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Abstract. We examine the descriptive complexity of the combined

unary operation Σ∗L and investigate the trade-offs between various mod-
els of finite automata. We consider complete and partial deterministic
finite automata, nondeterministic finite automata with single or multiple
initial states, alternating, and boolean finite automata. We assume that
the argument and the result of this operation are accepted by automata
belonging to one of these six models. We investigate all possible trade-
offs and provide a tight upper bound for 32 of 36 of them. The most
interesting result is the trade-off from nondeterministic to deterministic
automata given by the Dedekind number M(n − 1). We also prove that

the nondeterministic state complexity of Σ∗L is 2n−1 which solves an

open problem stated by Birget [1996, The state complexity of Σ∗L and
its connection with temporal logic, Inform. Process. Lett. 58, 185–188].

1 Introduction

Formal languages may be recognized by several kinds of formal systems. Dif-
ferent classes of formal systems can be compared either from the point of view
of their computational power, or from the descriptive complexity point of view.
As for computational power, for example, deterministic and nondeterministic
finite automata recognize the same class of languages, while the class of lan-
guages recognized by deterministic pushdown automata is strictly included in
the class of languages recognized by nondeterministic ones. However, from the
descriptive complexity point of view, there is an exponential gap between the
cost of description of regular languages by deterministic and nondeterministic
finite automata [14,16–18,20].

Descriptive complexity, which measures the cost of description of languages
by different formal systems, was deeply investigated in last three decades (cf. [1,7,
15,22]) mostly in the class of regular languages. Several kinds of finite automata
were proposed and the trade-offs between the costs of description in different
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classes of automata were examined. Let us mention at least the exact trade-
off

(
2n

n+1

)
for the conversion of two-way nondeterministic automata to one-way

nondeterministic automata [11], and the exact trade-off for the conversion of
self-verifying automata to deterministic automata given by the function that
counts the maximal number of maximal cliques in a graph with n vertices [10].

In 1996, Jean-Camille Birget [2] answered the following question of Jean-
Éric Pin. Let L be a regular language over an alphabet Σ recognized by a
nondeterministic finite automaton (NFA) or a deterministic finite automaton
(DFA) with n states. How many states are sufficient and necessary in the worst
case for an NFA (DFA) to recognize the language Σ∗L? The notation L stands
for the complement of L. Birget provided the exact trade-off from DFAs to NFAs,
and lower and upper bounds for the nondeterministic state complexity of Σ∗L.

The motivation of Pin’s question came from the word model of Propositional
Temporal Logic [5]. The set of all models of a formula ϕ over a fixed alphabet
Σ is a formal language L(ϕ) over Σ which has the non-trivial property of being
regular and aperiodic. Some of the temporal operators used in this logic are ◦
(“next”) and � (“eventually”, or “at some moment in the future”); there are
also the usual boolean operations −, ∧, ∨. A natural dual to the “eventually”
operator is the “forever” (or, “always in the future”) operator �, defined to be
− � − (“not eventually not”). Formulas and their models are related as follows:
L(ϕ) = L(ϕ), L(ϕ∧ψ) = L(ϕ)∩L(ψ), L(ϕ∨ψ) = L(ϕ)∪L(ψ), L(◦ϕ) = ΣL(ϕ),
L(�ϕ) = Σ∗L(ϕ). Thus L(�ϕ) = L(�ϕ) = Σ∗L(ϕ). Hence in [2], Birget studied
the state complexity of the “forever” operator.

Here we continue this research by investigating the complexity of the forever
operator for different models of finite automata. We consider complete and par-
tial deterministic finite automata, nondeterministic automata with a single or
multiple initial states, and boolean automata with a single initial state, called
alternating finite automata in [6], or with an initial function [4]. Similarly as
Jean-Éric Pin, we ask the following question: If a language L is represented by
an n-state automaton of some model, how many states are sufficient and neces-
sary in the worst case for an automaton of some other model to accept Σ∗L?

