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Abstract. We examine the accepting state complexity, i.e., the minimal
number of accepting states of deterministic finite automata (DFAs) for
languages resulting from unary and binary operations on languages with
accepting state complexity given as a parameter. This is continuation
of the work of [J. Dassow: On the number of accepting states of finite
automata, J. Autom., Lang. Comb., 21, 2016]. We solve most of the open
problems mentioned thereof. In particular, we consider the operations of
intersection, symmetric difference, right and left quotients, reversal, and
permutation (on finite languages), where we obtain precise ranges of the
accepting state complexities.

1 Introduction

The descriptional complexity of regular languages, to be more precise the state
complexity of deterministic and nondeterministic finite automata and regularity
preserving operations thereof, is well understood. While the deterministic state
complexity of a regular language can be read of from the minimal deterministic
finite automaton (DFA) for the language in question, it is well-known that this
is not the case for the nondeterministic state complexity. Moreover, it is folklore,
that the deterministic and nondeterministic state complexity forms a strict infi-
nite hierarchy w.r.t. the number of states. Yet another well known result is that
for DFAs the number of accepting states is a host for an infinite strict hierarchy,
while for nondeterministic finite automata (NFAs) two accepting states suffice,
and if λ-transitions (spontaneous transitions) are allowed for NFAs even a sin-
gle accepting state is enough to accept every regular language. But what else
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can be said about the number of accepting states for finite automata, in par-
ticular, when regularity preserving operations such as, e.g., Boolean operations,
concatenation, Kleene star, etc., are applied to the finite state devices?

A partial answer to these questions was recently given in [3]. There the accept-
ing state complexity of DFAs and NFAs was introduced and investigated in
detail. To be more precise, the (deterministic) accepting state complexity of a
regular language L is defined as the minimal number of accepting states needed
for a DFA to accept L. Analogously one defines the nondeterministic accepting
state complexity of a regular language. Similarly as for ordinary deterministic
state complexity the deterministic accepting state complexity of a regular lan-
guage can be determined from the minimal DFA for the language under consid-
eration. On the other hand, the nondeterministic accepting state complexity is
trivial as already mentioned above. The major contribution of [3] is the investi-
gation of the deterministic accepting state complexity or for short the accepting
state complexity w.r.t. the operations of complementation, union, concatenation,
set difference, and Kleene star, which are summarized on the left in Table 1—
a number within the range is magic if it cannot be produced by the operation
from any K and L with the appropriate complexities. Hence, the quest to under-
stand the accepting state complexity of operations can be seen as a variant of
the magic number problem—see, e.g., [5,8,10], but now for the descriptional
complexity measure accepting states instead of ordinary states.

Table 1. Results obtained in [3] (left) and the results of this paper (right). It is assumed
that K and L have accepting state complexity m and n, respectively, for m, n ≥ 1.
Then the range indicates the obtainable accepting state complexities of the operation
under consideration and the status of the magic number problem refers to whether
there are magic numbers in the given range or not.

Op. Range Magic num. |Σ|
Σ∗ \ L N ∪ { 0 | n = 1 } no 1

K ∪ L N no 1

KL N no 1

K \ L {0} ∪ N no 1

L∗
N no 1

K ∩ L [0, mn] ?

Op. Range Magic num. |Σ|
K ∩ L [0, mn] no 2

K ⊕ L {0} ∪ N no 1

KL−1 {0} ∪ N no 1

L−1K {0} ∪ N no 1

LR
N no 2

per(L) N \ { 1 | n ≥ 2 } no 2

This is the starting point of our investigation. We study the accepting state
complexity of the operations intersection, symmetric difference, right and left
quotients, reversal, and permutation. The latter operation is only considered
on finite languages, since regular languages are not closed under permutation.
The obtained results are summarized on the right of Table 1. We solve most open
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problems from [3]. It is worth mentioning that intersection has an accepting state
complexity bounded from above and no magic numbers within this interval.

2 Preliminaries

We recall some definitions on finite automata as contained in [6]. Let Σ∗ denote
the set of all words over the finite alphabet Σ. The empty word is denoted by λ.
Further, we denote the set {i, i + 1, . . . , j} by [i, j], if i and j are integers.

