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Abstract
We study the state complexity of the concatenation operation on regular languages represented
by deterministic and alternating finite automata. For deterministic automata, we show that
the upper bound m2n − k2n−1 on the state complexity of concatenation can be met by ternary
languages, the first of which is accepted by an m-state DFA with k final states, and the sec-
ond one by an n-state DFA with ` final states for arbitrary integers m,n, k, `. In the case of
k ≤ m − 2, that is, in the case when the first automaton has at least two non-final states, we
are able to provide appropriate binary witnesses. We use these witnesses to describe a pair of
binary languages meeting the upper bound 2m +n+1 for the concatenation on alternating finite
automata. This solves an open problem stated by Fellah, Jürgensen, and Yu [1990, Construc-
tions for alternating finite automata, Intern. J. Computer Math. 35, 117–132], where the upper
bound 2m + n+ 1 is proved.

1. Introduction

Concatenation is a binary operation on formal languages defined as KL = {uv | u ∈ K and
v ∈ L}. It is known that if a language K is accepted by an m-state deterministic finite
automaton (DFA) and L is accepted by an n-state DFA, then the concatenation KL is accepted
by a DFA of at most m2n − 2n−1 states [9]. Ternary languages meeting this upper bound were
described by Yu, Zhuang, and K. Salomaa [13]. Maslov [9] proposed binary witnesses for
concatenation, but he did not provide any proof. The tightness of this upper bound in the
binary case was proved in [5].

However, if the minimal DFA recognizing the first language has more that one final state, then
the upper bound m2n − 2n−1 on the state complexity of concatenation cannot be met; here,
the state complexity of a regular language is the number of states in the minimal DFA for
the language, and the state complexity of a regular operation is the number of states that are
sufficient and necessary in the worst case for a DFA to recognize the language resulting from
the operation. Yu et al. [13] showed that the state complexity of concatenation is at most
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m2n − k2n−1, where k is the number of final states in the minimal DFA for the first language.
The binary languages meeting this upper bound were described for each k with 1 ≤ k ≤ m− 1
in [4, Theorem 1], but there are some errors in the proof of this theorem, and one of our aims
is to fix these errors. We also show that the witnesses from [9] and [13] meet the upper bound
m2n − k2n−1 if we make the k last states final in the DFA for the first language.

Then we study the complexity of concatenation also in the case where the second automaton
has more than one final state. Our motivation comes from [3], where the authors consider the
concatenation operation on languages represented by alternating finite automata (AFA), and
get an upper bound 2m + n+ 1. They also write:

“We conjecture that this number of states is actually necessary in the worst case, but
have no proof.”

It is known [3, Theorem 4.1, Corollary 4.2] and [6, Lemma 1, Lemma 2] that a language L is
accepted by an n-state AFA if and only if its reversal LR is accepted by a 2n-state DFA with
2n−1 states final. Hence to get a lower bound for concatenation on AFAs, we need two languages
represented by DFAs with half of states final that are hard for concatenation on DFAs.

We first inspect the witnesses from [4, 9, 13] and show that none of them meets the upper
bound m2n − k2n−1 if the second automaton has more then one final state. Then we describe
ternary languages meeting this bound for all m,n, k, `, where m and k is the number of states
and the number of final states in the minimal DFA for the first language, and n and ` is the
number of states and the number of final states in the minimal DFA for the second language.
Finally, in the case of k ≤ m − 2, that is, if the first automaton has at least two non-final
states, we describe appropriate binary languages. We use these witnesses to define, for every
m,n ≥ 2, binary languages K and L accepted by an m-state and n-state AFAs, respectively,
such that the minimal AFA for KL requires 2m + n + 1 states. This proves that the upper
bound 2m + n+ 1 from [3] is tight, and solves the open problem stated in [3, Theorem 9.3].

2. Preliminaries

In this section, we give some basic definitions and preliminary results. For details and all
unexplained notions, the reader may refer to [11, 12].

Let Σ be a finite alphabet of symbols. Then Σ∗ denotes the set of strings over Σ including the
empty string ε. A language is any subset of Σ∗. The concatenation of languages K and L is
the language KL = {uv | u ∈ K and v ∈ L}. The cardinality of a finite set A is denoted by
|A|, and its power-set by 2A. We define an operator 	 as follows: If i, j ∈ {0, 1, . . . , n − 1},
then j 	 i = (j − i) mod n, and if S ⊆ {0, 1, . . . , n− 1}, then S 	 i = {j 	 i | j ∈ S}.

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, · , I, F ), where Q is a
finite set of states, Σ is a finite alphabet, · : Q × Σ → 2Q is the transition function which is
extended to the domain 2Q×Σ∗ in the natural way, I ⊆ Q is the set of initial states, and F ⊆ Q
is the set of final states. The language accepted by A is the set L(A) = {w ∈ Σ∗ | I ·w∩F 6= ∅}.
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For a symbol a, we say that (p, a, q) is a transition in NFA A if q ∈ p · a; we also say that
(p, a, q) is an in-transition on symbol a going to the state q. Next, we say that (p, a, q) is a
unique in-transition on a going to q if there is no state r with r 6= p such that (r, a, q) is a
transition in A. We call a state q is uniquely distinguishable if there exists a string w which is
accepted by A form and only from q, that is, we have p · w ∩ F 6= ∅ iff p = q. For a string w,
we write p

w−→ q if q ∈ p · w.

An NFA A is deterministic (DFA) and complete if |I| = 1 and |q · a| = 1 for each q in Q and
each a in Σ. In such a case, we write q · a = q′ instead of q · a = {q′}. The state complexity of
a regular language L, sc(L), is the smallest number of states in any DFA for L.

