−1, a1)},
u = a1, and v = a2.

Since {a1, a2, b1a2, b2b3 · · ·bn−1a1} ∪ {b1 · · ·bi−1bi+1 · · ·bn−1ai | 2 ≤ i ≤ n − 1} ⊆ LR , no string in LR has bi before ai , and no 
string in LR has two symbols in {a1, . . . , an−1}, the sets A ∪B, A ∪ {(ε, u)}, and B ∪ {(ε, v)} are fooling sets for LR . Thus by 
Lemma 21, nsc(LR) ≥ n + 1. �

The reversal operation on the other classes of convex languages is a trivial operation, as shown in the next observation.

Proposition 25. Let L be a prefix-free or right ideal language accepted by an n-state NFA. Then LR is accepted by an NFA of at most n
states, and this bound is met by a unary subword-free and a unary all-sided ideal language.

Proof. If L is prefix-free or right ideal, then it is accepted by an NFA with a unique final state by Propositions 8 and 12. 
This gives the upper bound. The bound is met by the unary subword-free language {an−1} and by the unary all-sided 
ideal {ai | i ≥ n − 1} since the set {(ai, an−1−i) | 0 ≤ i ≤ n − 1} is a fooling set for the reversal of both languages. �
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1 2 . . . i . . . n − 10

B \ {b1} B \ {b2} B \ {bi} B \ {bn−1}B

a1

a2
ai an−1

Fig. 11. The DFA of the subword-closed language L where B = {b1, . . . ,bn−1}.

9. Star

The upper bound on the nondeterministic state complexity of the star operation is n + 1 and it is known to be tight 
already in the unary case [5, Theorem 9]. In this section we show that the upper bound n + 1 is tight in all the classes 
of ideal (so also convex) languages with binary witnesses. Next we prove that the complexity of the star operation is n in 
the classes of prefix- and suffix-free and prefix- and suffix-closed languages with binary witnesses, it is n − 1 in the classes 
of factor- and subword-free languages with unary witnesses, and it is one for every factor-closed language. Moreover, the 
binary alphabet is always optimal. This summarizes our results stated in our conference papers [38,36]. Here we provide a 
proof for ideal languages which was missing in [38, Theorem 16] and a more detailed proof for suffix-closed languages. For 
the sake of completeness, we give all the remaining proofs which are slightly modified here.

Proposition 26. Let n ≥ 2. Let L be a convex language accepted by an n-state NFA. Then L∗ is accepted by an NFA with at most n + 1
states, and this bound is met by a binary all-sided ideal language. The binary alphabet is optimal.

Proof. The upper bound is the same as for regular languages. To prove tightness, consider the binary all-sided ideal language 
L = {w ∈ {a, b}∗ | |w|a ≥ n − 1}. Let F = {(bai, an−1−ib) | 0 ≤ i ≤ n − 1} ∪ {(ε, ε)}. We have {ε, ban−1b} ⊆ L∗ , while {ba jb |
j ≤ n − 2} ∪ {ba j | j ≤ n − 2} ∪ {b} ⊆ (L∗)c . It follows that F is a fooling set for L∗ , so nsc(L∗) ≥ n + 1. The binary alphabet is 
optimal by Theorem 14 (4). �
Theorem 27. Let n ≥ 2. Let L be a prefix- or suffix-free or prefix- or suffix-closed language accepted by an n-state NFA. Then L∗ is 
accepted by an NFA with at most n states, and this bound is tight in the binary case. The binary alphabet is optimal.

Proof. If L is prefix-free, then it is accepted by an NFA A which is non-exiting and has a unique final state q f by Propo-
sition 8. Construct an n-state ε-NFA for the language L∗ from A by making state q f initial and state s non-initial, and by 
adding the ε-transition from q f to s. For tightness, let consider the prefix-free language accepted by the n-state NFA A
shown in Fig. 12 (left). The set {(bai, an−1−i) | 0 ≤ i ≤ n − 1} is a fooling set for L∗ since ban−1 ∈ L∗ , but for each j
with j < n − 1, the string ba j is not in L∗ .

0A 1 . . . n − 2 n − 1

b

a a a a
0B 1 . . . n − 2 n − 1

a a a a

b

Fig. 12. Binary prefix-free (left) and suffix-free (right) witnesses for star meeting the upper bound n.

If L is suffix-free, then it is accepted by an NFA A which is non-returning by Proposition 8. Construct an n-state NFA 
for L∗ from A by making the initial state s final, and by adding the transition (p, a, q) for each final state p, each symbol a, 
and each transition (s, a, q) of A. For tightness, let L be the suffix-free language accepted by the n-state NFA B shown in 
Fig. 12 (right). The set {(ai, an−1−ib) | 0 ≤ i ≤ n − 1} is a fooling set for L∗ since an−1b ∈ L∗ , but for each j with j < n − 1, 
the string a jb is not in L∗ .

If L is a closed language accepted by an n-state NFA, then ε ∈ L, so nsc(L∗) ≤ n. This upper bound is met by the binary 
prefix-closed language from [44, Theorem 17] accepted by the NFA shown in Fig. 13 (left) since {(ai, an−1−ib) | 0 ≤ i ≤ n − 1}
is a fooling set for its star. The suffix-closed language accepted by the NFA shown in Fig. 13 (right) meets the upper bound 
as well; here the set {(bai, an−1−i) | 0 ≤ i ≤ n − 1} is a fooling set for its star.