A nondeterministic finite automaton (NNFA) is a 5-tuple A = (Q,Σ, δ, I, F ),
where Q is a finite set of states, Σ is a finite nonempty alphabet, δ : Q×Σ → 2Q

is the transition function which is naturally extended to the domain 2Q × Σ∗,
I ⊆ Q is the set of initial states, and F ⊆ Q is the set of accepting (or final) states.
We say that (p, a, q) is a transition in A if q ∈ δ(p, a). If (p, a, q) is a transition
in A, then we say that the state q has an ingoing transition, and the state p has
an outgoing transition. We sometimes write p

w−→ q, if q ∈ δ(p,w). The language
accepted by A is the set L(A) = {w ∈ Σ∗ | δ(I, w) ∩ F �= ∅ }. If |I| ≥ 2, we say
that A is a nondeterministic finite automaton with nondeterministic choice of
initial state (so we use the abbreviation NNFA, cf. [15]). Otherwise, if |I| = 1,
we say that A is a nondeterministic finite automaton (NFA). In this case we
simple A = (Q,Σ, δ, s, F ) instead of A = (Q,Σ, δ, {s}, F ). Moreover, an NFA A
is a (partial) deterministic finite automaton (DFA), if |δ(q, a)| ≤ 1, for each q
in Q and each a in Σ, and it is a complete DFA, if |δ(q, a)| = 1, for each q in Q
and each a in Σ.

Every NNFA A = (Q,Σ, δ, I, F ) can be converted to an equivalent complete
DFA D(A) = (2Q, Σ, δ, I, {S ∈ 2Q | S ∩ F �= ∅ }), where δ(S, a) =

⋃
q∈S δ(q, a),

for S ∈ 2Q and a ∈ Σ. We call the DFA D(A) the subset automaton of A.
The state complexity of a regular language L, referred to as sc(L), is the

smallest number of states in any complete DFA accepting L. The state complexity
of a regular operation is the number of states that are sufficient and necessary
in the worst case for a DFA to accept the language resulting from the operation,
considered as a function of the number of states of DFAs for the given operands.
Similarly we define the accepting state complexity of a language L by

asc(L) = min{n | L is accepted by a DFA with n accepting states }.

An automaton is minimal (a-minimal, respectively) if it admits no smaller
equivalent automaton w.r.t. the number of states (accepting states, respectively).
For DFAs both properties can be easily verified. Minimality can be shown if all
states are reachable from the initial state and all states are pairwise inequivalent.
For a-minimality the following result shown in [3, Theorem 1] applies.

Theorem 1. Let L be a language accepted by a minimal DFA A. Then the
number of accepting states of A is equal to asc(L).

Note that a-minimality can be shown if all states are reachable from the
initial state and all accepting states are pairwise inequivalent. In fact, we do not
need to prove distinguishability of all (including rejecting) states.
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In order to characterize the behaviour of complexities under operations we
introduce the following notation: for c ∈ {sc, asc}, a k-ary regularity preserving
operation ◦ on languages, and natural numbers n1, n2, . . . , nk, we define

gc
◦(n1, n2, . . . , nk)

as the set of all integers α such that there are k regular languages L1, L2, . . . , Lk

with c(Li) = ni, for 1 ≤ i ≤ k, and c(◦(L1, L2, . . . , Lk)) = α. In case we
only consider unary (finite, respectively) languages L1, L2, . . . , Lk we write gc,u

◦
(gc,f

◦ , respectively) instead. Let Ic
◦ be the smallest integer interval contain-

ing all elements from the set gc
◦(n1, n2, . . . , nk). Then any element from

Ic
◦ \ gc

◦(n1, n2, . . . , nk) is said to be a magic number for the operation ◦ with
respect to the complexities n1, n2, . . . , nk. This notion was introduced in [8,9].

The nondeterministic accepting state complexity of a language L, denoted
by nasc(L), refers to the minimal number of accepting states in any NFA for L. It
was shown in [3] that for every nonempty regular language L we have nasc(L) =
1, if λ /∈ L, but nasc(L) ≤ 2, if λ ∈ L. Thus, the nondeterministic accepting
state complexity is not too interesting. Nevertheless, it was left open to give a
sufficient and necessary condition for a language L such that nasc(L) = 1 and
λ ∈ L. This problem was solved in [11].