We study all the possible 36 trade-offs, and except for four cases, we always
get tight upper bounds. In particular, we are able to prove that the upper bound
on the nondeterministic state complexity of Σ∗L is 2n−1. This improves Birget’s
upper bound 2n+1+1 and meets his lower bound for DFA-to-NFA trade-off. The
most interesting result of this paper is the tight upper bound for the NFA-to-
DFA trade-off given by the Dedekind number M(n−1); recall that the Dedekind
number M(n) counts the number of antichains of subsets of an n-element set. To
get lower bounds, we describe languages over a fixed alphabet, except for four
cases where the alphabet grows exponentially with n. In most cases our worst-
case examples are binary and unary, and these alphabets are always optimal.
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2 Preliminaries

We assume that the reader is familiar with basic notions in automata theory.
For details, we refer to [19,21].

We use standard models of (complete) deterministic finite automata (DFAs),
partial deterministic finite automata (PFAs), nondeterministic finite automata
with a single initial state (NFAs), nondeterministic finite automata with multi-
ple initial states (NNFAs), boolean finite automata (BFAs), and boolean finite
automata with a single initial state (AFAs).

We call a state of an NNFA A = (Q,Σ, ·, I, F ) sink state if it has a loop on
every input symbol. For a symbol a and states p and q, we say that (p, a, q) is
a transition in the NNFA A if q ∈ p · a, and for a string w, we write p

w−→ q if
q ∈ p · w. We also say that the state q has an in-transition on symbol a, and the
state p has an out-transition on symbol a.

Let q be a state of a DFA A. To omit the state q means to remove it from the
state set and to remove also all its in-transitions and out-transitions. To replace
the state q with a sink state means to remove each its out-transition (q, a, p) and
add a loop (q, a, q) for each a.

The reverse of a string is defined as εR = ε and (wa)R = awR for each symbol
a and string w. The reverse of a language L is the language LR = {wR | w ∈ L}.
The reverse of an NNFA A = (Q,Σ, ·, I, F ) is an NNFA AR obtained from A by
reversing all the transitions and by swapping the roles of initial and final states.
The NNFA AR recognizes the reverse of L(A).

Every NNFA A = (Q,Σ, ·, I, F ) can be converted to an equivalent DFA
D(A) = (2Q, Σ, · , I, F ′) where F ′ = {S ∈ 2Q | S∩F 
= ∅}. We call the DFA D(A)
the subset automaton of the NNFA A. We use the following proposition to prove
reachability of states in a subset automaton in some cases.

Proposition 1. In the subset automaton of the NFA shown in Fig. 1 (left), each
subset containing 0 is reachable from {0}, and in the subset automaton of the
NFA shown in Fig. 1 (right), each subset is reachable from {0, 1, . . . , n − 1}. �

0 1 . . . n− 1
a a, b a, b

a, b

a, b

0 1 . . . n− 1
a a a

a

b b

Fig. 1. The NFAs used in Proposition 1

To prove distinguishability, we use the following notions and observations.
A state q of an NFA A = (Q,Σ, ·, s, F ) is called uniquely distinguishable (cf. [3])
if there is a string w which is accepted by A from and only from the state q.
A transition (p, a, q) in the NFA A is called a unique in-transition if there is
no state r of A such that r 
= p and (r, a, q) is a transition in A. A state q is
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uniquely reachable from a state p, if there is a sequence of unique in-transitions
(pi−1, ai, pi) (1 ≤ i ≤ k) such that p0 = p and pk = q.

