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We examine the descriptional complexity of the forever operator, which assigns the

language Σ∗L to a regular language L, and we investigate the trade-offs between var-
ious models of finite automata. We consider complete and partial deterministic finite

automata, nondeterministic finite automata with single or multiple initial states, alter-

nating, and Boolean finite automata. We assume that the argument and the result of
this operation are accepted by automata belonging to one of these six models. We inves-

tigate all possible trade-offs and provide a tight upper bound for 32 of 36 of them. The

most interesting result is the trade-off from nondeterministic to deterministic automata
given by the Dedekind number M(n− 1). We also prove that the nondeterministic state

complexity of Σ∗L is 2n−1 which solves an open problem stated by Birget [The state

complexity of Σ∗L and its connection with temporal logic, Inform. Process. Lett. 58

(1996) 185–188].

Keywords: Regular languages; forever operator; deterministic automata; nondeterminis-
tic automata; Boolean automata; minimal automata; trade-off.

1. Introduction

Formal languages may be recognized by several kinds of formal systems. Different

classes of formal systems can be compared either from the point of view of their com-

putational power, or from the descriptional complexity point of view. As for com-

putational power, for example, deterministic and nondeterministic finite automata

recognize the same class of languages, while the class of languages recognized by

deterministic pushdown automata is strictly included in the class of languages rec-

ognized by nondeterministic ones. However, from the descriptional complexity point

of view, there is an exponential gap between the cost of description of regular lan-

guages by deterministic and nondeterministic finite automata [14, 16–18, 20].
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Descriptional complexity, which measures the cost of description of languages by

different formal systems, was deeply investigated in last three decades [1, 7, 15, 22]

mostly in the class of regular languages. Several kinds of finite automata were

proposed and the trade-offs between the costs of description in different classes

of automata were examined. Let us mention at least the exact trade-off
(

2n
n+1

)
for

the conversion of two-way nondeterministic automata to one-way nondeterministic

automata [12], and the exact trade-off for the conversion of self-verifying automata

to deterministic automata given by the function that counts the maximal number

of maximal cliques in a graph with n vertices [11].

In 1996, Jean-Camille Birget [2] answered the following question of Jean-Éric

Pin. Let L be a regular language over an alphabet Σ recognized by a nondeter-

ministic finite automaton (NFA) or a deterministic finite automaton (DFA) with n

states. How many states are sufficient and necessary in the worst case for an NFA

(DFA) to recognize the language Σ∗L? The notation L stands for the complement

of L. Birget provided the exact trade-off from DFAs to NFAs, and lower and upper

bounds for the nondeterministic state complexity of Σ∗L.

The motivation of Pin’s question came from the word model of Propositional

Temporal Logic [5]. The set of all models of a formula ϕ over a fixed alphabet

Σ is a formal language L(ϕ) over Σ which has the non-trivial property of being

regular and aperiodic. Some of the temporal operators used in this logic are ◦
(“next”) and � (“eventually”, or “at some moment in the future”); there are also

the usual Boolean operations −, ∧, ∨. A natural dual to the “eventually” operator

is the “forever” (or, “always in the future”) operator �, defined to be − � − (“not

eventually not”). Formulas and their models are related as follows: L(ϕ) = L(ϕ),

L(ϕ∧ψ) = L(ϕ)∩L(ψ), L(ϕ∨ψ) = L(ϕ)∪L(ψ), L(◦ϕ) = ΣL(ϕ), L(�ϕ) = Σ∗L(ϕ).

Thus L(�ϕ) = L(�ϕ) = Σ∗L. Hence in [2], Birget studied the state complexity of

the “forever” operator.

Here we continue this research by investigating the complexity of the forever

operator for different models of finite automata. We consider complete and partial

deterministic finite automata, nondeterministic automata with a single or multiple

initial states, and Boolean automata with a single initial state, called alternating

finite automata in [2, 6], or with an initial function [4]. Similarly as Jean-Éric Pin, we

ask the following question: If a language L is represented by an n-state automaton

of some model, how many states are sufficient and necessary in the worst case for

an automaton of some other model to accept Σ∗L?

We study all the possible 36 trade-offs, and except for four cases, we always

get tight upper bounds. In particular, we are able to prove that the upper bound

on the nondeterministic state complexity of Σ∗L is 2n−1. This improves Birget’s

upper bound 2n+1 + 1 and meets his lower bound for DFA-to-NFA trade-off. The

most interesting result of this paper is the tight upper bound for the NFA-to-DFA

trade-off given by the Dedekind number M(n−1); recall that the Dedekind number

M(n) counts the number of antichains of subsets of an n-element set.
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2. Preliminaries

Let Σ be a finite alphabet of symbols. Then Σ∗ denotes the set of strings over Σ

including the empty string ε. A language is any subset of Σ∗. For a language L, the

complement of L is the language L = Σ∗\L. The concatenation of languages K and

L is the language KL = {uv |u ∈ K and v ∈ L}. The cardinality of a finite set A is

denoted by |A|, and its power-set by 2A. By log n, we denote the binary logarithm

of the number n. For details, we refer to [19, 21].

A nondeterministic finite automaton with multiple initial states (NNFA) is a

5-tuple A = (Q,Σ, ◦, I, F ), where Q is a finite set of states, Σ is a finite non-empty

alphabet, ◦ : Q× Σ→ 2Q is the transition function which is naturally extended to

the domain 2Q ×Σ∗, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final

states. The language accepted by A is L(A) = {w ∈ Σ∗ | I ◦ w ∩ F 6= ∅}. If |I| ≥ 2,

we say that A is a nondeterministic finite automaton with nondeterministic choice

of initial state (so we use the abbreviation NNFA, cf. [21]). Otherwise, if |I| = 1, we

say that A is a nondeterministic finite automaton (NFA). Then, if I = {s}, we write

A = (Q,Σ, ◦, s, F ) instead of A = (Q,Σ, ◦, {s}, F ). In an ε-NFA, we also allow the

transitions on the empty string. It is known that the ε-transitions can be removed

without increasing the number of states in the resulting NFA [21, Theorem 2.3].

