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Abstract

We study the nondeterministic state complexity of the operations of intersection, union,
concatenation, star, reversal, and complementation in the classes of pre�x-, su�x-, factor-,
and subword-free (-closed, and -convex) languages, and in the classes of right (left, two-
sided, and all-sided) ideal languages. Except for complementation on factor-convex and
subword-convex languages, we obtained tight upper bounds for all considered operations in
all considered classes. Most of our witness languages are de�ned over small �xed alphabets
of size at most three, and the size of these alphabets usually cannot be decreased. As for
complementation, we show that the corresponding upper bounds cannot be met by any
binary pre�x-, su�x-, or factor-free language, and on su�x-convex languages, we prove
the tightness of the upper bound 2n, which are the most ineteresting results of this thesis.

Keywords: regular operations, subregular classes of pre�x-, su�x-, factor-, and subword-
free (-closed, and -convex) languages, and right (left, two-sided, and all-sided) ideal lan-
guages, nondeterministic state complexity, fooling-set lower bound method



Abstrakt

V práci ²tudujeme nedeterministickú stavovú zloºitos´ operácií prienik, zjednotenie, zre´a-
zenie, uzáver, zrkadlový obraz a doplnok v triedach bezpredponových, bezpríponových,
bezfaktorových a bezpodslovových jazykov, ¤alej v triedach jazykov uzavretých na pred-
pony (prípony, faktory, podslová), predponovo-, príponovo-, faktorovo-, podslovovo-kon-
vexných jazykov a v triedach pravých (©avých, obojstranných, v²etkostranných) ideálnych
jazykov. Aº na doplnok na faktorovo-konvexných a podslovovo-konvexných jazykoch,
získavame vºdy presné hodnoty zloºitostí v²etkých operácií na v²etkých uvaºovaných
podtriedach. Na de�novanie jazykov pre najhor²í prípad pouºívame skoro vºdy malé
kon²tatntné abecedy, ve©kos´ ktorých obvykle uº nejde zmen²i´. Najzaujímavej²ími výsled-
kami práce sú výsledky týkajúce sa doplnku na binárnych bezpredponových, bezprípono-
vých a bezfaktorových jazykoch a na príponovo-konvexných jazykoch.

K©ú£ové slová: regulárne operácie, subregulárne triedy bezpredponových, bezprípono-
vých, bezfaktorových a bezpodslovových jazykov, triedy jazykov uzavretých na predpony
(prípony, faktory, podslová), predponovo-, príponovo-, faktorovo-, podslovovo-konvexné
jazyky, triedy pravých (©avých, obojstranných, v²etkostranných) ideálnych jazykov, nede-
terministická stavová zloºitos´, metóda klamúcej mnoºiny
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Preface

"You will come to know the truth, and the truth will set you free."
(John 8,32)

A language is a bridge to man's mind or soul. It is one of the most important treasure
for people. Understanding a language means a big step to the other heart, as well as to
the mine. It is not easy to describe natural language (even perhaps not possible at all),
but I believe that attemption to describe formal forms helps us to be closer to language
understanding. Those facts are strong motivations for me to deal with formal languages.

I am very thankful for possibility to study and work on such intersting topic with my
colleagues. It gave me much in many �eld in my life.

I have performed a little step to understanding and also I realize how much I still do
not know and I have much to do for my next way.

1



Introduction

Finite automata and regular languages are one of the oldest topics in formal languages
theory. The basic properties of this class of languages were investigated in 1950s and
1960s. Although regular languages are the simplest languages in Chomsky hierarchy,
some challenging problems are still open. The most famous is the question of how many
states are su�cient and necessary for two-way deterministic automata to simulate two-
way nondeterministic automata, which is connected to the well-known NLOGSPACE vs.
DLOGSPACE problem [2].

In last three decades, we can observe a new interest in regular languages which have
applications in software engineering, programming languages, and other areas of com-
puter science. However, they are also interesting from the theoretical point of view [28].
Various properties of this class are now intensively studied. One of them is descriptional
complexity which studies the cost of description of languages by formal systems such as
deterministic and nondeterministic automata, or grammars.

Rabin and Scott in 1959 [42] de�ned nondeterministic �nite automata (NFAs), de-
scribed an algorithm known as the "subset construction" which shows that every n-state
nondeterministic automaton can be simulated by at most 2n-state deterministic �nite
automaton (DFA). In 1962 Yershov [46] then showed that this construction is optimal.
Maslov [37] investigated the state complexity of union, concatenation, and star, and also
some other operations. Birget in [3, 4] examined intersection and union. He also con-
sidered the question of the size of nondeterministic automaton for the complement of a
language. The complement of a formal language L over an alphabet Σ is the language
Lc = Σ∗ \ L, where Σ∗ is the set of all strings over an alphabet Σ. The complementation
is an easy operation on regular languages represented by deterministic �nite automata
(DFAs) since to get a DFA for the complement of a regular language, it is enough to
interchange the �nal and non-�nal states in a DFA for this language.

On the other hand, complementation on regular languages represented by NFAs is
an expensive task. We �rst must apply the subset construction to a given NFA, and
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only after that, we may interchange the �nal and non-�nal states. This gives an upper
bound 2n.

Sakoda and Sipser [43] presented an example of languages over a growing alphabet size
meeting this upper bound. Birget claimed the result for a three-letter alphabet in [4], and
later corrected this to a four-letter alphabet. Holzer and Kutrib [24] obtained the lower
bound 2n−2 for a binary n-state NFA language. Finally, binary n-state NFA languages
meeting the upper bound 2n were described by Jirásková in [30]. In the case of a unary
alphabet, the complexity of complementation is in eΘ(

√
n lnn) [24, 30].

Birget [3] described a lower-bound technique for proving minimality of NFAs. The
technique is known as a fooling-set method. Although in some cases there is a large gap
between the size of a fooling set and the size of minimal nondeterministic automaton
[29], in a many other cases, the fooling sets can be used to prove the minimality of
nondeterministic machines, and we successfully use this method throughout our thesis.

The systematic study of the state complexity of operations on regular languages began
in the paper by Yu et al. [49]. The nondeterministic state complexity of operations was
investigated by Holzer and Kutrib [24], and some improvements of their results can be
found in [30]. Some special operations were examined as well: proportional removals
in [14], shu�e in [10], and cyclic shift in [33].

Recently, researchers investigated subclasses of regular languages such as, for example,
pre�x- and su�x-free languages [13,19,22], ideal languages [7], closed languages [8], bi�x-,
factor-, and subword-free languages [5], union-free languages [31], or star-free languages
[9]. In some of these classes, the operations have smaller complexity, while in the others,
the complexity of operations is the same as in the general case of regular languages.

Pre�x-free languages are used in codes like variable-length Hu�man codes or country
calling codes. In a pre�x-code, there is no codeword which is a proper pre�x of any other
codeword. Therefore, a receiver can identify each codeword without any special marker
between words. This was a motivation for investigating this class of languages in last few
years [15, 16,21,23,36].

The non-deterministic state complexity of operations on pre�x-free and su�x-free lan-
guages was studied by Han et al. in [19�21,23]. For the nondeterministic state complexity
of complementation, they obtained an upper bound 2n−1 + 1 in both classes, and lower
bounds 2n−1 and 2n−1−1 for pre�x-free and su�x-free languages, respectively. The ques-
tions of tightness remained open. In the �rst part of this thesis, we solve both of these
open questions, and we prove that in both classes, the tight bound is 2n−1. To prove
tightness, we use a ternary alphabet. Hence the nondeterministic state complexity of

3



complementation on pre�x- or su�x-free languages de�ned over an alphabet that con-
tains at least three symbols is given by the function 2n−1. We also show that this upper
bound cannot be met by any binary pre�x- or su�x-free language. We get a similar re-
sult in the class of factor-free languages, and moreover we obtain the tight upper bounds
on the nondeterministic complexity of each considered operation in each of the four free
classes. We also study the unary free languages, and, besides some other results, we prove
that the nondeterministic state complexity of complementation is in Θ(

√
n) in the each

of the four classes of free languages.
Then we deal with the operations of intersection, union, concatenation, star, reversal,

and complementation on pre�x-, su�x-, factor-, and subword-closed languages, and on
right (left, two-sided, and all-sided) ideal languages. In all cases, we get tight upper
bounds on the nondeterministic complexity for all operations. Except for three cases, our
witnesses are de�ned over small �xed alphabets.

Finally, we use our results to show that the nondeterministic complexities of basic
regular operations, except for complementation, in the classes of pre�x-, su�x-, factor-,
and subword-convex languages are the same as in the general case of regular languages.
As for complementation, the complexity in the class of su�x-convex languages is 2n which
is one of the most interesting results of this thesis. A curious reader is referred to read
Chapter 7 to �nd out why this is the case :).

All the results of this thesis, except for the results on convex languages and some
results on free languages, have been already published in three papers (co-authored)
by the author of this thesis given in the list of author's publications, and presented at
international conferences DCFS 2014, 2015 and CIAA 2016. The paper on the results for
convex and free languages has been accepted to the conference CIAA 2017 in Paris, and
will be presented by the author (if nothing unexpected happens).
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Chapter 1

Preliminaries

We use a standard model of a nondeterministic �nite automaton (NFA), as explained, for
example, in [44]. For details, the reader may refer to [25,44,48].

Let Σ be a �nite non-empty alphabet of symbols. Then Σ∗ denotes the set of strings
over the alphabet Σ including the empty string ε. The length of a string w is denoted by
|w|, and the number of occurrences of a symbol a in a string w by |w|a. A language is any
subset of Σ∗. For a �nite set X, the cardinality of X is denoted by |X|, and its power-set
by 2X .

For a language L over an alphabet Σ, the complement of L is the language Lc = Σ∗\L.
The intersection of languages K and L is the language K ∩ L = {w | w ∈ K and w ∈ L}.
The union of languages K and L is the language K ∪ L = {w | w ∈ K or w ∈ L}. The
concatenation of languages K and L is the language KL = {uv | u ∈ K and v ∈ L}.
The power of a language L is the language Lk = LLk−1, where L0 = {ε}. The star of a
language L is the language L∗ =

∪
i≥0 L

i. The reversal of a string is de�ned as εR = ε

and (wa)R = awR for each symbol a and string w. The reversal of a language L is the
language LR = {wR | w ∈ L}. The shu�e u� v of strings u, v ∈ Σ∗ is de�ned as follows:

u� v = {u1v1 · · ·ukvk | u = u1 · · ·uk, v = v1 · · · vk, u1, . . . , uk, v1, . . . , vk ∈ Σ∗}.

The shu�e of two languages K and L over Σ is de�ned by

K � L =
∪

u∈K,v∈L

u� v.

A nondeterministic �nite automaton (NFA) is a quintuple A = (Q,Σ, ·, s, F ), where
Q is a �nite non-empty set of states, Σ is a �nite non-empty input alphabet, · is the
transition function that maps Q × Σ to 2Q, s ∈ Q is the start (or initial) state, and
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F ⊆ Q is the set of �nal (or accepting) states. In this thesis we also use another notation
of transition function, as δ or ◦. The transition function is extended to the domain
2Q × Σ∗ in the natural way. The language accepted by the NFA A is the set of strings
L(A) = {w ∈ Σ∗ | s · w ∩ F ̸= ∅}.

An NFA A = (Q,Σ, ·, s, F ) is a (complete) deterministic �nite automaton (DFA) if
for each state q and each input symbol a, the set q · a has exactly one element. In such
a case, we write p · a = q instead of p · a = {q}. If |q · a| ≤ 1 for each q and a, then
A is an incomplete deterministic �nite automaton (IDFA) Notice that every DFA can be
considered to be incomplete. Next, the number of states in the minimal complete and
incomplete DFAs for the same language di�er by at most one.

Two automata are equivalent if they accept the same language. A DFA (an NFA) A
is minimal if there is no equivalent DFA (NFA) with a smaller number of states than A

has. It is known that every regular language has a unique, up to isomorphism, minimal
DFA however, this is not true for NFAs.

The state complexity of a regular language L, (L), is the number of states in the
minimal DFA for L.

Sometimes, we allow an NFA to have multiple initial states and use the notation
NNFA (an NFA with a nondeterministic choice of initial states) for this model [48]. A
nondeterministic �nite automaton (NNFA) is a 5-tuple A = (Q,Σ, ·, I, F ), whereQ,Σ, ·, F
are the same as for NFA, and I ⊆ Q is the set of initial states. The language accepted by

NNFA A is the set L(A) = {w ∈ Σ∗ | I · w ∩ F ̸= ∅}.
For an easier description of some constructions, we use ε-model of NFA, denoted as

ε-NFA, where we also allow the transitions on the empty string. It is known that every
ε-NFA can be converted to an equivalent NFA without increasing the number of states.
The reader can �nd more detailed conversion from ε-NFA to NFA in Chapter 2.

We call a state of an NNFA sink state if it has a loop on every input symbol. From
every �nal sink state, every string is accepted, but from every non-�nal sink state, no
string is accepted. Notice that every minimal IDFA has no non-�nal sink states, and
every minimal DFA has at most one non-�nal sink state. A state q of an NFA A is called
a dead state if no string is accepted by A from q, that is, if q · w ∩ F = ∅ for each string
w. An NFA A is a trim NFA if each its state q is reachable, that is, there is a string u in
Σ∗ such that q ∈ s · u, and, moreover, no state of A is dead.

For a symbol a and states p and q, we say that (p, a, q) is a transition in the NNFA A

if q ∈ p · a, and for a string w, we write p
w−→ q if q ∈ p · w. We also say that the state q

has an in-transition on symbol a, and the state p has an out-transition on symbol a. A
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state is non-exiting if it does not have any out-transitions. An NFA is non-returning if
its initial state does not have any in-transitions, and it is non-exiting if each �nal state
of A does not have any out-transitions.

Every NNFA A = (Q,Σ, ·, I, F ) can be converted to an equivalent deterministic au-
tomaton A′ = (2Q,Σ, ◦ , I, F ′), where S ◦ a = S · a for each S in 2Q and a in Σ, and
F ′ = {S ∈ 2Q | S ∩ F ̸= ∅}. We call the DFA A′ the subset automaton of the NNFA A.
The subset automaton may not be minimal since some of its states may be unreachable
or equivalent to other states.

The nondeterministic state complexity of a regular language L, nsc(L), is the smallest
number of states in any NFA for L. To prove the minimality of NFAs, we use a fooling

set lower-bound technique [3,4,18,27]. We describe this technique in detail in Chapter 2;
here we only give the de�nition of a fooling set.

De�nition 1.1. A set of pairs of strings {(u1, v1), (u2, v2), . . . , (un, vn)} is called a fooling
set for a language L if for all i, j in {1, 2, . . . , n},

(F1) uivi ∈ L,

(F2) if i ̸= j, then uivj /∈ L or ujvi /∈ L.

The reverse of an automaton A = (Q,Σ, ·, I, F ) is the NNFA AR obtained from A by
swapping the role of initial and �nal states and by reversing all the transitions. Formally,
we have AR = (Q,Σ, ·R, F, I), where q ·R a = {p ∈ Q | q ∈ p · a} for each state q in Q and
each symbol a in Σ. The NFA AR accepts the language L(A)R.

Let A = (Q,Σ, · , I, F ) be an NNFA and S, T ⊆ Q. We say that S is reachable in A if
there is a string w in Σ∗ such that S = I · w. Next, we say that T is co-reachable in A if
T is reachable in AR.

If u, v, w, x ∈ Σ∗ and w = uxv, then u is a pre�x of w, x is a factor of w, and v is a
su�x of w. Both u and v are also factors of w. If w = u0v1u1 · · · vnun, where ui, vi ∈ Σ∗,
then v1v2 · · · vn is a subword of w. For example, let w = abbacb. Strings abac, bbb, bc are
subwords of w, but string aca is not a subword of w. Every factor of w is also a subword
of w. A pre�x v (su�x, factor, subword) of w is proper if v ̸= w.

A language L is pre�x-free if w ∈ L implies that no proper pre�x of w is in L; it
is pre�x-closed if w ∈ L implies that each pre�x of w is in L; and it is pre�x-convex if
u,w ∈ L and u is a pre�x of w imply that each string v such that u is a pre�x of v and v

is a pre�x of w is in L. Su�x-, factor-, and subword-free, -closed, and -convex languages
are de�ned analogously.
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A language L is a right (respectively, left, two-sided, all sided) ideal if L = LΣ∗

(respectively, L = Σ∗L,L = Σ∗LΣ∗, L = L� Σ∗).
We say that a regular language is a free language if it is either pre�x-free, or su�x-

free, or factor-free, or subword-free. Let us emphasize that we do not consider star-free,
or union-free, or any other free languages in this thesis. In an analoguous way, we use the
notions of closed languages, convex languages, and ideal languages.

Notice that the classes of pre�x-free, pre�x-closed, and ideal languages are subclasses
of convex languages and the complement of a closed language is an ideal language.

If languages K and L are accepted by NFAs A = ({0, 1, . . . ,m − 1},Σ, ·A, 0, FA) and
B = ({0, 1, . . . , n− 1},Σ, ·B, 0, FB), respectively, then the language K ∩ L is accepted by
the product automaton

A×B = ({0, 1, . . . ,m− 1} × {0, 1, . . . , n− 1},Σ, ·, (0, 0), FA × FB),

where (p, q) · a = (p ·A a)× (q ·B a). We call the set of states {(i, 0) | 0 ≤ i ≤ m− 1} the
�rst column of the product automaton. The �rst row and the last row/column are the
sets {(0, j) | 0 ≤ j ≤ n−1} and {(m−1, j) | 0 ≤ j ≤ n−1}/ {(i, n−1) | 0 ≤ i ≤ m−1},
respectively.

It is known that every unary n-state NFA can be transformed to Chrobak normal form

which consist of a simple path containing not more than 2n2+n states, ending with a state
in which there is a nondeterministic choice to several pairwise disjoint cycles containing
at most n states [12,45]; see Figure 3.2.

. . .

≤ 2n2 + n

Figure 1.1: Every unary automaton can be transformed to Chrobak normal form
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Chapter 2

Upper and Lower Bound Methods

In this thesis we consider unary or binary regular operation as union, intersection, con-
catenation, star, reversal, complementation. The nondeterministic state complexity of a
binary regular operation ◦ is a function f : N× N → N de�ned as

f(m,n) = max{nsc(K ◦ L) | nsc(K) = m and nsc(L) = n}

and the nondeterministic state complexity of a unary operation is a function f : N → N
de�ned as

f(n) = max{nsc(◦(L)) | nsc(L) = n}.