Proposition 2 (cf. [3]). If there is a uniquely distinguishable state of an NFA A
that is uniquely reachable from any other state of A, then the subset automaton
D(A) does not have equivalent states. �

A boolean finite automaton (BFA, cf. [4]) is a quintuple A = (Q,Σ, δ, gs, F ),
where Q is a finite non-empty set of states such that Q = {q1, . . . , qn}, Σ is an
input alphabet, δ is the transition function that maps Q × Σ into the set Bn

of boolean functions with variables {q1, . . . , qn}, gs ∈ Bn is the initial boolean
function, and F ⊆ Q is the set of final states. The transition function δ is
extended to the domain Bn ×Σ∗ as follows: For all g in Bn, a in Σ, and w in Σ∗,
we have δ(g, ε) = g; if g = g(q1, . . . , qn), then δ(g, a) = g(δ(q1, a), . . . , δ(qn, a));
δ(g, wa) = δ(δ(g, w), a). Next, let f = (f1, . . . , fn) be the boolean vector with
fi = 1 iff qi ∈ F . The language accepted by the BFA A is the set of strings
L(A) = {w ∈ Σ∗ | δ(gs, w)(f) = 1}. A boolean finite automaton is called
alternating (AFA, cf. [6]) if the initial function is a projection g(q1, . . . , qn) = qi.

We use the following observations for trade-offs between various automata
throughout this paper. We provide the proof of case (e) since all the remaining
cases are either well known, or follow from [4,13], [6, Theorem 4.1 and Corollary
4.2], and [9, Lemmas 1 and 2]. We use the claim in Lemma 3(a) quite often in
the paper without referring to Lemma 3(a) again and again.

Lemma 3 (Properties of Finite Automata). Let L be a regular language.

(a) The language L is accepted by an n-state BFA (AFA) if and only if LR is
accepted by a DFA of 2n states (of which 2n−1 are final, respectively).

(b) Let LR be a regular language accepted by a minimal n-state DFA. Then every
BFA for L has at least �log n� states.

(c) If the minimal DFA for LR has more than 2n−1 final states, then every AFA
for L has at least n + 1 states.

(d) Let L be unary. Then L is accepted by an n-state BFA (AFA) if and only if
L is accepted by a DFA of 2n states (of which 2n−1 are final).

(e) If L is accepted by an n-state BFA (AFA), then L is accepted by an n-state
BFA (AFA, respectively).

(f) If L is accepted by an n-state BFA, then L is accepted by an AFA of at most
n + 1 states, and by an NNFA of at most 2n states.

(g) If L is accepted by an n-state NNFA, then L is accepted by an NFA of at
most n + 1 states and by a PFA of at most 2n − 1 states. If L is accepted by
an n-state PFA, then L is accepted by a DFA of at most n + 1 states.

Proof. (e) Let L be accepted by an n-state BFA (AFA). Then, by (a), the lan-
guage LR is accepted by a DFA of 2n states (of which 2n−1 are final). Then the
complement LR is also accepted by a DFA of 2n states (of which 2n−1 are final).
Since LR = L

R
, the claim follows again by (a). �
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If u, v, and w are strings over Σ such that w = uv, then u is a prefix of
w and v is a suffix of w. A language L is prefix-closed (suffix-closed) if w ∈ L
implies that every prefix (suffix) of w is in L.

In 1996, Birget [2] studied the state complexity of the “forever” operator
Σ∗L on DFAs and NFAs. Here we continue this research and to simplify the
exposition, we use the following notation:

b(L) = Σ∗L. (1)

3 Results

We start with an investigation of some properties of the “forever” operator.

Lemma 4 (Properties of Σ∗L). Let L be a regular language and b(L) = Σ∗L.

(a) b(L) = {w ∈ L | every suffix of w is in L}.
(b) b(L) = ∅ if and only if ε /∈ L.
(c) b(L) = L if and only if L is suffix-closed.
(d) If LR is accepted by a DFA A, then b(L)R is accepted by a DFA obtained

from A by replacing each non-final state of A with a non-final sink state. �
In what follows we consider six models of finite automata: DFAs, PFAs,

NFAs, NNFAs, AFAs, and BFAs. We try to answer the following question. If a
language L is represented by an n-state automaton of some model, how many
states are sufficient and necessary in the worst case for an automaton of some
other model to accept the language b(L) = Σ∗L? We first consider upper bounds.
Although we have 36 possible trade-offs, it is enough to prove only some of them.
The remaining trade-offs follow either from inclusions of some models of finite
automata or from Lemma 3. For the (N)NFA-to-(P)DFA trade-offs, we need the
Dedekind number M(n) which counts the number of antichains of subsets of an
n-element set. The number M(n) lies in the order of magnitude 22

Θ(n)
[12]:

2n−log n ≤
(

n

�n/2�
)

≤ log2 M(n) ≤
(

n

�n/2�
)(

1 + O

(
log n

n

))
≤ 2n+1−(log n)/2.