An NFA A is a (complete) deterministic finite automaton (DFA) if |q ◦ a| = 1

for each q in Q and each a in Σ. Next, A is a partial deterministic finite automaton

(pDFA) if |q ◦ a| ≤ 1 for each q in Q and each a in Σ. We write p ◦ a = q in such

cases. For DFAs, we use · to denote the transition function that maps Q×Σ to Q.

We call a state of an NNFA sink state if it has a loop on every input symbol.

From every final sink state, every string is accepted, but from every non-final sink

state in a DFA, no string is accepted. Notice that every minimal pDFA has no

non-final sink states, and every minimal DFA has at most one non-final sink state.

For a symbol a and states p and q, we say that (p, a, q) is a transition in the

NNFA A if q ∈ p ·a, and for a string w, we write p
w−→ q if q ∈ p ·w. We also say that

the state q has an in-transition on a, and the state p has an out-transition on a.

To omit a state q of a DFA means to remove it from the state set and to remove

also all its in-transitions and out-transitions. To replace the state q with a sink state

means to remove each of its out-transitions and add a loop (q, a, q) for each a.

The reverse of a string is defined as εR = ε and (wa)R = awR for each symbol

a and string w. The reverse of a language L is the language LR = {wR |w ∈ L}.
The reverse of an NNFA A = (Q,Σ, ·, I, F ) is an NNFA AR obtained from A by

reversing all the transitions and by swapping the roles of initial and final states.

The NNFA AR recognizes the reverse of L(A).

Every NNFA A = (Q,Σ, ·, I, F ) can be converted to an equivalent DFA D(A) =

(2Q,Σ, ·, I, F ′) where F ′ = {S ∈ 2Q |S ∩ F 6= ∅}. We call the DFA D(A) the subset

automaton of the NNFA A. We use the following proposition to prove reachability

of states in a subset automaton in some cases.
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Fig. 1. The NFAs used in Proposition 1.

Proposition 1. In the subset automaton of the NFA shown in Fig. 1(left), each

subset containing 0 is reachable from {0}, and in the subset automaton of the NFA

shown in Fig. 1(right), each subset is reachable from {0, 1, . . . , n− 1}.

Proof. The proof of case (1) is by induction on the size of subsets. The subset {0}
is the initial subset. Each subset {0, i1, i2, . . . , ik} of size k+ 1, where 1 ≤ k ≤ n− 1

and 1 ≤ i1 < i2 < · · · < ik, is reached from the subset {0, i2− i1, . . . , ik− i1} of size

k by the string abi1−1. Notice that the proof works for arbitrary transitions on a, b

in the state n− 1. The proof of case (2) is also by induction on the size of subsets.

The set {0, 1, . . . , n−1} of size n is the basis. Each subset S with t /∈ S of size k−1,

where 1 ≤ k ≤ n, is reachable from the subset S ∪ {t} of size k by an−tbat.

To prove distinguishability, we use the following notions and observations.

A state q of an NFA A = (Q,Σ, ·, s, F ) is called uniquely distinguishable (cf. [3]) if

there is a string w which is accepted by A from and only from the state q. A transi-

tion (p, a, q) in the NFA A is called a unique in-transition if there is no state r of A

such that r 6= p and (r, a, q) is a transition in A. A state q is uniquely reachable from

a state p, if there is a sequence of unique in-transitions (pi−1, ai, pi) (1 ≤ i ≤ k)

such that p0 = p and pk = q.

Proposition 2 (cf. [3, Propositions 14 and 15]). Let A be an NFA and D(A)

be the subset automaton of A.

(a) If two subsets of the state set of A differ in a uniquely distinguishable state,

then the two subsets are distinguishable in D(A).

(b) If a uniquely distinguishable state q is uniquely reachable from a state p, then

the state p is uniquely distinguishable as well.

(c) If there is a uniquely distinguishable state of an NFA A that is uniquely reachable

from any other state of A, then every state of A is uniquely distinguishable.

(d) If every state of A is uniquely distinguishable, then the subset automaton D(A)

does not have equivalent states.

A set of pairs of strings {(x1, y1), (x2, y2), . . . , (xn, yn)} is called a fooling set

for a language L if for all i, j in {1, 2, . . . , n}, we have xiyi ∈ L, and if i 6= j,

then xiyj /∈ L or xjyi /∈ L. It is well-known [1, 8] that the size of a fooling set

for L provides a lower bound on the number of states in any NNFA accepting the

language L.
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Fig. 2. The NFA for L such that every NFA for LR has at least m + 1 states and every DFA for
LR has at least 2m states.

For NFAs, the following lemma from [10] is useful; notice that A and B in

[10, Lemma 4] must be disjoint.

Lemma 3 (cf. [10, Lemma 4]). Let A and B be disjoint sets of pairs of strings

and let u and v be two strings such that A ∪ B, A ∪ {(ε, u)}, and B ∪ {(ε, v)} are

fooling sets for a language L. Then every NFA for L has at least |A|+ |B|+1 states.

The next result is used later in our paper.

Proposition 4. Let L be the language accepted by the NFA shown in Fig. 2. Then

(a) every NFA for LR has at least m+ 1 states, and

(b) every DFA for LR has at least 2m states.

Proof. We reverse the NFA in Fig. 2 to get the NNFA N for LR.

(a) Let

A = {((ba)m−1−i, (ba)i) | 0 ≤ i ≤ m− 2},

B = {(b, a(ba)m−2)},

u = a(ba)m−2, and

v = am.

The reader may verify that A∪B, A∪{(ε, u)}, and B ∪ {(ε, v)} are fooling sets for

the language LR. By Lemma 3, every NFA for LR needs at least m+ 1 states.

(b) By Proposition 1, the subset automaton D(N) has 2m reachable states. To prove

distinguishability, notice that the state 0 is uniquely distinguishable in N by ε, and

it is uniquely reachable from any other state of N through unique in-transitions

on symbol a. By Proposition 2(c-d), the subset automaton D(N) does not have

equivalent states.