The binary alphabet is optimal in all four cases by Theorem 14. �

0 1 . . . n − 1
a a a

b

0 1 . . . n − 1

a

a a

a

b

Fig. 13. Binary prefix-closed (left) and suffix-closed (right) witnesses for star meeting the upper bound n.
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Proposition 28. Let n ≥ 2. Let L be a language accepted by an n-state NFA.
(1) If L is factor-free, then L∗ is accepted by an NFA with at most n − 1 states, and this bound is met by a unary subword-free 

language.
(2) If L is factor-closed, then L∗ is accepted by an NFA with one state.

Proof. (1) If L is factor-free, then it is prefix-free and suffix-free, and we may assume that it is accepted by an NFA A which 
is non-returning and non-exiting, and it has a unique final state q f by Proposition 8. Let s be the initial state of A. Construct 
an (n − 1)-state NFA for L∗ by making the initial state s non-initial and the state q f initial, by adding transition (q f , a, q)

for each transition (s, a, q) in A, and by omitting the unreachable state s. The unary subword-free language {an−1} meets 
this upper bound.

(2) For a factor- or subword-closed language L, let � be the set of symbols present in at least one string of L. Then 
L ⊆ �∗ , and since L is factor-closed, � ∪ {ε} ⊆ L. It follows that L∗ = �∗ , hence nsc(L∗) = 1. �
10. Complementation

The upper bound on the nondeterministic state complexity of complementation is 2n [5, Corollary 1] and it is met by 
the binary language K from [25, Theorem 5] accepted by the NFA shown in Fig. 14.

Notice that in this NFA, each singleton set {i} is reached by ai , the empty set is reached from {n − 1} by a, and ev-
ery k-element set {i1, i2, . . . , ik}, where 2 ≤ k ≤ n and 0 ≤ i1 < i2 < · · · < ik ≤ n − 1, is reached from the (k − 1)-element 
set {i2 − i1 − 1, . . . , ik − i1 − 1} by the string bai1 . Hence, by induction, every subset of the state set is reachable in this NFA. 
Moreover, this NFA is isomorphic to its reversal, and therefore it has 2n co-reachable subsets. This means that nsc(K c) = 2n

by Corollary 7, which significantly simplifies the proof in [25, Theorem 5]. The language K plays a crucial role in our 
investigation of the complementation operation in the subclasses of convex languages.

0 1 2 . . . n − 2 n − 1
a,b a,b a,b a,b a,b

b

b b
b b

b
b

b

Fig. 14. An NFA of a binary regular language K with nsc(K ) = 2n .

In this section, we show that the nondeterministic complexity of complementation is 2n on prefix-closed (so prefix-
convex) and suffix-convex languages. The exact complexity of complementation on factor- and subword-convex remains 
open, and it is between 2n−2 and 2n−1 + 1 in all the remaining subclasses. Let us emphasize that except for growing al-
phabets in three cases, and a five-letter alphabet in the suffix-convex case, all the remaining alphabets used for describing 
witnesses are optimal.

A ternary prefix-closed witness was described in [44]. We decreased the alphabet size in [38, Theorem 10 (a)]. We also 
described a suffix-convex witness in [36, Theorem 13]. Here we present a simplified proof in the prefix-closed case and a 
more detailed proof in the suffix-convex case. To show that a DFA accepts a prefix-convex language, we use the following 
sufficient condition.

Proposition 29. Let D = (Q , �, · , s, F ) be a DFA. If for each final state q and each symbol a in �, the state q · a is final or dead, 
then L(D) is prefix-convex.

Proof. Let u and w be strings in L(D) such that u is a prefix of w , that is, w = uv for a string v . In the accepting 
computation on uv , the state reached after reading u is final. It follows that all the following states in this computation 
must be final because otherwise w would be rejected. Hence L(D) is prefix-convex. �
Theorem 30. Let n ≥ 3. Let L be a convex language accepted by an n-state NFA. Then Lc is accepted by an NFA with at most 2n states, 
and this bound is met by a binary prefix-closed language and a suffix-convex language defined over an alphabet of size 5. The binary 
alphabet in the prefix-closed case is optimal.

Proof. The upper bound is the same as for regular languages. Consider the binary prefix-closed language accepted by the 
NFA N shown in Fig. 15. Notice that we can move every subset S of {0, 1, . . . , n −1} cyclically by one by reading a if n −1 /∈ S
or if both of n − 1 and n − 2 are in S , and by reading ab otherwise. Next, we can eliminate the state n − 1 from every set 
containing n − 1 by reading b. Finally, the set {0, 1, . . . , n − 1} is reachable by a2n . It follows that every subset of the state 
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0 1 . . . n − 2 n − 1
a

b

a

b

a a

b

a

a

Fig. 15. A binary prefix-closed witness for complementation meeting the upper bound 2n .

set is reachable in N . The initial state in N R is {0, 1, . . . , n − 1}, and we show reachability of all the subsets in N R by the 
similar arguments as for N . By Corollary 7, nsc(Lc) = 2n . The binary alphabet is optimal by Theorem 14 (3).