It follows that log2 M(n) lies in the order of magnitude 2n−Θ(log n). Moreover,
we assume that ε ∈ L and L 
= Σ∗ in the statement of the next theorem because
otherwise b(L) is empty or equals Σ∗ by Lemma 4(b) and (c).

Theorem 5 (Upper Bounds). Let L be a regular language such that ε ∈ L
and L 
= Σ∗. Let L be accepted by a finite automaton A of n states.

(1) If A is a DFA, then b(L) is accepted by a DFA of at most 2n−1 states.
(2) If A is a PFA, then b(L) is accepted by a PFA of at most 2n−1 states.
(3) If A is an NFA, then b(L) is accepted by

(a) an NFA of at most 2n−1 states;
(b) a PFA of at most M(n − 1) − 1 states.
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(4) If A is an NNFA, then b(L) is accepted by
(a) an NNFA of at most 2n − 2 states.
(b) a PFA of at most M(n) − 1 states.

(5) If A is an AFA, then b(L) is accepted by
(a) an AFA of at most n states;
(b) an NNFA of at most 2n−1 states.

(6) If A is a BFA, then b(L) is accepted by
(a) a BFA of at most n states;
(b) an NNFA of at most 2n − 1 states.

Proof (1). We first interchange final and non-final states in A to get the DFA A
for L. Then we add a loop on every input symbol in the initial state of A to
get an NFA N for Σ∗L. In D(N), only subsets containing the initial state are
reachable. Finally, we again interchange the final and non-final states of D(N).

(2) Let A = (Q,Σ, ·, s, F ) be an n-state PFA for L. It is enough to show
that the language Σ∗L is accepted by a DFA of at most 2n−1 + 1 states, one of
which is final sink state. To get an (n+1)-state DFA A for L, we first add a new
non-final sink state qd to A. Then, for each transition which is undefined in A,
we add the corresponding transition to qd. Finally, we interchange final and non-
final states of the resulting automaton. We construct an (n+1)-state NFA N for
Σ∗L from DFA A, by adding a loop on each input symbol in the initial state s.
In the corresponding subset automaton, each reachable subset must contain s.
Moreover, the state qd is a final sink state. It follows that each string is accepted
by N from qd, and therefore each subset containing qd, is equivalent to {qd}. In
total, we get at most 2n−1 + 1 reachable and pairwise distinguishable states.

(3a) Let A = (Q,Σ, ·, s, F ) be an n-state NFA for L. We have s ∈ F since
ε ∈ L. We reverse A to get an n-state NNFA AR for LR with a unique final
state s. In the subset automaton D(AR), we omit all the non-final subsets, that is,
all subsets not containing s, to get a 2n−1-state PFA B with the initial state F .
All states of B are final, and all of them contain s. We have two cases. If there is
a final subset of D(AR) which is not reachable in B, then we reverse B and add
a new initial state to get an NFA for b(L) of at most 2n−1 states. Otherwise,
we modify PFA B as follows. We make all states of B non-final, except for {s}.
Next, we add the ε-transition to {s} from any other state in B. Denote the
resulting ε-NFA by B′. We can show that L(B′) = L(B). This means that B′ is
a 2n−1-state ε-NFA with one final state for b(L)R. By reversing B′ and removing
ε-transitions, we get a 2n−1-state NFA for b(L).