To �nd the nondeterministic state complexity of the binary operation ◦, it is necessary
to prove that:

(1) for all integers m,n and all languages K,L such that nsc(K) = m, nsc(L) = n we
have nsc(K ◦ L) ≤ f(m,n), so we say that f is an upper bound on the nondeter-
ministic complexity of ◦;

(2) for all integers m,n there exist languages K,L such that nsc(K) = m, nsc(L) = n

and nsc(K ◦L) = f(m,n), so we say that f is a lower bound on the nondeterministic
complexity of ◦. The languagesK,L are called wittnes languages for the operation ◦.

For a unary operation, the task to �nd the nondeterministic state comlexity is de-
scribed analogously.

The nondeterministic complexity of an operation may depend on the size of alphabet
over which languages are considered. We usually try to describe wittnes languages over as
small alphabet as possible. Moreover, it is not necessary to verify the minimality of NFAs
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for our wittnes languages because the nondeterministic complexity of each operation is
an increasing function in both m,n.

Sometimes the upper and lower bound may be di�erent, but in this thesis all our upper
and lower bounds coincide, except for complementation on factor-convex and subword-
convex languages. Thus we almost always obtain the exact nondeterministic state com-
plexity of each operation on each considered class.

We now describe a very useful tool for estimation of a lower bound on the number of
states in NNFAs based on fooling set techniques [3, 4, 18, 27]. Recall that set of pairs of
strings {(u1, v1), (u2, v2), . . . , (un, vn)} is called a fooling set for a language L if for all i, j
in {1, 2, . . . , n},

(F1) uivi ∈ L,

(F2) if i ̸= j, then uivj /∈ L or ujvi /∈ L.

Lemma 2.1 ( [3, Lemma 1], Lower bound method for NNFAs). Let F be a fooling

set for a language L. Then every NNFA for the language L has at least |F| states.

Proof. Let A = (Q,Σ, δ, I, F ) be NFA, such that L(A) = L and let F = {(xi, yi) | 1 ≤
i ≤ n} be the fooling set for language L. Let us assume for contradiction, that |Q| < |F|.
Fix an accepting computation of A on every xiyi, for 1 ≤ i ≤ n. Let qi be the state on
this computation reached after reading xi. So there are n such �xed states q1, q2, . . . , qn.
Since n > |Q|, there are i, j such that i ̸= j and qi = qj. See Figure. 2.1. So there are
two accepted computations xiyj and xjyi which is contradiction with the property (F2)
of the fooling set.

qi = qj

xi

xj

yi

yj

Figure 2.1: The number of states of NFA recocnizing a language L cannot be less than
number of pairs in fooling set for L.

Let n be an even integer and consider the binary language

Ln = {uv ∈ {a, b}∗ | |u| = |v| = n, u ̸= voru = ww}.
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In [29] Jirásková showed that every fooling set for the language Ln is of size O(n2), while
every NFA for Ln has at least 2n/6 states. It follows that the fooling set method described
by Lemma 2.1 may fail signi�cantly in some cases. Nevertheless, we use a this method
successfully throughout this thesis to get the exact nondeterministic complexity of basic
operations in subregular classes in most of considered 96 cases.

Let us emphasize that the size of a fooling set for L provides a lower bound on the
number of states in any NNFA for L. If we insist on having just one initial state, then
the following modi�cation of a fooling set method can be used.

Lemma 2.2 ( [31, Lemma 4], Lower bound method for NFAs). Let A and B be

sets of pairs of strings and let u and v be two strings such that A ∪ B, A ∪ {(ε, u)},
and B ∪ {(ε, v)} are fooling sets for a language L. Then every NFA for L has at least

|A|+ |B|+ 1 states.

Now we present the known result that for each ε-NFA, there exists an NFA that
accepts the same language. We provide a more detailed proof here. First, we give the
following de�nition.

De�nition 2.1. Let A = (Q,Σ, ·, s, F ) be a ε-NFA. The ε-closure of a state q ∈ Q,
denoted ε−closure(q), is the set of all states that are reachable from q by zero or more
ε-transitions.

Theorem 2.3 ( [47], Lemma 4). For each ε-NFA A, there exists an NFA A′ such that

L(A) = L(A′). Moreover, the NFA A′ has the same number of states as the ε-NFA A.

Proof. Let A = (Q,Σ, ·, s, F ) be a ε-NFA. We construct an NFA A′ = (Q,Σ, ◦, s, F ′)

where for each q ∈ Q and a ∈ Σ,

p ◦ a =
∪

q∈ε−closure(p)

q · a

and
F ′ = {q ∈ Q | ε−closure(q) ∩ F ̸= ∅}

First, we show L(A) ⊆ L(A′).
Let w ∈ L(A), w = a1a2 · · · ak where ai ∈ Σ for each i. Then there are sequences of states
q0, q1, . . . , qn and symbols or empty strings x1, x2, . . . , xn such that

q0
x1−→ q1

x2−→ · · · xn−1−−−→ qn−1
xn−→ qn
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is an accepting computation in A, where each qi ∈ Q and ui ∈ Σ∪{ε}, q0 is an initial state,
qn ∈ F , and x1x2 · · · xn = a1a2 · · · ak. There is a sequence 1 ≤ i1 < i2 < . . . < ik ≤ n,
such that for each ij, xij = aj. Then in the accepting computation mentioned above are

parts of the following form q0 · · · qij−1

xij−→ qij
ε−→ · · · ε−→ qij+1−1

xij+1−−−→ qij+1
· · · qn, except

the case that n > ik, when the computation ends with qik
ε−→ · · · ε−→ qn.

Now, let us �nd the appropriate accepting computation in A′. Since qij+1−1 is in
ε−closure(qij) and qij+1

∈ qij+1−1 · aj+1, in A′ there is a transition qij
aj+1−−→ qij+1

. Let us
consider the marginal cases, the begining of computation and �nishing of computation.
Since the state qi1−1 ∈ ε−closure(q0) and qi1 ∈ qi1−1 ·a1, in A′ there is transition q0

a1−→ qi1 .
If n > ik, then qik ∈ F ′. Finally, there is accepting computation in A′: q0, qi1 , . . . , qik such
that qij+1

∈ qij ◦ aj+1, so a1a2 · · · ak is accepted by A′. Hence w ∈ L(A′).
Now, we show L(A′) ⊆ L(A). Let w ∈ L(A′), w = a1a2 · · · ak. Then there is a sequence

of states q0, q1, . . . , qk such that q0
a1−→ q1

a2−→ · · · ak−→ qk is an accepting computation in
A′. If any transition qi

ai+1−−→ qi+1 does not exist in A, there are ti states pi1, p
i
2, . . . , p

i
ti
,

such that qi
ε−→ pi1

ε−→ pi2
ε−→ · · · ε−→ piti

ai+1−−→ qi+1. If qi
ai+1−−→ qi+1 exists in A, then ti = 0.

If qk ∈ F ′ and qk ̸∈ F , then there exists qk+1 ∈ F and states pk1, p
k
2, . . . , p

k
tk

such that
qk

ε−→ pk1
ε−→ pk2

ε−→ · · · ε−→ pktk
ε−→ qk+1. So there is accepting computation in A on string

εt0a1ε
t1a2 · · · akεtk , hence w ∈ L(A).

The next observations are used throughout this paper. Recall that a subset S of the
state set of an NNFAA = (Q,Σ, · , I, F ) is reachable if S = I · w for some string w, and
it is co-reachable if it is reachable in the NNFA AR.

Proposition 2.4. Let T be a co-reachable set in an NNFAA = (Q,Σ, · , I, F ). Then there

is a string w in Σ∗ such that w is accepted by A from each state in T and rejected from

each state in T c.

Proof. Let T be a a co-reachable set in A. Then T is reachable in AR, so there is a string
v such that F ·R v = T . Set w = vR. Then w is the desired string.

Lemma 2.5. Let A be an NNFA. Let for each state q of A, the singleton set {q} is

reachable as well as co-reachable in A. Then A is minimal.

Proof. Let A = (Q,Σ, ·, I, F ). Since {q} is reachable in A, there is a string uq such that
I · uq = {q}. Since {q} is co-reachable in A, by Proposition 2.4, there is a string vq

accepted by A from and only from the state q. Then {(uq, vq) | q ∈ Q} is a fooling set for
L(A). By Lemma 2.1, the NNFA A is minimal.
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Recall that an NFA A is trim if every state of A is reachable and useful.
Notice that if A is a trim incomplete DFA, then for each state q of A, the singleton

set {q} is reachable. If moreover AR is an incomplete DFA, then {q} is co-reachable in
A. So we get the following result.

Lemma 2.6. Let A be a trim NFA. If both A and AR are incomplete DFAs, then A and

AR are minimal NFAs.

Proposition 2.7. Let L be a language accepted by an n-state NFA in which each subset

of the state set is reachable and co-reachable. Then nsc(Lc) = 2n.

Proof. Let A = (Q,Σ, · , s, F ) be an n-state NFA and S ⊆ Q. Since S is reachable, there
exists a string uS in Σ∗ such that s · uS = S. Next, the set Sc is co-reachable. By
Proposition 2.4, there is a string vS which is accepted by A from each state in Sc, but
rejected from each state in S. It follows that {(uS, vS) | S ⊆ Q} is a fooling set for Lc of
size 2n. Hence nsc(Lc) ≥ 2n by Lemma 2.1.
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Chapter 3

Known Results

A language is regular if it is accepted by some deterministic or nondeterministic �nite
automaton. In 1959 Rabin and Scott [42] provided an algorithm called "subset construc-
tion" for the conversion of an NFA to an equivalent DFA. It follows from this algorithm
that if a given NFA has n states, then the resulting DFA has at most 2n state. A binary
n-state witness NFA meeting the upper bound 2n was presented in 1962 by Yershov [46].
Some other witnesses were described in 1963 by Lupanov, and in the western literature,
in 1971 by Moore [40] and Meyer, Fisher [38].

The reverse of an NFA N was de�ned by Rabin and Scott [42] as the NFA NR obtained
from N by swapping the roles of the initial and �nal states and by reversing all the
transitions, and it was shown by them that the NFA NR accepts the reverse of the
language L(N).

In 1970 Maslov [37] studied the state complexity of union, concatenation, star, and
some other regular operations. He also provided a general statement of the problem as
follows: Let f be a k-ary regular operation, and let languages L1, L2, . . . , Lk be represented
by automata A1, A2, . . . , Ak with n1, n2, . . . , nk states, respectively. What is the maximal
number of states of a minimal automaton recognizing the language f(L1, L2, . . . , Lk) for
given n1, n2, . . . , nk ?

Birget [3] studied the state complexity of the intersection and union of k (2 ≤ k ≤ n)

languages each of which has an n-state DFA or NFA. He obtained tight upper bounds
in both cases. For tightness he used a ternary alphabet in the deterministic case, and a
quaternary alphabet in the nondeterministic case. He also provided a useful lower bound
method for the number of states in NFAs known as fooling set method. In 1993 the same
author [4] described a quaternary language accepted by an n-state NFA such that every
NFA for its complement has at least 2n states. The bound 2n is also an upper bound
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for complementation of languages represented by NFAs since given an n-state NFA for a
language L, we �rst apply the subset construction to this NFA, and then we interchange
the �nal and non-�nal states to get a DFA (and therefore also an NFA) of 2n states for Lc.

In 1994 Yu, Zhuang, and K. Salomaa [49] initiated the systematic study of the state
complexity of regular operations. Their paper was followed by several papers examining
the state complexity of operations on subregular classes. Unary languages were studied by
Pighizzini and Shallit [41], �nite languages by Câmpeanu, Salomaa, and Yu [10], pre�x-
free languages by Han, K. Salomaa, and Wood [22], su�x-free languages by Han and K.
Salomaa [19], ideal languages by Brzozowski, Jirásková, and Li [7], closed languages by
Brzozowski, Jirásková, and Zou [8], and bi�x-, factor-, and subword-free languages by
Brzozowski, Jirásková, Li, and Smith [5]. The results for ideal, closed, and free languages
are summarized in Tables 3.1 and 3.2, respectively.

K ∩ L |Σ| K ∪ L |Σ|

Right ideal mn 2 mn− (m+ n− 2) 2

Left ideal mn 2 mn 4

Two-sided ideal mn 2 mn− (m+ n− 2) 2

All-sided ideal mn 2 mn− (m+ n− 2) 2

Pre�x-closed mn− (m+ n− 2) 2 mn 2

Su�x-closed mn 4 mn 2

Factor-closed mn− (m+ n− 2) 2 mn 2

Subword-closed mn− (m+ n− 2) 2 mn 2

Pre�x-free mn− 2(m+ n− 3) 2 mn− 2 2

Su�x-free mn− 2(m+ n− 3) 2 mn− (m+ n− 2) 2

Factor-free mn− 3(m+ n− 4) 2 mn− (m+ n) 3

Subword-free mn− 3(m+ n− 4) m+ n− 7 mn− (m+ n) m+ n− 3

Regular mn 2 mn 2

Unary ideal max{m,n} min{m,n}

Unary closed min{m,n} max{m,n}

Unary free n if m = n max{m,n}

Unary regular mn mn

Table 3.1: State complexity of boolean operations on subregular classes from [5,7, 8].
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KL |Σ| L∗ |Σ| LR |Σ|

Right ideal m+ 2n−2 2 n+ 1 2n−1 2

Left ideal m+ n− 1 1 n+ 1 2 2n−1 + 1 3

Two-sided ideal m+ n− 1 n+ 1 2 2n−2 + 1 3

All-sided ideal m+ n− 1 1 n+ 1 2 2n−2 + 1 2n− 4

Pre�x-closed (m+ 1)2n−2 3 2n−2 + 1 3 2n−1 2

Su�x-closed (m− 1)n+ 1 3 n 2 2n−1 + 1 3

Factor-closed m+ n− 1 2 2 2 2n−2 + 1 3

Subword-closed m+ n− 1 2 2 2 2n−2 + 1 2n

Pre�x-free m+ n− 2 1 n 2 2n−2 + 1 3

Su�x-free (m− 1)2n−1 + 1 3 2n−2 + 1 2 2n−2 + 1 3

Factor-free m+ n− 2 1 n− 1 2 2n−3 + 2 3

Subword-free m+ n− 2 1 n− 1 2 2n−3 + 2 2n−3 − 1

Regular m2n − 2n−1 2 2n−1 + 2n−2 2 2n 2

Unary ideal m+ n− 1 n n

Unary closed m+ n− 2 1 n

Unary free m+ n− 2 n− 2 n

Unary regular mn (n− 1)2 n

Table 3.2: State complexity of concatenation, star, and reversal on subregular classes
from [5,7, 8].

In 2010 Brzozowski [6] studied convex languages. He observed that the state complex-
ity of union and intersection in all four convex classes ismn because this is an upper bound
for regular languages and it is met by all-sided ideals (so subword-convex languages) for
intersection, and by subword-closed (so subword-convex) languages for union. The state
complexity of concatenation, star, and reversal on convex languages is not known.

In 2003 Holzer and Kutrib [24] investigated the complexity of basic operations on
languages represented by nondeterministic �nite automata. They obtained tight upper
bounds in most cases. Their results for reversal and complementation were improved by
Jirásková [30] by providing binary witness languages for these two operations. All these
results on the nondeterministic state complexity of basic operations on regular and unary
regular languages are summarized in Table 3.3.
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Regular |Σ| Source Unary regular Source

K ∩ L mn 2 [24, Theorem 3] mn; [24, Theorem 4]

gcd(m,n) = 1

K ∪ L m+ n+ 1 2 [24, Theorem 1] m+ n+ 1; [24, Theorem 2]

gcd(m,n) = 1

KL m+ n 2 [24, Theorem 7] ≥ m+ n− 1 [24, Theorem 8]

≤ m+ n

L∗ n+ 1 1 [24, Theorem 9] n+ 1 [24, Theorem 9]

LR n+ 1 2 [30, Theorem 2] n

Lc 2n 2 [30, Theorem 5] 2Θ(
√
n logn) [12, Theorem 4.5]

Table 3.3: The nondeterministic complexity of operations on regular languages; sources
from Chrobak [12], Holzer and Kutrib [24], and Jirásková [30].

We use the following result from [30] several times in this thesis. Therefore we give a
sketch of its proof here. A detailed proof can be found in [30, Theorem 5].

Theorem 3.1 ( [30, Theorem 5]). Let G be a binary language accepted by the NFA A

shown in Fig. 3.1. Then every NFA for the language Gc requires 2n states.

1 2 3 . . . n− 1 n
a, b a, b a, b a, b a, b

b

b b
b

b

b
bb

Figure 3.1: The NFA A of the binary regular language G from [30] with nsc(Gc) = 2n

Sketch of proof. Our aim is to describe a fooling set for the language Gc. Let us consider
the set of states {1, 2, . . . , n} in the NFA A. We describe two strings uS and vS for every
subset S of {1, 2, . . . , n} such that F = {(uS, vS) | S ⊆ {1, 2, . . . , n}} is a fooling set
for Lc.

We �rst show that every subset of {1, 2, . . . , n} is reachable from 1. Every singleton
{i} is reached from 1 state by the string ai−1 and the emptyset is reached from n by a.
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Every set {i1, i2, . . . , ik} of size k, where 1 ≤ i1 < i2 < · · · < ik ≤ n is reached from the set
{i2 − i1, i3 − i1, . . . , ik − i1} of size k− 1 by the string bai1−1. This proves the reachability
of all subsets by induction. It follows that for every subset S of {1, 2, . . . , n}, there is a
string uS such that the state 1 goes to the set S after reading uS in NFA A.

Now we are going to de�ne the strings vS. If S = {1, 2, . . . , n}, then de�ne vS = an.
Otherwise, let k be the minimal state that is not in S, that is {1, 2, . . . , k − 1} ⊆ S and
k /∈ S. Then the string vS of length n− k is de�ned as vS = v0v1 · · · vn−k−1, where

vi =

a, if n− i ∈ S

b, if n− i /∈ S

Then:
(1) if p ∈ S, then the string vS is rejected by the NFA A from the state p.
(2) if p /∈ S, then string vS is accepted by the NFA A from the state p.

The proof of given claims is in [30, Theorem 5].

Chrobak [12] de�ned so called Chrobak normal form of unary NFAs. A unary NFA is
said to be in the Chrobak normal form if it consists of a simple path ending with a state
in which there is a nondeterministic choice to several pairwise disjoint cycles; see Figure
3.2 for an illustration.

. . .

≤ 2n2 + n

Figure 3.2: Every unary automaton can be transformed to Chrobak normal form

We use the following result from [45] later is in this thesis.

Theorem 3.2 (cf. [45, Theorem 1]). Every unary n-state NFA can be converted to Chrobak

normal form which consist of a simple path containing not more than 2n2+n states, ending

with a state in which there is a nondeterministic choice to several pairwise disjoint cycles

containing at most n states.
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Chapter 4

Free Languages

In this chapter we study the nondeterministic complexity of basic operations in the classes
of pre�x-, su�x-, factor-, and subword-free languages. Recall that a language is pre�x-free
if it does not contain two distinct strings such that one of them is a pre�x of the other.
Su�x-, factor-, and subword-free languages are de�ned analogously. We use the notion
of a free language for a language belonging to one of these four classes.

