
Operations on Boolean and Alternating
Finite Automata

Michal Hospodár, Galina Jirásková, and Ivana Krajňáková(B)

Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

hosmich@gmail.com, {jiraskov,krajnakova}@saske.sk

Abstract. We investigate the descriptional complexity of basic regular
operations on languages represented by Boolean and alternating finite
automata. In particular, we consider the operations of difference, sym-
metric difference, star, reversal, left quotient, and right quotient, and
get tight upper bounds m + n, m + n, 2n, 2n, m, and 2m, respectively,
for Boolean automata, and m + n + 1, m + n, 2n, 2n, m + 1, and 2m + 1,
respectively, for alternating finite automata. To describe witnesses for
symmetric difference, we use a ternary alphabet. All the remaining wit-
nesses are defined over binary or unary alphabets that are shown to be
optimal.

1 Introduction

The Boolean finite automata (BFAs) are generalization of nondeterministic finite
automata (NFAs). In an NFA, the transition function maps any pair of state and
input symbol to a subset of states. This subset can be viewed as disjunction of
its states. We obtain a BFA by considering other Boolean functions on states
as a result of the transition function. Alternating finite automata (AFAs) start
from the only one initial state, wheares Boolean automata may start their com-
putation in any Boolean function designated as the initial function.

Boolean automata recognize the class of regular languages [2,4]. Every n-state
Boolean automaton can be simulated by 22

n

-state deterministic finite automaton
(DFA), or by (2n + 1)-state NFA, and both upper bounds are tight already in
the binary case [2,10].

Some of the constructions and upper bounds for elementary operations on
alternating automata were introduced in [5]. The upper bound 2m + n + 1 for
concatenation from [5] has been shown to be tight in [8]. Detailed results for the
square on alternating and Boolean automata can be found in [12]. Tight upper
bounds for union and intersection were shown in [10]. For star and reversal, the
upper and lower bound provided in [10] differed by one.

Research supported by grant VEGA 2/0084/15 and grant APVV-15-0091. This work
was conducted as a part of PhD study of Michal Hospodár and Ivana Krajňáková
at the Faculty of Mathematics, Physics and Informatics of the Comenius University.

c© Springer International Publishing AG, part of Springer Nature 2018
F. V. Fomin and V. V. Podolskii (Eds.): CSR 2018, LNCS 10846, pp. 181–193, 2018.
https://doi.org/10.1007/978-3-319-90530-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90530-3_16&domain=pdf

182 M. Hospodár et al.

In this paper we continue the study of the operational complexity on Boolean
and alternating finite automata. We improve the results on star and reversal from
[10] and provide exact complexity of these two operations. We also examine
other regular operations: complementation, difference, symmetric difference, left
and right quotient on both Boolean and alternating automata. We get the exact
complexity for each operation on both BFAs and AFAs. All our witness languages
are defined over a small fixed alphabet which is optimal in most of the cases.

2 Preliminaries

Let Σ be a finite alphabet of symbols. Then Σ∗ denotes the set of words over Σ
including the empty word ε. A language is any subset of Σ∗. The cardinality of
a finite set A is denoted by |A|, and its power-set by 2A. The reader may refer
to [7,17,18] for details.

A nondeterministic finite automaton (NFA) is a quintuple A =
(Q,Σ, ◦ , I, F), where Q is a finite set of states, Σ is a finite non-empty alphabet,
◦ : Q × Σ → 2Q is the transition function which is naturally extended to the
domain 2Q × Σ∗, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final
states. The language accepted by A is the set L(A) = {w ∈ Σ∗ | I ◦ w ∩ F �= ∅}.
For a symbol a, we say that (p, a, q) is a transition in NFA A if q ∈ p ◦ a, and
the state q has an in-transition on a. For a word w, we write p

w−→ q if q ∈ p ◦ w.
An NFA A is deterministic (DFA) if |I| = 1 and |q ◦ a| = 1 for each q in Q

and each a in Σ; so all DFAs in this paper are assumed to be complete. We write
p · a = q instead of p ◦ a = {q} in such a case. The state complexity of a regular
language L, sc(L), is the smallest number of states in any DFA for L. A state q
of a DFA is called sink state if q · a = q for each a in Σ.

For unary DFAs we use the Nicaud’s notation [15]. For two integers � and n
such that 0 ≤ � ≤ n − 1 and a subset F of {0, . . . , n − 1}, A = (n, �, F) is the
unary automaton whose set of states is Q = {0, . . . , n − 1} and the transition
function is given by q · a = q + 1 if 0 ≤ q ≤ n − 2 and (n − 1) · a = �. The initial
state of this automaton is 0 and its set of final states is F .