The reversal LR of a language L is defined as LR = {wR | w ∈ L}, where wR is the mirror
image of the string w. For every finite automaton A = (Q,Σ, · , I, F ) we can construct the
automaton AR = (Q,Σ, ·′ , F, I) where the function ·′ is defined as follows: p ∈ q ·′ a iff q ∈ p · a
for every p, q in Q and every a in Σ. Then it holds that L(AR) = (L(A))R.

Every NFA A = (Q,Σ, · , I, F ) can be converted into an equivalent DFA A′ = (2Q,Σ, ·′ , I, F ′),
where for every reachable set R ⊆ Q it holds R ·′ a = R · a and F ′ = {R ∈ 2Q | R ∩ F 6= ∅}
[10]. The DFA A′ is called the subset automaton of the NFA A. The subset automaton may
not be minimal since some of its states may be unreachable or equivalent to other states. In
the following proposition, we provide a sufficient condition for an NFA, which guarantees that
the corresponding subset automaton does not have equivalent states.

Proposition 2.1 Let N = (Q,Σ, · , I, F ) be an NFA. Assume that for each state q in Q, there
is a string wq in Σ∗ which is accepted by N only from the state q, that is, we have (q ·wq)∩F 6= ∅,
and (p ·wq)∩F = ∅ if p 6= q. Then the subset automaton of N does not have equivalent states.

Proof. Two distinct subsets of the subset automaton must differ in a state q, and the string wq

distinguishes the two subsets. 2

To describe a string wq accepted by an NFA only from state q, we use the next observation.

Proposition 2.2 Let a string wq be accepted by an NFA N only from state q. If (p, a, q) is
the unique in-transition going to state q by symbol a, then the string awq is accepted by N only
from state p.

3. Construction of NFA for Concatenation

Let K and L be accepted by minimal DFAs A and B, respectively. Without loss of generality,
we may assume that the state set of A is {q0, q1, . . . , qm−1} with the initial state q0, and the
state set of B is {0, 1, . . . , n − 1} with the initial state 0. Moreover, we denote the transition
function in both A and B by · ; there is no room for confusion since A and B have distinct state
sets. We first recall the construction of an NFA for the concatenation of languages K and L.

Construction 3.1 (DFA A and DFA B → NFA N for L(A)L(B))
Let A = ({q0, q1, . . . , qm−1},Σ, ·, q0, FA) and B = ({0, 1, . . . , n − 1},Σ, ·, 0, FB) be DFAs. We
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construct NFA N = ({q0, q1, . . . , qm−1} ∪ {0, 1, . . . , n − 1},Σ, ·, I, FB) from DFAs A and B as
follows:

(a) for each a in Σ and each state qi of A, if qi · a ∈ FA, then add the transition (qi, a, 0);
(b) the set I of initial states of N is {q0} if q0 /∈ FA, and it is {q0, 0} otherwise;
(c) the set of final state of N is FB.

Using the construction described above, we get an upper bound on the state complexity of
concatenation. Notice that the bound depends on the number of final states in the minimal
DFA for the first language.

Proposition 3.2 (Concatenation: Upper Bound if |FA| = k) Let K and L be regular lan-
guages with sc(K) = m and sc(L) = n, and let the minimal DFA for K have k final states.
Then sc(KL) ≤ (m− k)2n + k2n−1.

Proof. Let the languages K and L be accepted by DFAs A = ({q0, q1, . . . , qm−1},Σ, · , q0, FA)
and B = ({0, 1, . . . , n − 1},Σ, · , 0, FB), respectively. Let |FA| = k. Construct an NFA N for
KL as in the construction above, and consider the corresponding subset automaton D. Since
A is deterministic and complete, each reachable subset in D is of the form {qi} ∪ S, where
S ⊆ {0, 1, . . . , n− 1}. Moreover, if qi is a final state of A, then 0 ∈ S since the NFA N has the
transition (q, a, 0) whenever a state q of A goes to a final state qi on a symbol a. It follows that
the subset automaton of N has at most (m− k)2n + k2n−1 reachable states. 2

Notice that (m− k)2n + k2n−1 = m2n − k2n−1, which is maximal if k = 1. We prefer to write
the upper bound as (m− 1)2n + 2n−1; cf. [9, 13].

Corollary 3.3 (Concatenation: Upper Bound) Let K and L be regular languages with
sc(K) = m and sc(L) = n. Then sc(KL) ≤ (m− 1)2n + 2n−1.

4. Ternary and Binary Witness Languages

Motivated by the open problem from [3] concerning the tightness of the upper bound 2m+n+1
for concatenation on alternating automata, we study the state complexity of the concatenation
of languages represented by deterministic finite automata that have more than one final state.
Let us start with the following observation.

Observation 4.1 Let m ≥ 1, k ≤ m. Let A be an m-state DFA with k final states and B be
a 1-state DFA, both over an alphabet Σ. Then sc(L(A)L(B)) ≤ m − k + 1, and the bound is
tight if |Σ| ≥ 1.

Proof. If a complete DFA B has one state, then either L(B) = ∅ or L(B) = Σ∗. Since for every
language L holds L∅ = ∅, and hence sc(L∅) = 1, we assume that L(B) = Σ∗. We construct
the DFA for L(A)L(B) from A as follows: for every final state p and every a in Σ, we replace
the transition (p, a, q) by the transition (p, a, p). The resulting automaton is deterministic and
complete, has m states and k final states. All the final states are equivalent since every string
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0 . . . m−k−1 m− k . . . m− 1
a a a a a

a

Figure 1: Unary automaton A with sc(L(A)Σ∗) = m− k + 1.

is accepted from any of them. It follows that we can merge all final states into a single final
state. This gives the upper bound m − k + 1. To prove tightness, consider the unary DFA
shown in Figure 1. For each final state p, we remove all the transitions going from p, and add
the transition (p, a, p). Then we merge all final states into a single final state. The resulting
automaton accepts the language am−ka∗ and has m− k + 1 states. Since the DFA in Figure 1
meets the upper bound, it must be minimal. 2

Next we investigate the automata with sc(L(B)) ≥ 2. We inspect three worst-case examples
from the literature, and change them by making some states in the first automaton final. To
simplify the proofs, we use the property of all these witnesses that the letter a makes the
permutation qi · a = q(i+1) mod m in A and a permutation in B. If these two conditions are
satisfied, then we get the following observation.