Lemma 2. A language L satisfies λ ∈ L and nasc(L) = 1 if and only if L = L∗.

Proof. If λ ∈ L and nasc(L) = 1, then there is an NFA for L in which the single
accepting state is the initial state. Therefore L = L∗.

Conversely, let A = (Q,Σ, δ, s, F ) be an NFA accepting the set L. If L = L∗,
then λ ∈ L, so the initial state s of A is accepting. For every accepting state qf

in F \ {s} and every transition (q, a, qf ) we add the transition (q, a, s) to A and
make the state qf rejecting. Since L = L∗, the resulting automaton, which has
exactly one accepting state, accepts L. It follows that nasc(L) = 1. ��

3 Results

We investigate the accepting state complexity of various regularity preserving
language operations such as, e.g., intersection, symmetric difference, right and
left quotients, reversal, and permutation on finite languages. We start with the
accepting state complexity of intersection solving an open problem stated in [3].

3.1 Intersection

For two DFAs A = (QA, Σ, δA, sA, FA) and B = (QB , Σ, δB , sB , FB) we apply
the standard cross-product construction in order to construct an automaton for
the intersection of L(A) and L(B). Thus, define C = (QC , Σ, δC , sC , FC) with
QC = QA×QB , sC = (qA, qB), and FC = FA×FB . The transition function is set
to δC((p, q), a) = (δA(p, a), δB(q, a)). Thus, we have L(C) = L(A) ∩ L(B). If A
is an m-state and B an n-state DFA then the above construction results in an
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mn-state DFA C. In [16] it was shown that this upper bound is necessary in the
worst case, that is, it can be reached by two appropriately chosen minimal DFAs
with m and n states, respectively. Moreover, in [7] it was shown that there are no
magic numbers for intersection on a binary alphabet. This is a direct consequence
of the theorem that there are no magic numbers for union, De Morgan’s law, and
the fact the complementation preserves the state complexity. Thus, for every α
with 1 ≤ α ≤ mn there are minimal m-state and n-state DFAs such that the
intersection of the languages described by these automata requires a minimal
DFA with exactly α states.

Now let us turn our attention to the accepting state complexity of intersec-
tion. The next theorem solves an open problem stated in [3].

Theorem 3. We have gasc∩ (m,n) = gasc∩ (n,m) = [0,mn].

Proof. Since intersection is commutative we have gasc∩ (m,n) = gasc∩ (n,m). Now
let 0 ≤ α ≤ mn. We are going to describe minimal DFAs A and B with m and n
accepting states, respectively, such that asc(L(A) ∩ L(B)) = α. Notice that α
can be expressed as α = kn + �, for some integers k and � with 0 ≤ k ≤ m and
0 ≤ � ≤ n − 1.

Define the DFA A = ([1,m + 1], {a, b}, δA,m + 1, [1,m]), where

δA(i, a) = i − 1, if 2 ≤ i ≤ m + 1; δA(i, b) =

{
i, if 1 ≤ i ≤ m;
k + 1, if i = m + 1.

Next, define the DFA B = ([0, n + 1], {a, b}, δB , n + 1, [1, n]), where

δB(j, a) = n, if j = 0; δB(j, b) =

{
j − 1, if 1 ≤ j ≤ n;
�, if j = n + 1.

The DFAs A and B are depicted in Fig. 1. It is easy to see that both DFAs are
minimal.

Fig. 1. Let α satisfy 0 ≤ α ≤ mn. The witness DFAs A (top) and B (bottom) for
intersection with α = kn + �, for 0 ≤ k ≤ m and 0 ≤ � ≤ n.

We construct the automaton C of A and B according to the previously given
construction. The product automaton C has the following transitions:
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1. → (m + 1, n + 1) b−→ (k + 1, �) b−→ (k + 1, � − 1) b−→ . . .
b−→ (k + 1, 1) b−→ (k + 1, 0),

2. (k + 1, 0) a−→ (k, n) b−→ (k, n − 1) b−→ . . .
b−→ (k, 1) b−→ (k, 0),

3. (k, 0) a−→ (k − 1, n) b−→ (k − 1, n − 1) b−→ · · · b−→ (k − 1, 1) b−→ (k − 1, 0), etc., and
4. (2, 0) a−→ (1, n) b−→ (1, n − 1) b−→ . . .

b−→ (1, 1) b−→ (1, 0).