A Boolean finite automaton (BFA, cf. [4]) is a quintuple A = (Q,Σ, δ, gs, F ),

where Q is a finite non-empty set of states such that Q = {q1, . . . , qn}, Σ is an input

alphabet, δ is the transition function that maps Q × Σ into the set Bn of Boolean

functions with variables {q1, . . . , qn}, gs ∈ Bn is the initial Boolean function, and

F ⊆ Q is the set of final states. The transition function δ is extended to the domain

Bn × Σ∗ as follows: For all g in Bn, a in Σ, and w in Σ∗, we have δ(g, ε) = g; if

g = g(q1, . . . , qn), then δ(g, a) = g(δ(q1, a), . . . , δ(qn, a)); δ(g, wa) = δ(δ(g, w), a).
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Next, let f = (f1, . . . , fn) be the Boolean vector with fi = 1 iff qi ∈ F . The language

accepted by the BFA A is the set of strings L(A) = {w ∈ Σ∗ | δ(gs, w)(f) = 1}. A

Boolean finite automaton is called alternating (AFA, cf. [6]) if the initial function

is a projection g(q1, . . . , qn) = qi.

We use the following observations for trade-offs between various automata

throughout this paper. We use the claim in Lemma 5(a) quite often in the paper

without referring to Lemma 5(a) again and again.

Lemma 5 (Properties of Finite Automata). Let L be a regular language.

(a) The language L is accepted by an n-state BFA (AFA) if and only if LR is

accepted by a DFA of 2n states (of which 2n−1 are final, in case of an AFA).

(b) Let LR be a regular language accepted by a minimal n-state DFA. Then every

BFA for L has at least dlog ne states.

(c) If the minimal DFA for LR has more than 2n−1 final states, then every AFA

for L has at least n+ 1 states.

(d) Let L be unary. Then L is accepted by an n-state BFA (AFA) if and only if L

is accepted by a DFA of 2n states (of which 2n−1 are final).

(e) If L is accepted by an n-state BFA (AFA), then L is accepted by an n-state

BFA (AFA, respectively).

(f) If L is accepted by an n-state BFA, then L is accepted by an AFA of at most

n+ 1 states, and by an NNFA of at most 2n states.

(g) If L is accepted by an n-state NNFA, then L is accepted by an NFA of at most

n + 1 states and by a pDFA of at most 2n − 1 states. If L is accepted by an

n-state pDFA, then L is accepted by a DFA of at most n+ 1 states.

Proof. (a) (⇒; cf. [6, Theorem 4.1, Corollary 4.2] and [9, Lemma 1]).

Let A = ({q1, q2, . . . , qn},Σ, δ, gs, F ) be an n-state BFA for L. Construct a 2n-

state NFA A′ = ({0, 1}n,Σ, δ′, S, {f}), where

• for every u = (u1 . . . , un) ∈ {0, 1}n and every a ∈ Σ,

δ′(u, a) = {u′ ∈ {0, 1}n | δ(qi, a)(u′) = ui for i = 1, . . . , n};
• S = {(b1, . . . , bn) ∈ {0, 1}n | gs(b1, . . . , bn) = 1};
• f = (f1, . . . , fn) ∈ {0, 1}n with fi = 1 iff qi ∈ F .

Then L(A) = L(A′) and (A′)R is deterministic. Moreover if A is an AFA then A′

has 2n−1 initial states. It follows that LR is accepted by a DFA with 2n states, of

which 2n−1 are final if A is an AFA.

(⇐; cf. [9, Lemma 2]) Consider 2n-state NFA AR for L which has exactly one

final state and the set of initial states S (and |S| = 2n−1). Let the state set Q of AR

be {0, 1, . . . , 2n−1} with final state k and the initial set S (S = {2n−1, . . . , 2n−1}).
Let δ be the transition function of AR. Moreover, for every a ∈ Σ and for every

i ∈ Q, there is exactly one state j such that j goes to i on a in AR. For a state

i ∈ Q, let bin(i) = (b1, . . . , bn) be the binary n-tuple such that b1b2 · · · bn is the

binary notation of i on n digits with leading zeros if necessary.



1st Reading

February 27, 2019 12:31 112-IJFCS 1940006

Descriptional Complexity of the Forever Operator 121

Let us define an n-state BFA A′ = (Q′,Σ, δ′, gs, F
′), where Q′ = {q1, . . . , qn},

F ′ = {q` |bin(k)` = 1}, and gs(bin(i)) = 1 iff i ∈ S (gs = q1). We define δ′ to

satisfy the condition: for each i in Q and a in Σ, (δ′(q1, a), . . . , δ′(qn, a))(bin(i)) =

bin(j) where i ∈ δ(j, a). Then L(A′) = L(AR).

(b)–(d) These are corollaries of case (a).

(e) Let L be accepted by an n-state BFA (AFA). Then, by (a), the language LR

is accepted by a DFA of 2n states (of which 2n−1 are final). Then the complement

LR is also accepted by a DFA of 2n states (of which 2n−1 are final). Since LR = L
R

,

the claim follows again by (a).

(f) Let L be accepted by an n-state BFA. Then LR is accepted by a DFA of

2n states by (a). Add some unreachable final and non-final sink states to get an

equivalent DFA of 2n+1 states of which 2n are final. Then, by (a), L is accepted

by an (n+ 1)-state AFA. By reversing the 2n-state DFA for LR, we get a 2n-state

NNFA for L.

(g) These claims are well-known.

If u, v, and w are strings over Σ such that w = uv, then u is a prefix of w and

v is a suffix of w. A language L is prefix-closed (suffix-closed) if w ∈ L implies that

every prefix (suffix) of w is in L.

In 1996, Birget [2] studied the state complexity of the “forever” operator Σ∗L

on DFAs and NFAs. Here we continue this research and to simplify the exposition,

we use the following notation:

fL = Σ∗L. (1)

3. Descriptional Complexity of the Forever Operator

We start with an investigation of some properties of the “forever” operator.

Lemma 6 (Properties of Σ∗L). Let L be a regular language and fL = Σ∗L.

Then

(a) fL = {w ∈ L | every suffix of w is in L};
(b) fL = ∅ if and only if ε /∈ L;

(c) fL = L if and only if L is suffix-closed.