Now, let us describe a suffix-convex witness. Let L be the language accepted by the nondeterministic finite automa-
ton A = ({0, 1, . . . , n − 1}, {a, b, c, d, e}, · , 0, {1, 2, . . . , n − 1}), where the transitions on a and b are shown in Fig. 16, the 
transitions on c, d, e are as follows:

0 · c = {0, 1, . . . , n − 1},
0 · d = {1, 2, . . . , n − 1},
q · e = {n − 1} for each state q of A

and all the remaining transitions go to the empty set. In the NFA AR , the final state 0 goes to itself on a, b, c and to 
the empty set on d and e. Next, every other state of AR goes to 0 on d, and the state n − 1 goes to {0, 1, . . . , n − 1}
on e. Thus in the subset automaton of AR , each final subset, that is, a subset containing the state 0, goes either to a final 
subset containing 0 or to the empty set on each input symbol. By Proposition 29, the language LR is prefix-convex, so L
is suffix-convex. Now we show that each subset of the state set of A is reachable and co-reachable. Notice that {0} · a =
{0}, {0} · b = {0}, 0 · c = {0, 1, . . . , n − 1}, and 0 · d = {1, 2, . . . , n − 1}. Moreover, we can shift each subset of {1, 2, . . . , n − 1}
cyclically by one using the symbol a. Next, we can eliminate the state 1 from each subset containing 1 by b. It follows 
that each subset is reachable. To prove co-reachability, notice that the initial subset of AR is {1, 2, . . . , n − 1} and it goes 
to {0, 1, . . . , n − 1} on e. We again use symbol a to shift subsets of {1, 2, . . . , n − 1} and symbol b to eliminate the state 1. It 
follows that every subset is co-reachable. By Proposition 6, we have nsc(Lc) = 2n . �

A 0 1 2 . . . n − 1

a,b b b

a a a

a

Fig. 16. Transitions on a and b in a suffix-convex witness for complementation meeting the upper bound 2n .

The following theorem recalls the results from our conference paper [38, Theorem 10 (b, c)]. We present a simplified 
proof for factor-closed case which uses reachable and co-reachable sets given by Proposition 6.

Theorem 31. Let n ≥ 3. Let L be a suffix-closed language accepted by an n-state NFA. Then Lc is accepted by an NFA with at 
most 2n−1 + 1 states. This upper bound is met by a binary factor-closed language and by a subword-closed language defined over 
an alphabet of size 2n. The binary alphabet is optimal.

Proof. Let A = (Q , �, · , s, F ) be a minimal NFA for L. Then every state q in Q is reachable from s by a string u and also 
some final state is reachable from q by a string v . Thus uv is accepted. Since L is suffix-closed, the string v must reach a 
final state from s. Therefore every subset of Q containing s is equivalent to {s} in the subset automaton of A. It follows 
that Lc is accepted by an NFA of at most 2n−1 + 1 states.

For tightness, consider the binary language accepted by the NFA N shown in Fig. 17. Since all states of N are final, L(N)

is prefix-closed by Proposition 13 (1). Notice that if a string w is accepted from any state of N , then w is also accepted from 
the initial state 0. By Proposition 13 (2), the language L(N) is suffix-closed, hence it is factor-closed by Proposition 13 (3). 
The subset {0, 1, . . . , n − 1} is reached from the initial state by a. Next, the 2n−1 subsets of {1, 2, . . . , n − 1} are reachable 
in N since the set {1, 2, . . . , n − 1} is reached by b, we can shift every subset of this set cyclically by one by a, and we can 
eliminate state n − 1 by b. Moreover, complements of these subsets are co-reachable. By Proposition 6, nsc(Lc) ≥ 2n−1 + 1. 
The binary alphabet is optimal by Theorem 14 (3).

To describe a subword-closed witness, let A = {aS | S ⊆ {1, 2, . . . , n − 1}}, B = {bS | S ⊆ {1, 2, . . . , n − 1}}, and � = A ∪ B . 
Let L be the language accepted by the 2n-letter and n-state NFA N = ({0, 1, . . . , n − 1}, �, · , 0, {0, 1, . . . , n − 1}) where for 
every aS and bS we have
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1 2 . . . n − 2 n − 1

0

a

a,b

a,b a,b

a,b

b b b

a a a a

a

Fig. 17. A binary factor-closed witness for complementation meeting the upper bound 2n−1 + 1.

0 · aS = S and 0 · bS = {0},
i · bS = {i} if i ∈ {1, 2, . . . , n − 1} \ S ,

and all the remaining transitions go to the empty set. Notice that each string in L is either in B∗ , or in B∗ A, or it is in 
the form w = bR1 · · ·bRk aSbT1 · · ·bT�

with S ∩ T c
1 ∩ · · · ∩ T c

� 	= ∅. Since N accepts every string in B∗ ∪ B∗ A, and removing a 
symbol bT j from w results in a string in the same form as w , every subword of every string in L is in L as well. Hence L
is subword-closed. Let us show that the set of pairs of strings F = {(ε, a∅)} ∪ {(aS , bS) | S ⊆ {1, 2, . . . , n − 1}} is a fooling set 
for Lc . The string a∅ as well as each string aSbS is not accepted by N . On the other hand, each string bS is accepted by N . 
Let S 	= T , and without loss of generality, there is a state i in {1, 2, . . . , n − 1} such that i ∈ S \ T . Then the string aSbT is 
accepted by N . It follows that F is a fooling set for Lc . Hence we have nsc(Lc) ≥ 2n−1 + 1 by Lemma 2. �

Han et al. [14] provided an upper bound 2n−1 + 1 and lower bound 2n−1 on complexity of complementation on prefix-
free languages. Let us show that 2n−1 is also an upper bound; cf. our results in [37, Lemma 2, Theorem 1].

Proposition 32. Let n ≥ 3. Let L be a prefix-free language accepted by an n-state NFA. Then Lc is accepted by an NFA of at most 2n−1

states. This upper bound is tight in the ternary case.