No other transitions are present in C. It follows that L(C) is a finite lan-
guage with the longest word b�+1(abn)k−1abn−1. Hence every NFA for the lan-
guage L(C) has at least k(n + 1) + � + 1 states. Thus C with the state (1, 0)
removed is a minimal NFA for L(C) = L(A)∩L(B). Next, since C is a DFA it is
a minimal DFA. So every state pair is distinguishable. Note that the states (i, j),
for 1 ≤ i ≤ k and 1 ≤ j ≤ n, and (k + 1, j), for 1 ≤ j ≤ �, are reachable and
accepting in C. It follows that we have kn+� reachable and pairwise distinguish-
able accepting states. Thus asc(L(A) ∩ L(B)) = kn + � = α, and the theorem
follows. ��

3.2 Symmetric Difference

The symmetric difference (⊕) of two languages accepted by finite automata can
also be obtained by a product construction, similar as in the case of intersection.
The only difference to the construction used for intersection is the definition of
the set of accepting states, which in case of symmetric difference is set to FC =
FA ×(QB \FB)∪(QA \FA)×FB , where the notation is that for intersection used
in Subsect. 3.1. Thus, for the ordinary state complexity the upper bound is mn,
which was shown to be tight in [17]. To our knowledge the magic number problem
for state complexity of the symmetric difference operation was not investigated so
far. For the accepting state complexity we find the following situation, where we
utilize the fact that for unary finite and unary co-finite languages it is very easy
to determine the number of accepting states, from a description of the language
in question. For instance, the unary language L = { ai | 2 ≤ i ≤ 5}∪{ aj | j ≥ 7 }
is accepted by a minimal DFA with (5 − 2) + 1 + 1 = 5 accepting states. For the
structure of (minimal) unary DFAs in general we refer to [2].

Lemma 4. Let m,n ≥ 1 and m ≤ n. Then for every α with α ≥ 1 there are
minimal unary DFAs A and B with m and n accepting states, respectively, such
that the minimal DFA for L(A) ⊕ L(B) has α accepting states.

Proof. Define the unary languages K = { ai | 0 ≤ i ≤ m − 2 or i ≥ m } and L =
{ ai | 0 ≤ i ≤ m − 2 or m ≤ i ≤ n − 1 or i ≥ n + α }. Let A and B be minimal
DFAs for K and L, respectively. Then A and B have m and n accepting states,
respectively. Moreover, L(A) ⊕ L(B) = { ai | n ≤ i ≤ n + α − 1 }, which is
accepted by a minimal DFA with α accepting states. ��

Now we are ready to describe the behaviour of the accepting state complexity
measure w.r.t. the symmetric difference operation.
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Theorem 5. We have

gasc,u⊕ (m,n) = gasc⊕ (m,n) = gasc⊕ (n,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{n} if m = 0;
{m} if n = 0;
{0} ∪ N if m, n ≥ 1 andm = n;
N otherwise.

Proof. The symmetric difference of two languages is commutative. Therefore
gasc⊕ (m,n) = gasc⊕ (n,m). The only language with accepting state complexity 0 is
the empty language ∅. For nonempty languages Lemma 4 applies. Since we have
∅⊕L = L, K ⊕∅ = K, and K ⊕L = ∅ if and only if K = L, the first three cases
of gasc⊕ are covered. Thus, all natural numbers can be obtained as the number of
accepting states of a DFA accepting the symmetric difference of DFAs A and B
with m and n accepting states, respectively; notice that m �= n implies K �= L.
Additionally, in case m = n one can also obtain the value 0, since in this case
we can force both languages K and L to be the same, which gives K ⊕ L = ∅.
Finally, gasc⊕ (m,n) = gasc,u⊕ (m,n) since all our witnesses are unary languages. ��

3.3 Right and Left Quotients

The right quotient of a language K by a language L is defined as follows:

KL−1 = {w | there is a x ∈ L such that wx ∈ K }.