Every NFA A = (Q,Σ, ◦, I, F) can be converted to an equivalent DFA
D(A) = (2Q, Σ, · , I, F ′), where S · a = S ◦ a for each S in 2Q and a in Σ
and F ′ = {R ∈ 2Q | R∩F �= ∅}. We call the DFA D(A) the subset automaton of
the NFA A. The subset automaton may not be minimal since some of its states
may be unreachable or equivalent to other states.

To prove distinguishability of the states of the subset automaton, the follow-
ing notions and observations are useful. A state q of an NFA A is called uniquely
distinguishable if there is a word w which is accepted by A from and only from
the state q, that is p ◦ w ∩ F �= ∅ if and only if p = q. A transition (p, a, q) is
called a unique in-transition if there is no state r such that r �= p and (r, a, q) is
a transition in A. A state q is uniquely reachable from a state p if there exists a
sequence of unique in-transitions (qi, a, qi+1) for i = 0, 1, . . . , k such that q0 = p
and qk+1 = q.

Operations on Boolean and Alternating Finite Automata 183

Proposition 1 [1, Propositions 14 and 15]. Let A be an NFA and D(A) be the
corresponding subset automaton.

(a) If two subsets of D(A) differ in a uniquely distinguishable state of A, then
they are distinguishable.

(b) If a state q of A is uniquely distinguishable and uniquely reachable from a
state p, then the state p is uniquely distinguishable as well.

(c) If there is a uniquely distinguishable state of A which is uniquely reachable
from any other state of A, then every state of A is uniquely distinguishable.

(d) If every state of A is uniquely distinguishable, then the subset automaton
D(A) does not have equivalent states.

�

Let K and L be languages over an alphabet Σ. The difference and symmet-
ric difference of K and L are the languages K\L = {w ∈ K | w /∈ L} and
K ⊕ L = {w ∈ K | w /∈ L} ∪ {w ∈ L | w /∈ K}, respectively. If languages K and
L are accepted by DFAs A = (QA, Σ, ·A, sA, FA) and B = (QB , Σ, ·B , sB , FB),
then the language K ∩ L is accepted by the product automaton A × B =
(QA×QB , Σ, ·, (sA, sB), FA×FB) where (p, q)·a = (p·Aa, q ·B a). For the remain-
ing Boolean operations we only need to change the set of final states in the prod-
uct automaton. For union, difference, symmetric difference the set of final states
is (FA ×QB)∪ (QA ×FB), FA × (QB\FB), (FA × (QB\FB))∪ ((QA\FA)×FB),
respectively.

The reverse of a word is defined as εR = ε and (wa)R = awR for each symbol
a and word w. The reverse of a language L is the language LR = {wR | w ∈ L}.
The reverse of an NFA A is an NFA AR obtained from A by reversing all the
transitions and by swapping the roles of initial and final states. The NFA AR

recognizes the reverse of L(A).
The concatenation of K and L is the language KL = {uv | u ∈K and v ∈L}.

The square of a language L is the language L2 = LL. The right quotient of K by
L is the language KL−1 = {x ∈ Σ∗ | xy ∈ K for some y ∈ L}. The left quotient
of K by L is the language L−1K = {x ∈ Σ∗ | yx ∈ K for some y ∈ L}.

A Boolean finite automaton (BFA) is a quintuple A = (Q,Σ, δ, gs, F), where
Q is a finite non-empty set of states, Q = {q1, . . . , qn}, Σ is an input alphabet,
δ is the transition function that maps Q×Σ into the set Bn of Boolean functions
with variables {q1, . . . , qn}, gs ∈ Bn is the initial Boolean function, and F ⊆ Q is
the set of final states. The transition function δ can be extended to the domain
Bn × Σ∗ as follows: For all g in Bn, a in Σ, and w in Σ∗, we have δ(g, ε) = g; if
g = g(q1, . . . , qn), then δ(g, a) = g(δ(q1, a), . . . , δ(qn, a)); δ(g, wa) = δ(δ(g, w), a).
Next, let f = (f1, . . . , fn) be the Boolean vector with fi = 1 iff qi ∈ F . The lan-
guage accepted by the BFA A is the set L(A) = {w ∈ Σ∗ | δ(gs, w)(f) = 1}.

A Boolean finite automaton is called alternating (AFA) if the initial function
is a projection g(q1, . . . , qn) = qi. For details, we refer to [2,5,10,13,17,18].

The Boolean (alternating) state complexity of L, bsc(L)(asc(L)), is the small-
est number of states in any BFA (AFA) for L. It is known that a language L is
accepted by an n-state BFA (AFA) if and only if the language LR is accepted

184 M. Hospodár et al.

by an 2n-state DFA (with 2n−1 final states). Since this is the crucial observation
used later in the paper, we state it in the next two lemmas and provide proof
ideas here.

Lemma 2 (cf. [5, Theorem 4.1, Corollary 4.2] and [10, Lemma 1]). Let
L be a language accepted by an n-state BFA (AFA). Then the reversal LR is
accepted by a DFA of 2n states (of which 2n−1 are final).