Proof. Let N be an n-state NFA for a prefix-free language L. Construct the subset automaton of the NFA N and minimize 
it to the DFA A. Then A has a unique final state q f which goes to the dead state qd on each input symbol. To get a 
DFA for the language Lc , we invert the finality of every state in the DFA A, thus Lc is accepted by the (2n−1 + 1)-state 
DFA Ac = (Q , �, · , s, Q \ {q f }). We show that using nondeterminism, we can save one state, that is, we describe 
a 2n−1-state NFA for the language Lc . Construct a 2n−1-state NFA Nc for Lc from the DFA Ac by replacing each transi-
tion (q, a, qd) with two transitions (q, a, q f ) and (q, a, s) and by omitting the state qd; see Fig. 18. Formally, construct an 
NFA Nc = (Q \ {qd},�,◦, s, Q \ {q f ,qd}), where

q ◦ a =
{

q · a, if q · a 	= qd,

{q f , s}, if q · a = qd.

Let us show that L(Nc) = L(Ac).
The empty string is accepted in both automata. Let w = a1a2 · · ·ak , where ai ∈ �, be a non-empty string in L(Ac), and 

let s, q1, q2, . . . , qk be the computation of the DFA Ac on the string w . If qk 	= qd , then each qi is different from qd since qd
goes to itself on each symbol. It follows that s, q1, q2, . . . , qk is also a computation of the NFA Nc on the string w . Now as-
sume that qk = qd . Then there exists an � such that the states q�, q�+1, . . . , qk are equal to qd , and the states s, q1, . . . , q�−1
are not equal to qd . If � = k, then qk−1 · ak = qd , so s ∈ qk−1 ◦ ak . It follows that s, q1, q2, . . . , qk−1, s is an accepting computa-
tion of Nc on w . If � < k, then we have q� = q�+1 = · · · = qk = qd , and therefore the string w is accepted in Nc through the 
accepting computation s, q1, . . . , q�−1, q f , q f , . . . , q f , s since we have q�−1 ◦ a� = {q f , s}, and q f ◦ a = {q f , s} for each a in �.

Now assume that a string w = a1a2 · · ·ak is rejected by the DFA Ac . Let s, q1, q2, . . . , qk be the rejecting computation of 
the DFA Ac on the string w . Since the only non-final state of the DFA Ac is q f , we must have qk = q f . It follows that each 

s . . .

q

q f qd
�

a

� s . . .

q

q f �

� a

a

Fig. 18. The substitution of a transition (q,a,qd) by the transitions (q,a,q f ) and (q,a, s).
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state qi is different from qd , and therefore in the NFA Nc , we have qi−1 ◦ ai = {qi−1 · ai}. This means that s, q1, q2, . . . , qk is 
a unique computation of Nc on w . Since this computation is rejecting, the string w is rejected by the NFA Nc .

Notice that the witness from [14, Lemma 4.6] is actually the ternary language K · c where K is the witness language 
on n − 1 states from Fig. 14. The language is prefix-free by Proposition 11. �

We proved in our conference paper [37, Lemma 9] that the upper bound 2n−1 cannot be met by any binary prefix-free 
language; here we present a slightly modified proof.

Proposition 33. Let L be a binary prefix-free language accepted by an n-state NFA. Then, for all sufficiently large n, the language Lc is 
accepted by an NFA with at most 2n−1 − 2n−3 + 1 states.

Proof. Let N be a minimal NFA for L with the state set {1, 2, . . . , m} where m ≤ n. Let m be the final state of N . Without 
loss of generality, the state m is reached from the state m − 1 on a in N . If there is no transition (i, a, j) with i, j ∈
{1, 2, . . . , m − 1}, then the automaton on states {1, 2, . . . , m − 1} is unary. It follows that in the subset automaton of N , at 
most O (F (m − 1)) subsets of {1, 2, . . . , m − 1} can be reached by Chrobak’s result in [40, Proof of Theorem 4.4], here F (n)

is the Landau function defined by F (n) = max{lcm(x1, . . . , xk) | n = x1 + · · · + xk}. Since F (n) ≈ e
√

n ln n , the lemma follows in 
this case.

Now consider a transition (i, a, j) with i, j ∈ {1, 2, . . . , m − 1}. We show that no subset of {1, 2, . . . , m − 1} containing 
states i and m − 1 may be reachable. Assume for contradiction, that a set S ∪ {i, m − 1} is reached from the initial state 
of the subset automaton by a string u. Since N is minimal, the final state m is reached from the state j by a non-empty 
string v . However, the set S ∪ {i, m − 1} goes to a final set S ′ ∪ { j, m} by a, and then to a final set S ′′ ∪ {m} by v . It 
follows that the subset automaton accepts the strings ua and uav , which is a contradiction with the prefix-freeness of the 
accepted language. Thus at least 2m−3 subsets of {1, 2, . . . , m − 1} are unreachable. Therefore, the subset automaton has at 
most 2m−1 − 2m−3 + 1 states. After inverting the finality of its states, we get a DFA of the same size for the complement 
of L(N), and the lemma follows. �

Consider the witness language K · c from the proof of Proposition 32 and apply the homomorphism h(a) = 10, h(b) = 11, 
and h(c) = 00 to it. The resulting language is a binary prefix-free language accepted by a 2n-state NFA whose complement 
requires 2n−1 states. Hence the complexity of complementation on binary prefix-free languages is still exponential. The next 
theorem summarizes all our results for prefix-free languages.