Lemma 4.2 Consider DFAs A = ({q0, q1, . . . , qm−1},Σ, · , q0, {qm−k, qm−k+1, . . . , qm−1}) and
B = (QB,Σ, · , 0, FB), where QB = {0, 1, . . . , n − 1}. Assume that there is a symbol a in Σ
such that qi · a = q(i+1) mod m and a performs a permutation on QB. Let N be an NFA for
L(A)L(B) from the Construction 3.1. Then in the subset automaton of N , we have

(1) for each S ⊆ QB with 0 ∈ S, the set {qm−k} ∪ S is reachable from a set {qm−k−1} ∪ S ′,
where S ′ ⊆ QB and |S ′| = |S| − 1;

(2) for each S ⊆ QB and each i = 1, 2, . . . ,m− k − 1, the set {qi} ∪ S is reachable from a set
{q0} ∪ S ′, where S ′ ⊆ QB and |S ′| = |S|;

(3) moreover, if 0 · a = 0, then for each S ⊆ QB with 0 ∈ S and for each i = 0, 1, . . . ,m− 1,
the set {qi} ∪ S is reachable from a set {qm−k−1} ∪ S ′, where S ′ ⊆ QB and |S ′| = |S| − 1.

Proof. Since a is a permutation on QB, we can use q · a−1 to denote the state p with p · a = q.
Next, we can extend a−1 to subsets of QB and to a−i.

(1) Let S ′ = (S \ {0}) · a−1. Then |S ′| = |S| − 1 and the set {qm−k} ∪ S is reached from
{qm−k−1} ∪ S ′ by a.

(2) Let S ′ = S · a−i. Then |S ′| = |S| and the set {qi} ∪ S is reached from {q0} ∪ S ′ by ai.
(3) Let S ′ = (S \ {0}) · a−(k+1+i). Then |S ′| = |S| − 1 and the set {qi} ∪ S is reached from
{qm−k−1} ∪ S ′ by ak+1+i since 0 · a = 0.

2

Ternary witness languages meeting the upper bound for concatenationare described in [13,
Theorem 2.1]. We generalize these languages to get more final states in the first automaton.
Then we provide a proof that if the minimal DFA for the first language has k final states, then
the state complexity of the resulting concatenation meets the upper bound (m− k)2n + k2n−1.
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A q0 q1 . . . qm−k−1 qm−k . . . qm−2 qm−1

B 0 1 2 . . . n− 2 n− 1

a a a a a a a

b, c

b b b b a, b

c
c c

c c

b, c b b b b

b c c c

a a, c a a a

Figure 2: Ternary witnesses for concatenation meeting the bound (m − k)2n + k2n−1; m,n ≥ 2 and
1 ≤ k ≤ m− 1.

Lemma 4.3 (Ternary Witness Languages with |FA| = k and |FB| = 1) Let m,n ≥ 2,
1 ≤ k ≤ m−1. Let K and L be the ternary languages accepted by DFAs A and B, respectively,
shown in Figure 2. Then sc(KL) = (m− k)2n + k2n−1.

Proof. Construct an NFA N for KL from DFAs A and B by adding transitions (qi−1, a, 0) and
(qi, c, 0) for m− k ≤ i ≤ m− 1 as shown in Figure 3; the initial state of N is q0, and the set of
final states is {n− 1}. Let R be the following family of (m− k)2n + k2n−1 subsets of states:

R =
{
{qi} ∪ S | 0 ≤ i ≤ m− k − 1 and S ⊆ QB

}
∪{

{qi} ∪ S | m− k ≤ i ≤ m− 1, S ⊆ QB and 0 ∈ S
}
.

To prove the lemma, we only need to show that each subset in R is reachable in the subset
automaton of N , and that all these subsets are pairwise distinguishable.

We first prove reachability. The proof is by induction on |{qi} ∪ S|. The basis, |{qi} ∪ S| = 1,
holds true since {q0} is the initial state and it goes to the subset {qi} by ai if 1 ≤ i ≤ m−k−1.
Let 1 ≤ t ≤ n, and assume that each subset in R of size t is reachable. By Lemma 4.2, each set
{qi}∪S of size t+ 1, where m− k ≤ i ≤ m− 1 and S ⊆ QB with 0 ∈ S, can be reached from a
set of size t since the symbol a performs the permutation qi · a = q(i+1) mod m on states of A and
a permutation on states of B and moreover 0 · a = 0. Next, by Lemma 4.2, each set {qi} ∪ S
of size t + 1 where 1 ≤ i ≤ m− k − 1 is reached from a set {q0} ∪ S ′ of size t + 1. Hence it is
enough to show the reachability of sets {q0} ∪S for every S ⊆ QB such that |{q0} ∪S| = t+ 1.
We have

{qm−1} ∪ (S 	minS)
a−→ {q0} ∪ (S 	minS)

bminS

−−−→ {q0} ∪ S,

where 0 ∈ S 	minS and the set {qm−1} ∪ (S 	minS) can be reached from a set of size t by
Lemma 4.2. This proves reachability. To prove distinguishability, let {qi} ∪ S and {qj} ∪ T be
two distinct subsets in R. Notice that the state n − 1 is uniquely distinguishable in NFA N
since it is a unique final state. Next, the state n − 1 is reached from each state of QB in the
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q0 q1 . . . qm−k−1 qm−k . . . qm−2 qm−1

0 1 2 . . . n− 2 n− 1

a a a a a a a

b, c

b b b b a, b

c
c c

c c

b, c b b b b

b c c c

a a, c a a a

a a, c a, c
c

Figure 3: An NFA N for KL, where K and L are accepted by DFAs A and B from Figure 2.

subgraph of unique in-transitions (j, b, j + 1) where 0 ≤ j ≤ n− 2. It follows that each state in
QB is uniquely distinguishable. By Proposition 2.1, if S 6= T , then {qi} ∪ S and {qj} ∪ T are
distinguishable. Now let S = T . Then i 6= j, and without loss of generality, i < j. There are
three cases:

(1) Let i < m− k ≤ j, that is, qi is non-final and qj is final in A. Then 0 /∈ ({qi} ∪ S) · c, but
0 ∈ ({qj} ∪ S) · c, so the sets differ in the state 0 and are distinguishable as shown above.