The DFA accepting KL−1 is the same as the DFA accepting K except that the
set of accepting states is different. To be more precise, let A = (Q,Σ, δ, s, F ) be
the DFA accepting K, then B = (Q,Σ, δ, s, { q | ∃x ∈ L : δ(q, x) ∈ F }) accepts
the language KL−1. Thus, for an m-state DFA the upper bound for the state
complexity of the right quotient w.r.t. any language is m, which is known to be
tight [17]. Similarly one defines the left quotient of K by L as

L−1K = {w | there is a x ∈ L such that xw ∈ K }.

It was proven that for an m-state DFA language K, the state complexity of the
left quotient of K by any language L is at most 2m − 1. Again, this bound is
tight [17]. Note, when considering unary languages K and L, the right and left
quotient coincide, i.e., KL−1 = L−1K. Thus, in this case, the state complexity
is bounded by the state complexity of K. To our knowledge the magic number
problem for state complexity of the quotient operations was not investigated so
far. Next we consider the magic number problem for accepting state complexity
of the quotient operations.

Lemma 6. Let m,n ≥ 1. Then for every α with α ≥ 0 there are minimal
unary DFAs A and B with m and n accepting states, respectively, such that the
minimal DFA for L(A)L(B)−1 has α accepting states.

Proof. We consider two cases:



The Ranges of Accepting State Complexities of Languages 205

1. Let α < n. Define the languages K = { ai | 0 ≤ i ≤ m − 2 or i = m + α }
and L = { ai | m + 1 ≤ i ≤ m + n }. The language K (L, respectively) is
accepted by a minimal DFA with m (n, respectively) accepting states. Next
KL−1 = { ai | 0 ≤ i ≤ α − 1 }, whose minimal DFA has α accepting states.
Observe, that this case also covers α = 0, where KL−1 becomes empty.

2. Now let α ≥ n. Let K be the same language as above and define the set L =
{ ai | m ≤ i ≤ m + n − 2 or i ≥ m + n }. The language K (L, respectively) is
accepted by a minimal DFA with m (n, respectively) accepting states. Next
KL−1 = { ai | 0 ≤ i ≤ α − n or α − n + 2 ≤ i ≤ α }, whose minimal DFA
has α accepting states. ��
In the next theorem we use an alternative notation for the quotients, namely

K/L := KL−1 for the right quotient and L\K := L−1K for the left quotient.

Theorem 7. We have gasc,u/ (m,n) = gasc/ (m,n) and

gasc/ (m,n) =

{
{0} ifm = 0 or n = 0;
{0} ∪ N otherwise.

Next, we have gasc\ (m,n) = gasc/ (m,n) and gasc,u\ (m,n) = gasc,u/ (m,n). ��

3.4 Reversal

As usual, the reverse of a word over Σ is defined by λR = λ and (va)R =
avR, for every a in Σ and v in Σ∗. The reverse of a language L is defined as
LR = {wR | w ∈ L }. In order to obtain an NNFA accepting the reverse of a
language L accepted by a DFA A = (Q,Σ, δ, s, F ) one reverses all transitions
and swaps the role of initial and accepting states. This results in an NNFA that
accepts the language LR. More formally, this automaton can be described as
AR = (Q,Σ, δR, F, {s}), where δR(p, a) = { q ∈ Q | δ(q, a) = p }. Finally, we
obtain the DFA D(AR) for the language LR, which provides the upper bound 2n

on the state complexity of the reversal operation on complete DFAs. In [13] it
was shown that this bound is tight for languages over an alphabet of at least two
letters. This alphabet size is optimal since the reverse of every unary language
is the same language, hence n is a tight upper bound for the ordinary state
complexity of the reversal operation. Moreover, every value from log n to 2n can
be obtained as the state complexity of LR if the state complexity of L is n [14].

Before we consider the accepting state complexity of the reversal operation
we take a closer look on the automaton D(AR). Observe, that the state s is
the single accepting state of the NNFA AR. Therefore the accepting subsets of
the corresponding subset automaton D(AR) are those containing the state s.
Moreover, if A is a DFA without unreachable states, then the subset automa-
ton D(AR) does not have equivalent states [12, Proposition 3]. Now we are ready
to consider accepting state complexity of reversal in general.