Theorem 34. Let L be a prefix-free language accepted by an n-state NFA. Then Lc is accepted by an NFA with at most 2n−1 states, and 
this bound is tight in the ternary case. The ternary alphabet is optimal. In the binary case, an upper bound is 2n−1 + 2n−3 + 1 and a 
lower bound is 2� n

2 �−1 . �
Han et al. [15] provided an upper bound 2n−1 + 1 and a lower bound 2n−1 − 1 for complementation on suffix-free 

languages. We show that the tight upper bound is 2n−1 here. The following theorem summarizes our results on suffix-free 
languages from [37, Theorem 2] and [45, Theorem 13].

Theorem 35. Let n ≥ 3. Let L be a suffix-free language accepted by an n-state NFA. Then Lc is accepted by an NFA of at most 2n−1 states. 
This upper bound is tight in the ternary case. The ternary alphabet is optimal. In the binary case, an upper bound is 2n−1 + 2n−3 + 2
and a lower bound is 2� n

2 �−1 .

Proof. Let N be a non-returning n-state NFA for a suffix-free language L. The subset automaton A = (Q , �, · , s, F ) of the 
NFA N has at most 1 + 2n−1 reachable states including the dead state qd since the only reachable subset that contains the 
initial state of N is the initial state of the subset automaton. The initial state of the subset automaton is non-final since L
does not contain the empty string. After inverting the finality of all states, we get a DFA Ac = (Q , �, · , s, Q \ F ) for Lc

of 1 + 2n−1 states. The initial state of Ac is final and has no in-transitions. The state qd is final as well, and it accepts every 
string. Construct a 2n−1-state NFA Nc from the DFA Ac as follows. Let Q d be the set of states of Ac different from qd and 
such that they have a transition to the state qd , that is, Q d = {q ∈ Q \ {qd} | there is an a in � such that q · a = qd}. Recall 
that by Proposition 9, for each symbol a, there is a state qa in Q d that goes to qd by a. Replace each transition (q, a, qd) by 
transitions (q, a, p) for each p in Q d , and moreover, add the transition (q, a, s). Then, remove the state qd . Let ◦ denote the 
transition function of Nc . Let us show that L(Nc) = L(Ac).

The empty string is accepted by both automata. Let w = a1a2 · · ·ak be a non-empty string in L(Ac), and let s, q1, q2, . . . , qk

be the computation of the DFA Ac on the string w . If qk 	= qd , then each qi is different from qd since qd goes to itself on 
each symbol. It follows that s, q1, q2, . . . , qk is also a computation of the NFA Nc on the string w . Now assume that qk = qd . 
Then there exists an � such that the states q�, q�+1, . . . , qk are equal to qd , and the states s, q1, . . . , q�−1 are not equal to qd . 
If � = k, then qk−1 · ak = qd , so s ∈ (qk−1 ◦ ak). It follows that s, q1, q2, . . . , qk−1, s is an accepting computation of Nc on w . 
If � < k, then we have q� = q�+1 = · · · = qk = qd . Let pi be a state in Q d with (pi · ai) = qd . Then the string w is accepted 
in Nc through the following accepting computation
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s
a1−→ q1

a2−→ q2
a3−→ · · · a�−1−−−→ q�−1

a�−→ p�+1
a�+1−−−→ p�+2

a�+2−−−→ · · · ak−1−−−→ pk
ak−→ s.

Now assume that a string w = a1a2 · · ·ak is rejected by the DFA Ac . Let s, q1, q2, . . . , qk be the rejecting computation of 
the DFA Ac on the string w . Since qd is a final state in Ac , and it goes to itself on each symbol, all the states qi must be 
different from qd . Therefore in the NFA Nc , we have (qi−1 ◦ ai) = {(qi−1 · ai)}. This means that s, q1, q2, . . . , qk is a unique 
computation of Nc on w . Since this computation is rejecting, the string w is rejected by Nc .

For tightness, let n ≥ 3 and K be the language over {a, b} accepted by the (n − 1)-state NFA N from Fig. 14, and 
let L = c · K . Then L is a suffix-free language by Proposition 11, and it is accepted by an n-state NFA with the state 
set {q0} ∪ {0, 1, . . . , n − 2}, the initial state q0, the unique final state n − 2, the transitions on a, b given by Fig. 14, and the 
transition (q0, c, 0). The initial state q0 goes to the state 0 by c, and then, as shown in the beginning of this section, every 
subset of {0, 1, . . . , n − 2} is reachable and co-reachable in N . By Corollary 7, every NFA for Lc has at least 2n−1 states.

Now consider the binary case. By applying the homomorphism h(a) = 10, h(b) = 11, and h(c) = 00 to the language c · K , 
we get a binary suffix-free language accepted by a 2n-state NFA whose complement requires 2n−1 states. This gives a lower 
bound 2� n

2 �−1 in the binary case.
To get the upper bound, we reverse an NFA for L, and obtain an n-state NNFA for a prefix-free language LR . By Propo-

sition 33, the language (LR)c is accepted by an NFA with at most 2n−1 − 2n−3 + 1 states. Since (LR)c = (Lc)R , we have that 
the reverse of Lc is accepted by an NFA N which has at most 2n−1 − 2n−3 + 1 states. Now we reverse the NFA N , and get 
an NNFA N R for Lc . By adding one more state, we get an NFA for Lc with at most 2n−1 − 2n−3 + 2 states. Our proof is 
complete. �

We continue with the complementation operation on factor- and subword-free languages and summarize the results 
from the conference paper [45] by the third author; cf. [45, Theorems 15, 18, 20].