(2) Let m− k ≤ i < j, that is, both qi and qj are final in A. Then we read am−j and get the
sets {q0} ∪ S and {qm−j+i} ∪ S which are considered in case (1).

(3) Let i < j < m − k, that is, both qi and qj are non-final in A. Then we read am−k−j and
get the sets {qm−k−j+i} ∪ S and {qm−k} ∪ {0} ∪ S which either differ in the state 0 or are
considered in case (1).

This proves distinguishability and concludes our proof. 2

Yu et al. [13] left the binary case open. Later, a paper by Maslov [9] was found, in which the
author describes binary witnesses. However, he does not provide any proof. Let us show that
his witnesses, generalized to have k final states in A, shown in Figure 4, work for n ≥ 3.

Lemma 4.4 (Binary Witness Languages with |FA| = k and |FB| = 1) Let m ≥ 2, n ≥ 3,
and 1 ≤ k ≤ m − 1. Let K and L be the binary languages accepted by DFAs A and B shown
in Figure 4. Then sc(KL) = (m− k)2n + k2n−1.

Proof. Construct an NFA N for KL from DFAs A and B by adding transitions (qi−1, a, 0) and
(qi, b, 0) for m− k ≤ i ≤ m− 1, the initial state of N is q0, and the set of final states is {n− 1}.
Let R be the same family of (m − k)2n + k2n−1 subsets as in the previous proof. We need to
show that each set in R is reachable in the subset automaton. The proof is by induction on
|{qi} ∪ S|. The basis, |{qi} ∪ S| = 1, holds true since {q0} is the initial state and it goes to the
subset {qi} by ai if 1 ≤ i ≤ m− k− 1. Let 1 ≤ t ≤ n, and assume that each subset in R of size
t is reachable. By Lemma 4.2, it is enough to show the reachability of sets {q0} ∪ S for every
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A q0 q1 . . . qm−k−1 qm−k . . . qm−2 qm−1

B 0 1 . . . n− 3 n− 2 n− 1

a a a a a a a

a

b b
b

b b b

b b b b a, b

a a a b

a

Figure 4: Binary witnesses for concatenation meeting the bound (m − k)2n + k2n−1; m ≥ 2, n ≥ 3,
and 1 ≤ k ≤ m− 1 .

S ⊆ QB such that |{q0} ∪ S| = t+ 1. We have

{qm−1} ∪ (S 	minS) · a−1 a−→ {q0} ∪ (S 	minS)
bminS

−−−→ {q0} ∪ S,

where 0 ∈ S 	minS and the set {qm−1} ∪ (S 	minS) · a−1 can be reached from a set of size t
by Lemma 4.2. This proves reachability.

To prove distinguishability, let {qi} ∪ S and {qj} ∪ T be two distinct subsets in R. Notice
that the state n− 1 is uniquely distinguishable since it is a unique final state in B. Next, the
state n − 1 is uniquely reachable by each state in QB in the subtree of unique in-transitions

0
b−→ 1

b−→ . . .
b−→ n − 2

a−→ n − 1. It follows that each state in QB is uniquely distinguishable.
By Proposition 2.1, if S 6= T , then {qi} ∪ S and {qj} ∪ T are distinguishable. Now let S = T .
Then i 6= j, and without loss of generality, i < j. There are four cases:

(1) Let i < m− k ≤ j, so 0 ∈ S. Then we read b and get {qi}∪ (S · b) and {qj}∪ {0}∪ (S · b),
which differ in state 0 since 0 /∈ S · b.

(2) If m− k ≤ i < j, then we read am−j and get {qm−j+i} ∪ (S · am−j) and {q0} ∪ (S · am−j),
which are considered in case (1).

(3) If i < j < m− k and 0 ∈ S, then we read am−k−j and get {qm−k−j+i} ∪ (S · am−k−j) and
{qm−k} ∪ (S · am−k−j), which are considered in case (1).

(4) If i < j < m− k and 0 /∈ S, then we read am−k−j and get {qm−k−j+i} ∪ (S · am−k−j) and
{qm−k} ∪ {0} ∪ (S · am−k−j), which differ in state 0.

This proves distinguishability and concludes our proof. 2

While the ternary witnesses from Lemma 4.3 require the complexities m ≥ 2 and n ≥ 2, for
the binary case, the witnesses from Lemma 4.4 do not work if n = 2. In [4, Theorem 1],
binary witnesses for m ≥ 1 and n ≥ 2 are described. However, the proof of [4, Theorem 1]
does not work: For example, it is claimed that the set {qm−k−1, j2 − 1, . . . , js − 1} goes to
{qm−k+1, 0, j2, . . . , js} by aabn−1; cf. line -4 on page 515. In fact it goes to {qm−k+1, 0}. Such an
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error occurs several times in the proof, namely, on line -2 on page 515, and on lines 2 and 8 on
page 516. The authors overlooked that abn−1 does not perform an identity on {0, 1, . . . , n− 1},
but moves this set to {0}. Here we provide a correct proof.