(d) If LR is accepted by a DFA A, then fRL is accepted by a DFA obtained from

A by replacing each non-final state of A with a non-final sink state and by a

pDFA obtained from A by omitting each non-final state of A.

Proof. The claim (a) follows directly from the definition of fL, and (b) and (c)

follow directly from (a).

(d) We have fRL = LRΣ∗. To get a DFA for LR, we interchange final and non-

final states in A. Then, to get a DFA for LRΣ∗, we replace all the out-transitions

in every final state with loops on every input symbol. Finally, to get a DFA for fRL ,
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we again interchange final and non-final states. Now, all non-final states are sink

states. We can omit all of them to get a pDFA for fRL .

In what follows we consider six models of finite automata: DFAs, pDFAs, NFAs,

NNFAs, AFAs, and BFAs. We try to answer the following question. If a language

L is represented by an n-state automaton of some model, how many states are

sufficient and necessary in the worst case for an automaton of some other model

to accept the language fL = Σ∗L? We first consider upper bounds. Although we

have 36 possible trade-offs, it is enough to prove only some of them. The remaining

trade-offs follow either from inclusions of some models of finite automata or from

Lemma 5. For the (N)NFA-to-(p)DFA trade-offs, we need the Dedekind number

M(n) which counts the number of antichains of subsets of an n-element set. The

number M(n) lies in the order of magnitude 22Θ(n)

[13]:

2n−log n ≤
(

n

bn/2c

)
≤ log M(n) ≤

(
n

bn/2c

)(
1 +O

(
log n

n

))
≤ 2n+1−(log n)/2.

It follows that log M(n) lies in the order of magnitude 2n−|Θ(log n)|. Moreover, we

assume that ε ∈ L and L 6= Σ∗ in the statement of the next theorem because

otherwise fL is empty or equals Σ∗ by Lemma 6(b) and (c).

Theorem 7 (Upper Bounds). Let n ≥ 3 and fL = Σ∗L. Let L be a regular

language such that ε ∈ L and L 6= Σ∗. Let L be accepted by a finite automaton A

of n states.

(1) If A is a DFA, then fL is accepted by a DFA of at most 2n−1 states.

(2) If A is a pDFA, then fL is accepted by a pDFA of at most 2n−1 states.

(3) If A is an NFA, then fL is accepted by

(a) an NFA of at most 2n−1 states;

(b) a pDFA of at most M(n− 1)− 1 states.

(4) If A is an NNFA, then fL is accepted by

(a) an NNFA of at most 2n − 2 states.

(b) a pDFA of at most M(n)− 1 states.

(5) If A is an AFA, then fL is accepted by

(a) an AFA of at most n states;

(b) an NNFA of at most 2n−1 states.

(6) If A is a BFA, then fL is accepted by

(a) a BFA of at most n states;

(b) an NNFA of at most 2n − 1 states.

Proof. (1) We provide a simple alternative proof to [2, Theorem 1(b)]. We first

interchange final and non-final states in A to get the DFA A for L. Then we add

a loop on every input symbol in the initial state of A to get an NFA N for Σ∗L.
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In D(N), only subsets containing the initial state are reachable. Finally, we again

interchange the final and non-final states of D(N).

(2) Let A = (Q,Σ, ·, s, F ) be an n-state pDFA for L. It is enough to show that

the language Σ∗L is accepted by a DFA of at most 2n−1 + 1 states, one of which is

final sink state. To get an (n+ 1)-state DFA A for L, we first add a new non-final

sink state qd to A. Then, for each transition which is undefined in A, we add the

corresponding transition to qd. Finally, we interchange final and non-final states of

the resulting automaton. We construct an (n+ 1)-state NFA N for Σ∗L from DFA

A, by adding a loop on each input symbol in the initial state s. In the corresponding

subset automaton, each reachable subset must contain s. Moreover, the state qd is

a final sink state. It follows that each string is accepted by N from qd, and therefore

each subset containing qd, is equivalent to {qd}. In total, we get at most 2n−1 + 1

reachable and pairwise distinguishable states.

(3a) Let A = (Q,Σ, ·, s, F ) be an n-state NFA for L. We reverse A to get an

n-state NNFA AR for LR with a unique final state s. In the corresponding subset

automaton D(AR), using Lemma 6(d), we omit all the non-final subsets, that is, all

subsets not containing s, to get a 2n−1-state pDFA B for fRL . We have two cases.

If there is a final subset which is not reachable in B, then we reverse B and add a

new initial state to get an NFA for fL of at most 2n−1 states. Otherwise, each final

subset, that is, each subset containing s is reachable in B. We show that if a string w

is accepted by B from the state {s}, then w is accepted by B from any other state.

The claim holds for w = ε since all states of B are final. Let w = a1a2 · · · ak, where

ai ∈ Σ, be accepted by B from {s}. Then in B, we have the following computation:

{s} a1−→ S1
a2−→ S2

a3−→ · · · ak−→ Sk,

where s ∈ Si since each state of B contains s. Notice that any other state S of B

is a superset of {s}. Recall that B is derived from the subset automaton D(AR) in

which we must have

S
a1−→ S′1

a2−→ S′2
a3−→ · · · ak−→ S′k (2)

for some sets S′1, S
′
2, . . . , S

′
k such that Si ⊆ S′i (1 ≤ i ≤ k). Since each Si contains

s, each S′i must contain s as well. It follows that (2) is a computation in B, so w is

accepted by B from S; notice that each set Si is reachable in B.

We modify pDFA B as follows. We make all states of B non-final, except for

{s}. Next, we add the ε-transition to {s} from any other state in B. Denote the

resulting NFA by B′. Then L(B) ⊆ L(B′). Let us show that L(B′) ⊆ L(B). Let w

be accepted by B′. If w = ε, then w ∈ L(B). Otherwise w can be partitioned as

w = w1w2 · · ·wk and in B′ we have the following computation on w:

F
w1−−→ S1

ε−→ {s} w2−−→ S2
ε−→ {s} w3−−→ · · · ε−→ {s} wk−−→ Sk

in which while reading each wi no added ε-transition is used, so {s} wi−→ Si is a

computation in B. As shown above, each wi is accepted by B from each state of B. It

follows that inB we have an accepting computation F
w1−−→ S1

w2−−→ S′2
w3−−→ · · · wk−−→ S′k
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for some states S′2, . . . , S
′
k of B. Hence w is accepted by B, so L(B′) ⊆ L(B). This

means that B′ is a 2n−1-state NFA with one final state for fRL . By reversing B′ and

removing ε-transitions, we get a 2n−1-state NFA for fL.