(3b) It is enough to show that Σ∗L is accepted by a DFA of at most M(n−1)
states, one of which is a final sink state. Let A = (Q,Σ, ·, s, F ) be an n-state
NFA for L, and B be the 2n-state subset automaton of A. We interchange the
final and non-final states in B, to get a 2n-state DFA B for L. To get a 2n-state
NFA N for Σ∗L, we add a loop on each input symbol in the initial state of the
DFA B. Finally, let C be the subset automaton of N . Then C is a DFA for Σ∗L.
Formally, we have

B = D(A) = (2Q, Σ, ·, {s}, FB) where FB = {X ⊆ Q | X ∩ F 
= ∅});
B = (2Q, Σ, ·, {s}, FB) where FB = 2Q \ FB = {X ⊆ Q | X ⊆ Q \ F});
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N = (2Q, Σ, ◦, {s}, FB) where for each X in 2Q and each a in Σ,
{s} ◦ a = {{s}, {s} · a}, and
X ◦ a = {X · a} if X 
= {s};

C = D(N) = (22
Q

, Σ, ◦, {{s}}, FC) where FC = {X ∈ 22
Q | X ∩ FB 
= ∅}.

Thus, the states of C are sets of subsets of Q, and a state S = {S1, S2, . . . , Sk} is
final if there is an i such that Si ⊆ Q\F . Our aim is to show that C has at most
M(n − 1) reachable and pairwise distinguishable states. We first show that each
state of C is equivalent to an antichain in 2Q. Let S ⊆ T ⊆ Q and w be accepted
by N from the state T . We can show that w is accepted by N also from S. Thus
if in a state S = {S1, S2, . . . , Sk} of C we have Si ⊆ Sj for some i and j, then
S is equivalent to S \ {Sj}. It follows that each state of C is equivalent to an
antichain in 2Q. Moreover, since N has a loop on each symbol in its initial state
{s}, and C is the subset automaton of N , each reachable state of C must contain
the set {s}, that is, each reachable antichain has a form {{s}, S2, S3, . . . , Sk},
where k ≥ 1, and {S2, S3, . . . , Sk} is an antichain in 2Q\{s}. This gives the upper
bound M(n−1). Notice that the empty antichain corresponds to the initial state
{{s}}. We also have to count the antichain {∅} which is unreachable final sink
state, but it is equivalent to the reachable state {{s}, ∅}.

(4a) If all the states of a given NNFA are initial, then L is suffix-closed, and
therefore b(L) = L by Lemma 4(c). Otherwise, LR is accepted by a PFA which
has 2n − 1 states, and at least one of them is non-final. Omit all the non-final
states to get a PFA for b(L)R (cf. Lemma 4(d)), and reverse the resulting PFA
to get the desired NNFA for b(L).

(4b) Similarly as in (3b), we prove that only states S = {I, S1, S2, . . . , Sk}
where {S1, S2, . . . , Sk} is an antichain in 2Q are pairwise distinguishable.

(5a) If L is accepted by an n-state AFA, then LR is accepted by a DFA of 2n

states of which 2n−1 are final. Replace each non-final state with a non-final sink
state to get a DFA for b(L)R of 2n states of which 2n−1 are final. Hence b(L) is
accepted by an n-state AFA.

(5b) In the DFA for b(L)R obtained as in case (5a), we omit the non-final
sink states to get an equivalent PFA of 2n−1 states. By reversing this PFA, we
get a 2n−1-state NNFA for b(L).

(6a) If A is an n-state BFA, then LR is accepted by a DFA of 2n states.
Replace each non-final state with a non-final sink state to get a DFA for b(L)R

of 2n states given by Lemma 4(d). Hence b(L) is accepted by an n-state BFA.
(6b) In the DFA for b(L)R obtained as in case (6a), we omit the non-final

sink states to get an equivalent PFA of at most 2n −1 states; recall that L 
= Σ∗.
By reversing this PFA, we get the desired NNFA for b(L). �

Now we turn our attention to lower bounds. We again need to prove only
some of them and all the remaining bounds follow from the inclusions of models
or from Lemma 3. However, in some cases, we use witnesses over a smaller
alphabet for the bound that follows from some other trade-off.