Lemma 4.5 ([4], Binary Witness Languages with |FA| = k and |FB| = 1) Let m ≥ 1,
n ≥ 2. Let k = 1 if m = 1, and 1 ≤ k ≤ m − 1 otherwise. There exist binary regular
languages K and L with sc(K) = m, sc(L) = n such that the minimal DFA for K has k final
states and sc(KL) = (m− k)2n + k2n−1.

A q0 q1 . . . qm−k−1 qm−k . . . qm−2 qm−1

B 0 1 2 . . . n− 2 n− 1

a a a a a a a

a

b b
b b b b

a a, b a, b a, b a, b

a, b

b

Figure 5: Binary witnesses for k final states meeting the bound (m− k)2n + k2n−1; m ≥ 1, n ≥ 2
[4, Jirásek, Jirásková, Szabari 2005].

Proof. First let m = 1, so K = {a, b}∗ and let L be the language accepted by the DFA B
shown in Figure 5 (bottom). Construct an NFA N for KL from B by adding the transition
(0, a, 0). In the subset automaton of N , the singleton set {0} is the initial subset, and each
subset S of size t + 1 such that 0 ∈ S is reached from the subset (S \ {0}) 	min(S \ {0}) of
size t by the string abmin(S\{0})−1. Since the state n−1 is uniquely distinguishable and uniquely
reachable from every other state in {0, 1, . . . , n − 1}, by Proposition 2.1 all the states of the
subset automaton of N are pairwise distinguishable. Hence sc(KL) = 2n−1.

Now let m ≥ 2. Let K and L be the languages accepted by DFAs A and B shown in Figure 5.
Construct an NFA N for KL from DFAs A and B as in the Construction 3.1. Let R be the
same family of (m− k)2n + k2n−1 subsets as in the proof of Lemma 4.3. Let us show that each
subset {qi} ∪ S in R is reachable in the subset automaton of N . The proof is by induction on
|{qi} ∪ S|. The basis, with |{qi} ∪ S| ≤ 2, holds true, since we have

{q0}
ai−→ {qi} (1 ≤ i ≤ m− k − 1),

{qm−k−1}
a−→ {qm−k, 0}

(abn)i−−−→ {qm−k+i, 0} (1 ≤ i ≤ k − 1),

{qm−1, 0}
a−→ {q0, 1}

bj−1

−−→ {q0, j} (2 ≤ j ≤ n− 1), and {q0, n− 1} b−→ {q0, 0},
{q0, j 	 i}

ai−→ {qi, j} (1 ≤ i ≤ m− k − 1).
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bound 2 4 6 [9] 2 4 6 [13] 2 4 6 [4] 2 4 6

2 6 24 96 2 5 4 18 2 6 14 27 2 6 22 84
4 12 48 192 4 10 5 35 4 12 28 54 4 12 42 156
6 18 72 288 6 15 6 52 6 18 42 81 6 18 63 225

Table 1: The state complexity of concatenation if the witness languages from [4, 9, 13] have the second
half of their states final; in rows we have m, in columns n.

Let 1 ≤ t ≤ n, and assume the each set in R of size t is reachable. By Lemma 4.2, every set
{qm−k} ∪ S in R of size t + 1 is reachable from a set in R of size t. Now we reach the sets
{qi} ∪ S in R of size t+ 1 for all i = m− k + 1,m− k + 2, . . . ,m− 1. Let S ′ = S \ {0}. Then

{qi−1} ∪ (S ′ 	minS ′)
a−→ {qi} ∪ {0} ∪ (S ′ 	 (minS ′ − 1))

bminS′−1

−−−−−→ {qi} ∪ S,

notice that 0 ∈ S ′ 	minS ′. This proves the reachability of sets {qi} ∪ S if m− k ≤ i ≤ m− 1.
Next we prove that for every S ⊆ QB, the set {q0} ∪ S of size t+ 1 is reachable.

If 0 /∈ S, we have {qm−1} ∪ (S 	minS)
a−→ {q0} ∪ (S 	 (minS − 1))

bminS−1

−−−−→ {q0} ∪ S.

If 0 ∈ S, let S ′ = S \ {0}. We have

{qm−1} ∪ (S ′ 	minS ′) ∪ {n− 1} a−→ {q0} ∪ {0} ∪ (S ′ 	 (minS ′ − 1))
bminS′−1

−−−−−→ {q0} ∪ S.

In both cases, the first set has size t+ 1 and, as shown above, it is reachable. The sets {qi}∪S
in R of size t+ 1 where 1 ≤ i ≤ m− k − 1 are reachable by Lemma 4.2.

To prove distinguishability, let {qi} ∪ S and {qj} ∪ T be two distinct subsets in R. Notice that
the state n−1 is uniquely distinguishable since it is a unique final state. Also the state n−1 is
uniquely reachable by states in QB since for every j = 0, 1, . . . , n− 2 the transition (j, a, j + 1)
is unique in-transition. By Proposition 2.1, if S 6= T , then the sets {qi} ∪ S and {qj} ∪ T are
distinguishable. Now let S = T , so i < j. If S = ∅, we read am−k−j and get {qm−k−j+i} and
{qm−k, 0}. If S 6= ∅, we first read am−1−jbn to get {qm−1−j+i, 0} and {qm−1, 0}. When we read
a, there are two subcases:

(1) If m− j + i ≥ m− k, then we get {qm−j+i, 0, 1} and {q0, 1} which are distinguishable.
(2) If m− j+ i < m−k, then we get {qm−j+i, 1} and {q0, 1}. Then we read a(m−k−1)−(m−j+i)bn

and get {qm−k−1, 0} and {qj−i−k−1, 0}. Finally we read a and get {qm−k, 0, 1} and {qj−i−k, 1},
which are distinguishable.