Proof (Proof Idea). Let A = ({q1, q2, . . . , qn}, Σ, δ, gs, F) be an n-state BFA for
L. Construct a 2n-state NFA A′ = ({0, 1}n, Σ, δ′, S, {f}), where

– for every u = (u1 . . . , un) ∈ {0, 1}n and every a ∈ Σ,
δ′(u, a) = {u′ ∈ {0, 1}n | δ(qi,a)(u′) = ui for i = 1, . . . , n};

– S = {(b1, . . . , bn) ∈ {0, 1}n | gs(b1, . . . , bn) = 1};
– f = (f1, . . . , fn) ∈ {0, 1}n with fi = 1 iff qi ∈ F .

Then L(A) = L(A′) and (A′)R is deterministic. Moreover if A is an AFA
then A′ has 2n−1 initial states. It follows that LR is accepted by a DFA with 2n

states, of which 2n−1 are final if A is an AFA. �

Lemma 3 (cf. [10, Lemma 2]). Let LR be accepted by a DFA A of 2n states
(of which 2n−1 are final). Then L is accepted by an n-state BFA (AFA).

Proof (Proof Idea). Consider 2n-state NFA AR for L which has exactly one final
state and the set of initial states S (and |S| = 2n−1). Let the state set Q of AR be
{0, 1, . . . , 2n −1} with final state k and the initial set S (S = {2n−1, . . . , 2n −1}).
Let δ be the transition function of AR. Moreover, for every a ∈ Σ and for every
i ∈ Q, there is exactly one state j such that j goes to i on a in AR. For a state
i ∈ Q, let bin(i) = (b1, . . . , bn) be the binary n-tuple such that b1b2 · · · bn is the
binary notation of i on n digits with leading zeros if necessary.

Let us define an n-state BFA A′ = (Q′, Σ, δ′, gs, F
′), where Q′ = {q1, . . . , qn},

F ′ = {q� | bin(k)� = 1}, and gs(bin(i)) = 1 iff i ∈ S (gs = q1). We define δ′ to
suffice the condition: for each i in Q and a in Σ, (δ′(q1, a), . . . , δ′(qn, a))(bin(i)) =
bin(j) where i ∈ δ(j, a). Then L(A′) = L(AR). �

As a corollary of the previous two lemmas, we get the following results.

Corollary 4. If L is a regular language, then bsc(L) ≥ log(sc(LR))� and
asc(L) ≥ log(sc(LR))�. �

Corollary 5. Let L be a unary language. Then L is accepted by an n-state BFA
(AFA) if and only if L is accepted by a 2n-state DFA (with 2n−1 final states). �

Now we prove several propositions which we use later in our paper.

Proposition 6. If L is accepted by an n-state BFA, then L is accepted by an
(n + 1)-state AFA.

Operations on Boolean and Alternating Finite Automata 185

Proof. Let a language L be accepted by an n-state BFA (Q,Σ, δ, g, F). Let A =
(Q∪{s}, Σ, δ′, s, F ′) where s /∈ Q, δ′(q, a) = δ(q, a) if q ∈ Q and δ′(q, a) = δ(g, a)
if q = s; F ′ = F if ε /∈ L and F ′ = F ∪ {s} if ε ∈ L. Then A is an (n + 1)-state
AFA for L. �
Proposition 7. Let K and L be languages over Σ. Then

(a) (KL−1)R = (LR)−1KR;
(b) (L−1K)R = KR(LR)−1.

�
Proposition 8. Let a non-empty language L be accepted by an n-state DFA.
Then L∗ is accepted by a 2n-state DFA with half of the states final.

Proof. Let L be accepted by an n-state DFA A = (Q,Σ, ·, s, F). If the initial
state is the only final state in A, then L∗ = L, and we may add final and non-
final unreachable sink states to get the desired automaton. Otherwise there is a
final state qF such that qF �= s. Construct an NFA N for L∗ from A as follows:

(a) add the transition (q, a, s) whenever q · a ∈ F ;
(b) add a new initial and final state q0;
(c) the initial states of N are s and q0 and the set of final states is F ∪ {q0}.