For each considered operation, we obtain tight upper bound in each class. To prove
tightness, we always use an optimal �xed alphabet of size at most three, except for
intersection and complementation on subword-free languages where we use a growing
alphabet.

4.1 Properties of free languages

We start with recalling the characterization of minimal deterministic automata accepting
pre�x-free languages. Since we use this characterization several times in this chapter, we
provide a detailed proof here.

Proposition 4.1 ( [22] Characterization of pre�x-free DFAs). Let n ≥ 2 and A =

(Q,Σ, δ, s, F ) be a minimal n-state DFA for a language L. Then L is pre�x-free if and

only if A has a dead state qd and exactly one �nal state qf such that δ(qf , a) = qd for each

a in Σ.

Proof. ⇒: Let L be a pre�x-free language accepted by an DFA A. Let q ∈ F . For the
sake of contradiction assume that there is a symbol a ∈ Σ such that δ(q, a) = p and p is
not a dead state. Then there is a string u such that δ(p, u) ∈ F . On the other hand the
state q is reachable from the initial state, so there is a string v such that δ(s, v) = q. Thus
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we have v ∈ L and also vau ∈ L, where v is proper pre�x of vau and it is contradiction.
Hence, from each �nal state every transition goes to the dead state. Therefore all �nal
states are equivalent. Since A is minimal, there is just one �nal state in A.

⇐: The single �nal state going on every input to the dead state indicates that no
string can be extended to be accepted, so it cannot be a pre�x of some longer string.
Now let us prove it more formally. Let w be a string, such that w ∈ L. Since f is the
only �nal state, we have δ(s, w) = f . Let u, v be strings such that w = uv and v ̸= ε.
The pre�x u /∈ L, because otherwise we would have δ(s, u) = f and δ(f, v) = f , which is
contradiction with assumption that �nal state goes on every input to the dead state.

qf qd
Σ

Σ

Figure 4.1: Every minimal DFA recognizing a pre�x-free language has just one �nal state,
from which every transition goes to a dead state.

Now we state a necessary condition for an NFA to accept a pre�x-free language.

Proposition 4.2 (Neccessary conditions for pre�x-free NFA). Let N = (Q,Σ, δ, s, F )

be a minimal NFA for a pre�x-free language. Then N has exactly one �nal state qf and

δ(qf , a) = ∅ for each a in Σ.

Proof. It is not possible to reach some �nal state from any �nal state by any a nonempty
string. The reason is the same as in deterministic case shown above. So from every
�nal state no nonempty string is accepted, so we can merge all �nal states to one �nal
state.

Figure 4.2 shows that the converse of Proposition 4.2 does not hold .

��
��

��
��

��
��

-
�����

s

a

j
:

a

a

Figure 4.2: An NFA satisfying condition in Proposition 4.2, but it accepts the language
{a, aa} which is not pre�x-free.

We continue with necessary conditions for DFAs accepting su�x-free languages.
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Proposition 4.3 (Neccessary conditions for su�x-free DFA). Let A = (Q,Σ, δ, s, F )

be a minimal DFA for a non-empty su�x-free regular language. Then A satis�es the fol-

lowing properties:

1. A is non-returning.

2. A has a dead state.

3. For each symbol a in Σ, there is a state qa ̸= qd, such that δ(qa, a) = qd.

4. Let a ∈ Σ. There is no state q ∈ Q \ {s} such that δ(s, a) = δ(q, a).

Proof. Let us prove every property. 1) Let us consider for contradiction, that there is
a state q ∈ Q and a symbol a ∈ Σ, such that there is a transition q

a−→ s. Since A is
minimal, there are strings u, v such that δ(q, v) ∈ F and δ(s, u) = q. Therefore there are
two accepted strings uv and uauv, where uv is the proper su�x of string uauv, hence
language of automaton A is not su�x-free which is a contradiction. 2) Let a ∈ Σ. Consider
the string am with m ≥ |Q|. Let a sequence of states s, q1, q2, . . . , qm be the computation
on the string am. Let us show that the state qm is dead. Let us assume for contradiction
that qm is not dead. Then there is a string w such that δ(qm, w) ∈ F . There are i, j such
that i < j and qi = qj, therefore we can omit states qi+1, . . . , qj and we get computation
s, q1, . . . , qi, qj+1, . . . qm on a string aℓ, where ℓ = m− (j− i). We get two accepted strings
amw, aℓw, where ℓ < m, so aℓ is the proper su�x of amw, which is contradiction with
su�x-free property of L(A). 3) Similarly as in the previous consideration we can take
arbitrary a ∈ Σ, so there is qa, such that qa ̸= d and δ(qa, a) = d. 4) For a sake of
contradiction let us assume that there are states q, p such that there are transitions s a−→ p

and q
a−→ p, for some a ∈ Σ. There is a string u ̸= ε, which leads automaton from s to q.

Also, there is a string w, which leads automaton from p to some �nal state f ∈ F . Then
there are two accepted computations s a−→ p

w−→ f and s
u−→ q

a−→ p
w−→ f , so strings aw and

uaw are accepted by A. The string aw is a proper su�x of the string uaw, which is a
contradiction.

The example in Figure 4.3 illustrates that the properties of Proposition 4.3 are not
su�cient.

The next Cmorik's lemma provides a very comfortable tool for proving the su�x-
freeness of a language accepted by an incomplete DFA.

Lemma 4.4 ( [13, Lemma 1]). Let A be a non-returning incomplete DFA that has a

unique �nal state. If each state of A has at most one in-transition on every input symbol,

then L(A) is su�x-free.
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s

a

a, b
b a, b

a

b

b
a

Figure 4.3: A DFA A satisfying every property from Proposition 4.3, but accepted lan-
guage is not su�x-free since both b and ab are accepted.

4.2 Unary free languages

Every free unary language L can contain only one string. It follows that in the unary case
all free classes coincide. Moreover if nondeterministic complexity of L is n, then we must
have L = {an−1}. The next theorem gives an overview of complexities for basic operations
except complementation on unary free languages. The complexity of complementation is
analysed in another theorem.

Theorem 4.5. Let K,L be a unary free languages with nsc(L) = n and nsc(K) = m.

(1) nsc(K ∩ L) ≤ max{m,n},

(2) nsc(K ∪ L) ≤ max{m,n},

(3) nsc(KL) ≤ m+ n− 1,

(4) nsc(L∗) ≤ n− 1,

(5) nsc(LR) ≤ n.

Proof. (1) Ifm ̸= n, thenK∩L = ∅, so nsc(K∩L) = 1. Ifm = n, thenK∩L = K = L, so
nsc(K∩L) = n. In both cases nsc(K∩L) ≤ max{m,n}. The languages K = L = {am−1}
meet the upper bound.

(2) Let A = ({0, . . . ,m − 1}, {a}, δ, 0, {m − 1}) be NFA for language K, where
δ(i, a) = i + 1 if 0 ≤ i < m − 1, and B = ({q0, . . . , qn−1}, {a}, δ′, q0, {qn−1}) be NFA
for language L, where δ′(qi, a) = qi+1 if 0 ≤ i < n − 1. Since union is commutative
operation we may assume that m ≤ n. For union K ∪ L we can construct automa-
ton C = ({q0, . . . , qn−1}, {a}, δ′, q0, {qm−1, qn−1}) with n states, where δ′(qi, a) = qi+1 if
0 ≤ i < n− 1. The languages am−1 and an−1 meet the upper bound for union.
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(3) Let A = ({0, . . . ,m−1}, {a}, δ, 0, {m−1}) be NFA for language K, where δ(i, a) =
i + 1 if 0 ≤ i < m − 1, and B = ({q0, . . . , qn−1}, {a}, δ′, q0, {qn−1}) be NFA for language
L, where δ′(qi, a) = qi+1 if 0 ≤ i < n − 1. For concatenation KL we can construct
automaton C = ({0, . . . ,m+n− 1}, {a}, δ′′, 0, {m+n− 1}) with m+n− 1 states, where
δ′′(qi, a) = qi+1 if 0 ≤ i < m+n−1. The languages am−1 and an−1 meet the upper bound
for concatenation.

(4) Let A = ({0, . . . , n − 1}, {a}, δ, 0, {n − 1}) be NFA for L, where δ(i, a) = i+ 1 if
0 ≤ i < n − 1. For L∗ we can construct automaton C = ({0, . . . , n − 2}, {a}, δ′, 0, {0})
with n− 1 states, where δ′(i, a) = i+1 mod (n− 1) if 0 ≤ i ≤ n− 2. The language an−1

meets the upper bound for star.
(5) The reversal of every unary language is the same language, so LR = L, therefore

we have nsc(LR) = n.

Now, let us analyse complementation on unary free languages. Recall that if nsc(L) =
n for a unary free language L, then L = {an−1}. Hence, the complement of L contains
every string w in a∗ with |w| ̸= n− 1.

Theorem 4.6. Let L be unary free language with nsc(L) = n. Then nsc(Lc) = Θ(
√
n).

Proof. Let us denote the length of string in L by m. So m = n − 1. The language Lc

contains all strings with length not equal to m. First consider a lower bound, and let us
show that every NFA for Lc requires at least

√
n/3 states. Assume for a contradiction that

there is an NFAN for Lc with less than
√

n/3 states. Recall, that every unary n-state NFA
can be transformed to Chrobak normal form which consist of a simple path containing not
more than 2n2+n states, ending with state in which there is a nondeterministic choice to
several pairwise disjoint cycles containing at most n states (see Theorem 3.2, Figure 3.2).
Thus, the tail in the Chrobak normal form of N is of size less than 3 · (

√
n/3)2 [12, 45],

thus less than n. Since am must be rejected, each cycle in the Chrobak normal form must
contain a rejecting state. It follows that in�nitely many strings are rejected, which is a
contradiction. Now let us prove the upper bound. Let h = ⌊

√
m⌋, and consider relatively

prime numbers h and h+1. It is known that the maximal integer that cannot be expressed
as xh+ y(h+ 1) for non-negative integers x and y is (h− 1)h− 1 = h2 − h− 1 [49]. Let
k = m − (h2 − h − 1). Then 0 < k ≤ 3

√
m. Next, the NFA A shown in Figure 4.4 and

consisting of a path of length k and two overlapping cycles of lengths h and h + 1 does
not accept am, and accepts all strings ai with i ≥ m+ 1.

It remains to accept the shorter strings. To this aim let p1, p2, . . . , pℓ be the �rst ℓ

primes such that p1p2 · · · pℓ > m. Then ℓ ≤ ⌈logm⌉. Thus p1+p2+ · · ·+pℓ = Θ(ℓ2 ln ℓ) ≤
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q1 q2 . . . qk 0 1 . . . h− 1 h

Figure 4.4: The part of NFA accepting every string of length more than m = n− 1

√
m [1]. Consider an NFA B consisting of an initial state s that is connected to ℓ cycles

of lengths p1, p2, . . . , pℓ. Let the states in the j − th cycle be 0, 1, . . . , pj − 1, where s is
connected to state 1. The state m mod pj is non-�nal, and all the other states are �nal.
Then this NFA does not accept am, but accepts all strings ai with i ≤ m−1 since we have
(i mod p1, i mod p2, . . . , i mod pℓ) ̸= (m mod p1,m mod p2, . . . ,m mod pℓ). The NFA B

for m = 24 is shown in Figure 4.5.

s 1 0

1 2 0

1 2 3 4 0

Figure 4.5: An example of NFA accepted every string shorter than m = 24

Now we get the resulting NFA for the language L of at most 6
√
m states as the union

of NFAs A and B.

4.3 Operations on free languages

We start with intersection. The nondeterministic complexity of intersection on pre�x- and
su�x-free languages was studied by Han et al. [20,22], where the tight upper bounds were
obtained and a three-letter alphabet was used to prove tightness. The binary witnesses
were described by Jirásková and Olejár [34]. Here we obtain the tight upper bounds for
intersection on factor- and subword-free languages. To prove tightness, we use a binary
alphabet in the factor-free case and a growing alphabet of sizem+n−5 in the subword-free
case.
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Lemma 4.7. Let K and L be languages over Σ with nsc(K) = m and nsc(L) = n.

(a) If K and L are pre�x-free (su�x-free) then nsc(K ∩L) ≤ mn− (m+ n− 2), and the

bound is tight if m ≥ 4, n ≥ 2, and |Σ| ≥ 2.

(b) If K and L are factor-free, then nsc(K ∩ L) ≤ mn− 2(m+ n− 3), and the bound is

tight if m ≥ 5, n ≥ 3, and |Σ| ≥ 2.

Proof. We �rst prove the upper bounds. Let A and B be minimal NFAs for K and L,
respectively. We may assume that the state sets of A and B are {0, 1, . . . ,m − 1} and
{0, 1, . . . , n − 1}, respectively, with the initial state 0 in both automata. Construct the
product automaton A × B for K ∩ L. If K and L are pre�x-free with the �nal states
m − 1 and n − 1 respectively, then all states in the last row and last column, except for
(m − 1, n − 1), are dead, so we can omit them. If K and L are su�x-free, then A and
B are non-returning, so all states in the �rst row and �rst column, except for (0, 0), are
unreachable. Since every factor-free language is both pre�x-free and su�x-free, all the
three upper bounds follow from these observations.

To prove tightness, we �rst consider factor-free languages. Let m ≥ 5, n ≥ 3. Let K
and L be the languages accepted by the NFAs A and B shown in Figure 4.6.

A 0 1 2 3 . . . m− 3 m− 2 m− 1

B 0 1 . . . n− 2 n− 1

a b b b b

b

a

b a

a a a

b b

a

Figure 4.6: Factor-free witnesses for intersection meeting the bound mn− 2(m+ n− 3).

Every string w in K begins and ends with a, and |w|b mod (m− 2) = (m− 3). Every
proper factor v of w which begins and ends with a has a computation in A which either
starts in 0 and ends in 2, or starts and ends in 2, or starts in 2 and ends in m − 1.
However, in all three cases, |v|b mod (m − 2) ̸= (m − 3), so v /∈ L. Hence the language
K is factor-free. Next, every string in L has exactly n− 1 a's, but every proper factor of
every string in L has less then n− 1 a's. Hence L is factor-free.

Construct the product automaton A × B and remove all the unreachable and dead
states to get a trim NFA N for K ∩L. Figure 4.7 shows the NFA N in the case of m = 5
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0, 0

1, 1

2, 1

3, 1

1, 2

2, 2

3, 2

1, 3

2, 3

3, 3

1, 4

2, 4

3, 4

4, 5

a

b

bb

b

bb

b

bb

b

bb

a a a

a

Figure 4.7: The NFA for intersection of the languages from Figure 4.6; m = 5, n = 6.

and n = 6. Since the NFA N and its reverse NR are incomplete DFAs, the NFA N is
minimal by Lemma 2.5. So we have nsc(K ∩ L) = mn− 2(m+ n− 3). Notice that there
is no need to prove that NFAs A and B are minimal because the upper bound cannot
be met by languages of a smaller nondeterministic complexity. For this reason we do not
prove the minimality of witnesses in what follows.

Next, the left quotients of K and L by the string a, that is, the languages a\K and
a\L, are pre�x-free and meet the upper bound mn − (m + n − 2). Similarly, the right
quotients K/a and L/a are su�x-free witnesses.

The next lemma provides a subword-free witness for intersection de�ned over a growing
alphabet.

Lemma 4.8. Let m,n ≥ 3. There exist subword-free regular languages K and L over

an (m + n − 5)-letter alphabet such that nsc(K) = m, nsc(L) = n, and nsc(K ∩ L) =

mn− 2(m+ n− 3).

Proof. Let Σ = {a} ∪ {bk | 2 ≤ k ≤ m − 2} ∪ {cℓ | 2 ≤ ℓ ≤ n − 2}. Let K and L

be languages accepted by incomplete DFAs A = ({0, 1, . . . ,m− 1},Σ, 0, · , {m− 1}) and
B = ({0, 1, . . . , n−1},Σ, 0, ◦ , {n−1}), where for each i (0 ≤ i ≤ m−2), j (0 ≤ j ≤ n−2),
k (2 ≤ k ≤ m− 2), and ℓ (2 ≤ ℓ ≤ n− 2), we have

i · a = i+ 1, j ◦ a = j + 1,
0 · bk = k and (k − 1) · bk = m− 1, 0 ◦ bk = 1 and (n− 2) ◦ bk = n− 1,
0 · cℓ = 1 and (m− 2) · cℓ = m− 1, 0 ◦ cℓ = ℓ and (ℓ− 1) ◦ cℓ = n− 1.

Figure 4.8 shows the automata A and B in the case of m = 5 and n = 6.

26



A 0 1 2 3 4

B 0 1 2 3 4 5

a a a a

c2, c3, c4

b2
b3

b2
b3

c2, c3, c4

a a a a a

b2, b3

c2
c3

c4

c2
c3

c4

b2, b3

Figure 4.8: Subword-free witnesses for intersection; m = 5, n = 6.

To prove thatK is subword-free, let Σ1 = {a, c2, c3, . . . , cm−2} and Σ2 = {b2, b3, . . . , bn−2}.
Notice that no string in Σ∗

1 of length less than m − 1 is in K. Next, each string in K

contains at most two symbols from Σ2. Let w be a string in K. If w contains no symbol
from Σ2, then |w| = m − 1 and no proper subword of w is in K. If w contains exactly
one symbol from Σ2, then either w = ubk for some string u with u ∈ Σ∗

1 and |u| = k − 1,
or w = bkv for some string v with v ∈ Σ∗

1 and |v| = n − k. In both cases, no proper
subword of w is in K. Finally, if w contains two symbols from Σ2, then w = bka

tbk+t+1

where k ≥ 0 and 2 ≤ k < k + t + 1 ≤ m− 2. No proper subword of such string is in K.
The proof for L is similar.

Construct the product automaton A × B for K ∩ L. To get a trim NFA N , omit all
the unreachable and dead states; see Figure 4.9 for an illustration in the case of m = 4

and n = 5.
The resulting trim NFA has (m− 2)(n− 2) + 2 states, it is an incomplete DFA, and

its reverse is an incomplete DFA as well. By Lemma 2.6, this NFA is minimal. This
concludes the proof.

We conjecture that the bound mn is asymptotically tight in the binary case if m = n.

Conjecture 4.9. There exist a constant c and binary subword-free languages K and L

with nsc(K) = nsc(L) = n such that nsc(K ∩ L) ≥ n2/c.

As a corollary of the three lemmata above, and taking into account the unary case in
Theorem 4.5, we get the following result.
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a a a
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Figure 4.9: The NFA for intersection of languages from Figure 4.8.