Theorem 36. Let n ≥ 4. Let L be a factor-free language accepted by an n-state NFA. Then Lc is accepted by an NFA of at most 2n−2 + 1
states. This upper bound is met by a ternary factor-free language and by a subword-free language defined over an alphabet of size 2n−2 . 
For binary factor-free languages, an upper bound is 2n−2 − 2n−4 + 1 and a lower bound is 2� n

2 �−2 + 1. The upper bound 2n−2 + 1
cannot be met by any subword-free language defined over a fixed alphabet.

Proof. Let A be an n-state NFA for a factor-free language L. We may assume that A is non-returning, and all the final 
states in the subset automaton are equivalent. Hence the subset automaton has at most 2n−2 + 2 reachable and pairwise 
distinguishable states. After inverting the finality of all states, we get a DFA for Lc of at most 2n−2 + 2 states. In the same 
way as for prefix-free languages, we can use a nondeterminism to save one state. This gives the upper bound 2n−2 + 1.

To prove tightness, let K be the witness language over {a, b} accepted by the NFA N on n − 2 states from Fig. 14. 
Let L = c · K · c. Then L is a factor-free language by Proposition 11 and it is accepted by an n-state NFA. Let F = {(uS , v S) |
S ⊆ {1, 2, . . . , n − 2}} be a fooling set for the language K c . Notice that the strings uS and v S have the following properties: 
(1) on uS , the initial state goes to the set S; (2) the string v S is rejected by N from every state in S and it is accepted by N
from every state in {1, 2, . . . , n − 2} \ S . Let

A = {(cuS , v S c) | S ⊆ {1, 2, . . . , n − 2} and S 	= ∅},
B = {(cu∅, v∅c)},
u = v∅c, and v = ε.

Then A ∪B, A ∪ {(ε, u)}, and B ∪ {(ε, v)} are fooling sets for Lc , so by Lemma 21, nsc(Lc) ≥ 2n−2 + 1.
Now consider the binary case. Applying the homomorphism h(a) = 10, h(b) = 11, and h(c) = 00 to the language c · K · c

results in a binary factor-free language accepted by a 2n-state NFA whose complement requires 2n−2 states, and the lower 
bound 2� n

2 �−2 follows.
Let N be a minimal NFA for a factor-free language L over {a, b} with the state set {1, 2, . . . , n}, the initial state 1, and 

the unique final state n. Without loss of generality, the state n is reached from the state n − 1 on a in N . Recall that no 
transition goes to the state 1 because L is suffix-free. Therefore it is enough to consider subsets of set {2, 3, . . . , n − 1}. 
If there is no transition (i, a, j) with i, j ∈ {2, 3, . . . , n − 1}, then the automaton on states {2, 3, . . . , n − 1} is unary, and 
the number of reachable sets is much smaller than the desired upper bound. Otherwise, consider a transition (i, a, j)
with i, j ∈ {2, 3, . . . , n − 1}. We continue in the same way as in the binary prefix-free case and show that no subset of 
{2, 3, . . . , n −1} containing states i and n −1 may be reachable. Thus at least 2n−4 subsets of {2, 3, . . . , n −1} are unreachable. 
Therefore, the subset automaton has at most 2n−2 − 2n−4 + 1 states. After inverting the finality of all states, we get a DFA 
of the same size for the complement of L(N).

Finally, we show that the upper bound 2n−2 + 1 is met by a subword-free language defined over an alphabet of 
size 2n−2. Let � = {aS | S ⊆ {1, 2, . . . , n − 2}}. Let L = {aSaT | S, T ⊆ {1, 2, . . . , n − 2} and S 	= T } be accepted by the 
NFA A = (Q , �, · , 0, {n − 1}), where Q = {0, 1, . . . , n − 1} and for each symbol aS in �,

0 · aS = S;
i · aS = ∅ if 1 ≤ i ≤ n − 2 and i ∈ S;
i · aS = {n − 1} if 1 ≤ i ≤ n − 2 and i /∈ S; and
(n − 1) · aS = ∅.

Notice that each string in L is of length 2, so L is subword-free. Let
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Fig. 19. A binary right ideal witness for complementation meeting the upper bound 2n−1.

A = {(aS , aS) | S ⊆ {1, 2, . . . , n − 2} and S 	= ∅},
B = {(a{1}a{2}, a∅)},
u = a∅ , and v = ε.

Then A ∪B, A ∪ {(ε, u)}, and B∪ {(ε, v)} are fooling sets for Lc , so nsc(Lc) ≥ 2n−2 + 1. Every subword-free regular language 
is finite [46], so the upper bound O (k

n
log2(k)+1 ) where k = |�| on determinization for finite languages [47,48] implies the 

same upper bound for complementation on subword-free languages. It follows that the upper bound 2n−2 + 1 cannot be 
met by a subword-free language defined over a fixed alphabet. �

The last theorem of this paper is about nondeterministic state complexity of complementation on classes of ideal lan-
guages. The proof for the two-sided ideal case was missing in the third author’s conference paper [45, Theorem 28], so we 
provide it here. We also give all other proofs for the sake of completeness, cf. [45, Theorems 24, 26, 30].