In the corresponding subset automaton D(N) the initial subset is {q0, s} and
any other reachable subset S is a non-empty subset of Q such that S ∩ F �= ∅
implies s ∈ S. By the construction above every set S such that qF ∈ S and
s /∈ S is unreachable. That means that there are at most 1+2n −1−2n−2 = 3

42n

reachable sets in D(N). Let us show that in the minimal DFA for L∗ the number
of non-final states as well as the number of final states is at most 2n−1. The non-
final subsets in D(N) must not contain the state qF , so there are at most 2n−1

of them. Next the initial subset {q0, s} is final and any other final subset must
contain the state s. This gives at most 1 + 2n−1 subsets. However, if s ∈ F then
{q0, s} and {s} are equivalent, and if s /∈ F then {s} is non-final. Therefore the
minimal DFA for L∗ has at most 2n−1 final states. To obtain 2n-state DFA we
may add some unreachable sink states. Since the number of final and non-final
states are at most 2n−1 it is possible to achieve that exactly half of the states
would be final and the other half non-final in the resulting 2n-state DFA. �
Proposition 9. Let m,n ≥ 2 and gcd(m,n) = 1. Let K and L be unary regular
languages accepted by deterministic finite automata A = (m, 0, {0}) and B =
(n, 0, {1, 2, . . . , n − 1}), respectively. Then sc(K ⊕ L) = mn.

Proof. Since symmetric difference is a commutative operation, we may assume
that m < n. Denote QA = {0, 1, . . . ,m − 1}, QB = {0, 1, . . . , n − 1}. Consider
the product automaton A×B = (QA ×QB , {a}, ·, (0, 0), F) where the set of final
states is F = {(0, 0)}∪{1, 2, . . . ,m− 1}×{1, 2, . . . , n− 1}. Since gcd(m,n) = 1,
every state of the product automaton is reachable. To prove distinguishability,
let p and q be two distinct states of the product automaton. Then there is an
integer k ≥ 0 such that p · ak = (m − 1, 0) and q · ak = q′ where q′ �= (m − 1, 0).
We have three cases:

186 M. Hospodár et al.

(a) q′ ∈ F . Then ak distinguishes p and q since (m − 1, 0) /∈ F .
(b) q′ = (0, n − 1). Then akam distinguishes p and q since

p
ak

−→ (m − 1, 0) am

−−→ (m − 1,m) ∈ F ,

q
ak

−→ (0, n − 1) a−→ (1, 0) am−1

−−−→ (0,m − 1) /∈ F ; recall that m < n.
(c) q′ is a non-final state different from (0, n− 1). Then aka distinguishes p and

q since (m − 1, 0) · a /∈ F and q′ · a ∈ F .

Hence all the states of the product automaton are reachable and pairwise
distinguishable. This means that sc(K ⊕ L) = mn. �

3 Operations on Boolean and Alternating Automata

In this section we investigate the descriptional complexity of basic regular oper-
ations on languages represented by Boolean and alternating automata. We start
with the complementation operation and we show that a language and its com-
plement have the same complexity.

Theorem 10 (Complementation). Let L be a regular language. Then we
have asc(L) = asc(Lc) and bsc(L) = bsc(Lc).

Proof. Let L be accepted by a minimal n-state BFA (AFA). Then the lan-
guage LR is accepted by a 2n-state DFA (with half of the states final) by
Lemma 2. This means that (LR)c is accepted by a 2n state DFA (with half of
the states final) since we only interchange final and non-final states in the DFA
for LR. Next (LR)c = (Lc)R. Therefore Lc is accepted by an n-state BFA (AFA)
by Lemma 3. Hence asc(Lc) ≤ n and bsc(Lc) ≤ n. Moreover we cannot have
asc(Lc) < n because after another complementation we would get asc(L) < n.
The argument for bsc(Lc) is the same. �

We continue with the star operation. We improve the results from [10, The-
orems 8, 9] where upper and lower bounds differed by one. We get tight upper
bound 2n for both BFAs and AFAs as a corollary of the next theorem.

Theorem 11 (Star). Let n ≥ 2.

(a) If L is accepted by an n-state BFA, then L∗ is accepted by a 2n-state AFA.
(b) There exists a language L accepted by an n-state AFA such that every BFA

for L∗ has at least 2n states.

Proof
(a) Let L be accepted by an n-state BFA. Then LR is accepted by a 2n-state

DFA by Lemma 2. By Propostion 8, (LR)∗ is accepted by a 22
n

-state DFA with
half of the states final. Next (LR)∗ = (L∗)R. This means that L∗ is accepted by
a 2n-state AFA by Lemma 3.

(b) Let LR be the Palmovský’s witness language for star [16] with 2n states
and 2n−1 final states shown in Fig. 1. By Lemma 3 the language L is accepted by
an n-state AFA. By [16, Proof of Theorem 4.4] sc((LR)∗) = 22

n−1+22
n−1−2n−1

=
22

n−1(1+2−2n−1
). Since (LR)∗ = (L∗)R we get bsc(L∗) ≥ log(sc((L∗)R))� = 2n

by Corollary 4. �

Operations on Boolean and Alternating Finite Automata 187

0 1 . . . 2n−1 . . . 2n − 2 2n − 1

b

a a, b a, b a, b a, b a, b a

b

a b

Fig. 1. The reverse of a binary witness for star on BFAs and AFAs.

In what follows we use Lemmas 2, 3 and Corollary 4 without citing them
again and again. The next theorem provides tight upper bounds on the com-
plexity of difference, symmetric difference, reversal, and right and left quotient
on languages represented by Boolean finite automata.