Theorem 4.10 (Intersection). The nondeterministic state complexity of intersection is

mn − (m + n − 2) on pre�x-free and su�x-free languages, and it is mn − 2(m + n − 3)

on factor-free and subword-free languages. Except for subword-free witnesses which are

de�ned over an alphabet of size m + n − 5, all the remaining witnesses are binary and,

moreover, this binary alphabet cannot be reduced.

Now we consider the union operation. In [22] it is claimed that the upper bound m+n

is met by the union of pre�x-free languages K = (am−1)∗b and L = (cn−1)∗d, and a set P
of pairs of strings of size m + n is described in [22, Proof of Theorem 3.2]. The authors
claimed that P is a fooling set for K ∪ L. However, the language K ∪ L is accepted by
an NNFA of m + n − 1 states. Therefore P cannot be a fooling set for K ∪ L. Here we
prove the tightness of the upper bound m + n for union of pre�x-free languages using a
binary alphabet and Lemma 2.2. Next we get the tight upper bound for union of su�x-,
factor-, and subword-free languages. To get tightness, we always use a binary alphabet
which is optimal for all four classes.

Lemma 4.11. Let K and L be languages over Σ with nsc(K) = m and nsc(L) = n.

(a) If K and L are pre�x-free then nsc(K ∪ L) ≤ m + n, and the bound is tight if

m ≥ 3, n ≥ 3, and Σ ≥ 2.

(b) If K and L are su�x-free then nsc(K ∪ L) ≤ m + n − 1, and the bound is tight if

m ≥ 3, n ≥ 3, and Σ ≥ 2.

(c) If K and L are factor-free, then nsc(K ∪ L) ≤ m + n − 2, and the bound is met by

binary subword-free languages if m ≥ 2 and n ≥ 2.
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Proof. We �rst prove the upper bounds. Let A and B be minimal NFAs for K and L,
respectively, with disjoint state sets, and the initial states sA and sB, respectively.

(a) If K and L are pre�x-free, then NFAs A and B are non-exiting and have a unique
�nal state. To get an (m + n)-state NFA for K ∪ L from A and B, add a new initial
(non-�nal) state connected through ε-transitions to sA and sB, make the states sA and
sB non-initial, and merge the �nal states of A and B.

(b) If K and L are su�x-free, then A and B are non-returning. We can get an
(m+ n− 1)-state NFA for K ∪ L from A and B by merging their initial states.

(c) If K and L are factor-free, then they are both pre�x- and su�x-free. To get an
(m + n− 2)-state NFA for K ∪ L from A and B, we merge their initial states, and then
we merge their �nal states.

To prove tightness, consider languages K and L accepted by an m-state and n-state
NFAs A and B, respectively, shown in Figure 4.10 (left). Notice that K is pre�x-free
since every string in K ends with b while every proper pre�x of every string in K is in a∗.
Similarly, L is pre�x-free.

Construct the (m + n)-state NFA for their union by adding a new initial state s, by
adding transitions (s, a, p1) and (s, b, q1), by making states p0 and q0 non-initial, and by
merging their �nal states as shown in Figure 4.10 (right). The resulting trim NFA is an
incomplete DFA, and its reverse is an incomplete DFA as well. By Lemma 2.6, this NFA
is minimal. It follows that nsc(K ∪ L) ≥ m+ n.

Next, the languages KR and LR are su�x-free, and they are accepted by m-state and
n-state NFAs AR and BR, respectively. To get an NFA for KR ∪LR, we merge the initial
states of AR and BR. For each state q of the resulting automaton, the singleton set {q}
is reachable, as well as co-reachable. By Lemma 2.5, this NFA is minimal. Hence we get
nsc(KR ∪ LR) ≥ m+ n− 1.

Finally, we again use Lemma 2.6 to show that the union of binary subword-free lan-
guages {am−1} and {bn−1} meets the upper bound m+ n− 2.

A p0 . . . pm−2 pm−1

B q0 . . . qn−2 qn−1

s

p0 p1 . . . pm−2

f

q0 q1 . . . qn−2

a a

a

b

b b

b

a

a a a

a b

b b b

b

a
a

b

Figure 4.10: Binary pre�x-free witnesses for union meeting the upper bound m+ n.
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As a corollary of the lemma above, and taking into account unary case in Theorem 4.5,
we get the following result.

Theorem 4.12 (Union). The nondeterministic state complexity of union is m + n on

pre�x-free languages, m + n − 1 on su�x-free languages, and m + n − 2 on factor- or

subword-free languages. All the witnesses can be de�ned over a binary alphabet, and the

size of alphabet cannot be reduced.

The nondeterministic state complexity of concatenation on regular languages is m+n

with binary witnesses [24, Theorem 7]. For pre�x-free and su�x-free languages, the
upper bound is m + n − 1 [20, 22], and to prove tightness, a binary alphabet was used
in [22, Theorem 3.1] and [20, Theorem 4]. In this section, we show that this upper bound
is tight for all four classes of free languages, and to prove tightness, we use a unary
alphabet.

Lemma 4.13. Let K and L be pre�x- or su�x-free languages with nsc(K) = m and

nsc(L) = n. Then nsc(KL) ≤ m+ n− 1, and this upper bound is met by unary subword-

free languages.

Proof. Let A and B be minimal NFAs for K and L, respectively. In the pre�x-free case,
we can merge the �nal state of A and the initial state of B to get an NFA for KL. In
the su�x-free case, automata A and B are non-returning. To get an NFA for KL, we
add the transition (p, a, q) for each �nal state p of A and and each transition (sB, a, q) of
B. Next, we make �nal states of A non-�nal, and remove the unreachable state sB. As
a result, we get an NFA for KL of m + n − 1 states in both cases. This upper bound is
met by the concatenation of unary subword-free languages {am−1} and {an−1}.

As an immediate corollary of the lemma above, we get the next result.

Theorem 4.14 (Concatenation). The nondeterministic state complexity of concatena-

tion on each of the four classes of free languages is m+ n− 1, with unary witnesses.

We next consider the Kleene star and reversal operations. Both operations have
nondeterministic complexity n+1 on regular languages with a unary witness for star [24,
Theorem 9] and a binary witness for reversal [30, Theorem 2].

In [22, Theorem 4.2] and [20, Theorem 7] it is claimed that for each pre�x-free or su�x-
free language L with nsc(L) = n the nondeterministic complexity of L∗ is n. However, this
is not true since {an−1} is a pre�x- and su�x-free language of nondeterministic complexity
n and its star, the language (an−1)∗, has nondeterministic complexity n− 1.
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The next lemma provides tight upper bounds for star on all four classes of free lan-
guages. To get tightness, we use an optimal binary alphabet in the pre�x- and su�x-free
case, and a unary alphabet otherwise.

Lemma 4.15. Let L be a language over an alphabet Σ with nsc(L) = n.

(a) If L is pre�x- or su�x-free then nsc(L∗) ≤ n. These upper bounds are tight if |Σ| ≥ 2,

and the size of alphabet cannot be decreased.

(b) If L is factor-free, then nsc(L∗) ≤ n−1, and the bound is met by a unary subword-free

language.

Proof. Let A = (Q,Σ, · , s, F ) be a minimal NFA for L.
(a) If L is pre�x-free, then A is non-exiting and has a unique �nal state qf . We can

construct an n-state ε-NFA for the language L∗ from A by making state qf initial and
state s non-initial, and by adding the ε-transition from qf to s. If L is su�x-free, then A

is non-returning. Now we construct an n-state ε-NFA for L∗ from A by making the initial
state s �nal, and by adding the ε-transition from every �nal state to the initial state s.

To get tightness, we �rst consider the su�x-free case. Let L be the language accepted
by the n-state NFA A shown in Figure 4.11 (left). Notice that it is non-returning, has a
unique �nal state, and each of its states has at most one in-transition on each input symbol.
By Lemma 4.4, the language L is su�x-free. Next, the set {(ai, an−1−ib) | 0 ≤ i ≤ n− 1}
is a fooling set for L∗ since an−1b ∈ L∗, but for each j with j < n − 1, the string ajb is
not in L∗.

Now consider the pre�x-free language LR. It is accepted by the n-state NFA AR shown
in Figure 4.11 (right). Construct an NFA N for L∗ from A by making state n− 1 initial
and state 0 non-initial, and by adding the transitions (n− 1, a, 1) and (n− 1, b, 0). Notice
that for each state q of N , the singleton set {q} is reachable and co-reachable, so N is
minimal by Lemma 2.5.

A 0 1 . . . n− 2 n− 1
a a a a

b

AR 0 1 . . . n− 2 n− 1

b

a a a a

Figure 4.11: Pre�x-free and su�x-free witnesses for star meeting the upper bound n.

(b) If L is factor-free, then A is non-returning and non-exiting, and it has a unique
�nal state qf . We construct an NFA for L∗ by making state qf initial, by adding transition
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(qf , a, q) for each transition (s, a, q), and by omitting the unreachable state s. The unary
subword-free language {an−1} meets this upper bound.

The next theorem summarizes the results of the lemma above.

Theorem 4.16 (Star). The nondeterministic state complexity of star is n on pre�x- and

su�x-free languages with binary witnesses, and it is n − 1 on factor- and subword-free

languages with unary witnesses. The binary alphabet in the pre�x- and su�x-free case

cannot be reduced.

Now we turn our attention to the reversal operation. Han et al. obtained tight upper
bounds for reversal on pre�x-free and su�x-free languages and they provided a binary
pre�x-free witness [22, Theorem 3.4] and a ternary su�x-free witness [20, Theorem 9]. As
shown in the next lemma, the upper bound for reversal on pre�x-free languages is n, so
it is met by any unary language, in particular, by the subword-free language {an−1}.

Lemma 4.17. Let L be a pre�x-free language with nsc(L) = n. Then nsc(LR) ≤ n, and

this upper bound is met by a unary subword-free language.

Proof. If L is pre�x-free, then every minimal NFA for L has a unique �nal state. Thus
nsc(LR) ≤ n. The bound is met by the subword-free language {an−1}.

Now we consider the su�x-free case, and provide a binary witness meeting the upper
bound n + 1. Notice that the reverse of a language accepted by an n-state NFA is
accepted by an n-state NNFA. This means that we cannot use a fooling set method to
prove the tightness of the bound n+1. However, a modi�ed fooling set method described
in Lemma 2.2 can be successfully used here.

Lemma 4.18. Let n ≥ 5. There exists a binary su�x-free language L such that nsc(L) =

n and nsc(LR) = n+ 1.

Proof. Let L be the language accepted by the NFA A shown in Figure 4.12.
Since every string in L contain both a and b, but every proper su�x of every string

in L is in a∗∪ b∗, the language L is su�x-free. Now we show that every NFA for LR needs
at least n+ 1 states. Let

A = {(an−3, an−4b)} ∪ {(ai, an−4−ib) | 1 ≤ i ≤ n− 4} ∪ {(an−4b, ε)},
B = {(bb, ba), (b, a)},
u = ba,
v = an−4b.
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A 0 1 . . . n− 4 n− 3

n− 2 n− 1

b a a a

aa

b

b

Figure 4.12: A binary su�x-free witness for reversal meeting the upper bound n+ 1.

Notice that {a2n−7b, an−4b, bbba, ba} ⊆ LR. Moreover, in every string in LR starting
with a, the number of consecutive a's modulo (n− 3) is (n− 4), and the string ends with
a single b. Next, the string bba is not in LR. Finally, every string in LR either starts with
a and ends with b or starts with b and ends with a. It follows that A ∪ B, A ∪ {(ε, u)},
and B ∪ {(ε, v)} are fooling sets for LR. By Lemma 2.2, we have nsc(LR) ≥ n+ 1.

We can use the same fooling sets as in the above proof to show that the left ideal
language {a, b}∗L is a witness for reversal meeting the upper bound n+1. This improves
the result from [26, Theorem 17] by decreasing the size of alphabet from three to two.

As a corollary of the two lemmata above, and taking into account that the reversal of
every unary language is the same language, we get the next result.

Theorem 4.19 (Reversal). The nondeterministic state complexity of reversal is n on

the classes of pre�x-, factor-, and subword-free languages, with the witnesses de�ned over

a unary alphabet. The nondeterministic state complexity of reversal is n+ 1 on the class

of su�x-free languages, with the witnesses de�ned over a binary alphabet which is optimal

in this case.

We continue with complementation, which is the most interesting and the most di�cult
part of this thesis. Han and Salomaa in [20] have obtained an upper bound 2n−1 + 1 on
the nondeterministic state complexity of complementation on su�x-free languages. Our
next result shows that this upper bound can be decreased by one.

Lemma 4.20. Let n ≥ 3. Let L be a su�x-free regular language with nsc(L) = n. Then

nsc(Lc) ≤ 2n−1.

Proof. Let N be a non-returning n-state NFA for a su�x-free language L. The subset
automaton A = (Q,Σ, δ, s, F ) of the NFA N has at most 1 + 2n−1 reachable states since
the only reachable subset that contains the initial state of N is the initial state of the
subset automaton. The initial state of the subset automaton is non-�nal since L does not
contain the empty string.
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After interchanging the �nal and non-�nal states, we get a DFA Ac = (Q,Σ, δ, s, Q\F )

for Lc of 1 + 2n−1 states. The initial state of Ac is �nal and has no in-transitions. The
state d is �nal as well, and it accepts every string.

Construct a 2n−1-state NFA N c from the DFA Ac as follows. Let Qd be the set of states
of Ac di�erent from d and such that they have a transition to the state d, that is, Qd =

{q ∈ Q \ {d} | there is an a in Σ such that δ(q, a) = d}; remind that by Proposition 4.3,
for each symbol a, there is a state qa in Qd that goes to d by a. Replace each transition
(q, a, d) by transitions (q, a, p) for each p in Qd, and moreover add the transition (q, a, s).
Then, remove the state d. Formally, let N c = (Q \ {d},Σ, δ′, s, (Q \ {d}) \ F ), where

δ′(q, a) =

{δ(q, a)}, if δ(q, a) ̸= d,

{s} ∪Qd, if δ(q, a) = d.

In a similar way as in the case of pre�x-free languages, it can be shown that L(N c) =

L(Ac).

0 1 2 3 . . . n− 2 n− 1
c a, b a, b a, b a, b a, b

b

b b
b

b

b
bb

Figure 4.13: An NFA of a ternary su�x-free regular language L with nsc(Lc) = 2n−1

As for a lower bound, Han and Salomaa in [20] claimed that there exists a ternary
su�x-free language meeting the bound 2n−1 − 1. In the next lemma, we increase this
lower bound by one.

Lemma 4.21. Let n ≥ 3. There exists a ternary su�x-free language such that nsc(L) = n

and nsc(Lc) ≥ 2n−1.

Proof. Let K be the language accepted by the NFA over {a, b} shown in Figure 3.1 with
n − 1 states. Set L = c · K. Then L is a su�x-free language recognized by an n-state
NFA shown in Figure 4.13. As shown in [30, Theorem 5], there exists a fooling set
F = {(xS, yS) | S ⊆ {1, 2, . . . , n − 1}} of size 2n−1 for the language Kc. Then the set of
pairs of strings F ′ = {(c · xS, yS) | S ⊆ {1, 2, . . . , n − 1}} is a fooling set of size 2n−1 for
the language Lc.
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We can summarize these results in the following theorem which provides the tight
bound on the nondeterministic state complexity of complementation on su�x-free lan-
guages over an alphabet with at least three symbols.

Theorem 4.22 (Complementation on su�x-free languages). Let n ≥ 3. Let L be

a su�x-free language over an alphabet Σ with nsc(L) = n. Then nsc(Lc) ≤ 2n−1, and the

bound is tight if |Σ| ≥ 3.

Now, let us turn our attention to investigate bounds for binary alphabet. The lower
bound for binary alphabet is a little bit di�erent. We also improve the estimation of
upper bound.

Let G be the language accepted by the NFA over {a, b} shown in Figure 3.1 with n−1

states. Let L = cG. The language L is a su�x-free language over {a, b, c} recognized
by an n-state NFA A shown in Figure 4.13, and we have nsc(Lc) ≥ 2n−1 ( [32, Lemma
5]). Now, let us de�ne a homomorphism h as follows: h(c) = 00, h(a) = 10, h(b) = 11

(used in [13, Theorem 7]). After applying h on the language L, we have a binary language
K = h(L) over {0, 1}.

Lemma 4.23. The language K is a su�x-free language.

Proof. Every string in L contains exactly one symbol c at the begining, so every string in
K begins with the string 00 and such substring does not appear further in the string. If
there is a string w = uv and u ̸= ε, then v does not contain 00 and therefore v ̸∈ K. So
K is su�x-free.

Now let us de�ne NFA A′ for the language K. We use the description of automaton A

for original language L. Let A = (Q, {a, b, c}, δ, 0, {n−1}) (be NFA shown in Figure 4.13).
The idea is replace every transitions q a−→ qa by adding a new state q′ and two transitions
q

1−→ q′
0−→ qa, similarly for symbol b q

1−→ q′
1−→ qb and transition q

c−→ qc we replace by
adding q′ and two transitions q 0−→ q′

0−→ qc; see Figure 4.14.
More formally: A′ = (Q′, {0, 1}, δ′, 0, {n − 1}) where states Q′ =

∪
q∈Q{q, q′} (so we

add for every state q from Q a new state q′) and transition function is de�ned as follows:

• for q ̸= 0 and q′ ̸= 0′, we have δ′(q, 1) = {q′}, δ′(q′, 0) = δ(q, a), δ′(q′, 1) = δ(q, b)

• for 0, 0′ we have δ′(0, 0) = {0′}, δ′(0′, 0) = δ(0, c)

In the following three lemmas, we prove that the NFA A′ is a minimal NFA recognizing
the language K. Then we show that nsc(Kc) ≥ 2n−1
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Figure 4.14: An NFA of binary su�x-free regular language K.

Lemma 4.24. The NFA A′ de�ned above recognizes the language K.

Proof. We have to prove L(A′) = K.
The �rst we show K ⊆ L(A′). Let w ∈ K, then there is u ∈ L, where u = u1u2 . . . um

such that h(u) = w, so w = h(u1)h(u2) · · ·h(um). There is computation in A as follows:
0, q1, q2, . . . , qm where q1 ∈ δ(0, u1) and for every qi, such that 1 ≤ i < m qi+1 ∈ δ(qi), 0 is
initial state and qm is �nal state.

We claim that after reading h(u1)h(u2) · · ·h(ui) the automaton A′ can be in qi thus
qi ∈ δ′(0, h(u1)h(u2) · · ·h(ui)). We prove it by mathematical induction.