Theorem 37. Let n ≥ 4. Let L be an ideal language accepted by an n-state NFA.
(1) If L is right or left ideal, then Lc is accepted by an NFA of at most 2n−1 states, and the bound is tight in the binary case.
(2) If L is two-sided ideal, then Lc is accepted by an NFA of at most 2n−2 states. This upper bound is met by a binary two-sided ideal 

and by an all-sided ideal defined over an alphabet of size 2n−2 .
The binary alphabet is always optimal.

Proof. Let A be an NFA for a right ideal L. By Proposition 12, we may assume that A has a unique final sink state. It follows 
that in the subset automaton of the NFA A, all final states are equivalent since they accept all the strings. Hence the subset 
automaton has at most 2n−1 + 1 reachable and pairwise distinguishable states. By inverting the finality of all states, we get 
a DFA B for Lc . The DFA B has a dead state. After omitting the dead state, we get an NFA for Lc of at most 2n−1 states. To 
prove tightness, let L = K · a · (a + b)∗ , where K is the language accepted by the binary (n − 1)-state NFA shown in Fig. 14. 
Then L is a right ideal accepted by the n-state NFA N shown in Fig. 19. Let S be a subset of {0, 1, . . . , n − 2}. Then S is 
reachable and Sc is co-reachable in N , as shown in the beginning of this section. By Proposition 6, nsc(Lc) ≥ 2n−1.

Next, consider left ideal languages. Let A be an n-state NFA for a left ideal L. We can add a loop in the initial state 
on every input symbol to get an NFA N which is equivalent to A. In the subset automaton of N , every reachable subset 
contains the initial state of N , so the subset automaton has at most 2n−1 reachable states. This gives the upper bound. To 
prove tightness, let L = (a + b)∗ · a · K where K is the language accepted by the binary (n − 1)-state NFA shown in Fig. 14. 
Then L is a left ideal accepted by the n-state NFA N shown in Fig. 20. For each subset S of {1, 2, . . . , n − 1}, the set S is 
co-reachable and the set Sc reachable in N , so by Proposition 6, nsc(Lc) ≥ 2n−1.

We continue with two-sided ideal languages. Let A be an n-state NFA for a two-sided ideal L. We can add a loop on 
every symbol in the initial state of A and also in every final state of A to get an equivalent n-state NFA N for L. In the 
subset automaton of N , every reachable subset contains the initial state of N , and all final subsets are equivalent and accept 
all the strings. Hence L is accepted by a DFA of at most 2n−2 + 1 states which contains a final sink state. It follows that Lc is 
accepted by an NFA of at most 2n−2 states. For tightness, let L = (a +b)∗a · K ·a(a +b)∗ where K is the language accepted by 
the binary (n − 2)-state NFA shown in Fig. 14. Then L is a two-sided ideal accepted by the n-state NFA N shown in Fig. 21. 
Let S ⊆ {1, 2, . . . , n − 2}. Then the set {0} ∪ S is reachable and its complement is co-reachable in N , so nsc(Lc) ≥ 2n−2 by 
Proposition 6.

The binary alphabet is optimal in all three cases since the nondeterministic complexity of complementation on unary 
ideals is n − 1 by Theorem 14 (2).

0 1 2 3 . . . n − 2 n − 1

a,b

a a,b a,b a,b a,b a,b

b
b b

b
b

b
b

b

Fig. 20. A binary left ideal witness for complementation meeting the upper bound 2n−1.
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Fig. 21. A binary two-sided ideal witness for complementation meeting the upper bound 2n−2.

Finally, we prove that the upper bound 2n−2 is met by an all-sided ideal defined over a growing alphabet of size 2n−2. 
Let � = {aS | S ⊆ {1, 2, . . . , n −2}}. Consider the language L accepted by the NFA A = ({0, 1, . . . , n −1}, �, · , 0, {n −1}) where 
for each symbol aS , we have

0 · aS = {0} ∪ S;
i · aS = {i} if i ∈ S;
i · aS = {i, n − 1} if i ∈ {1, 2, . . . , n − 2} \ S;
(n − 1) · aS = {n − 1}.

Since in each state of A, we have a loop on every input symbol, the language L is an all-sided ideal. Since the set of pairs 
{(aS , aS) | S ⊆ {1, 2, . . . , n − 2}} is a fooling set for Lc , we have nsc(Lc) = 2n−2. �

Notice that on suffix-free, left ideal, and suffix-closed languages, the complexity of complementation is 2n−1, 2n−1, and 
2n−1 + 1, respectively. Therefore, every language meeting the upper bound 2n for complementation on suffix-convex lan-
guages must be so-called proper suffix-convex, that is, it can be neither suffix-free, nor left ideal, nor suffix-closed.

11. Conclusions

We investigated the nondeterministic state complexity of concatenation, intersection, union, reversal, star, and comple-
mentation in the subclasses of convex languages. We considered the classes of prefix-, suffix-, factor-, and subword-free, 
-closed, and -convex languages, and the classes of right, left, two-sided, and all-sided ideals. All our results are summarized 
in Table 1 which also compares them to the known results for regular and unary regular languages. The table also displays 
the size of alphabets used for describing witness languages.

The results in the unary case are given by Theorem 14. They imply that a binary alphabet used to describe witnesses is 
always optimal in the sense that no unary languages can meet the corresponding upper bounds.