(3b) It is enough to show that Σ∗L is accepted by a DFA of at most M(n− 1)

states, one of which is a final sink state. Let A = (Q,Σ, ·, s, F ) be an n-state NFA

for L, and B be the 2n-state subset automaton of A. We interchange the final and

non-final states in B, to get a 2n-state DFA B for L. To get a 2n-state NFA N for

Σ∗L, we add a loop on each input symbol in the initial state of the DFA B. Finally,

let C be the subset automaton of N . Then C is a DFA for Σ∗L. Formally, we have

B = D(A) = (2Q,Σ, ·, {s}, FB) where FB = {X ⊆ Q | X ∩ F 6= ∅});
B = (2Q,Σ, ·, {s}, FB) where FB = 2Q\FB = {X ⊆ Q |X ⊆ Q\F});
N = (2Q,Σ, ◦, {s}, FB) where for each X ∈ 2Q and each a in Σ,

{s} ◦ a = {{s}, {s} · a} and X ◦ a = {X · a} if X 6= {s};
C = D(N) = (22Q

,Σ, ◦, {{s}}, FC) where FC = {X ∈ 22Q

|X ∩ FB 6= ∅}.

Thus, the states of C are sets of subsets of Q, and a state S = {S1, S2, . . . , Sk} is

final if there is an i such that Si ⊆ Q\F . Our aim is to show that C has at most

M(n − 1) reachable and pairwise distinguishable states. We first show that each

state of C is equivalent to an antichain in 2Q.

Let S ⊆ T ⊆ Q and w be accepted by N from the state T . Let us show that

w is accepted by N also from the state S. If w is accepted from T , then there is a

computation in N on w starting in T and ending in a final state T ′ of N . If this

computation does not use any transition which was added to get N from B, then

we have the same computation in B. This means that T · w ⊆ Q\F , and since

B is the subset automaton of A, we have S · w ⊆ T · w ⊆ Q\F . Therefore w is

accepted by B from S. Since in N we have the same computation from S on w, the

string w is accepted by N from S. Now assume that w is accepted by N from T by

a computation using an added transition. Then w can be partitioned as w = uv,

where T
u−→ {s} v−→ T ′ and T ′ ⊆ Q\F , and moreover, while reading u, no added

transition is used. It follows that in B, we have T · u = {s}, and therefore also

S · u ⊆ {s}. If S · u = ∅, then S · w = ∅, and therefore also S ◦ w = ∅, so w is

accepted by N from S. If S · u = {s}, then in N we have S
u−→ {s} v−→ T ′, which

means that w is accepted by N from S.

Thus if in a state S = {S1, S2, . . . , Sk} of C we have Si ⊆ Sj for some i and j,

then S is equivalent to S\{Sj}. It follows that each state of C is equivalent to an

antichain in 2Q. Moreover, since N has a loop on each symbol in its initial state

{s}, and C is the subset automaton of N , each reachable state of C must contain

the set {s}, that is, each reachable antichain has a form {{s}, S2, S3, . . . , Sk}, where

k ≥ 1, and {S2, S3, . . . , Sk} is an antichain in 2Q\{s}. This gives the upper bound

M(n − 1). Notice that the empty antichain corresponds to the initial state {{s}}.
We also have to count the antichain {∅} which is an unreachable final sink state,

but it is equivalent to the reachable state {{s}, ∅}.
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(4a) If all states of a given NNFA are initial, then L is suffix-closed and fL =

L by Lemma 6(c). Otherwise, LR is accepted by an 2n-state DFA which has at

least two non-final states. Omit all the non-final states to get a pDFA for fRL (cf.

Lemma 6(3b)), and reverse the resulting pDFA to get the desired NNFA for fL.

(4b) It is enough to show that Σ∗L is accepted by a DFA of at most M(n) states,

one of which is a final sink state. Let A = (Q,Σ, ·, I, F ) be an n-state NNFA for L,

and B be the 2n-state subset automaton of A. In the same way as in the case (3b),

B = D(A) = (2Q,Σ, ·, I, FB) where FB = {X ⊆ Q |X ∩ F 6= ∅});
B = (2Q,Σ, ·, I, FB) where FB = 2Q\FB = {X ⊆ Q |X ⊆ Q\F});
N = (2Q,Σ, ◦, I, FB) where for each X ∈ 2Q and each a in Σ,

I ◦ a = {I, I · a}, and X ◦ a = {X · a} if X 6= I;

C = D(N) = (22Q

,Σ, ◦, {I}, FC) where FC = {X ∈ 22Q

|X ∩ FB 6= ∅}.

The states of C are sets of subsets of Q, and a state S = {S1, S2, . . . , Sk} is final

if there is an i such that Si ⊆ Q\F . Our aim is to show that C has at most M(n)

reachable and pairwise distinguishable states. We first show that each state of C is

equivalent to an antichain in 2Q. Let S ⊆ T ⊆ Q. We show that the state {I, S, T}
is equivalent to {I, S} in C. To this aim, let w be accepted by N from T . If no

added transition is used in this computation, then similarly as in the case (3b), w

is accepted by C from S. Otherwise w = uv where T
u−→ I

v−→ T ′ with T ′ ⊆ Q\F .

Since the state I has a loop on each symbol, in C we have I
u−→ I

v−→ T ′, so the string

w is accepted by C from I. It follows that the state {I, S, T} is equivalent to {I, S}
in C. Thus if in a state S = {S1, S2, . . . , Sk} of C we have Si ⊆ Sj for some i and j,

then S is equivalent to S\{Sj}. It follows that each state of C is equivalent to an

antichain in 2Q. Since the number of antichains in 2Q is M(n), and the reachable

state {I, ∅} is equivalent to the unreachable antichain {∅}.
(5a) If L is accepted by an n-state AFA, then LR is accepted by a DFA of 2n

states of which 2n−1 are final. Replace each non-final state with a non-final sink

state to get a DFA for fRL of 2n states of which 2n−1 are final. Hence fL is accepted

by an n-state AFA.