The base case is i = 1. Every string in L begins with symbol c, so u1 = c, hence
h(u1) = 00. By de�nition of δ′, δ′(0, 0) = {0′} and δ′(0′, 0) = δ(0, c), so q1 ∈ δ′(0, h(u1))

Let us assume that qi ∈ δ′(0, h(u1)h(u2) · · ·h(ui)), 1 ≤ i ≤ m− 1. Symbol ui+1 can
be equal to a or b. There is δ′(qi, 1) = {q′i}, so q′i ∈ δ′(0, h(u1)h(u2) · · ·h(ui)1). If
ui+1 = a, then h(ui+1) = 10. Since δ′(q′i, 0) = δ(qi, a) and qi+1 ∈ δ(qi, a), we have
qi+1 ∈ δ′(0, h(u1) . . . h(ui)10) = δ′(0, h(u1) . . . h(ui)h(ui+1)). Similarly if ui+1 = b.

In conclusion qm ∈ δ′(0, h(u1) · · ·h(um)) and qm is �nal state, so w ∈ L(A′).
Now we show that L(A′) ⊆ K.
Let w ∈ L(A′). Every computation in A′ has an alternate form of states q, q′ as follows

00′q1q
′
1q2q

′
2 · · · qm−1q

′
m−1qm and accepted string has a form 001x11x2 · · · 1xm−1 where xi ∈

{0, 1} for 1 ≤ i ≤ m − 1. For such string is possible to �nd a string u = u1u2 · · ·um,
where u1 = c and for every 1 ≤ i ≤ m, ui ∈ {a, b} and h(ui) = 1xi−1.
We claim that after reading u1u2 · · ·ui, the automaton A can be in qi, more precisely
qi ∈ δ(0, u1u2 · · ·ui). We show it by mathematical induction.
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The base case is i = 1. Then u1 = c and δ′(0, 00) = δ(0, c) and q1 ∈ δ′(0, 00) so
q1 ∈ δ(0, u1).

Let us assume qi ∈ δ(0, u1 · · ·ui), where 1 ≤ i ≤ m − 1. By de�nition of δ′ we have
δ′(qi, 1xi) = δ(qi, ui+1) and since qi+1 ∈ δ′(qi, 1xi), we have qi+1 ∈ δ(qi, ui+1). So at last
qm ∈ δ(0, u1u2 . . . um) and qm is �nal state, so u = u1u2 . . . um ∈ L.

Hence: u ∈ L, h(u) = w, so w ∈ K.

Lemma 4.25. The NFA A′ is a minimal NFA for the language K.

Proof. For every state q of A′, we are going to de�ne a pair of strings (uq, vq) such that
(a) by uq, the initial state of A′ goes only to the state q, and
(b) vq is accepted by A′ only from the state q if q ̸= (n− 1)′.

Let u0 = ε and u0′ = 0. Next, if 1 ≤ i ≤ n−1, then let ui = 00(10)i−1 and ui′ = 00(10)i−11.
Then (a) is satis�ed for every state q of A′.

Now, let v0 = 00(10)n−2 and v0′ = 0(10)n−2. Next, if 1 ≤ i ≤ n − 2, then let
vi = (10)n−1−i and vi′ = 0(10)n−2−i. Finally, let vn−1 = ε and v(n−1)′ = 1. Then (b) is
satis�ed for every state q of A′, except for (n−1)′. We show that the set of pairs of strings
F = {(uq, vq) | q is a state of A′} is a fooling set for K.

(F1) For every pair (uq, vq), we have uqvq ∈ K.
(F2) Let us consider two distinct pairs (uq, vq) and (up, vp), except for (u(n−1)′ , v(n−1)′).

By the string uq, we reach only the state q, and the string vp is accepted only from the
state p. Thus uqvp ̸∈ K. Now let us consider (up, vp) and (u(n−1)′ , v(n−1)′). Since by the
string u(n−1)′ , we can reach only the state (n−1)′, and the string vp is accepted only from
the state p, we have u(n−1)′vp ̸∈ K.

Hence F is a fooling set for K. Since the size of F is 2n, the NFA A′ is minimal.

Lemma 4.26. Let n ≥ 3 and K be the language de�ned above. Then nsc(Kc) ≥ 2n−1.

Proof. As it is shown in [32, Lemma 5], the set F = {(cxS, yS) | S ⊆ {1, 2, . . . , n− 1}} is
a fooling set for Lc. Let us de�ne F ′ = {(h(cxS), h(yS)) | S ⊆ {1, 2, . . . , n− 1}} . Let us
show that the F ′ is fooling set for Kc.

(F1) For every pair (h(cxS), h(yS)), we have cxSyS ∈ Lc, so cxSyS ̸∈ L and since
homomorphism h is a bijection h(cxSyS) ̸∈ K so (h(cxS), h(yS)) ∈ Kc.

(F2) Let (h(cxS), h(yS)), (h(cxT ), h(yT )) be two distinct pairs. Without loss of gener-
ality, let cxSyT ̸∈ Lc. So cxSyT ∈ L, then h(cxSyT ) ∈ K, so h(cxSyT ) ̸∈ Kc.

Hence F ′ is a fooling set for Kc. Since the size F ′ is 2n−1, nsc(Kc) ≥ 2n−1.

We need the following observation later.
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Figure 4.15: An automaton A′′ recognizing a binary su�x-free language K1.

Proposition 4.27. Let L be a su�x-free language L over alphabet Σ. Then for every

x ∈ Σ the language R = xL is su�x-free.

Proof. For a contradiction let us assume, that there are two strings xu, xv in R, such that
xv is su�x of xu. So there exists y such, that xu = xyxv. Hence u = yxv, it means that
v is su�x of u and u, v ∈ L. It is contradiction, that L is su�x-free.

Above we found a binary language with an even nondeterministic state complexity,
and now we want to �nd a binary language with an odd one. Now let us consider the
language K1 = 0K, where K is described above. By Proposition 4.27, K1 is su�x-free.

Lemma 4.28. Let K1 be su�x-free language given above. Then nsc(K1) = 2n+ 1.

Proof. Let us consider the automaton A′ for the language K. Let us construct an au-
tomaton A′′ from A′ by simply adding a new state 0′ and transition from 0′ to orig-
inal initial state 0 on symbol 0. State 0′ become a new initial state. The NFA A′′

is shown in Figure 4.15, and we have L(A′′) = K1. Now let us consider the mini-
mality of A′′. Let F be fooling set for K. Let us construct F ′ from F as follows:
F ′ = {(0u, v) | (u, v) ∈ F} ∪ {ε, 000(10)n−2}. The set F ′ is fooling set for K1 and
|F ′| = 2n+ 1, so nsc(K1) = 2n+ 1.

Lemma 4.29. Let n ≥ 3 and K1 be the language de�ned above. Then nsc(Kc
1) ≥ 2n−1.

Proof. Let F be the fooling set forKc given by Lemma 4.26. Let F ′ = {(0u, v) | (u, v) ∈ F}.
Let us show that F ′ is fooling set for Kc

1.
(F1) If uv ∈ Kc, then uv ̸∈ K, then also 0uv ̸∈ K1, so 0uv ∈ Kc

1.
(F2) If (u, v), (x, y) are two distinct pairs in F . Then without loss of generality,

uy ̸∈ Kc, so uy ∈ K. Then 0uy ∈ K1 and 0uy ̸∈ Kc
1.

Hence F ′ is fooling set forKc
1. Since the size of F ′ is 2n−1, we have nsc(Kc

1) ≥ 2n−1.

We summarize our results in the following theorem.
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Theorem 4.30 (Complementation on binary su�x-free languages; lower bound).

Let n ≥ 6. There is a binary su�x-free language L such that nsc(L) = n and nsc(Lc) ≥
2⌊

n
2
⌋−1.

Proof. If n is even, that is, n = 2k for some k ≥ 3, then we set L = K, where K is the
language described above with nsc(K) = 2k. By Lemma 4.26, nsc(Kc) ≥ 2k−1. Hence
nsc(Lc) = nsc(Kc) ≥ 2k−1 = 2⌊

n
2
⌋−1. If n is odd. That is, n = 2k+1 for some k ≥ 3, then

we said L = K1, where K1 is the language described above with nsc(K1) = 2k + 1. By
Lemma 4.29, nsc(Kc

1) ≥ 2k−1. Hence nsc(Lc) = nsc(Kc
1) ≥ 2k−1 = 2⌊

n
2
⌋−1.

In the next consideration we use concept of pre�x-free languages. Now, we consider
an upper bound. Let us recall the following result.

Lemma 4.31. Let n ≥ 12. Let L be a binary pre�x-free language with nsc(L) = n. Then

nsc(Lc) ≤ 2n−1 − 2n−3 + 1.

Notice that the proof at [32, Lemma 9] works also for NFAs with multiple initial states.
We are going to use it also for su�x-free languages.

Lemma 4.32. Let n ≥ 12. Let L be a binary su�x-free language with nsc(L) = n. Then

nsc(Lc) ≤ 2n−1 − 2n−3 + 2.

Proof. After reversing an NFA for L, we obtain an n-state NFA (possibly with multiple
initial states) for a pre�x-free language LR. By Lemma 4.31, nsc((LR)c) ≤ 2n−1−2n−3+1.
Since (LR)c = (Lc)R, we have

nsc((Lc)R) ≤ 2n−1 − 2n−3 + 1

It follows that (Lc)R is accepted by an NFA N which has at most 2n−1 − 2n−3 + 1 states.
Now we reverse the the NFA N , and get NFA NR, possibly with multiple initial states.
By adding one more state, we get an NFA for Lc with at most 2n−1 − 2n−3 +2 states and
with a unique initial state. Our proof is complete.

So in the binary case the upper bound does not reach value 2n−1 and there is language,
such that nondeterministic complexity of its complement is at least 2⌊

n
2
⌋−1, so complement

requires still exponential number of states for nondeterministic automaton.
Han et al. in [21] obtained an upper bound 2n−1 + 1 and a lower bound 2n−1 on the

nondeterministic complexity of complementation on pre�x-free languages. Our �rst result
shows that the upper bound can be decreased by one.
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Lemma 4.33. Let n ≥ 3. Let L be a pre�x-free regular language with nsc(L) = n. Then

nsc(Lc) ≤ 2n−1.

Proof. Let N be an n-state NFA for a pre�x-free language L. Construct the subset
automaton of the NFA N and minimize it. Then, all the �nal states are equivalent, and
they go to the dead state on each input. Thus L is accepted by a DFA A = (Q,Σ, δ, s, {qf})
with at most 2n−1 + 1 states, with a dead state qd which goes to itself on each symbol,
and one �nal state qf which goes to the dead state on each symbol, thus δ(qd, a) = qd and
δ(qf , a) = qd for each a in Σ.

To get a DFA for the language Lc, we interchange the �nal and non-�nal states in the
DFA A, thus Lc is accepted by the (2n−1 + 1)-state DFA Ac = (Q,Σ, δ, s, Q \ {qf}). We
show that using nondeterminism, we can save one state, that is, we describe a 2n−1-state
NFA for the language Lc.

Construct a 2n−1-state NFA N c for Lc from the DFA Ac by omitting state qd, and
by replacing each transition (q, a, qd) by two transitions (q, a, qf ) and (q, a, s); see the
Figure 4.16.
Formally, construct an NFA N c = (Q \ {qd},Σ, δ′, s, Q \ {qf , qd}), where

δ′(q, a) =

{δ(q, a)}, if δ(q, a) ̸= qd,

{qf , s}, if δ(q, a) = qd.

Let us show that L(N c) = L(Ac).
Let w = a1a2 · · · ak be a string in L(Ac), and let s, q1, q2, . . . , qk be the computation

of the DFA Ac on the string w. If qk ̸= qd, then each qi is di�erent from qd since qd

goes to itself on each symbol. It follows that s, q1, q2, . . . , qk is also a computation of the
NFA N c on the string w. Now assume that qk = qd. Then there exists an ℓ such that
the states qℓ, qℓ+1, . . . , qk are equal to qd, and the states s, q1, . . . , qℓ−1 are not equal to
qd. If ℓ = k, then δ(qk−1, ak) = qd, so s ∈ δ′(qk−1, ak). It follows that s, q1, q2, . . . , qk−1, s

is an accepting computation of N c on w. If ℓ < k, then we have qℓ = qℓ+1 = · · · =
qk = qd, and therefore the string w is accepted in N c through the accepting computation
s, q1, . . . , qℓ−1, qf , qf , . . . , qf , s since we have δ′(qℓ−1, aℓ) = {qf , s}, and δ′(qf , a) = {qf , s}
for each a in Σ.

Now assume that a string w = a1a2 · · · ak is rejected by the DFA Ac. Let s =

q0, q1, q2, . . . , qk be the rejecting computation of the DFA Ac on the string w. Since the
only non-�nal state of the DFA Ac is qf , we must have qk = qf . It follows that each state
qi is di�erent from qd, and therefore in the NFA N c, we have δ′(qi−1, ai) = {δ(qi−1, ai)}.
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This means that s = q0, q1, q2, . . . , qk is a unique computation of N c on w. Since this
computation is rejecting, the string w is rejected by the NFA N c.

s ..
.

q

f
x

y

Σ

z

Σ

Figure 4.16: A sketch of substitution of a former dead state by new transitions

To prove tightness, we use similar languages as in the case of su�x-free languages,
shown in Figure 4.17

1 2 3 . . . n− 2 n− 1 n
a, b a, b a, b a, b a, b c

b

b b
b

b

b
bb

Figure 4.17: An NFA of a ternary pre�x-free language L with nsc(Lc) = 2n−1

Lemma 4.34. Let n ≥ 3. There exists a ternary pre�x-free language such that nsc(L) = n

and nsc(Lc) ≥ 2n−1.

Proof. Let K be the language accepted by the NFA over {a, b} shown in Figure 3.1
with n − 1 states. Set L = K · c. Then L is a pre�x-free language recognized by an
n-state NFA in Figure 4.17. As shown in [30, Theorem 5], there exists a fooling set
F = {(xS, yS) | S ⊆ {1, 2, . . . , n − 1}} of size 2n−1 for the language Kc. Then the set of
pairs of strings F ′ = {(xS, yS · c) | S ⊆ {1, 2, . . . , n − 1}} is a fooling set of size 2n−1 for
the Lc.

We summarize the results given in Lemma 4.33 and Lemma 4.34 in the following
theorem which provides the tight bound on the nondeterministic state complexity of
complementation on pre�x-free languages.
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Theorem 4.35 (Complementation on pre�x-free languages). Let n ≥ 3. Let L be

a pre�x-free regular language over an alphabet Σ with nsc(L) = n. Then nsc(Lc) ≤ 2n−1,

and the bound is tight if |Σ| ≥ 3.

Now, let us turn our attention to a binary alphabet. Similarly as in the case of su�x-
free language, we can apply the same homomorphism h on the ternary pre�x-free language
L from [32, Lemma 3] shown in Figure 4.17. We only have to be careful with the proof
of pre�x-free property of the language h(L). Now every string in h(L) ends by 00. The
only proper pre�x of a string in h(L) which ends with 00 has an odd length. But such a
string does not belong to h(L). Therefore h(L) is pre�x-free.

We can construct NFA A for h(L) with 2n states similarly as in the su�x-free case.
The main di�erence between the automaton in case of binary su�x-free language and
automaton for binary pre�x-free language is the �nal state; see the Figure 4.18. Similarly
as in su�x-free case we can prove that A is minimal and therefore nsc(h(L)) = 2n. Finally,
we use a similar approach to �nd a binary pre�x-free language with an odd size of states,
such that we add a new state n′ and the transition from original �nal state n to n′ on
symbol 0. State n′ become a new �nal state. Such a language is still pre�x-free.

Hence we get the following result for binary pre�x-free languages.

Theorem 4.36 (Complementation on binary pre�x-free languages; lower bound).

Let n ≥ 6. There is a binary pre�x-free language L such that nsc(L) = n and nsc(Lc) ≥
2⌊

n
2
⌋−1.

Lemma 4.31 and Theorem 4.36 give the following result.

Theorem 4.37 (Complementation on binary pre�x-free, su�x-free languages).

Let n ≥ 12. Let L be a binary pre�x-free or su�x free language with nsc(L) = n. Then

nsc(Lc) ≤ 2n−1 − 2n−3 + 2. The lower bound is 2⌊
n
2
⌋−1.

After investigation of pre�x and su�x free languages we investigate other free classes
of languages: factor-free and subword-free languages.

The next theorem provides a tight bound on the nondeterministic state complexity of
complement on factor-free languages.

Theorem 4.38 (Complementation on factor-free languages). Let n ≥ 3. Let L be

a factor-free language over an alphabet Σ such that nsc(L) = n. Then nsc(Lc) ≤ 2n−2+1,

and the bound is tight if |Σ| ≥ 3.
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n− 2

n− 2′

n− 1

n− 1′

n− 1′′

n

1 1
0, 1

0, 1

1

0
0

Figure 4.18: The last part of an NFA of pre�x-free language h(L)

Proof. We �rst prove the upper bound. Let A be an n-state NFA for L. Since L is
factor-free, it is su�x-free and also pre�x-free. It follows that no transition goes to the
initial state of A, and all the �nal states in the subset automaton are equivalent. Hence
the subset automaton has at most 2n−2+2 reachable and pairwise distinguishable states.
After exchanging the �nal and non-�nal states, we get a DFA for Lc of at most 2n−2 + 2

states. In the same way as for pre�x-free languages in [32, Lemma 2], we can use a
nondeterminism to save one state. This gives the upper bound 2n−2 + 1.

To prove tightness, consider the binary languageG accepted by the (n− 2)-state NFA N

shown in Figure 3.1. Let L = c · G · c. Then L is accepted by an n-state NFA A shown
in Figure 4.19.

Let F = {(xS, yS) | S ⊆ {1, 2, . . . , n−2}} be a fooling set for the Gc [30, Theorem 5].
Notice that the strings xS and yS have the following properties: (1) by xS, the initial
state goes to the set S; (2) the string yS is rejected by N from every state in S and it is
accepted by N from every state in {1, 2, . . . , n − 2} \ S. Then the set of pairs of strings
F ′ = {(cxS, ySc) | S ⊆ {1, 2, . . . , n− 2}} is a fooling set for Lc. Let

A = {(cxS, ySc) | S ⊆ {1, 2, . . . , n− 2} and S ̸= ∅},
B = {(can−3c, y∅c)},
u = y∅c,
v = ε.

Let us show that A, B, u and v satisfy the conditions of Lemma 2.2. The set A is a fooling
set for Lc since A ⊆ F ′. The set B is fooling set for Lc, because the string can−3c · y∅c is
in Lc, because it contains three symbols c.
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Notice that the string y∅c is accepted by A from each state in the set {1, 2, . . . , n− 2}
since y∅ is accepted by N from each state in {1, 2, . . . , n− 2} [30, Theorem 5]. Thus, if
S is non-empty, then cxS · y∅c /∈ Lc since by cxS the NFA A reaches the non-empty set
S, from which it accepts y∅c. It follows that A ∪ B and A ∪ {(ε, u)} are fooling sets for
Lc. Also B ∪ {(ε, ε)} is fooling set for Lc, because ε · ε ∈ Lc and can−3c · ε ̸∈ Lc.