The complexity of concatenation on free and ideal languages is m + n − 1 by Theorem 16 where we described unary 
witnesses. A ternary subword-closed, so also subword-convex witness meeting the upper bound m + n has been described 
in Theorem 15. We do not know whether this upper bound can be met by binary subword-convex languages. The tight 
upper bounds on the complexity of intersection on free languages have been established in Theorem 19 and except for 
the subword-free case, in which the witness is defined over a growing alphabet of size m + n − 5, all our remaining wit-
nesses are binary. Moreover, in Proposition 20, we described a binary subword-free language meeting the upper bound 
in �(min{m, n}2). A binary all-sided ideal and a binary subword-closed language meeting the upper bound mn for in-
tersection have been described in Theorem 17. The results for union on free and ideal languages have been obtained in 
Theorem 23, and a binary subword-closed, so also subword-convex, language meeting the upper bound m + n + 1 has been 
described in Theorem 22.

The complexity of the reversal operation is n + 1 on the classes of suffix-free, left ideal, and closed languages by The-
orem 24 where all witnesses are binary, and it is n on all the remaining classes by Proposition 25 with unary witnesses. 
Binary all-sided ideal, so also subword-convex, language meeting the upper bound n + 1 for star has been given in Proposi-
tion 26. On prefix- and suffix-free and -closed languages, the complexity of star is n with binary witnesses by Theorem 27, 
while it is n − 1 on factor-free languages with a unary subword-free witness, and it is one on factor-closed languages by 
Proposition 28. The results for complementation on free languages follow from Theorems 34, 35, and 36. Except for the 
subword-free case, the witnesses are ternary, and this size of alphabet is optimal, although, the complexity of complemen-
tation in the binary case is still exponential. Our subword-free witness is defined over an alphabet of size 2n−2 and we 
proved that the corresponding upper bound cannot be met by any language defined over a fixed alphabet. Theorem 37
provides the results for complementation on ideal languages. Our all-sided witness is defined over a growing alphabet of 
size 2n−2, while all the remaining ideal witnesses are binary. The upper bound on the complexity of complementation on 
suffix-closed languages is 2n−1 + 1, and it is met by a binary factor-closed language and a subword-closed language defined 
over an alphabet of size 2n by Theorem 31. In Theorem 30, we described a binary prefix-closed, so also prefix-convex, and 
a (proper) suffix-convex language over a five-letter alphabet, both meeting the upper bound 2n for complementation.

Hence, we found the exact complexity of each operation in each of the considered classes, except for complementation 
on factor- and subword-convex languages, where a lower bound is 2n−1 + 1 and a trivial upper bound is 2n . The exact 
complexity of complementation in these two classes remains open, and we conjecture that the upper bound 2n cannot be 
met by any factor-convex language.
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Table 1
The nondeterministic state complexity of operations in subclasses of convex languages. The dot means that 
the complexity is the same as in the above row with the same witness. The results for regular and unary 
regular languages are from [5,25].

Class \ Operation K L |�| K ∩ L |�| K ∪ L |�|
Prefix-free m + n − 1 1 mn − (m + n − 2) 2 m + n 2
Suffix-free · 1 mn − (m + n − 2) 2 m + n − 1 2
Factor-free · 1 mn − 2(m + n − 3) 2 m + n − 2 2
Subword-free · 1 mn − 2(m + n − 3) m+n − 5 · 2
Unary free m + n − 1 min{m,n} max{m,n}
Right ideal m + n − 1 1 mn 2 m + n 2
Left ideal · 1 · 2 m + n − 1 2
Two-sided ideal · 1 · 2 m + n − 2 2
All-sided ideal · 1 · 2 · 2
Unary ideal m + n − 1 max{m,n} min{m,n}
Prefix-closed m + n 3 mn 2 m + n + 1 2
Suffix-closed · 3 · 2 · 2
Factor-closed · 3 · 2 · 2
Subword-closed · 3 · 2 · 2
Unary closed m + n − 1 min{m,n} max{m,n}
Prefix-convex m + n 3 mn 2 m + n + 1 2
Suffix-convex · 3 · 2 · 2
Factor-convex · 3 · 2 · 2
Subword-convex · 3 · 2 · 2
Unary convex m + n − 1 max{m,n} max{m,n}
Regular m + n 2 mn 2 m + n + 1 2
Unary regular ≥ m + n − 1 mn; gcd(m,n) = 1 m + n + 1; gcd(m,n) = 1

Class \ Operation LR |�| L∗ |�| Lc |�|
Prefix-free n 1 n 2 2n−1 3
Suffix-free n + 1 2 n 2 2n−1 3
Factor-free n 1 n − 1 1 2n−2 + 1 3
Subword-free · 1 · 1 2n−2 + 1 2n−2

Unary free n n − 1 �(
√

n)

Right ideal n 1 n + 1 2 2n−1 2
Left ideal n + 1 2 · 2 2n−1 2
Two-sided ideal n 1 · 2 2n−2 2
All-sided ideal · 1 · 2 2n−2 2n−2

Unary ideal n n − 1 n − 1

Prefix-closed n + 1 2 n 2 2n 2
Suffix-closed · 2 n 2 2n−1 + 1 2
Factor-closed · 2 1 1 · 2
Subword-closed n + 1 2n − 2 · 1 2n−1 + 1 2n

Unary closed n 1 n + 1

Prefix-convex n + 1 2 n + 1 2 2n 2
Suffix-convex · 2 · 2 2n 5
Factor-convex · 2 · 2 ≥ 2n−1 + 1 2
Subword-convex n + 1 2n − 2 · 2 ≥ 2n−1 + 1 2n

Unary convex n n − 1 n + 1

Regular n + 1 2 n + 1 1 2n 2

Unary regular n n + 1 2�(
√

n log n)
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