Lemma 8. Let n ≥ 1. Then for every α with α ≥ 1 there exists a minimal
binary DFA A with n accepting states such that the minimal DFA for L(AR)
has α accepting states.
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Proof. Let A = ([1, α + n], {a, b}, δ, 1, F ), where F = [α + 1, α + n], and

δ(i, a) =

{
i if i = 1 or i = α + 1;
i − 1 otherwise,

δ(i, b) =

{
α + n if i = 1;
α if i = α + 1.

The DFA A is shown in Fig. 2. Two rejecting states are distinguished by a word
in a∗b and two accepting states by a word in a∗baα−1b. Hence A is minimal.

Fig. 2. The witness DFA A for the reversal operation with n, α ≥ 1.

We construct the NNFA AR = ([1, α + n], {a, b}, δR, F, {1}) from the DFA A
by reversing all the transitions, and by swapping the roles of the initial and
accepting states. The subset automaton D(AR) has the initial state F and the
following transitions:

1. → F
a−→ F

b−→ {1} a−→ [1, 2] a−→ [1, 3] a−→ · · · a−→ [1, α] a−→ [1, α] b−→ {α + 1} and
2. {α + 1} a−→ [α + 1, α + 2] a−→ [α + 1, α + 3] a−→ · · · a−→ [α + 1, α + n − 1] a−→ F .

Since every other transition from these reachable states goes to the empty set,
no more states are reachable. Since only the subsets containing 1 are accept-
ing, there are α reachable accepting subsets. By [12, Proposition 3], the subset
automaton D(AR) does not have equivalent states, and the theorem follows. ��

Taking into account that the only language with accepting state complexity 0
is the empty language ∅, and for nonempty languages Lemma 8 applies, we
obtain the next result. Moreover, since the reverse of a unary language is the
same language, we immediately get the result on the accepting state complexity
of reversal for unary regular languages, too.

Theorem 9. We have

gascR (n) =

{
{0} if n = 0;
N otherwise.

For unary regular languages, we have gasc,uR (n) = {n}, if n ≥ 0. ��

3.5 Permutation on Finite Languages

The permutation of a language L is defined as per(L) =
⋃

w∈L per(w), where
per(w) = {u ∈ Σ∗ | ψ(u) = ψ(w) } with ψ(v) = (|v|a1 , |v|a2 , . . . , |v|ak

), the
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Parikh vector of a word v over the alphabet Σ = {a1, a2, . . . , ak}. Here |v|a refers
to the number of occurrences of the letter a in v. It is known that the permutation
operation is not regular on infinite languages. For example, per({ab}∗) = {w ∈
{a, b}∗ | |w|a = |w|b } is not regular. On the other hand, permutation of a finite
language is always finite, and every finite language is regular. So permutation is a
regular operation on finite languages. Moreover, note that every unary language
is a permutation of itself, thus one may consider the ordinary state as well
as the accepting state complexity of permutation on binary finite languages.
Ordinary deterministic state complexity was considered in [1], where an upper
bound of n2−n+2

2 states for the permutation of a finite binary language with state
complexity n was shown. This was slightly improved for permutations of chain
DFAs where a matching upper and lower bound was obtained. To our knowledge
the magic number problem for state complexity of permutation on (binary) finite
languages was not considered so far. For the accepting state complexity we can
prove the following three lemmata:

Lemma 10. Let n ≥ 1. Then for every α with α ≥ n there exists a minimal
binary DFA A with n accepting states such that the minimal DFA for per(L(A))
has α accepting states.

Proof. Define the finite language L = { biabj | 0 ≤ i ≤ α − n and 0 ≤ j ≤ n − 1 }.
Since L =

⋃
0≤j≤n−1[abj ], where [abj ] is the Myhill-Nerode equivalence class

with [abj ] = { biabj | 0 ≤ i ≤ α − n }, it is accepted by a minimal DFA
with n accepting states. Observe, that every word w in L satisfies |w|a = 1 and
0 ≤ |w|b ≤ α−1. Thus, per(L) = {w ∈ {a, b}∗ | |w|a = 1 and 0 ≤ |w|b ≤ α − 1 }.
Hence, per(L) =

⋃
0≤i≤α−1[abi], where [abi] is now the Myhill-Nerode equiva-

lence class [abi] = {w ∈ {a, b}∗ | |w|a = 1 and |w|b = i }. Therefore, we deduce
that per(L) has accepting state complexity α. ��

The next lemma follows from [4, Lemma 1].