(5b) In the DFA for fRL obtained as in case (5a), we omit the non-final sink

states to get an equivalent pDFA of 2n−1 states. By reversing this pDFA, we get a

2n−1-state NNFA for fL.

(6a) If A is an n-state BFA, then LR is accepted by a DFA of 2n states. Replace

each non-final state with a non-final sink state to get a DFA for fRL of 2n states

given by Lemma 5(f). Hence fL is accepted by an n-state BFA.

(6b) In the DFA for fRL obtained as in case (6a), we omit the non-final sink

states to get an equivalent pDFA of at most 2n − 1 states; recall that L 6= Σ∗. By

reversing this pDFA, we get the desired NNFA for fL.

Now we turn our attention to lower bounds. We again need to prove only some

of them. All the remaining bounds follow from the inclusions of models or from
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Lemma 5. However, in some cases, we use witnesses over a smaller alphabet for the

bound that follows from some other trade-off. In 32 of 36 cases, our lower bounds

meet the upper bounds given by Theorem 7. The remaining four cases are the

trade-offs from NNFA to DFA, pDFA, NFA, and NNFA. Except for four trade-offs,

our witnesses are defined over a fixed alphabet of size one, two, three, or four. The

binary case is always optimal in the sense that there is no unary witness language.

Theorem 8 (Lower Bounds). Let n ≥ 3 and fL = Σ∗L. There exists a regular

language L accepted by an n-state finite automaton A such that A is

(1) a ternary DFA and every BFA for fL has at least n states;

(2) a ternary DFA and every NNFA for fL has at least 2n−1 states;

(3) a binary DFA and every pDFA for fL has at least 2n−1 states;

(4) a binary pDFA and every BFA for fL has at least n states;

(5) a quaternary pDFA and every DFA for fL has at least 2n−1 + 1 states;

(6) an NFA and every DFA for fL has at least M(n− 1) states;

(7) a binary NNFA and every AFA for fL has at least n+ 1 states;

(8) a unary AFA and

(a) every BFA for fL has at least n states;

(b) every NNFA for fL has at least 2n−1 states;

(9) a binary AFA and

(a) every NFA for fL has at least 2n−1 + 1 states;

(b) every DFA for fL has at least 22n−1

states;

(10) a unary BFA and

(a) every AFA for fL has at least n+ 1 states;

(b) every NNFA for fL has at least 2n − 1 states;

(11) a binary BFA and

(a) every NFA for fL has at least 2n states;

(b) every DFA for fL has at least 22n−1 states.

Proof. (1) Let L be the language accepted by the DFA A shown in Fig. 3. We

reverse A to get an NFA AR for LR. In the corresponding subset automaton, all

(final) subsets containing 0 are reachable by Proposition 1, and the empty set is

reached from {0} by c. Notice that no other subset is reachable. Moreover, the

subset automaton does not have equivalent states since the state 0 is uniquely

0 1 2 . . . n− 2 n− 1

a, b

a a, b a, b a, b a, b

b

c

c

c
c c

Fig. 3. The DFA for L such that every BFA for Σ∗L has n states.
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0 1 2 . . . n− 2 n− 1
a, b a a a a

a

b, cc b, c b, c b, c

Fig. 4. The DFA from [2] for L such that every NNFA for Σ∗L has 2n−1 states.

0 1 2 . . . n− 2 n− 1
a a, b a, b a, b a, b

a, b

b

Fig. 5. The binary DFA for L such that every pDFA for Σ∗L has 2n−1 states.

distinguishable in AR by ε, and it is uniquely reachable from any other state of AR

through unique in-transitions 2
b−→ 3

b−→ · · · b−→ n− 1
b−→ 1

c−→ 0. Since in the minimal

DFA for LR we have all states final but one non-final sink state, the language LR

is prefix-closed. Therefore L is suffix-closed, so fL = L. Since the minimal DFA for

LR has 2n−1 + 1 states, every BFA for L, so for fL, has at least n states.

(2) This case follows from [2, Proof of Theorem 2(a)].

(3) Let L be accepted by the n-state DFA A shown in Fig. 5. We construct an n-

state NFA N for Σ∗L by interchanging final and non-final states in A and by adding

the transition (0, a, 0). It is enough to prove that the subset automaton D(N) has

at least 2n−1 reachable and pairwise distinguishable states. We prove reachability

by using Proposition 1. To prove distinguishability, notice that the state n − 1 is

uniquely distinguishable by ε in N and it is uniquely reachable from any other state

through unique in-transitions on a. By Proposition 2, the subset automaton D(N)

does not have equivalent states. Since D(N) has no non-final sink state, it is also a

minimal pDFA. Notice that the lower bound 2n−1 for a DFA accepting fL follows

from the proof. In [2, Proof of Theorem 2(b)], it is claimed that this bound is met

by the complement of binary language a{a, b}n−2. However, the minimal DFA for

this language has n+ 1 states.

(4) Let L be the language accepted by the pDFA A shown in Fig. 6. We reverse A

to get an NNFA for LR. In the corresponding subset automaton, we replace every

non-final state with a single non-final sink state. By Lemma 6(d), we get a DFA B

for fRL with 2n−1 final states. We reach all of them using induction on the size of

subsets. The set {0, 1, . . . , n − 1} of size n is the basis. Each subset S with 0 ∈ S
and t /∈ S of size k−1, where 1 ≤ k ≤ n, is reachable from the subset S∪{t} of size

k by the string at−1ban−t. By doing this, we always keep the state 0 in the set since

symbol a performs a loop on state 0 and symbol b moves state 1 to 0. This means

that all sets with 0 are reachable in B through final states. The non-final empty set

is reached from {0} on b. For distinguishability, let S and T be two different subsets
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0 1 2 . . . n− 1

a b b

b a a a

a

Fig. 6. The pDFA for L such that every BFA for Σ∗L has n states.