It follows that the conditions in Lemma 2.2 are satis�ed, and therefore we have
nsc(Lc) ≥ |A|+ |B|+ 1 = 2n−2 + 1.

0 1 2 3 . . . n− 3 n− 2 n− 1
c a, b a, b a, b a, b a, b c

b

b b
b

b

b
bb

Figure 4.19: An NFA of a ternary factor-free language L with nsc(Lc) = 2n−2 + 1

It remains to �nd the bounds for the binary case.
Let us start with an upper bound. Let L be a binary factor-free language with nsc(L) =

n accepted by an n-state NFA N . The NFA N has to have the same properties as an
automaton for a pre�x or su�x free language. Thus there is just one �nal state with no
outgoing transition and no transition goes to the initial state. We obtain a similar lemma
as in the case of binary pre�x-free languages in [32, Lemma 9].

Lemma 4.39. There is a positive integer n0 such that for every n > n0, if L is a binary

factor-free language with nsc(L) = n then nsc(Lc) ≤ 2n−2 − 2n−4 + 1.

Proof. Let N be a minimal NFA for L. Let {1, 2, . . . , n} be the state set of N . Let n

be the �nal state and 1 be initial state of N . Without loss of generality, the state n is
reached from the state n− 1 on a in N . Recall that no transition goes to state 1 because
L is also a su�x-free language, so at most two subsets of states are reachable from 1.
Therefore it is enough to consider subsets of set {2, 3, . . . , n− 1}.

If there is no transition (i, a, j) with i, j ∈ {2, 3, . . . , n − 1}, then the automaton on
states {2, 3, . . . , n − 1} is unary. It follows that in the subset automaton of N , at most
O(F (n − 2)) distinguishable subsets of {1, 2, . . . , n− 1} can be reached. Since, starting
from some positive integer n0, we have O(F (n− 2)) < 2n−2 − 2n−4, the lemma follows in
this case.
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Now consider a transition (i, a, j) with i, j ∈ {2, 3, . . . , n − 1}. Let us show that no
subset of {2, 3, . . . , n − 1} containing states i and n − 1 may be reachable. Assume for
contradiction, that a set S ∪ {i, n − 1} is reached from the initial state of the subset
automaton by a string u. Since N is minimal, the �nal state n is reached from the state
j by a non-empty string v. However, the set S ∪ {i, n− 1} goes to a �nal set S ′ ∪ {j, n}
by a, and then to a �nal set S ′′ ∪ {n} by v. It follows that the subset automaton accepts
the strings ua and uav, which is a contradiction with the pre�x-freeness of the accepted
language. Thus at least 2n−4 subsets of {2, 3, . . . , n− 1} are unreachable. Therefore, the
subset automaton has at most 2n−2−2n−4+1 states. After exchanging the accepting and
the rejecting states we get a DFA of the same size for the complement of L(N), and the
lemma follows.

For the lower bound, let us consider the language L = cGc, where G is accepted by the
n− 2-state NFA shown in Figure 3.1. Then L is accepted by an n-state NFA A shown in
Figure 4.19. By a similar strategy as in the binary case of pre�x or su�x free language, we
apply homomorphism h on the language L. Every string w in h(L) has a form 001u1100

or 001u1000 and the string u does not contain string 00. So in the �rst case, any proper
factor belonging to h(L) does not exist. In the second case, every proper factor belonging
to h(L) has to have form 001u100 but it has an odd length, and since every string in h(L)

has an even length, such a string is not in h(L). So h(L) is factor-free. We get an NFA
A for h(L) in a similar way as in cases su�x-free or pre�x-free. The NFA A is minimal
and has 2n states, so nsc(h(L)) = 2n.

We deal with odd values of n similarly as before. Thus we get the following result.

Lemma 4.40. Let n ≥ 8. There is a binary factor-free language L such that nsc(L) = n

and nsc(Lc) ≥ Ω(2
n
2 ).

We summarize our results on binary factor-free languages in the following theorem.

Theorem 4.41 (Complementation on binary factor-free languages). There is a

positive integer n0 such that for every n > n0, if L is a binary factor-free language with

nsc(L) = n then nsc(Lc) ≤ 2n−2 − 2n−4 + 1. The lower bound is Ω(2
n
2 ).

The last class investigated is class of subword-free languages. We provide upper and
lower bounds for nondeterministic state complexity of complement of such a language.
We prove that bound is tight if alphabet has exponential size.

First, we prove the following observation.

Proposition 4.42. Let L be a language. If L is subword-free, then L is �nite.
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Proof. Let us assume for a contradiction that L is not �nite. Let A be a minimal NFA
for L. Since L is in�nite, there is a state q in A and a non-empty string u such that
q ∈ δ(q, u), where δ is a transition function of A and u ̸= ε. Since A is minimal, there
must be a string x by which q is reachable from the initial state, and a string y which
is accepted from q. So the string xy belongs to the language L. The string xuy also
belongs to L. However, the string xy is a proper subword of the string xuy. So L is not
subword-free, which is contradiction.

Theorem 4.43 (Complementation on subword-free languages). Let n ≥ 4. Let

L be a subword-free language over an alphabet Σ such that nsc(L) = n. Then nsc(L) ≤
2n−2 + 1, and the bound is tight if |Σ| ≥ 2n−2.

Proof. The upper bound is the same as for factor-free languages. To prove tightness, let
Σ = {aS | S ⊆ {1, 2, . . . , n− 2}} be an alphabet with 2n−2 symbols.

Consider the language L accepted by the NFA A = (Q,Σ, δ, 0, {n − 1}), where
Q = {0, 1, . . . , n− 1}, and the transition function δ is de�ned as follows: for each symbol
aS in Σ,

δ(0, aS) = S;
δ(i, aS) = ∅ if 1 ≤ i ≤ n− 2 and i ∈ S;
δ(i, aS) = {n− 1} if 1 ≤ i ≤ n− 2 and i /∈ S; and
δ(n− 1, aS) = ∅.

The Figure 4.20 shows the NFA A with n = 4.

0

1

2

3

a{1}, a{1,2}

a{2}, a{1,2}

a∅, a2

a∅, a1

Figure 4.20: Example of a subword-free language with NFA of four states and alphabet
a∅, a{1}, a{2}, a{1,2}

Notice that each string in L is of length 2, so L is subword-free. Consider the set of
pairs F = {(aS, aS) | S ⊆ {1, 2, . . . , n − 2}}. Let us show that the set F is a fooling set
for Lc.
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(F1) For each S, the string aSaS is in Lc since A goes to S by aS and aS is rejected
by A from each state in S.

(F2) Let S ̸= T . Then, without loss of generality, there is a state q in {1, 2, . . . , n− 2}
such that q ∈ S and q /∈ T . Then aSaT in not in Lc since A goes to the state q by aS,
and then to the accepting state n− 1 by aT .

Hence F is a fooling set for Lc.
Let
A = {(aS, aS) | S ⊆ {1, 2, . . . , n− 2} and S ̸= ∅},
B = {(a{1}a{2}, a∅)},
u = a∅,
v = ε.

Let us show that Lc, A, B, u, and v satisfy the condition in Lemma 2.2. The set A is
a fooling set for Lc since A ⊆ F . The set B is fooling set for Lc, because the string
a{1}a{2} · a∅ is in Lc, because it contains three symbols.

Notice, if S is non-empty, then aS · a∅ is accepted by A, so aS · a∅ /∈ Lc. It follows
that A∪B and A∪{(ε, a∅)} are fooling sets for Lc. Also B∪{(ε, ε)} is fooling set for Lc,
because ε · ε ∈ Lc and a{1}a{2} · ε /∈ Lc.

So the conditions in Lemma 2.2 are satis�ed, therefore we have nsc(Lc) ≥ 2n−2+1.

4.4 Concluding remarks and open problems

Table 4.1 provides an overview of complexities of operations on unary-free languages and
compares them to the known results on regular unary languages from [24]. Notice that
the exact complexity of concatenation in the case of regular languages is still not known.

Table 4.2 summarizes our results on the nondeterministic complexity of operations on
pre�x-, su�x-, factor-, and subword-free languages and compares them to the results on
regular languages which are from [24, 30]. Notice that the complexity of each operation
in each class is always smaller than in the general case of regular languages, except for
the reversal operation on su�x-free languages. All our wittnes languages are de�ned over
small �xed alphabet which are always optimal, except for intersection and complementa-
tion on subword-free languages where it remains open whether the upper bounds can be
met by subword-free languages de�ned over smaller alphabets. We conjecture that the
bound mn is assymptotically tight for intersection of binary subword-free languages.
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K ∩ L K ∪ L KL L∗ Lc

Unary free m = n max{m,n} m+ n− 1 n− 1 Θ(
√
n)

Unary regular [24] mn; m+ n+ 1; ≥ m+ n− 1 n+ 1 2Θ(
√
n logn)

gcd(m,n) = 1 gcd(m,n) = 1 ≤ m+ n

Table 4.1: Nondeterministic complexity of operations on unary free languages.

Class Regular [24,30] Pre�x-free Su�x-free Factor-free Subword-free

K ∩ L mn 2 mn−(m+n−2) 2 . 2 mn−2(m+n−3) 2 . m+n−5

K ∪ L m+ n+ 1 2 m+ n 2 m+ n− 1 2 m+ n− 2 2 . 2

KL m+ n 2 m+ n− 1 1 . 1 . 1 . 1

L∗ n+ 1 1 n 2 . 2 n− 1 1 . 1

LR n+ 1 2 n 1 n+ 1 2 n 1 . 1

Lc 2n 2 2n−1 3 . 3 2n−2 + 1 3 . 2n−2

Table 4.2: Nondeterministic complexity of operations on free classes. The dot means that
the complexity is the same as in the previous column.
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Chapter 5

Closed Languages

Recall that a language L is pre�x-closed if w ∈ L implies that every pre�x of w is in L.
Su�x-, factor-, and subword-closed languages are de�ned analogously. In the �rst part
of this chapter, we investigate properties of nondeterministic �nite automata accepting
closed languages. Then we examine the nondeterministic complexity of basic operations
on the four classes of closed languages. We also study the unary case. We conclude the
chapter by summarizing our results and stating some open problems.

5.1 Properties of closed languages

The next propositions say something about the characterization of NFA recognizing a
pre�x-closed and su�x-closed language.

Proposition 5.1 (Characterizations of NFA).

(a) A regular language is pre�x-closed if and only if it is accepted by some NFA with all

states �nal.

(b) A regular language is su�x-closed if and only if it is accepted by some NNFA with

all states initial.

Proof. (a) ⇒: Let A = (Q,Σ, δ, s, F ) be an trim NFA for a pre�x-free language L. If A
does not have any non-�nal state we are done. If there are non-�nal states, they are not
dead states, because A is trim. The non-�nal states we set as �nal. More formally, Let
A′ = (Q,Σ, δ, s, F ′), where Q′ = M , F ′ = Q. We show, that, the automaton A′ accepts
the same language as automaton A.
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First, let us to show L(A′) ⊆ L(A). Let u ∈ L(A′). Let computation on string u

�nishes in a state q. Since in A are every transitions and states as in A′ (some of them
may not be �nal), the same computation is also in A. If q ∈ F , then u ∈ L(A). If q ̸∈ F ,
then q is not dead state in A. So there exists a string v, such that it reaches some p ∈ F ,
from q. Therefore uv ∈ L(A). But L(A) is pre�x-closed, so u ∈ L(A).

Second, L(A) ⊆ L(A′), bacause every accepted string in A is also accepted in A′. Thus
L(A′) = L(A) and A′ has all states �nal.

⇐: Let A be an automaton with the all states �nal. Let uv ∈ L(A). Then there is a
computation s

u−→ p
v−→ f , where s is initial state and p, f are �nal states. Therefore also

u belongs to L(A). So, L(A) is pre�x-closed.
(b) ⇒: Let A be a NFA for a su�x-closed language L. We can set every noninitial

state to initial and get NNFA, which is also, accepting L.
⇐: Let A be an NNFA such that all states are initial. Let w be a string accepted by

A and w = uv. There is a computation q
u−→ p

v−→ f , where f is �nal state. Since p is also
initial state, also su�x v is accepted, hence language accepted by A is su�x-closed.

Proposition 5.2. Let NFA A = (Q,Σ, δ, s, F ) be minimal accepting language L. Then L

is su�x-closed if and only if the next condition is satis�ed: if a string w is accepted from

a state q, then the w is accepted from the initial state s.

Proof. Since A is minimal, there is a string u for arbitrary state q in Q, such that q ∈
δ(s, u) and a string v, such that δ(q, v) ∩ F ̸= ∅.

⇐: Assume uv ∈ L. Then there is computation such that s u−→ q
v−→ f , where f ∈ F .

So there is computation q
v−→ f and by assumption also computation s

v−→ f ′, where
f ′ ∈ F . So v ∈ L, hence L is su�x-closed.

⇒: Assume L is su�x-closed. Assume, there is a computation q
v−→ f , where f ∈ F .

NFA A is minimal, so there exists u, such that s
u−→ q. Then there is computation

s
u−→ q

v−→ f , so uv ∈ L. Since L is su�x-closed also v ∈ L, so there exists a computation
s

v−→ f ′, where f ′ ∈ F .

In what follows we use several times the following useful observation about factor-
closed languages.

Proposition 5.3. A language L is factor-closed if and only if the L is pre�x-closed and

su�x-closed.

Proof. ⇒: It follows directly from de�nition of factor-closed.
⇐: Let uvy ∈ L. Then since L is su�x-closed, vy ∈ L and since L is pre�x-closed,

the v ∈ L .
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5.2 Unary closed languages

In this section we pay attention to unary closed languages. Consider pre�x-closed language
and two cases, �nite language and in�nite language. In the case of �nite language, there
is a string with maximum length, so every shorter strings also must be in the language.
In the case of in�nite language, for arbitrary positive integer i, there is a string w with
length at least i and with this string every its pre�x, so such a language is a∗. Moreover
su�x-closed, factor-closed and subword-closed coincide.

Theorem 5.4. Let K and L be two unary closed languages with nsc (K) = m and

nsc (L) = n. Then

1. nsc (K ∪ L) ≤ max{m,n},

2. nsc (K ∩ L) ≤ min{m,n},

3. nsc (KL) ≤ m+ n− 1,

4. nsc (L∗) ≤ 1,

5. nsc (LR) ≤ n,

6. nsc (Lc) ≤ n+ 1.

All these bounds are tight.

Proof. An unary closed language L with nsc (L) = 1 is ∅ or a∗ or {ε}. For n ≥ 2, the
unary closed language L with nsc (L) = n is the set {ai | 0 ≤ i ≤ n−1}. This observation
helps us to show that if 2 ≤ m < n,

1) the language K ∪ L is the same as L, because every string in K is in L;
2) the language K ∩ L is the same as K, for the same reason;
3) the language KL is the set of strings with maximal length m − 1 + n − 1, hence
nsc (KL) = m+ n− 1;

4) the language L∗ is the same as a∗, because the string a is in L, hence nsc (L∗) = 1;
5) the language LR is the same as L, what holds true for every unary language;
6) the language Lc is the set of strings with minimal length n, what needs n+1 states.

This case is proven by simple observation. Let us transform the unary automaton for
L to complete DFA. We need to add a dead state, which is single non�nal state. After
exchanging �nality we get automaton with single �nal state and n+ 1 states. This is the
minimal number. See the Figure 5.1.
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0 1 . . . n− 1 0 1 . . . n− 1 n
a a a a a a a

a

Figure 5.1: On the left is closed language and on the right its complement.

5.3 Operations on closed languages

We start with union and intersection on the class of closed languages.

Theorem 5.5 (Union). Let m,n ≥ 2. Let K and L be closed languages with nsc (K) = m

and nsc (L) = n. Then nsc (K ∪ L) ≤ m + n + 1. The bound is met by binary subword

closed languages.

Proof. The upper bound is the same as for regular languages. To prove tightness, consider
the binary languages shown in Figure 5.2. The language K consists of all strings such
that each string contains at most m − 1 symbols a, hence each subword contains also
at most m − 1 symbols a and such string belongs to the language K. Therefore K is
subword-closed. Similarly, the language L is also subword-closed.

q0 q1 . . . qm−1 0 1 . . . n− 1
a

b

a

b

a

b

b

a

b

a

b

a

Figure 5.2: The DFAs of subword-closed languages K and L with nsc(K∪L) = m+n+1.

Consider the following sets of pairs of strings:

A = {(bnai, am−1−ib) | 0 ≤ i ≤ m− 1},
B = {(abn−1−j, bjam) | 0 ≤ j ≤ n− 1}.

Let us show that A∪B is a fooling set. Condition (F1) is satis�ed since for each i, j, the
strings bnai · am−1−ib and abn−1−j · bjam are in K ∪ L. To prove (F2), we consider three
cases:

(1) if 0 ≤ i < k ≤ m− 1, then bnak · am−1−ib is not in K ∪ L;
(2) if 0 ≤ j < ℓ ≤ n− 1, then abn−1−j · bℓam is not in K ∪ L;
(3) if 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1, then bnai · bjam is not in K ∪ L.

In addition, A ∪ {(ε, ambn−1)} and B ∪ {(ε, am−1bn)} are fooling sets for K ∪ L. By
Lemma 2.2, we have that nsc (K ∪ L) ≥ m+ n+ 1.
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Theorem 5.6 (Intersection). Let m,n ≥ 2. Let K and L be closed languages with

nsc (K) = m and nsc (L) = n. Then nsc (K ∩ L) ≤ mn. The bound is met by binary

subword-closed languages.

Proof. The upper bound is the same as for regular languages. To prove tightness, consider
the binary subword-closed languages shown in Figure 5.2. Consider the following set of
pairs of strings:

F = {(aibj, am−1−ibn−1−j) | 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1}.

Let us show that F is a fooling set for K ∩L. Condition (F1) is satis�ed since for each i,
j, the string aibj · am−1−ibn−1−j is in K ∩L. To prove (F2), let (i, j) ̸= (k, ℓ). (1) If i < k,
then akbℓ · am−1−ibn−1−j is not in K ∩ L. (2) If i = k and j < ℓ, then akbℓ · am−1−ibn−1−j

is not in K ∩ L. Hence F is a fooling set for K ∩ L, so nsc (K ∩ L) ≥ mn.

q0 q1 . . . qm−1 0 1 . . . n− 1

b

a a a

c c

c b

a a a

c c

c

Figure 5.3: The subword-closed witnessesK,L for concatenation meeting the boundm+n.

Let us continue with concatenation.

Theorem 5.7 (Concatenation). Let K and L be closed languages with nsc (K) = m

and nsc (L) = n. Then nsc (KL) ≤ m + n. The bound is met by ternary subword-closed

languages.