This proves distinguishability and concludes our proof. 2

Our next goal is to describe, for all m,n, k, ` with n ≥ 2, two DFAs of m and n states, and k and
` final states, respectively, meeting the upper bound (m−k)2n+k2n−1 on the complexity of the
concatenation of their languages. We try to modify the witness automata in all cases, by making
the second half of their states final. The upper bound in such a case is 3m ·2n−2. Table 1 shows
that none of the three witnesses presented in [4, 9, 13] meets this bound. Even making two
states final in DFA B, results in a complexity of concatenation less that (m−2)2n+2·2n−1 in all
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three cases. Therefore we present a new pair of witness languages. We use a modified witness
from [4, Theorem 1]. However, to cover all possible values of m,n, k, `, we add transitions on
a new letter c.

Theorem 4.6 (Ternary Witness Languages with |FA| = k and |FB| = `) Let m ≥ 1 and
n ≥ 2. Let k = 1 if m = 1 and 1 ≤ k ≤ m − 1 otherwise. Let 1 ≤ ` ≤ n − 1. There exists a
ternary DFA A with m states and k final states and a ternary DFA B with n states and ` final
states such that sc(L(A)L(B)) = (m− k)2n + k2n−1.

A q0 q1 . . . qm−k−1 qm−k qm−k+1 . . . qm−2 qm−1

B 0 1 2 . . . n−`−1 n− ` . . . n− 2 n− 1

a a a a a a a a

a

b, c b, c
b, c b, c b, c

b, c b, c

a a, b a, b a, b a, b a, b a, b a, b

a, b

b, c

c c c c c

c

Figure 6: The DFAs with half of states final and sc(L(A)L(B)) = (m− k)2n + k2n−1.

Proof. Let A and B be the ternary DFAs shown in Figure 6. Notice that the transitions on
symbols a and b are the same as in binary DFAs in the proof of Lemma 4.5 shown in Figure 5.
On input c, each state qi of A goes to itself, and each state j of B goes to the state 0, except for
n− 1 which goes to itself. Construct an NFA for L(A)L(B) from DFAs A and B as described
in Construction 3.1. Since the transitions on a and b are the same as in DFAs in the proof of
Lemma 4.5, the proof of reachability is the same; notice that making some states final in DFA
B does not play any role in the proof of reachability.

We only need to prove distinguishability. To this aim, let {qi}∪S and {qj}∪T be two distinct
reachable subsets. Notice that the state n− 1 is uniquely distinguishable by the string c since
we have ` ≤ n− 1, so state 0 is not final. Next, the state n− 1 is uniquely reachable from all
states in QB by in-transitions on a. It follows that {qi} ∪ S and {qj} ∪ T are distinguishable
if S 6= T . Now let S = T . In this case we continue exactly the same way as in the proof of
Lemma 4.5. 2

We have proved that for every number of states in A and B, except for one state in B, and
every number of final states in A and B, except for none or all, there exist ternary automata
meeting the upper bound (m− k)2n + k2n−1 for concatenation of their languages. However, we
might ask whether there are binary languages with more final states in B meeting this bound.
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We provide a positive answer in the next theorem. However, notice that we require k ≤ m− 2
here, that is, the first DFA must have at least two non-final states.

Theorem 4.7 Let m ≥ 3, n ≥ 4, 1 ≤ k ≤ m − 2, and 1 ≤ ` ≤ n − 1. There exists a binary
DFA A with m states and k final states and a binary DFA B with n states and ` final states
such that sc(L(A)L(B)) = (m− k)2n + k2n−1.

Proof. Define an m-state DFA A = (QA, {a, b}, · , q0, FA), where QA = {q0, q1, . . . , qm−1},
FA = {qm−k, qm−k+1, . . . , qm−1}, and the transition function · is defined as follows:
qi · a = q(i+1) mod m, q0 · b = q0 and qi · b = qi−1 if 1 ≤ i ≤ m− 1.

Next, define an n-state DFA B = (QB, {a, b}, · , 0, FB), where QB = {0, 1, . . . , n − 1}, FB =
{n − `, n − ` + 1, . . . , n − 1} if ` ≤ n − 2, and FB = QB \ {1} if ` = n − 1. The transition
function · is defined as follows:

0 · a = 0, j · a = j + 1 if 1 ≤ j ≤ n− 2, and (n− 1) · a = 1,
0 · b = 1, 1 · b = 2, and j · b = j if 2 ≤ j ≤ n− 1.

The DFAs A and B are shown in Figure 7; notice that the DFA B is the same as in [2]. Since
k ≤ m−2, the states q0 are q1 are never final. By the definition of B, state 1 is not final either.

A q0 q1 . . . qm−k−1 qm−k . . . qm−2 qm−1

B 0 1 2 . . . n−`−1 n− ` . . . n− 2 n− 1

a a a a a a a

a

b
b b b b b b b

a

a, b a a a a a a

a

b

b
b b b b

Figure 7: The DFAs with sc(L(A)L(B)) = (m− k)2n + k2n−1, modified from [2].

To prove the theorem, we construct an NFA N for L(A)L(B) as described in Construction
3.1. We prove that the subset automaton of N has (m− k)2n + k2n−1 reachable and pairwise
distinguishable states. We first prove reachability by induction on |{qi} ∪ S|. The base, with

|{qi} ∪ S| = 1, holds true since q0
ai−→ qi for 1 ≤ i ≤ m − k − 1. By Lemma 4.2, we need only

to prove that every set {q0} ∪ S of size t+ 1 and 0 /∈ S is reachable from a set {q0} ∪ S ′ of size
t + 1. Let S ′ = ((S 	 (minS − 1)) \ {1}) ∪ {0}. Then |S ′| = |S| and 0 ∈ S. Next we have

{q0} ∪ S ′
b(ab)minS−1

−−−−−−−→ {q0} ∪ S; notice that 1 ∈ S 	 (minS − 1) and q0
ab−→ q0, because q1 /∈ FA

since k ≤ m− 2. This proves reachability.