0 1 . . . n− 2 n− 1
a, d a, b, d a, b, d a, b, d

b, c c c

d

Fig. 7. The pDFA for L such that every DFA for Σ∗L has 2n−1 + 1 states.

such that t /∈ S and t ∈ T . Then at−1b is rejected from S and accepted from T .

Since a performs a loop on 0 and b moves 1 to 0, we are always in final states. So

we distinguish every pair of 2n−1 final states. By Lemma 5, every BFA for fL has

at least n states.

(5) Let L be the language accepted by the pDFA A shown in Fig. 7. We construct

an (n + 1)-state NFA N for Σ∗L as follows. First, we add a new non-final sink

state n and the transitions on a, b, c from n − 1 to n. Then we make state n final,

and all the remaining states non-final. Finally, we add the transitions (0, a, 0) and

(0, d, 0). By Proposition 1, in the subset automaton D(N), all the subsets containing

0 are reachable from the initial subset {0} via strings over {a, b}. All the subsets

containing n are final and equivalent to {n}. All the remaining subsets are non-final.

Two distinct subsets of {0, 1, . . . , n − 1} differ in a state i, and the string dn−1−ic

distinguishes the two subsets; notice that as for the states in {0, 1, . . . , n − 1},
the string c is accepted only from n − 1, the state n − 1 is uniquely reachable

from any other state through unique in-transitions 0
d−→ 1

d−→ · · · d−→ n − 1, and

therefore dn−1−ic is accepted only from the state i. Thus the subset automaton

D(N) has at least 2n−1 + 1 reachable and pairwise distinguishable states. It is

claimed in [2, Theorem 1(b)] that the upper bound in this case is 2n−1. The proof

of [2, Theorem 1(b)] does not work in the case of a partial automaton for L since

in such a case we can reach an accepting state in the automaton B also by a string

which is not in fL. Our witness fixes this small inaccuracy.

(6) Let L be accepted by the n-state NFA A = (Q,Σ, ·, 0, F ), where Q =

{0, 1, . . . , n−1}, Σ = {aX , bX |X ⊆ Q}, F = Q\{n−1}, and the transition function

is defined as follows:

0 · aX = X and i · aX = {i} if i 6= 0,

i · bX =

{
{n− 1}, if i ∈ X;

{0}, if i /∈ X;
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0

2 31

4

a{2,3}
a{2,3}

a{2,3} a{2,3} a{2,3}

a{2,3}

b{2,3} b{2,3}

b{2,3}

b{2,3}

b{2,3}

Fig. 8. The example of NFA for L such that every DFA for Σ∗L has M(n−1) states. The alphabet
is {aX , bX |X ⊆ Q}, only transitions on a{2,3} and b{2,3} are shown.

see Fig. 8 for an illustration. Then

B = D(A) = (2Q,Σ, ·, {0}, 2Q\{{n− 1}, ∅});
B = (2Q,Σ, ·, {0}, {{n− 1}, ∅});
N = (2Q,Σ, ◦, {0}, {{n− 1}, ∅}) where {0} ◦ a = {0} ∪ {0} · a and

X ◦ a = X · a if X 6= {0};
C = D(N) = (22Q

,Σ, ◦, {{0}}, {X ∈ 22Q

|X ∩ {{n− 1}, ∅} 6= ∅}).

Our aim is to show that C has at least M(n − 1) reachable and distinguishable

states. Let S1, S2, . . . , Sk be subsets of Q such that 0 /∈ Si for every i. Then in C

we have {{0}}
aS1−−→ {{0}, S1}

aS2−−→ {{0}, S1, S2}
aS3−−→ · · ·

aSk−−→ {{0}, S1, S2, . . . , Sk}.
It follows that every state S = {{0}, S1, S2, . . . , Sk} where {S1, S2, . . . , Sk} is an

antichain of subsets of {1, 2, . . . , n− 1} is reachable. To prove distinguishability, let

S = {{0}, S1, S2, . . . , Sk} and T = {{0}, T1, T2, . . . , T`} be two distinct reachable

antichains in C. Then there exists a subset X of {1, 2, . . . , n−1} such that, without

loss of generality, X ∈ S\T . We have two cases. (i) No subset of X is in T . Then

bX is accepted from S since X ∈ S, X ◦ bX = X · bX = {n − 1}, and therefore

{n− 1} ∈ S ◦ bX . Hence bX is accepted by C from S. On the other hand, we have

0 ∈ {0} ◦ bX . Next, since Tj (1 ≤ j ≤ `) is not a subset of X, there is a state i such

that i ∈ Tj\X. Since i · bX = {0}, we must have 0 ∈ Tj ◦ bX . Hence bX is rejected

by C from T . (ii) There is a subset Y of X such that Y ∈ T . Then no subset of

Y is in S since S is an antichain and X ∈ S. By the former case, bY is accepted

from T and rejected from S. Thus C has M(n − 1) reachable and distinguishable

states.

(7) Let L be accepted by the NNFA A from Fig. 9. Since each state of A is

initial, L is suffix-closed, so fL = L. To show that every AFA for fL, so for L, has

n + 1 states, it is enough to show that the minimal DFA for LR has more than

2n−1 final states. Since the reverse of A is isomorphic to A, we have LR = L. In
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0 1 . . . n− 2 n− 1
a a a a

a

b b b

Fig. 9. The NNFA for L such that every AFA for Σ∗L has n + 1 states.

the subset automaton D(A), the initial subset is {0, 1, . . . , n−1}. By Proposition 1,

every subset is reachable in D(A). Next, the state 0 is uniquely distinguishable in A

by the string (ab)n−1, and it is uniquely reachable from any other state of A. Thus

D(A) is minimal. Since D(A) has 2n − 1 final states, every AFA for L, so for fL,

has at least n+ 1 states.

(8) Let L = {ai | 0 ≤ i ≤ 2n−1 − 1}. Then L is a unary language accepted by a

2n-state DFA with 2n−1 final states. So L is accepted by an n-state AFA. Since L

is suffix-closed, fL = L. (a) Since the minimal DFA for L has 2n−1 + 1 states, every

BFA for L has at least n states. (b) The longest string in L is of length 2n−1 − 1,

and therefore every NNFA for L has at least 2n−1 states.