In 32 of 36 cases, our lower bounds meet the upper bounds given by
Theorem 5. The remaining four cases are the trade-offs from NNFA to DFA,
PFA, NFA, and NNFA. With the exception of four trade-offs, our witness
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languages are defined over a fixed alphabet of size one, two, three, or four.
The binary case is always optimal in the sense that there is no unary language
meeting the upper bound (and the unary alphabet is always optimal :-).

Theorem 6 (Lower Bounds). There exists a regular language L accepted by
an n-state finite automaton A such that A is

(1) a ternary DFA and every BFA for b(L) has at least n states;
(2) a ternary DFA and every NNFA for b(L) has at least 2n−1 states;
(3) a binary DFA and every PFA for b(L) has at least 2n−1 states;
(4) a quaternary PFA and every DFA for b(L) has at least 2n−1 + 1 states;
(5) an NFA and every DFA for b(L) has at least M(n − 1) states;
(6) a binary NNFA and every AFA for b(L) has at least n + 1 states;
(7) a unary AFA and

(a) every BFA for b(L) has at least n states;
(b) every NNFA for b(L) has at least 2n−1 states;

(8) a binary AFA and every NFA for b(L) has at least 2n−1 + 1 states;
(9) a binary AFA and every DFA for b(L) has at least 22

n−1
states;

(10) a unary BFA and
(a) every AFA for b(L) has at least n + 1 states;
(b) every NNFA for b(L) has at least 2n − 1 states;

(11) a binary BFA and every NFA for b(L) has at least 2n states;
(12) a binary BFA and every DFA for b(L) has at least 22

n−1 states.

Proof. (1) Let L be the language accepted by the DFA A shown in Fig. 2. We
reverse A to get an NFA AR for LR. Using Propositions 1 and 2, we can prove
that in the minimal DFA for LR we have 2n−1 final states and one non-final
sink state, so the language LR is prefix-closed. Therefore L is suffix-closed, so
b(L) = L. Since the minimal DFA for LR has 2n−1 + 1 states, every BFA for L,
so for b(L), has at least n states.

(2) This case follows from the proof of [2, Theorem 2(a)].
(3) Let L be accepted by DFA A = ({0, . . . , n−1}, {a, b}, ·, 0, {0, 1, . . . , n−2}),

where i · a = (i + 1) mod n, 0 · b = 0, and i · b = (i + 1) mod n if i 
= 0.
We construct an n-state NFA N for Σ∗L by interchanging final and non-final

states in A and by adding the transition (0, a, 0). It is enough to prove that the
subset automaton D(N) has at least 2n−1 reachable and pairwise distinguishable
states. We prove reachability by using Proposition 1. To prove distinguishabil-
ity, notice that the state n − 1 is uniquely distinguishable by ε in N and it
is uniquely reachable from any other state through unique in-transitions on a.
By Proposition 2, the subset automaton D(N) does not have equivalent states.
Since D(N) has no non-final sink state, it is also a minimal PFA. Notice that the
lower bound 2n−1 for a DFA accepting b(L) follows from the proof. In [2, Proof
of Theorem 2(b)], it is claimed that this bound is met by the binary language
a{a, b}n−2. However, the minimal DFA for this language has n + 1 states.

(4) Let L be the language accepted by the PFA A shown in Fig. 3. We con-
struct an (n+1)-state NFA N for Σ∗L as follows. First, we add a new non-final
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sink state n and the transitions on a, b, c from n − 1 to n. Then we make state
n final, and all the remaining states non-final.
Finally, we add transitions (0, a, 0) and (0, d, 0). By using Propositions 1 and 2
we can show that D(N) has 2n−1 + 1 reachable and pairwise distinguishable
states.