Proof. The upper bound is the same as for regular languages. To prove tightness, consider
the ternary subword-closed languages shown in Figure 5.3. Consider the following set of
pairs of strings:

F = {(ai, am−1−icban−1) | 0 ≤ i ≤ m− 1} ∪ {(am−1cbaj, an−1−j) | 0 ≤ j ≤ n− 1}.

Let us show that F is a fooling set for KL. Condition (F1) is satis�ed since for each i, j,
the strings ai · am−1−icban−1 and am−1cbaj · an−1−j are in KL. To prove (F2), notice that
KL is a subset of b∗a∗c∗b∗a∗c∗ and every string in KL has at most m− 1 + n− 1 letters
a. We consider three cases.
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(1) If 0 ≤ i < k ≤ m − 1, then ak · am−1−icban−1 is not in KL, because it has more
than m− 1 + n− 1 letters a.

(2) If 0 ≤ j < ℓ ≤ n − 1, then am−1cbaℓ · an−1−j is not in KL, because it has more
than m− 1 + n− 1 letters a.

(3) If 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1, then am−1cbaj · am−1−icban−1 is not in KL,
because this string is not in the form b∗a∗c∗b∗a∗c∗.
Hence F is a fooling set for KL, so nsc (KL) ≥ m+ n.

0 1 . . . n− 1
a a a

b

Figure 5.4: The pre�x-closed witness language L for star and reversal.

0 1 2 . . . n− 1

a

a a a

a

b

Figure 5.5: The su�x-closed witness language L for star meeting the bound n.

Theorem 5.8 (Star). Let L be a closed language over Σ with nsc (L) = n. Then

(a) if L is pre�x-closed, then nsc (L∗) ≤ n, and the bound is tight if |Σ| ≥ 2;

(b) if L is su�x-closed, then nsc (L∗) ≤ n, and the bound is tight if |Σ| ≥ 2;

(c) if L is factor- or subword-closed, then nsc (L∗) = 1.

Proof. If L is a closed language, then ε ∈ L. It follows that nsc (L∗) ≤ n. To prove tight-
ness, consider a pre�x-closed language shown in Figure 5.4 and a su�x-closed language
shown in Figure 5.5. Lower bound for pre�x-closed was proven in [11, Theorem 14], lower
bound for su�x-closed is n because L = L∗. For factor- or subword-closed, let Γ be set
of letters present in any string of L. While L ⊆ Γ∗, every single-letter string from Γ is in
L. It follows that L∗ = Γ∗, hence nsc (L∗) = 1.

Theorem 5.9 (Reversal). Let n ≥ 3 and L be a closed language with nsc (L) = n.

Then nsc (LR) ≤ n+ 1. The bound is met by a binary pre�x-closed language, by a binary

factor-closed language and by a subword-closed language over an alphabet of size 2n− 2.
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Figure 5.6: A binary factor-closed witness for reversal meeting the bound n+ 1.

Proof. The upper bound is the same as for regular languages. To prove tightness, consider
the binary pre�x-closed language shown in Figure 5.4. It was shown in [11] that the
reversal of this language requires n+ 1 states.

Now we consider factor-closed case. Let L be the language accepted by the NFA
A = (Q, {a, b}, · , 0, Q), where Q = {0, 1, . . . , n− 1} and the transitions are as follows:

0 · a = Q \ {0} and i · a = {i+ 1} if 1 ≤ i ≤ n− 2,
0 · b = {n− 2} and (n− 1) · b = {n− 2},

and all the remaining transitions go to ∅. The NFA A is shown in Figure 5.6.
First we show that L is factor-closed. Since each state of A is �nal, the language L is

pre�x-closed. Next, for each transition (i, σ, j) there is the transition (0, σ, j) in A. Hence
if a string is accepted by A from a state i, then it is accepted also from the initial state 0.
Therefore L is su�x-closed. Since L is pre�x-closed and su�x-closed, it is factor-closed.

Now we show that every NFA for LR needs at least n+ 1 states. Let
A = {(ban−1−i, ai) | 0 ≤ i ≤ n− 2},
B = {(b, an−1)},
u = an−1, and v = an−2.

Notice that {ban−1, an−1, an−2} ⊆ LR and no string in LR has more than n−1 consecutive
a's. It follows that A ∪ B, A ∪ {(ε, u)}, and B ∪ {(ε, v)} are fooling sets for LR. By
Lemma 2.2, we have nsc(LR) ≥ n+ 1.

Finally consider the subword-closed language accepted by the DFA shown in Fig-
ure 5.7. Consider the following sets:
A = {(b2b3 · · · bn−1, a1)}, B = {(b1 · · · bi−1bi+1 · · · bn−1, ai) | 2 ≤ i ≤ n − 1} ∪ {(b1a2, ε)}.
Let us show that A∪B, A∪{(ε, a2)} and B∪{(ε, a1)} are fooling sets for LR. Condition
(F1) for A ∪ B is satis�ed because for every i the string b1 · · · bi−1bi+1 · · · bn−1 · ai is in
LR. Next, for every i ̸= j the string b1 · · · bi−1bi+1 · · · bn−1 · aj is not in LR, because it
has bj before aj. Hence (F2) is satis�ed. The condition (F1) for A ∪ {(ε, a2)} and for
B ∪ {(ε, a1)} is satis�ed, because the strings a2 and a1 are in LR. The proof of condition
(F2) uses the same strings as for A ∪ B.
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1 2 . . . i . . . n− 10

B \ {b1}B \ {b2} B \ {bi} B \ {bn−1}B

a1
a2

ai an−1

Figure 5.7: The DFA of subword-closed language L where B = {b1, . . . , bn−1}
.

The next lemma provides a binary factor-closed witness language for reversal meeting
the bound n+ 1, which improves the result from [26, Theorem 9] by reducing the size of
alphabet from three to two. This language is also a binary factor-convex witness.

We conclude this section with the complementation operation. In [11], a ternary
pre�x-closed language meeting the upper bound 2n for complement was described. Now
we describe a binary witness language.

Theorem 5.10 (Complementation). Let L be a closed language over Σ with nsc(L) =

n. Then

(a) if L is pre�x-closed, then nsc(Lc) ≤ 2n, and the bound is tight if |Σ| ≥ 2;

(b) if L is su�x-closed, then nsc(Lc) ≤ 2n−1 + 1, and the bound is met by a binary

factor-closed language;

(c) if L is subword-closed, then nsc(Lc) ≤ 2n−1 + 1, and the bound is tight if |Σ| ≥ 2n.

1 2 3 . . . n− 1 n
a

b

a

b

a

b

a a

b

a

a

Figure 5.8: The NFA of binary witness pre�x-closed language L with nsc(Lc) = 2n.

Proof. (a) The upper bound is the same as for regular languages. To prove tightness, let
L be the binary language accepted by the NFA A shown in Figure 5.8. First, we prove the
reachability of every subset of {1, 2, . . . , n} in the subset automaton of A. Notice that we

have {1} an−1

−−−→ {n} an−1

−−−→ {1, 2, . . . , n}. Next, we can shift cyclically by one every subset
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S: we use the string a if n /∈ S or if n ∈ S and n − 1 ∈ S, and we use the string ab

otherwise. Finally, we can remove state n from any subset containing n by b. It follows
that every subset of {1, 2, . . . , n} is reachable. Thus for every set S, there exists a string
uS such that uS leads the subset automaton from {1} to S.

Now, we de�ne a fooling set for complement of L. For every set S we de�ne a string
vS as follows. First we de�ne σ(i), where i ∈ {1, 2, . . . , n} as

σ(i) =

ba, if i ∈ S,

a, if i ̸∈ S.

Let vS = σ(n)σ(n − 1) . . . σ(2)σ(1). We show, that such a string is rejected by A from
every i ∈ S and accepted from every i ̸∈ S. Let i /∈ S, then σ(i) = a, and

i
σ(n)−−→ i+ 1

σ(n−1)−−−−→ i+ 2
σ(n−2)−−−−→ · · · σ(i+1)−−−−→ n

a−→ 1
σ(i−1)...σ(1)−−−−−−−→ i,

so vS is accepted since every state is �nal. If i ∈ S, then σ(i) = ba, and

i
σ(n)−−→ {i+ 1} σ(n−1)−−−−→ {i+ 2} σ(n−2)−−−−→ · · · σ(i+1)−−−−→ {n},

and now A reads the �rst symbol of σ(i) which is b. However, transition on b is not
de�ned in state n, therefore the string vS is rejected.

Now we show that F = {(uS, vS) | S ⊆ {1, 2, . . . , n}} is a fooling set for Lc.
(F1) Let S ⊆ {1, 2, . . . , n}. The NFA A reaches subset S by uS, and from every state

q ∈ S the string vS is rejected. So uSvS is rejected by A, so uSvS ∈ Lc.
(F2) Let S, T ⊆ {1, 2, . . . , n} and S ̸= T . Without loss of generality, there exists a

state i, such that i ∈ S and i ̸∈ T . So vT is accepted from i. Hence uSvT is accepted by
A, and therefore uSvT ̸∈ Lc. This completes the proof of (a).

(b) We �rst prove the upper bound. Let A = (Q,Σ, δ, s, F ) be an minimal NFA, such
that L(A) = L. Since A is a minimal NFA, every q in Q is reachable from s and also
some �nal state is reachable from q. Let a state q ∈ Q be reachable from s by a string
u. If a �nal state is reachable from q by string v, then also uv reaches a �nal state, so uv

is accepted. Since L is su�x-closed, the string v reaches a �nal state from s. Therefore
every subset of Q containing s is equivalent to {s} in the subset automaton of NFA A.
So subset automaton of A has at most 2n−1 + 1, so nsc(Lc) ≤ 2n−1 + 1.

To prove tightness, consider a language L accepted by automaton in Figure 5.9. If there
is an accepting computation from a state q on a string u such that q

a(b)−−→ q′
u′
−→ f , where

u = au′ or u = bu′ and f is a �nal state, then there is a computation s
a(b)−−→ q′

u′
−→ f . It

follows that L is su�x-closed. Therefore L is factor-closed. First, we prove the reachability
of every subset of {1, 2, . . . , n − 1} in the subset automaton of A. Notice that we have
{0} a−→ {1, 2, . . . , n − 1}. Next, we can shift cyclically by one every subset S by using
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Figure 5.9: The factor-closed witness L for complement, with nsc(Lc) = 2n−1 + 1.

the string a. Finally, we can remove state n − 1 from any subset containing n − 1 by b.
It follows that every subset of {1, 2, . . . , n − 1} is reachable. Thus for every set S, there
exists a string uS such that uS leads the subset automaton from {0} to S. Now, we de�ne
a fooling set for complement of L. For every set S we de�ne a string vS as follows. First
we de�ne σ(i), where i ∈ {1, 2, . . . , n− 1} as σ(i) = ba if i ∈ S, and σ(i) = a if i /∈ S. Let
vS = σ(n− 1)σ(n− 2) · · ·σ(2)σ(1). Similarly as in proof in case of pre�x-closed in (a) we
can show that such a string is rejected by A from every i ∈ S and accepted from every
i ̸∈ S. Let A = {(uS, vS) | S ⊆ {1, 2, . . . , n−1}}. We can show that F = A ∪ {(ε, (ba)n)}
is a fooling set for Lc.

(c) Since subword-closed language is also factor-closed, the upper bound is 2n−1 + 1.
To prove tightness consider an NFA A, de�ned as follows:
A = (Q,Σ, δ, s, F ), where Q = {0, 1, 2, . . . , n − 1}, s = 0, F = Q and Σ = {aS, bS | S ⊆
{1, 2, . . . , n − 1}}, δ(0, aS) = S, for i > 0 δ(i, aS) = ∅, δ(0, bS) = 0, for i > 0: if i /∈ S,
then δ(i, bS) = {i} and if i ∈ S, then δ(i, bS) = ∅ . Such an NFA is shown in Figure 5.10.

Consider now the language L = L(A). Let w ∈ L. The string w is accepted in a
i∈ S. Any substring of w is accepted also in the i. Hence L is subword-closed. We can
show that A = {(aS, bS) | S ⊆ {1, 2, . . . , n− 1}} ∪ {(ε, a∅} is fooling set for Lc. Therefore
nsc(Lc) ≥ 2n−1 + 1.

0

1

2

b∅, b1, b2, b12

a1
a12

a2

a12

b∅, b2

b∅, b1

Figure 5.10: The subword-closed witness language L with nsc(L) = 3 and |Σ| = 2n.
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5.4 Concluding remarks and open problems

We investigated the nondeterministic state complexity of basic regular operations on the
classes of closed languages. For each class and for each operation, we obtained the tight
upper bounds. To prove tightness we usually used a binary alphabet. In all the cases
where we used a larger alphabet for describing witness languages, it remains open whether
the obtained upper bounds can be met also by languages de�ned over smaller alphabets.
We also considered the unary case. Our results are summarized in the following tables.
The tables also display the size of alphabet used to describe witness languages.

Class K ∩ L |Σ| K ∪ L |Σ| K · L |Σ|
Pre�x-closed mn 2 m+ n+ 1 2 m+ n 3
Su�x-closed mn 2 m+ n+ 1 2 m+ n 3
Factor-closed mn 2 m+ n+ 1 2 m+ n 3
Subword-closed mn 2 m+ n+ 1 2 m+ n 3
Unary closed min(m,n) max(m,n) m+ n− 1

Regular mn 2 m+ n+ 1 2 m+ n 2
Unary regular mn; m+ n+ 1; ≥ m+ n− 1

gcd(m,n) = 1 gcd(m,n) = 1 ≤ m+ n

Table 5.1: The nondeterministic complexity of union, intersection, and concatenation on
closed languages. The results for regular languages are from [24].

Class L∗ |Σ| LR |Σ| Lc |Σ|
Pre�x-closed n 2 n+ 1 2 2n 2
Su�x-closed n 2 n+ 1 3 1 + 2n−1 2
Factor-closed 1 1 n+ 1 3 1 + 2n−1 2
Subword-closed 1 1 n+ 1 2n− 2 1 + 2n−1 2n

Unary closed 1 n n− 1

Regular n+ 1 1 n+ 1 2 2n 2
Unary regular n+ 1 n 2Θ(

√
n logn)

Table 5.2: The nondeterministic complexity of star, reversal, and complementation on
closed languages. The results for regular languages are from [24,30].
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Chapter 6

Ideal Languages

In this section we focus on ideal languages. Recall that a language L over an alphabet Σ
is a right (left, two-sided, all-sided) ideal if L = LΣ∗ (L = Σ∗L, L = Σ∗LΣ∗, L = L�Σ∗,
respectively). We again get tight upper bounds on the nondeterministic complexity of
basic operations in each of these subclasses.

6.1 Properties of ideal languages

In this section we state and prove some useful propositions about some features of au-
tomata for ideal languages.

Proposition 6.1. Let L be a regular language.

1. If L is a left ideal, then there exists a minimal NFA A such that L(A) = L and there

is a loop on each symbol in the initial state and no transition goes to the initial state

from any other state.

2. If L is a right ideal, then there exists a minimal NFA A such that L(A) = L and

there is the unique �nal state in which there is a loop on each symbol and from which

no transition goes to any other state.

Proof. (a) Let A be a minimal NFA for L and s be the initial state.
Construct A′ from A by adding loops on every symbol in s and by removing every

transition going to s from other states.
If w ∈ L(A′), we can split w to two strings u, v such that w = uv and there is a

computation such that after reading u, the initial state s occurs the last time and during
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reading v no added transition is used. So v is accepted in A. Since L(A) is a left ideal,
uv ∈ L(A). Therefore w ∈ L(A).

If w ∈ L(A), we can split w to two strings u, v such that w = uv and there is a
computation such that after reading u, the initial state s occurs the last time and during
reading v, no transition goes to s. So every used transition is also in A′, so v ∈ L(A′).
Since there is a loop on every symbol in s in A′, string u is possible to read in s and
continue by reading v. Therefore uv ∈ L(A′), so w ∈ L(A′).

So, L(A) = L(A′) and A′ is an NFA with required properties.
(b) Let A be a minimal NFA for L and s be the initial state.
Construct A′ from A by adding loops on every symbol in every �nal states and by

removing every transition going out from every �nal state to other state.
If w ∈ L(A), then we can split w to two strings u, v such that w = uv and there is a

computation such that after reading u a �nal state occurs the �rst time, so during reading
u, no transition going from some �nal state is used. So u is accepted also in A′. Since in
every �nal state there is a loop on every symbol, the string v is possible to read in a �nal
state, so w ∈ L(A′).

If w ∈ L(A′), then we can split w to two strings u, v such that w = uv and there is a
computation such that after reading u a �nal state occurs the �rst time, so during reading
u no transition going from �nal state is used. So u is accepted also in A. Since L(A) is a
right ideal, uv ∈ L(A). So w ∈ L(A).

So L(A) = L(A′).
Notice that A′ has only one �nal state. Otherwise all �nal states would be equivalent

and we could merge them into one. But it would be the contradiction with minimality
of A.

Proposition 6.2. Let L be a language over Σ and let A be a minimal NFA such that

L(A) = L. Language L is two-sided ideal if and only if there is a minimal NFA A with

initial state with a loop on every input and no in-transition from some other state and

just one �nal state with a loop on every input and no out-transition to some other state.

Proof. A language L is two-sided ideal if and only if it is left ideal and right ideal, therefore
proposition follows from Proposition 6.1.

Proposition 6.3. Let L be a language over Σ. Language L is all-sided ideal if and only

if there is a minimal NFA A with just one �nal state and with a loop in every state on

every letter of an alphabet Σ, such that L(A) = L .
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0 1 . . . n− 2 n− 1
a a a a

a

Figure 6.1: Minimal NFA for language ak, k ≥ n− 1

Proof. ⇒: A language L is all-sided ideal, then also it is right ideal, hence by Propo-
sition 6.1 there is just one �nal state with loop on every input symbol. Every state is
reachable and as well as from every state is possible to get to �nal state. Let us consider
a state q. There are strings u, v, such that u leads from initial state to q and v leads from
q to �nal state. Since L is all-sided ideal, every string u · Σ∗ · v is accepted by A, so we
can add a loop in q on every input symbol.

⇐: Since in every state is a loop on every input symbol, we can insert in every position
of any accepted string arbitrary string, what means that L is all-sided.

6.2 Unary ideal languages

In the end of this chapter we pay attention to unary ideal languages. Let Σ = {a}. If
L is a right ideal and ai is its shortest string, then L = aia∗. Moreover L = a∗ai =

a∗aia∗ = a∗ � ai, hence left, right, two-sided and all-sided ideals coincide. An NFA for
such language L has form shown in Figure 6.1.

Theorem 6.4. Let m,n ≥ 2. Let K,L be unary ideals with nsc(K) = m, nsc(L) = n.