To prove distinguishability, we use the string w =
n−4∏
i=0

an−3−ibmai+2. Notice that we have

{2} · w = {2}; (QB \ {2}) · w = {1}; QA · w ⊆ QA ∪ {0, 1}.
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We now use these properties to prove distinguishability. We consider several cases:

(1) If 2 ∈ S and 2 /∈ T , then {qi} ∪ S
wabm−−−→ {q0} ∪ {2, 3}

(ba)n−2

−−−−→ {q1} ∪ {1, 3}, and

{qj} ∪ T
wabm−−−→ {q0} ∪ {2}

(ba)n−2

−−−−→ {q1} ∪ {1}.
If 3 ∈ FB, we have distinguished the sets. If not, we read an−`−3 and distinguish the sets
since all states j with j < n− ` are non-final.

(2) If 1 ≤ s ≤ n− 1, s ∈ S and s /∈ T , we read an+1−s to get the case (1).

(3) If 0 ∈ S and 0 /∈ T , we read b to get the case (2).

(4) If S = T and 1 ≤ i < m− k ≤ j, we read ba and get {qi} ∪ S · ba and {qj} ∪ {0} ∪ S · ba.
If 0 = i < m− k ≤ j, we read ba and get {q1} ∪ S · ba and {qj} ∪ {0} ∪ S · ba, notice that
0 /∈ S · ba. We get the case (3).

(5) If m− k ≤ i < j, we read am−j and get {qm−j+i} ∪ S · am−j and {q0} ∪ S · am−j, which is
considered in the case (4).

(6) If i < j < m− k, we read am−k−j and get {qm−k−j+i} ∪ S · am−k−j and {qm−k} ∪ {0} ∪ S ·
am−k−j. If 0 /∈ S · am−k−j, we get the case (3). If 0 ∈ S · am−k−j, we get the case (4).

This proves distinguishability and concludes our proof. 2

5. Concatenation on Alternating Finite Automata

In this section, we consider the concatenation operation on alternating finite automata (AFAs).
Our aim is to describe languages K and L accepted by an m-state and n-state AFA, respectively,
such that the minimal AFA for the language KL requires 2m + n + 1 states. This solves an
open problem stated by Fellah, Jürgensen, and Yu in [3], where the upper bound is proved to
be the same. First, let us give some basic definitions and notations. For details, we refer the
reader to [1, 3, 6, 7, 8, 11, 12].

An alternating finite automaton (AFA) is a quintuple A = (Q,Σ, δ, s, F ), where Q is a finite
non-empty set of states, Q = {q1, . . . , qn}, Σ is an input alphabet, δ is the transition function
that maps Q × Σ into the set Bn of boolean functions over the n variables q1, . . . , qn, s ∈ Q
is the initial state, and F ⊆ Q is the set of final states. For an example, consider AFA
A1 = ({q1, q2}, {a, b}, δ, q1, {q2}), where transition function δ is given in Table 2. The transition
function δ is extended to the domain Bn × Σ∗ as follows: For all g in Bn, a in Σ, and w in Σ∗,
δ(g, ε) = g;
if g = g(q1, . . . , qn), then δ(g, a) = g(δ(q1, a), . . . , δ(qn, a));
δ(g, wa) = δ(δ(g, w), a).

Next, let f = (f1, . . . , fn) be the boolean vector with fi = 1 iff qi ∈ F . The language accepted
by the AFA A is the set L(A) = {w ∈ Σ∗ | δ(s, w)(f) = 1}. In our example we have
δ(q1, ab) = δ(δ(q1, a), b) = δ(q1 ∨ q2, b) = q1 ∨ (q1 ∧ q2) = q1 ∨ q2. To determine whether
ab ∈ L(A1), we evaluate δ(q1, ab) at the vector f = (0, 1). We obtain 1, hence ab ∈ L(A1).

Recall that the state complexity of a regular language L, sc(L), is the smallest number of
states in any DFA accepting L. Similarly, the alternating state complexity of L, asc(L), is the
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δ a b
q1 q1 ∨ q2 q1
q2 q2 q1 ∧ q2

Table 2: The transition function of the alternating finite automaton A1.

smallest number of states in any AFA for L. It follows from [3, Theorem 4.1, Corollary 4.2]
and [6, Lemma 1, Lemma 2] that a language L is accepted by an n-state AFA if and only if LR

is accepted by a DFA with 2n states and 2n−1 final states. As this is a crucial observation for
this section, we restate these results and provide proof ideas.

Lemma 5.1 ([3, 6]) Let L be a language accepted by an n-state AFA. Then the reversal LR

is accepted by a DFA of 2n states, of which 2n−1 are final.

Proof Idea. Let A = ({q1, q2, . . . , qn},Σ, δ, q1, F ) be an n-state AFA for L. Construct a 2n-state
NFA A′ = ({0, 1}n,Σ, δ′, S, {f}), where

– for every u = (u1 . . . , un) ∈ {0, 1}n and every a ∈ Σ,
δ′(u, a) = {u′ ∈ {0, 1}n | δ(qi, a)(u′) = ui for i = 1, . . . , n};

– S = {(b1, . . . , bn) ∈ {0, 1}n | b1 = 1};
– f = (f1, . . . , fn) ∈ {0, 1}n with fi = 1 iff qi ∈ F .

Then L(A) = L(A′), NFA A′ has 2n−1 initial states and (A′)R is deterministic. It follows that
LR is accepted by a DFA with 2n states, of which 2n−1 are final. 2

Corollary 5.2 For every regular language L, we have asc(L) ≥ dlog(sc(LR))e.