(5) Let L be accepted by the n-state NFA A = (Q,Σ, · , 0, F ), where
Q = {0, 1, . . . , n − 1}, Σ = {aX , bX | X ⊆ Q}, F = Q \ {n − 1}, and the
transition function is defined as follows:

0 · aX = X and i · aX = {i} if i 
= 0,

i · bX =

{
{n − 1}, if i ∈ X;
{0}, if i /∈ X.

Then B = D(A) = (2Q, Σ, · , {0}, 2Q \ {{n − 1}, ∅});
B = (2Q, Σ, · , {0}, {{n − 1}, ∅});
N = (2Q, Σ, ◦ , {0}, {{n − 1}, ∅}) where

{0} ◦ a = {0} ∪ {0} · a,
X ◦ a = X · a if X 
= {0};

C = D(N) = (22
Q

, Σ, ◦ , {{0}}, {X ∈ 22
Q | X ∩ {{n − 1}, ∅} 
= ∅}). Our aim

is to show that C has at least M(n−1) reachable and distinguishable states. Let
S1, S2, . . . , Sk be subsets of Q such that 0 /∈ Si for every i. Then in C we have

{{0}} aS1−−→ {{0}, S1}
aS2−−→ {{0}, S1, S2}

aS3−−→ . . .
aSk−−→ {{0}, S1, S2, . . . , Sk}.

It follows that every state S = {{0}, S1, S2, . . . , Sk} where {S1, S2, . . . , Sk} is
an antichain of subsets of {1, 2, . . . , n − 1} is reachable. We can prove that two
distinct antichains are distinguishable. It follows that C has at least M(n − 1)
reachable and distinguishable states.

(6) Let L be accepted by the NNFA A shown in Fig. 4. Since each state of
A is initial, L is suffix-closed, so b(L) = L. We can show that the minimal DFA
for LR has more than 2n−1 final states. It follows that every AFA for L, so for
b(L), has at least n + 1 states.

(7) Let L = {ai | 0 ≤ i ≤ 2n−1 − 1}. Then L is a unary language accepted
by a 2n-state DFA with 2n−1 final states. So L is accepted by an n-state AFA.
Since L is suffix-closed, b(L) = L. (a) Since the minimal DFA for L has 2n−1 +1
states, every BFA for L has at least n states. (b) The longest string in L is of
length 2n−1 − 1, and therefore every NNFA for L has at least 2n−1 states.

(8) Let K be accepted by the 2n-state DFA A shown in Fig. 5; notice that
A has 2n−1 final states. Set L = KR. Then L is accepted by an n-state AFA.
By Lemma 4(d), if we omit all non-final states of A, we get a PFA C for b(L)R

of 2n−1 states, all of them final. It is shown in [8, Theorem 2] that every NFA
for L(C)R has at least 2n−1 + 1 states. Since L(C)R = b(L), the claim follows.

(9) Let K be accepted by the 2n-state DFA A shown in Fig. 6; notice that
A has 2n−1 final states. Set L = KR. Then the language L is accepted by an n-
state AFA. By Lemma 4(d), if we omit all non-final states of A, we get a PFA C
for b(L)R of 2n−1 states, all of them final. Next, we reverse the PFA C to get
an NNFA N = ({0, 1, . . . , 2n−1 −1}, {a, b}, ·R , {0, 1, . . . , 2n−1 −1}, {0}) for b(L).
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0 1 2 . . . n−2 n−1

a, b

a a, b a, b a, b a, b

b

c

c

c c
c

Fig. 2. The DFA for L such that every BFA for Σ∗L has n states

0 1 . . . n− 2 n− 1
a, d a, b, d a, b, d a, b, d

b, c c c

d

Fig. 3. The PFA for L such that every DFA for Σ∗L has 2n−1 + 1 states

0 1 . . . n− 2 n− 1
a a a a

a

b b b

Fig. 4. The NNFA for L such that every AFA for Σ∗L has n + 1 states

0 1 . . . 2n−1−1 2n−1 . . . 2n−1
a a a

b

a

a, b a, b

Fig. 5. The reverse of the witness for the AFA-to-NFA trade-off

By Proposition 1, the subset automaton D(N) has 22
n−1

reachable states. To
prove distinguishability, notice that the state 0 is uniquely distinguishable by ε,
and it is uniquely reachable from any other state through unique in-transitions
on symbol a. By Proposition 2, the subset automaton has no equivalent states.