Lemma 11. Let n ≥ 2. Let L be a finite language accepted by a minimal DFA
with n accepting states. Then the minimal DFA for per(L) has at least 2 accepting
states. ��

The magic status of numbers from 2 to n is considered next.

Lemma 12. Let n ≥ 2. Then for every α with 2 ≤ α ≤ n there exists a minimal
binary DFA A with n accepting states such that the minimal DFA for per(L(A))
has α accepting states.

Proof. We prove a slightly stronger statement, namely: let m ≥ 1. Then for
every α with α ≥ 2 there is a minimal binary DFA A with 2m +(α−1) accepting
states such that the minimal DFA for per(L(A)) has α accepting states. The
idea for the construction is as follows: for a word w ∈ {a, b}m let xw refer to the
length m word bm−|w|aam−|w|b . Then define the finite language

L = {wxw ∈ {a, b}∗ | |w| = m }
∪ {wxwwRy ∈ {a, b}∗ | |w| = m and 0 ≤ |y| ≤ α − 2 }.
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By construction every word of the form wxw, for w ∈ {a, b}m, has the Parikh
vector (m,m). Moreover, the Parikh vector of every word of the form wxwwR,
for w ∈ {a, b}m, lies in the set { (m + i, 2m − i) | 0 ≤ i ≤ m }. By considering
the Myhill-Nerode equivalence classes for the words in L one deduces that the
accepting state complexity of L is 2m + (α − 1).

The automaton B accepting per(L) is constructed according to [1,
Lemma 3.1]. Thus, the DFA B has a grid like structure (with a truncated lower
right) where the b-transitions connect neighboring columns and the a-transitions
neighboring rows and every state can be identified with a Parikh vector. A
schematic drawing is given on the left of Fig. 3. The states in B that correspond
to a Parikh vector of a word in L are marked accepting. Since every word wxw,
for w ∈ {a, b}m, has the Parikh vector (m,m), the corresponding state is marked
accepting—see the accepting state in the middle of the schematic drawing on the
left of Fig. 3. The words of the form wxwwR, for w ∈ {a, b}m, which Parikh vec-
tor lies in the set { (m+i, 2m−i) | 0 ≤ i ≤ m } induce the topmost anti-diagonal
of accepting states. This anti-diagonal is followed by α−2 further anti-diagonals
of accepting states, since every word wxwwR can be extended by any word of
length at most α−2. Again, see the left of Fig. 3. A close inspection reveals that
this automaton is not minimal, because all states in a fixed anti-diagonal are
equivalent. A schematic drawing of the minimal DFA accepting the permutation
of the finite language L is shown on the right of Fig. 3. The tedious details of
the construction are left to the reader.

Fig. 3. A schematic drawing of the grid like DFA B (left) accepting per(L(A)) and its
minimal DFA (right) obtained from B by identifying accepting states that are connect
by dotted lines.

In order to decrease the accepting state complexity of L one removes all
words with prefix wxw, for some words w ∈ {a, b}m. Let L′ refer to the resulting
language. In order to keep the construction working as described above, one must
ensure that all accepting states in the topmost anti-diagonal can be reached. This
requirement is fulfilled if the Parikh vectors of all words wxwwR with wxw ∈ L′
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form the set { (m+ i, 2m− i) | 0 ≤ i ≤ m }, which can always be achieved. Thus,
at least m+1 words of the form wxw, for w ∈ {a, b}∗, must belong to L′. Finally,
this allows us to set the accepting state complexity of L′ to n by choosing the
parameter m appropriately, which proves the original statement. ��

Taking into account Lemmata 10, 11, and 12, we get the following result.

Theorem 13. We have

gascper(n) = gasc,fper (n) =

⎧
⎪⎨

⎪⎩

{0} if n = 0;
N if n = 1;
N \ {1} if n ≥ 2.

For unary regular languages, we have gasc,uper (n) = {n} if n ≥ 0. ��
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