Theorem 12 (Operations on BFAs). Let K and L be (regular) languages
over an alphabet Σ accepted by an m-state and n-state BFA, respectively. Then

(a) bsc(K \ L) ≤ m + n, and the bound is tight if |Σ| ≥ 2;
(b) bsc(K ⊕ L) ≤ m + n, and the bound is tight if |Σ| ≥ 3;
(c) bsc(LR) ≤ 2n, and the bound is tight if |Σ| ≥ 2;
(d) bsc(KL−1) ≤ 2m, and the bound is tight if |Σ| ≥ 2;
(e) bsc(L−1K) ≤ m, and the bound is tight if |Σ| ≥ 1.

Proof. Let A = (QA, Σ, δA, gA, FA) be an m-state BFA for the language K and
B = (QB , Σ, δB , gB , FB) be an n-state BFA for L with QA ∩ QB = ∅.

(a) The language K \L is accepted by BFA (QA∪QB , Σ, δ, gA∧gB , FA∪FB),
where δ = δA on QA and δ = δB on QB . Thus bsc(K \L) ≤ m+n. For tightness,
let K and L be binary witness languages for intersection on BFAs described in
[10, Proof of Theorem 2]. Then K and Lc are witnesses for difference since
K \ Lc = K ∩ L.

(b) The symmetric difference K ⊕ L is accepted by BFA
(QA ∪ QB , Σ, δ, (gA ∧ gB) ∨ (gA ∧ gB), FA ∪ FB)

where δ = δA on QA and δ = δB on QB . Thus bsc(K⊕L) ≤ m+n. For tightness,
let KR and LR be the languages accepted by 2m-state and 2n-state DFAs with
half of states final shown in Fig. 2. Then K and L are accepted by m-state and
n-state BFAs. In the product automaton, each state (i, j) is reached by aibj .
Two (non-)final states are distinguished by c if they are in different quadrants
and by a word in a∗ + b∗ otherwise. So we get sc(KR ⊕ LR) = 2m+n. Next
KR ⊕ LR = (K ⊕ L)R. Therefore bsc(K ⊕ L) ≥ m + n.

(c) The language LR is accepted by 2n-state DFA, the special case of BFA.
For tightness, let LR be the Šebej’s binary witness language for reversal [11]
accepted by a DFA with 2n states. Then L is accepted by an n-state BFA. By
[11, Proof of Theorem 5] sc((LR)R) = 22

n

and therefore bsc(LR) ≥ 2n.
(d) If K and L are accepted by an m-state and n-state BFA, respectively,

then KR and LR are accepted by a 2m-state and 2n-state DFA, respectively. By
Proposition 7 (KL−1)R = (LR)−1KR and by [19, Theorem 4.1] sc((LR)−1KR) ≤
22

m − 1. It follows that bsc(KL−1) ≤ 2m. For tightness, let L = Σ∗ and K be
the language accepted by the DFA shown in Fig. 3. Then bsc(K) ≤ m and

188 M. Hospodár et al.

0 1 . . . 2m−1 . . . 2m − 2 2m − 1a a a a a a a

a

b, c b, c b, c b, c b, c b, c

0 1 . . . 2n−1 . . . 2n − 2 2n − 1b b b b b b b

b, c

a, c a, c a, c a a a

c c

Fig. 2. The reverses of ternary witnesses for symmetric difference on BFAs.

0 1 . . . 2m − 2 2m − 1

b

a a, b a, b a, b

a, b

Fig. 3. The reverse of a binary witness for right quotient (by Σ∗) on BFAs.

bsc(L) ≤ n. Next (KL−1)R = (Σ∗)−1KR and by [19, Proof of Theorem 4.1]
sc((Σ∗)−1KR) = 22

m − 1. Therefore bsc(KL−1) ≥ 2m.
(e) Since (L−1K)R = KR(LR)−1 and sc(KR(LR)−1) ≤ 2m [19, p. 323], we get

bsc(L−1K) ≤ m. For tightness, let K = {ai | 2m−1−1 ≤ i ≤ 2m−2} and L = a∗.
Then bsc(K) ≤ m and bsc(L) ≤ n. Next KR(a∗)−1 = {ai | 0 ≤ i ≤ 2m − 2}, so
sc(KR(a∗)) = 2m. Therefore bsc(L−1K) ≥ m.

In the next theorem we study the complexities of same operations on lan-
guages represented by alternating finite automata. Note that while the complex-
ities of intersection, union, and difference on AFAs exceed those on BFAs by
one, the complexity of symmetric difference on AFAs and BFAs is the same.