Lemma 5.3 (cf. [6], Lemma 2) Let LR be accepted by a DFA A of 2n states, of which 2n−1

are final. Then L is accepted by an n-state AFA.

Proof Idea. Consider 2n-state NFA AR for L which has 2n−1 initial states and exactly one final
state. Let the state set Q of AR be {0, 1, . . . , 2n − 1} with initial states {2n−1, . . . , 2n − 1} and
final state k. Let δ be the transition function of AR. Moreover, for every a ∈ Σ and for every
i ∈ Q, there is exactly one state j such that j goes to i on a in AR. For a state i ∈ Q, let
bin(i) = (b1, . . . , bn) be the binary n-tuple such that b1b2 . . . bn is the binary notation of i on n
digits with leading zeros if necessary.

Define an n-state AFA A′ = (Q′,Σ, δ′, q1, F
′), where Q′ = {q1, . . . , qn}, F ′ = {q` | bin(k)` = 1},

and for each i in Q and a in Σ, (δ′(q1, a), . . . , δ′(qn, a))(bin(i)) = bin(j) where i ∈ δ(j, a). Then
L(A′) = L(AR). 2

By Corollary 5.2, we have asc(L) ≥ dlog(sc(LR))e. The upper bound for concatenation on AFAs
is 2m + n+ 1, as proved by Fellah et al. [3, Theorem 9.3]. They conjectured that this bound is
tight. In [6], the lower bound 2m + n was proved, however, the witnesses from [4, Theorem 1]
with half of states final in both automata were used. As we mentioned above, cf. Table 1, these
witness languages do not meet the upper bound for concatenation on DFAs. Hence the proof
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in [6, Theorem 5] is not correct, so the problem is still open. Our next aim is to prove the
tightness of the upper bound 2m +n+ 1 for concatenation on AFAs. We might use the ternary
witness from Theorem 4.6, but, as we show below, for asc(K) ≥ 2, asc(L) ≥ 2, it is sufficient
to use the binary witness languages described in the proof of Theorem 4.7 to get languages that
meet the upper bound 2m + n+ 1 for concatenation on AFAs. The following theorem not only
proves the claim in [6, Theorem 5], but also solves the open problem mentioned above.

Theorem 5.4 (Concatenation on AFAs) Let m,n ≥ 2. Let K,L ⊆ Σ∗ and asc(K) = m
and asc(L) = n. Then asc(KL) ≤ 2m + n+ 1, and this bound is tight if |Σ| ≥ 2.

Proof. The upper bound on the complexity concatenation of AFA languages is known to be
2m+n+1 [3, Theorem 9.3]. Let LR be the binary regular language accepted by the minimal DFA
A from the proof of Theorem 4.7, with 2n states and 2n−1 final states. Let KR be the binary
regular language accepted by the minimal DFA B from the proof of Theorem 4.7, with 2m

states and 2m−1 final states. Then, by Lemma 5.3, we have asc(K) ≤ m and asc(L) ≤ n. Using
Theorem 4.7, we get sc((KL)R) = sc(LRKR) = 2n−1 · 22m + 2n−1 · 22m−1 = 2n−1 · 22m(1 + 1/2).
By Corollary 5.2, we have asc(KL) ≥ dlog(2n−1 · 22m(1 + 1/2))e = 2m + n.

Our next aim is to show that asc(KL) ≥ 2m + n + 1. Suppose for a contradiction that KL
is accepted by an AFA of 2m + n states. Then (KL)R is accepted by a 22m+n-state DFA
with 22m+n−1 final states. It follows that every minimal DFA for (KL)R has at most 22m+n−1

final states. However, the minimal DFA for (KL)R has 2n−122m + 2n−122m−1 states, of which
2n−122m−1

+ 2n−122m−1−1 are non-final; notice that {qi} ∪ S is non-final iff i ≤ 2n−1 − 1 and
S ⊆ {0, 1, . . . , 2m−1−1} or 2n−1 ≤ i ≤ 2n−1 and S ⊆ {0, 1, . . . , 2m−1−1} with 0 ∈ S. Thus the
number of final states in the minimal DFA for (KL)R is 2n−1(22m+22m−1)−2n−1(22m−1

+22m−1−1),
and since m ≥ 2, we get

2n−1(22m + 22m−1)− 2n−1(22m−1

+ 22m−1−1) =

22m2n−1(1 +
1

2
− 1

22m−1 −
1

22m−1+1
) >

22m+n−1(1 +
1

2
− 1

4
− 1

4
) = 22m+n−1.

Hence, the minimal DFA for (KL)R has more than 22m+n−1 final states, a contradiction. It
follows that asc(KL) ≥ 2m + n+ 1, which proves the theorem. 2

6. Conclusions

We studied the state complexity of the concatenation of languages represented by deterministic
and alternating finite automata.

First, we looked at ternary languages in [13, Theorem 2.1] and provided a proof that if we
give k final states to the first automaton, then the concatenation still meets the upper bound
(m−k)2n +k2n−1 if m,n ≥ 2. Similarly, we proved that if we make more states final in the first
automaton in [9], then the resulting concatenation meets the upper bound if n ≥ 3. Then we
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fixed errors in the proof of [4, Theorem 1] to get another pair of binary languages meeting this
upper bound if m ≥ 1 and n ≥ 2.Our computations showed that none of these witnesses meets
the upper bound (m− k)2n + k2n−1 if we make k states final in the first automaton, and more
than one state final in the second one. Thus, we had to define new ternary languages meeting
this upper bound also in the case when the second automaton has more than one final state.
We also defined binary languages meeting the same bound in the case when the first automaton
has at least two non-final states and both automata have at least four states. Using this result,
we were able to describe two languages accepted by an m-state and an n-state alternating finite
automata meeting the bound 2m + n + 1 for their concatenation. This fixes some errors in [6,
Theorem 5] and solves the open problem from [3, Theorem 9.3].
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