(9) Set m = 2n−1 in Fig. 2. Let K be accepted by the 2n-state DFA A in which

the transitions on final states 0, 1, . . . , 2n−1 − 1 are shown in Fig. 2. Moreover, A

has 2n−1 non-final sink states. Set L = KR. Then L is accepted by an n-state AFA.

By Lemma 6(d), if we omit all non-final states of A, we get a pDFA for fRL . By

Proposition 4, we get that (a) every NFA for fL has at least 2n−1 + 1 states, and

(b) every DFA for fL has 22n−1

states.

(10) Let L = {ai | 0 ≤ i ≤ 2n − 2}. Then L is a unary language accepted by

a minimal 2n-state DFA A, so L is accepted by an n-state BFA. Since L is suffix-

closed, fL = L. (a) Every AFA accepting L has at least n + 1 states since the

number of final states in A is greater than 2n−1. (b) The longest string in L is of

length 2n − 2, and therefore every NNFA for L has at least 2n − 1 states.

(11) Set m = 2n − 1 in Fig. 2. Now the proof goes exactly the same way as in

case (9). It results in the lower bound 2n for NFAs and 22n−1 for DFAs.

The upper and lower bounds from Theorems 7 and 8 are shown in Table 1 as

circled. If an upper or lower bound in one cell follows from the bound in another

cell, this is denoted by an arrow. Another witness for the same lower bound, but

using a smaller alphabet, is circled dashed. As a corollary, we get the results that are

displayed in Table 2. The table also shows the size of alphabets used for describing

witness languages.

Table 3 shows the upper bounds on the complexity of the forever operator on

unary regular languages; here F(n) denotes the Landau function defined as F(n) =

max{lcm(x1, . . . , xk) |n = x1 + · · · + xk}. In six cases, namely {AFA, BFA}-to-

{NNFA, AFA, BFA}, the upper bounds are the same as for general languages and
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Table 1. Upper (top) and lower bounds (bottom) on the complexity of Σ∗L.

DFA

pDFA

NFA

NNFA

AFA

BFA

DFA pDFA NFA NNFA AFA BFA

2n−1 2n−1 2n−1 2n−1 n n

2n−1+1 2n−1 2n−1 2n−1 n n

M(n−1) M(n−1)
−1

2n−1 2n−1 n n

M(n) M(n)−1 2n−1 2n−2 n+1 n

22
n−1

22
n−1−1 2n−1+1 2n−1 n n

22
n−1 22

n−1−1 2n 2n−1 n+1 n

DFA

pDFA

NFA

NNFA

AFA

BFA

DFA pDFA NFA NNFA AFA BFA

2n−1 2n−1 2n−1 2n−1 n n

2n−1+1 2n−1 2n−1 2n−1 n n

M(n−1) M(n−1)
−1 2n−1 2n−1 n n

M(n−1) M(n−1)
−1 2n−1 2n−1 n+1 n

22
n−1

22
n−1−1 2n−1+1 2n−1 n n

22
n−1 22

n−1−1 2n 2n−1 n+1 n
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Table 2. The complexity of Σ∗L for various types of finite automata. The DFA-NFA and DFA-N-
NFA trade-offs are from [2].

L\Σ∗L DFA |Σ| pDFA |Σ| NFA |Σ| NNFA |Σ| AFA|Σ| BFA

DFA 2n−1 2 2n−1 2 2n−1 3 2n−1 3 n 3 n 3

pDFA 2n−1 + 1 4 2n−1 2 2n−1 3 2n−1 3 n 2 n 2

NFA M(n−1) 2n+1 M(n−1)−1 2n+1 2n−1 3 2n−1 3 n 2 n 2

NNFA ≥ M(n−1)2n+1 ≥ M(n−1)−12n+1 ≥ 2n−1 3 ≥ 2n−1 3 n + 1 2 n 2

≤ M(n) ≤ M(n)− 1 ≤ 2n−1 ≤ 2n−2

AFA 22
n−1

2 22
n−1 − 1 2 2n−1 + 12 2n−1 1 n 1 n 1

BFA 22
n−1 2 22

n−1 − 1 2 2n 2 2n − 1 1 n + 1 1 n 1

Table 3. The upper bounds on the complexity of forever operator in the unary case.
We have D(n) = F(n− 1) + n2 − 2 ∈ 2O(

√
n logn) and dlog(D(n))e < n.

L\Σ∗L DFA pDFA NFA NNFA AFA BFA

DFA n n− 1 n− 1 n− 1 dlogne+ 1 dlogne

pDFA n + 1 n n n dlogne+ 1 dlog(n+1)e

NFA D(n) D(n) D(n) D(n) dlog(D(n))e+ 1 dlog(D(n))e

NNFA D(n) D(n) D(n) D(n) dlog(D(n))e+ 1 dlog(D(n))e

AFA 2n−1 + 1 2n−1 2n−1 2n−1 n n

BFA 2n 2n − 1 2n − 1 2n − 1 n + 1 n

they are met by unary witnesses. In the remaining cases, the upper bounds are

smaller than those in the general case. It follows that a binary alphabet is optimal

whenever it is used to describe witnesses in the general case.

4. Conclusions

We investigated the descriptional complexity of Σ∗L over complete and partial

deterministic, nondeterministic, alternating, and Boolean finite automata. For each

trade-off, except for those starting with NNFAs, we provided tight upper bounds

for complexity of Σ∗L depending on the complexity of L. The most interesting

result is the tight upper bound on NFA-to-DFA trade-off given by the Dedekind

number M(n − 1). However, we used a growing alphabet of size 2n+1 to get the

lower bound in this case. Except for (N)NFA-to-(p)DFA trade-offs, all witnesses are

described over an alphabet of fixed size. Moreover, binary and unary alphabets are

optimal for their respective cases. Whenever we have a larger alphabet, we do not

know whether or not it is optimal. The precise complexity for NNFA-to-(p)DFA

and NNFA-to-(N)NFA trade-offs remains open as well.
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