Theorem 13 (Operations on AFAs). Let K and L be (regular) languages
over an alphabet Σ accepted by an m-state and n-state AFA, respectively. Then

(a) asc(K \ L) ≤ m + n + 1, and the bound is tight if |Σ| ≥ 2;
(b) asc(K ⊕ L) ≤ m + n, and the bound is tight if |Σ| ≥ 3;
(c) asc(LR) ≤ 2n, and the bound is tight if |Σ| ≥ 2;
(d) asc(KL−1) ≤ 2m + 1, and the bound is tight if |Σ| ≥ 2;
(e) asc(L−1K) ≤ m + 1, and the bound is tight if |Σ| ≥ 1.

Proof
(a) Since every AFA is BFA we get bsc(K \ L) ≤ m + n by Theorem 12(a).

Therefore asc(K\L) ≤ m+n+1. For tightness, let K and L be the binary witness
languages for intersection on AFAs described in [10, Proof of Theorem 3]. Then
K and Lc are witnesses for difference since asc(K\Lc) = asc(K∩L) = m + n + 1.

Operations on Boolean and Alternating Finite Automata 189

(b) If K and L are accepted by m-state and n-state AFAs, then KR and
LR are accepted by 2m-state and 2n-state DFAs with half of the states final.
It follows that KR ⊕LR is accepted by a product automaton of 2m+n states and
half of them are final. Therefore K ⊕ L is accepted by (m + n)-state AFA. For
tightness, let KR and LR be the languages accepted by 2m-state and 2n-state
DFAs with half of the states final shown in Fig. 2. Then K and L are accepted
by m-state and n-state AFAs. As shown in Theorem 12(b) every BFA for K ⊕L
has at least m + n states. Therefore asc(K ⊕ L) ≥ m + n.

(c) If L is accepted by an n-state AFA, then LR is accepted by 2n-state
DFA. Every DFA is a special case of AFA. Therefore AFA for language LR has
2n states. For tightness, let LR be the language accepted by 2n-state Šebej’s
automaton in which half of the states are final shown in Fig. 4. By [11, Proof of
Theorem 5] we have sc((LR)R) = 22

n

; notice that any nontrivial number of final
states does not matter since the subset automaton of NFA for (LR)R does never
have equivalent states [11, Proposition 3]. Hence asc(LR) ≥ 2n by Corollary 4.

0 1 2 3 4 . . . 2n−1 . . . 2n − 1
a a

a

a a a a a a

a

b

b

b

b

b b b b

Fig. 4. The reverse of a binary witness for reversal on AFAs.

(d) By Propostion 6 and Theorem 12(d) we get asc(KL−1) ≤ bsc(KL−1) +
1 ≤ 2m + 1. To prove tightness, let L = Σ∗ and KR be the language accepted
by the DFA A shown in Fig. 5 in which half of the states are final. Then
asc(K) ≤ m and asc(L) ≤ n. Next (KL−1)R = (Σ∗)−1KR. Let us show that
sc((Σ∗)−1KR) = 22

m − 1. Construct an NFA N for (Σ∗)−1KR from the DFA A
by making all the states initial. Every non-empty subset in the corresponding
subset automaton is reachable as it was shown in [19, Proof of Theorem 4.1].
To prove distinguishability, notice that the state 1 is uniquely distinguishable by
the word b2

m−2, and it is uniquely reachable in N from any other state through
the unique in-transitions 2 a−→ 3 a−→ · · · a−→ 2m−1 a−→ 0 a−→ 1. By Proposition 1,
all states of the subset automaton are pairwise distinguishable. The number of
final states in the subset automaton is 22

m −22
m−1

, which is greater than 22
m−1.

Therefore by Lemma 2 we get asc(KL−1) ≥ 2m + 1.

0 1 . . . 2m−1 . . . 2m − 2 2m − 1

b

a a, b a, b a, b a, b a, b a, b

a, b

Fig. 5. The reverse of a binary witness for right quotient (by Σ∗) on AFAs.

190 M. Hospodár et al.

(e) By Proposition 6 and Theorem 12(e) asc(L−1K) ≤ bsc(L−1K) + 1 ≤
m + 1. To get tightness, consider the same two languages as in Theorem 12(e).
Notice that the minimal DFA for KR(a∗)−1 has more than 2m−1 final states. �

In the next theorem we study the complexity of basic regular operations on
unary languages represented by Boolean finite automata.

Theorem 14 (Unary BFAs). Let n ≥ 2 and K and L be unary languages
accepted by an m-state and n-state BFA, respectively. Then

(a) bsc(K ∩ L) ≤ m + n, and the bound is tight if gcd(m,n) = 1;
(b) bsc(K ∪ L) ≤ m + n, and the bound is tight if gcd(m,n) = 1;
(c) bsc(K\L) ≤ m + n, and the bound is tight if gcd(m,n) = 1;
(d) bsc(K ⊕ L) ≤ m + n, and the bound is tight if gcd(m,n) = 1;
(e) bsc(LR) = bsc(L);
(f) bsc(L∗) ≤ 2n and the bound is tight;
(g) bsc(KL−1) ≤ m, and the bound is tight.