(10) Let L = {ai | 0 ≤ i ≤ 2n − 2}. Then L is a unary language accepted
by a minimal 2n-state DFA A, so L is accepted by a n-state BFA. Since L is
suffix-closed, b(L) = L. (a) Every AFA accepting L has at least n+1 states since
the number of final states in A is greater than 2n−1. (b) The longest string in L
is of length 2n − 2, and therefore every NNFA for L has at least 2n − 1 states.

(11) Let K be accepted by the 2n-state DFA A shown in Fig. 7. Set L = KR.
Then L is accepted by an n-state BFA. Now the proof goes exactly the same
way as in the case (8) and it results in the lower bound 2n.

(12) Let K be accepted by the 2n-state DFA A shown in Fig. 8. Set L = KR.
Then L is accepted by an n-state BFA. Now the proof goes exactly the same
way as in the case (9) and it results in the lower bound 22

n−1. �
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0 1 2 . . . 2n−1−1 2n−1 . . . 2n−1
a a a a

a
b

b b b a, b a, b

Fig. 6. The reverse of the witness for the AFA-to-DFA trade-off

0 1 . . . 2n−2 2n−1
a a a

b

a
a, b

Fig. 7. The reverse of the witness for the BFA-to-NFA trade-off

0 1 2 . . . 2n−2 2n−1
a a a a

a
b

b b b a, b

Fig. 8. The reverse of the witness for the BFA-to-DFA trade-off

Table 1. The complexity of Σ∗L for various types of finite automata

L\b(L) DFA |Σ| PFA |Σ| NFA |Σ| NNFA |Σ| AFA |Σ| BFA |Σ|
DFA 2n−1 2 2n−1 2 2n−1[2] 3 2n−1[2] 3 n 3 n 3

PFA 2n−1 + 1 4 2n−1 2 2n−1 3 2n−1 3 n 3 n 3

NFA M(n−1) 2n+1 M(n−1)−1 2n+1 2n−1 3 2n−1 3 n 3 n 3

NNFA ≥ M(n−1) 2n+1 ≥ M(n−1)−1 2n+1 ≥ 2n−1 3 ≥ 2n−1 3 n + 1 2 n 2

≤ M(n) ≤ M(n) − 1 ≤ 2n−1 ≤ 2n−2

AFA 22
n−1

2 22
n−1 − 1 2 2n−1 + 1 2 2n−1 1 n 1 n 1

BFA 22
n−1 2 22

n−1 − 1 2 2n 2 2n − 1 1 n + 1 1 n 1

4 Conclusions

We investigated the descriptive complexity of Σ∗L over complete and partial
deterministic, nondeterministic, alternating, and boolean finite automata. For
each trade-off, except for those starting with NNFAs, we provided tight upper
bounds for complexity of Σ∗L depending on the complexity of L. The most
interesting result is the tight upper bound on NFA-to-DFA trade-off given by
the Dedekind number M(n − 1). However, we used a growing alphabet of size
2n+1 to get the lower bound in this case. Except for (N)NFA-to-(P)DFA trade-
offs, all witnesses are described over an alphabet of fixed size. Moreover, binary
and unary alphabets are optimal for their respective cases. Whenever we have
a larger alphabet, we do not know whether or not it is optimal. The precise
complexity for NNFA-to-(P)DFA and NNFA-to-(N)NFA trade-offs remains open
as well (Table 1).
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8. Jirásková, G.: State complexity of some operations on binary regular languages.
Theoret. Comput. Sci. 330(2), 287–298 (2005)
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