Proof. Let unary languages K and L be accepted by m-state and n-state BFA,
respectively. Then K and L are accepted by 2m-state and 2n-state DFA, respec-
tively, by Corollary 5, and the languages K ∩L, K ∪L, K\L, K ⊕L are accepted
by a 2m2n-state product automaton. This gives upper bounds m + n in cases
(a)–(d). To prove tightness for intersection, let K = (a2m)∗ and L = (a2n−1)∗.
Then K and L are accepted by a 2m-state and 2n-state DFA, respectively, so by
an m-state and n-state BFA, respectively. Since gcd(2m, 2n − 1) = 1, we have
sc(K∩L) = 2m(2n−1). This means that bsc(K∩L) ≥ log(2m(2n−1))� = m+n.
For union, we may use the languages Kc and Lc, since Kc ∪Lc = (K ∩L)c and a
language and its complement have the same Boolean state complexity. Similarly,
for difference we use the languages K and Lc. For symmetric difference, let us
consider unary languages K and L accepted by automata A = (2m, 0, {0}) and
B = (2n − 1, 0, {1, 2, . . . , 2n − 2}). By Proposition 9 sc(K ⊕ L) = 2m(2n − 1). It
follows that bsc(K ⊕ L) ≥ log(2m(2n − 1))� = m + n.

(e) The equality follows from the fact that L = LR in the unary case.
(f) The state complexity of the star operation in the unary case is (n−1)2+1

[3,19]. If a unary language L is accepted by an n-state BFA then L is accepted by
a 2n-state DFA. This means that L∗ is accepted by a DFA of at most (2n−1)2+1
states, so by a DFA of at most 22n states. Therefore bsc(L∗) ≤ 2n. For tightness,
let L be the unary language accepted by the DFA (2n, 0, {2n − 1}) meeting the
upper bound for star [19, Theorem 5.3]. Then L is accepted by an n-state BFA
and bsc(L∗) ≥ log(sc(L∗))� = log((2n − 1)2 + 1)� = 2n.

(g) In the unary case, KL−1 = L−1K. In Theorem 12(e) we proved that
bsc(L−1K) ≤ m and we provided a unary witness. �

Recall that by Proposition 6 asc(L) ≤ bsc(L)+1. Therefore as a corollary of
the previous theorem we get the following upper bounds.

Corollary 15 (Unary AFAs). Let n ≥ 2 and K and L be unary languages
accepted by an m-state and n-state AFA, respectively. Then

Operations on Boolean and Alternating Finite Automata 191

(a) asc(K ∩ L) ≤ m + n + 1;
(b) asc(K ∪ L) ≤ m + n + 1;
(c) asc(K \ L) ≤ m + n + 1;
(d) asc(LR) = asc(L);
(e) asc(L∗) ≤ 2n + 1;
(f) asc(KL−1) ≤ m + 1.

We are not able to prove the tightness since the complexity of operations on
unary DFAs with half of the states final is not known. The previous theorem
and its corollary imply that a binary alphabet for some of our witness languages
is optimal in the sense that it cannot be reduced to a unary alphabet.

4 Conclusions

We investigated the descriptional complexity of basic regular operations on lan-
guages represented by Boolean and alternating finite automata. We considered
the operations of complementation, star, difference, symmetric difference, rever-
sal, and left and right quotient. For each operation we obtained the tight upper
bound on its complexity on both Boolean and alternating automata.

Our results are summarized in Table 1. The table also shows the size of
alphabet used for describing witness languages, and compares our results to the
known results for deterministic [11,14,19] and nondeterministic finite automata
from [6,9]. The results for intersection and union on Boolean and alternating
automata are from [10]. Notice that the complexity of intersection, union, and
difference on alternating automata is m+n+1 while the complexity of symmet-
ric difference is m + n. Except for ternary witnesses for symmetric difference,
all the other provided witnesses are defined over a binary or unary alphabets
and, moreover, a binary alphabet for the witness languages for star, reversal,
and right quotient on BFAs and AFAs is optimal in the sense that it cannot be
reduced to a unary alphabet.

Table 1. The complexity of operations on languages represented by BFAs, AFAs,
DFAs, NFAs. The results for DFAs are from [11,14,19], the results for NFAs are from
[6,9], and the results for intersection and union on BFAs and AFAs are from [10].

BFA |Σ| AFA |Σ| DFA |Σ| NFA |Σ|
Complement n 1 n 1 n 1 2n 2

Intersection m + n 2 m + n + 1 2 mn 2 mn 2

Union m + n 2 m + n + 1 2 mn 2 m + n + 1 2

Difference m + n 2 m + n + 1 2 mn 2 ≤ m2n

Symmetric difference m + n 3 m + n 3 mn 2 ≤ 2m+n

Reversal 2n 2 2n 2 2n 2 n + 1 2

Star 2n 2 2n 2 3
42n 2 n + 1 1

Left quotient m 1 m + 1 1 2m − 1 2 m + 1 2

Right quotient 2m 2 2m + 1 2 m 1 m 1

192 M. Hospodár et al.

References

1. Brzozowski, J., Jirásková, G., Liu, B., Rajasekaran, A., Szyku�la, M.: On the state
complexity of the shuffle of regular languages. In: Câmpeanu, C., Manea, F., Shallit,
J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 73–86. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41114-9 6

2. Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata,
and sequential networks. Theoret. Comput. Sci. 10, 19–35 (1980). https://doi.org/
10.1016/0304-3975(80)90069-9

3. Čevorová, K.: Kleene star on unary regular languages. In: Jurgensen, H., Reis,
R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 277–288. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39310-5 26

4. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981). https://doi.org/10.1145/322234.322243

5. Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata.
Int. J. Comput. Math. 35(1–4), 117–132 (1990). https://doi.org/10.1080/
00207169008803893

6. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Int. J. Found. Comput. Sci. 14(6), 1087–1102 (2003). https://doi.org/10.
1142/S0129054103002199

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

8. Hospodár, M., Jirásková, G.: Concatenation on deterministic and alternating
automata. In: Bordihn, H., Freund, R., Nagy, B., Vaszil, G. (eds.) NCMA 2016,
vol. 321, pp. 179–194. Österreichische Computer Gesellschaft (2016). books@ocg.at

9. Jirásková, G.: State complexity of some operations on binary regular languages.
Theoret. Comput. Sci. 330(2), 287–298 (2005). https://doi.org/10.1016/j.tcs.2004.
04.011

10. Jirásková, G.: Descriptional complexity of operations on alternating and Boolean
automata. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR
2012. LNCS, vol. 7353, pp. 196–204. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30642-6 19

11. Jirásková, G., Šebej, J.: Reversal of binary regular languages. Theoret. Comput.
Sci. 449, 85–92 (2012). https://doi.org/10.1016/j.tcs.2012.05.008

12. Krajňáková, I., Jirásková, G.: Square on deterministic, alternating, and Boolean
finite automata. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol.
10316, pp. 214–225. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60252-3 17

13. Leiss, E.L.: Succint representation of regular languages by Boolean automata.
Theoret. Comput. Sci. 13, 323–330 (1981). https://doi.org/10.1016/S0304-
3975(81)80005-9

14. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Doklady 11(5), 1373–1375 (1970)

15. Nicaud, C.: Average state complexity of operations on unary automata. In:
Kuty�lowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 231–240. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48340-
3 21

16. Palmovský, M.: Kleene closure and state complexity. RAIRO - Theor. Inf. Appl.
50(3), 251–261 (2016). https://doi.org/10.1051/ita/2016024

17. Sipser, M.: Introduction to the theory of computation. Cengage Learn (2012)

https://doi.org/10.1007/978-3-319-41114-9_6
https://doi.org/10.1007/978-3-319-41114-9_6
https://doi.org/10.1016/0304-3975(80)90069-9
https://doi.org/10.1016/0304-3975(80)90069-9
https://doi.org/10.1007/978-3-642-39310-5_26
https://doi.org/10.1145/322234.322243
https://doi.org/10.1080/00207169008803893
https://doi.org/10.1080/00207169008803893
https://doi.org/10.1142/S0129054103002199
https://doi.org/10.1142/S0129054103002199
https://doi.org/10.1016/j.tcs.2004.04.011
https://doi.org/10.1016/j.tcs.2004.04.011
https://doi.org/10.1007/978-3-642-30642-6_19
https://doi.org/10.1007/978-3-642-30642-6_19
https://doi.org/10.1016/j.tcs.2012.05.008
https://doi.org/10.1007/978-3-319-60252-3_17
https://doi.org/10.1007/978-3-319-60252-3_17
https://doi.org/10.1016/S0304-3975(81)80005-9
https://doi.org/10.1016/S0304-3975(81)80005-9
https://doi.org/10.1007/3-540-48340-3_21
https://doi.org/10.1007/3-540-48340-3_21
https://doi.org/10.1051/ita/2016024

Operations on Boolean and Alternating Finite Automata 193

18. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages. Volume 1: Word, Language, Grammar, pp. 41–110. Springer,
Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5 2

19. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994). https://doi.
org/10.1016/0304-3975(92)00011-F

https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1016/0304-3975(92)00011-F
https://doi.org/10.1016/0304-3975(92)00011-F

	Operations on Boolean and Alternating Finite Automata
	1 Introduction
	2 Preliminaries
	3 Operations on Boolean and Alternating Automata
	4 Conclusions
	References