Then

(a) nsc(K ∩ L) = max{m,n},

(b) nsc(K ∪ L) = min{m,n},

(c) nsc(KL) = m+ n− 1,

(d) nsc(L∗) = n− 1,

(e) nsc(LR) = n,

(f) nsc(Lc) = n− 1.

Proof. (a) Let k = max{m,n}. The string ak−1 is the shortest string in K ∩ L, so
K ∩ L = ak−1a∗, therefore nsc(K ∩ L) = max{m,n}.
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(b) Let k = min{m,n}. The string ak−1 is the shortest string in K ∪ L, so K ∪ L =

ak−1a∗, therefore nsc(K ∪ L) = min{m,n}.

(c) It follows directly from Theorem 6.7, because witness languages were over unary
alphabet.

0 1 . . . n− 2 n− 1
a a a a

a

0 1 . . . n− 2 n− 1
a a a a

aa a

Figure 6.2: The construction an unary NFA for L∗

(d) Let A be minimal NFA for L. We can get NFA C for L∗ from A by applying three
next steps: (1) omit state n − 1 with all connected transitions, (2) state 0 set as
�nal, (3) add transitions (n − 2, a, n − 2), (n − 2, a, 0). The construction an NFA
for L∗ is shown in in Figure 6.2, where dashed lines are added transitions, state 0

is initial and �nal and crossed state and transitions are omited from A.

NFA C has n − 1 states, therefore nsc(L∗) ≤ n − 1. To prove tightness consider
set of pairs F = {(ai, an−1−i) | 0 ≤ i ≤ n − 2}. Notice that every string in L∗ has
length 0 or at least n−1. The set F is fooling set for L∗, so nsc(L∗) ≥ n−1. Hence
nsc(L∗) = n− 1.

(e) A reversal of unary string is the same, so LR = L, therefore nsc(LR) = n.

(f) Let A be minimal NFA for L. The form of such automaton is shown in Figure 6.1.
The automaton is also deterministic, so we can interchange �nal and non-�nal states
to get NFA A′ for complement Lc. In A′ we can omit the state n− 1, because it is
dead state. So nsc(A′) = n− 1.

0 1 . . . n− 2 n− 1

0 1 . . . n− 2

Figure 6.3: Unary ideal language and its complement
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6.3 Operations on ideal languages

First we consider the intersection operation on ideal languages.

Theorem 6.5 (Intersection). Let m,n ≥ 1. Let K and L be ideal languages with

nsc(K) = m and nsc(L) = n. Then nsc(K ∩ L) ≤ mn. The bound is met by binary

all-sided ideals.

Proof. The upper bound mn holds since it holds for regular languages. For tightness,
consider the binary all-sided ideals

K = {w ∈ {a, b}∗ | #a(w) ≥ m− 1} and
L = {w ∈ {a, b}∗ | #b(w) ≥ n− 1}.

with nsc(K) = m and nsc(L) = n. Let F = {(aibj, am−1−ibn−1−j | 0 ≤ i ≤ m− 1 and 0 ≤
j ≤ n− 1} be a set of mn pairs. To prove the theorem, we only need to show that F is a
fooling set for K ∩ L. The concatenation of the �rst and the second component of each
pair in F gives a string w with #a(w) = m− 1 and #b(w) = n− 1. Since all such strings
are in K ∩ L, condition (F1) is satis�ed. To prove (F2), let (i, j) ̸= (k, ℓ). If i < k, then
aibj · am−1−kbn−1−ℓ has less then m− 1 a's, so it is not in K ∩L. If i = k and j < ℓ, then
the string aibj · am−1−ibn−1−ℓ has less than n− 1 b's, so it is not in K ∩ L. Hence F is a
fooling set for K ∩ L.

We continue with the union operation.

Theorem 6.6 (Union). Let m,n ≥ 3. Let K and L be ideal languages over an alphabet

Σ with nsc(K) = m and nsc(L) = n. Then

(a) if K,L are right ideals, then nsc(K ∪ L) ≤ m+ n,

(b) if K,L are left ideals, then nsc(K ∪ L) ≤ m+ n− 1,

(c) if K,L are two-sided or all-sided ideals, then nsc(K ∪ L) ≤ m+ n− 2,

and all the bounds are tight if |Σ| ≥ 2.

Proof. (a) We �rst prove the upper bound. Let A be a minimal m-state NFA for K and
B be a minimal n-state NFA for L. Since K and L are right ideals, A and B have exactly
one �nal state which goes to itself on each symbol. We can get an ε-NFA for K ∪L from
NFAs A and B by merging the �nal states of A and B and by adding a new initial state
connnected to the initial states of A and B by ε-transitions. The resulting ε-NFA has
m+ n states, so the corresponding NFA for K ∪ L has also m+ n states.

To prove tightness, consider the binary right ideals K and L shown in Figure 6.4.
Now we show that minimal NFA for K ∪ L needs m+ n states.
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q0 q1 . . . qm−2 qm−1

0 1 . . . n− 2 n− 1

a a a

a

b

Σ

b b b

b

a

Σ

Figure 6.4: Witnesses right ideals for union.

To this aim let
A = {(am−1+i, am−2−ib) | 0 ≤ i ≤ m− 2} ∪ {(am−2b, ε)}, and
B = {(bn−1+j, bn−2−ja) | 0 ≤ j ≤ n− 2}.

The sets A∪B, A∪{(ε, bn−2a)} and B∪{(ε, am−2b)} are fooling sets. We �rst prove that
A is fooling set. Since am−1+iam−2−ib = am−1am−2b ∈ K, and am−2b ∈ K, condition (F1)
is satis�ed. To prove (F2) we have two cases:

(1) Consider two pairs of forms (am−1+i, am−2−ib) and (am−1+j, am−2−jb) where 0 ≤
i < j ≤ m − 2. Then am−1+i · am−2−jb = am−1+(m−2−(j−i))b. After reading the string
am−1+(m−2−(j−i)) NFA A is in the state m − 2 − (j − i), in which there is no transition
on b since m − 2 − (j − i) < m − 2. So that string is rejected by NFA A. The string is
rejected also by NFA B, since in the initial state of B, there is no transition on a. Hence,
am−1+i · am−2−jb ̸∈ K ∪ L.

(2) Consider a pair of a form (am−1+i, am−2−ib) with 0 ≤ i ≤ m − 2 and the pair
(am−2b, ε). Then am−1+i · ε ̸∈ K ∪ L because it does not contain any symbol b.

Hence A is fooling set.
A proof that B is fooling set is symmetric to case (1).
Now consider one pair from A and one pair from B. To prove (F2) we have two cases:
(1) Consider two pairs of forms (am−1+i, am−2−ib) and (bn−1+j, bn−2−ja) where 0 ≤ i ≤

m − 2 and 0 ≤ j ≤ n − 2. If i < m − 2, then am−1+i · bn−2−ja is rejected by NFA A,
because in state i there is no transition on b, and in NFA B it is rejected immediately
in the initial state, in which there is no transition on a. In the case j = n − 2, the
string does not contain any b. Hence am−1+i · bn−2−ja ̸∈ K ∪ L. If i = m − 2, then
bn−1+j · am−2−(m−2)b = bn+j does not contain any a, so it is rejected by both NFA A,B.
Hence bn−1+j · am−2−(m−2)b = bj+1 ̸∈ K ∪ L.

(2) For pairs (am−2b, ε) and (bn−1+j, bn−2−ja) with 0 ≤ j ≤ n− 2, we have bn−1+j · ε ̸∈
K ∪ L because this string does not contain any symbol a.
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Hence A ∪ B is a fooling set.
In case A∪{(ε, bn−2a)}, we have ε · bn−2a ∈ K ∪L, so condition (F1) is satis�ed. Now

we prove condition (F2). For a pair (am−1+i, am−2−ib) with 0 ≤ i ≤ m − 2, the string
ε · am−2−ib is not in K ∪L. For the pair (am−2b, ε), the string ε · ε is not in K ∪L. Hence,
A ∪ {(ε, bn−2a)} is a fooling set. In the case of B ∪ {(ε, am−2b)} the situation is similar.

By Lemma 2.2 we have nsc(K ∪ L) ≥ |A|+ |B|+ 1 = m+ n.

q0 q1 . . . qm−2 qm−1

0 1 . . . n− 2 n− 1

a a a a

b

Σ

b b b b

a

Σ

Figure 6.5: Witnesses left ideals for union.

(b) We �rst prove the upper bound. Let A be a minimal m-state NFA for K and
B be a minimal n-state NFA for L. Since K and L are left ideals, we may assume by
Proposition 6.1 that A and B have a loop on each symbol in the initial state, and no
transition from some other state goes to the initial state.

. . .

. . .

Σ
m−1 states

n− 1 states

Figure 6.6: General construction of automaton for union of left ideals

We can get an NFA for K ∪ L from NFAs A and B by merging the initial states.
All original transitions from initial states of NFAs A,B go from new merged state to

states as before merging. See Figure 6.6. The resulting NFA has m + n − 1 states, so
nsc(K ∪ L) ≤ m+ n− 1.

To prove tightness, consider two left ideals shown in Figure 6.5. Now we show that
minimal NFA for K ∪ L needs m+ n− 1 states. To this aim let A = {(ai, am−1−i) | 0 ≤
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i ≤ m − 1} and B = {(bj, bn−1−j) | 1 ≤ j ≤ n − 2} ∪ {(bn−1, abn−2)}. The set A ∪ B is
fooling set for K ∪ L, so nsc(K ∪ L) ≥ m+ n− 1, therefore nsc(K ∪ L) = m+ n− 1.

(c) For upper bound, let A be a minimal m-state NFA for K and B be a minimal
n-state NFA for L. Since K and L are left ideals and also right ideals, we may assume
by Proposition 6.1 that A and B have properties claimed there. We can get an NFA for
K∪L from NFAs A and B by merging the initial states, and by merging the �nal states of
A and B. The resulting NFA has m+n−2 states and we leave to the reader to verify the
corectness of the construction. To prove tightness, consider languages K = {w ∈ {a, b}∗ |
#a(w) ≥ m− 1} and L = {w ∈ {a, b}∗ | #b(w) ≥ n− 1}, so K and L are all-sided ideals.
Notice that each string in K ∪ L has at least m− 1 symbols a or at least n− 1 symbols
b. Let A = {(ai, am−1−i) | 0 ≤ i ≤ m− 1} and B = {(bj, bn−1−j) | 1 ≤ j ≤ n− 2}. The set
A∪B is fooling set for K∪L and contains m+n−2 pairs, so nsc(K∪L) ≥ n+m−2.

In the next theorem we consider the concatenation operation and we use unary ideals
to prove tightness.

Theorem 6.7 (Concatenation). Let m,n ≥ 3. Let K and L be ideal languages over Σ

with nsc(K) = m and nsc(L) = n. Then nsc(KL) ≤ m + n− 1 and the bound is tight if

|Σ| ≥ 1.

Proof. First, letK,L be left ideals. LetA = (QA,Σ, δA, sA, FA) andB = (QB,Σ, δB, sB, FB)

be minimal NFAs for K,L. Since K and L are left ideals, we may assume by Proposi-
tion 6.1 that A and B have a loop on each symbol in the initial state, and no transition
from some other state goes to the initial state. We can get an NFA C for KL from NFAs
A and B as follows: For every f in FA add a loop on every symbol and add transitions
(f, a, q) when there is a transition (sB, a, q) in B, where f ∈ FA, a ∈ Σ, q ∈ QB \ {sB}.
Set FC = FB, QC = QA ∪ QB \ {sB}. The resulting NFA has m + n − 1 states, so
nsc(KL) ≤ m+ n− 1.

Now, let K,L be right ideals. Let A = (QA,Σ, δA, sA, {qf}) be a minimal m-state
NFA for K and B = (QB,Σ, δB, sB, {pf}) be a minimal n-state NFA for L. Since K and
L are right ideals, we may assume by Proposition 6.1 that A and B have a loop on each
symbol in the unique �nal state, and no transition goes from the �nal state to some other
state. We can get an NFA C for KL from NFAs A and B by merging �nal state of A
with initial state of B and excluding of merged state from set of �nal states as follows:
C = (QC ,Σ, δC , sA, {pf}), where QC = (QA \ {qf})∪ (QB \ {sB})∪{nAB} and for every a

in Σ we have δC(nAB, a) = δA(qf , a)∪ δB(sB, a). The resulting NFA has m+n− 1 states,
so nsc(KL) ≤ m+ n− 1.
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Two-sided and all-sided ideals are also right ideals, so upper bound is the same as
in that cases. To prove tightness, consider all-sided ideal languages K = {am−1ak |
k ≥ 0} and L = {an−1ak | k ≥ 0}, with nsc(K) = m and nsc(L) = n. The set
F = {(ai, am+n−2−i) | 0 ≤ i ≤ m + n − 2} is fooling set for KL, so nsc(KL) ≥ |F| =
m+ n− 1.

Let us continue with star and reversal.

Theorem 6.8 (Star). Let n ≥ 2. Let L be ideal languages over Σ with nsc(L) = n.

Then nsc(L∗) ≤ n+ 1 and the bound is met by a binary all-sided ideal.

Proof. The upper bound n + 1 holds since it holds for regular languages. For tightness,
consider the binary all-sided ideal L = {w ∈ {a, b}∗ | #a(w) ≥ n− 1} with nsc(L) = n.
Let F = {(bai, an−1−ib) | 0 ≤ i ≤ n − 1} ∪ {(ε, ε)} be a set of n + 1 pairs. To prove
the theorem, we only need to show that F is a fooling set for L∗. Since ε · ε ∈ L∗ and
bai ·an−1−ib ∈ L∗, where 0 ≤ i ≤ n−1, condition (F1) is satis�ed. To prove (F2), consider
two cases: (1) Pairs of forms (bai, an−1−ib) and (baj, an−1−jb), where 0 ≤ i < j ≤ n − 1.
Then bai ·an−1−jb = ban−1−(j−i)b, which is the string not equal to ε and with small number
of a, so bai · an−1−jb ̸∈ L∗. (2) Pairs (bai, an−1−ib) and (ε, ε), where 0 ≤ i ≤ n− 1. Then
if i < n− 1, the string bai · ε ̸∈ L∗ and if i = n− 1, the string ε · an−1−ib = b ̸∈ L∗. Hence
F is fooling set for L∗, so nsc(L∗) ≥ |F| = n+ 1.

Theorem 6.9 (Reversal). Let n ≥ 3. Let L be ideal languages over Σ with nsc(L) = n.

(a) If L is right or two-sided or all-sided ideal, then nsc(LR) ≤ n and the bound is tight

if |Σ| ≥ 1.

(b) If L is left ideal, then nsc(LR) ≤ n+ 1 and the bound is tight if |Σ| ≥ 3.

Proof. (a) Let L be a right ideal. We �rst prove the upper bound. Let A be a minimal
n-state NFA for L. We can construct an NFA AR for LR by reverse all transition and
setting initial state of A to �nal state and every �nal state of A to initial state. Since
by Proposition 6.1, NFA A has unique �nal state, the AR has unique initial state and
therefore nsc(LR) ≤ n. Two-sided and all sided ideals are also right sided, so the upper
bound is also n. To prove tightness, consider unary language L with nsc(L) = n. Such a
language is the same for LR, so nsc(LR) = n.

(b) Let L be a left ideal. Let A be a minimal n-state NFA for L. After construction
of AR described in case (a) above we get NNFA with possible more initial states, so after
adding new extra initial state nsc(LR) ≤ n + 1. To prove tightness, consider a language
L = (a+ b+ c)∗b(an−2c)∗(ε+ a+ a2) shown in Figure 6.7.
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0 1 . . . n− 2 n− 1
b a a a

c

a, b, c

Figure 6.7: The left ideal language L with nsc(LR) = n+ 1.

Let A = {(cai, an−2−ib) | 0 ≤ i ≤ n−3}∪{(can−2b, ε)}, and B = {(can−2, b)}. Minimal
NFA for LR needs n+ 1 states, because A∪B, A ∪ {(ε, b)} and B ∪ {(ε, ab)} are fooling
sets. We show that A∪ B, A∪ {(ε, b)} and B ∪ {(ε, ab)} are fooling sets. Consider three
cases: (1) The set A ∪ B. Since reversals of cai · an−2−ib for 0 ≤ i ≤ n − 2 are in L and
also reversal of can−2b · ε is in L, the condition (F1) is satis�ed. To prove (F2) we have
two cases:

(1.1) Consider two pairs (cai, an−2−ib) and (caj, an−2−jb) where 0 ≤ i < j ≤ n − 2.
Then in the string caian−2−jb are less a's than n− 2, so cai · an−2−jb ̸∈ LR.

(1.2) Consider pair (cai, an−2−ib), where 0 ≤ i ≤ n − 2 and (can−2b, ε). Then cai · ε
does not contain any symbol b, so cai · ε ̸∈ LR.

Hence, the set A ∪ B is fooling set.
(2) The set A∪{(ε, b)}. The condition (F1) for A was proved in case (1) and for (ε, b)

is also satis�ed. To prove (F2) we have two cases:
(2.1) Consider (cai, an−2−ib), where 0 ≤ i ≤ n− 3 and (ε, b). Then cai · b contains less

than n− 2 a's between c and b, so cai · b ̸∈ LR.
(2.2) Consider (can−2b, ε) and (ε, b). Then ε · ε ̸∈ LR

Hence, the set A ∪ {(ε, b)} is fooling set.
(3) The set B ∪ {(ε, ab)}. The reversals can−2 · b and ε · ab are in L so condition

(F1) is satis�ed. Concatenation can−2 · ab has more than n − 2 a's between b and c, so
can−2 · ab ̸∈ LR, which prove (F2).

Hence, the set B ∪ {(ε, ab)} is fooling set. By Lemma 2.2 we have nsc(LR) ≥ |A| +
|B|+ 1 = n+ 1.

As the last operation, we study complementation on ideal languages.

Theorem 6.10 (Complementation). Let n ≥ 3. Let L be a language over Σ with

nsc(L) = n.

(a) If L is a right or left ideal, then nsc(Lc) ≤ 2n−1. The bound is tight if |Σ| ≥ 2.

(b) If L is a two-sided ideal, then nsc(Lc) ≤ 2n−2. The bound is tight if |Σ| ≥ 2.
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(c) If L is an all-sided ideal, then nsc(Lc) ≤ 2n−2. The bound is tight if |Σ| ≥ 2n−2.

Proof. (a) First, let us consider right ideal languages.

1 2 3 . . . n− 2 n− 1 n
a, b a, b a, b a, b a, b b

b

b b
b

b

b
bb

a, b

Figure 6.8: An NFA of a binary right ideal language L with nsc(Lc) = 2n−1

Let A = (Q,Σ, δ, s, F ) be a minimal n-state NFA for a right ideal L. Then by Propo-
sition 6.1 the NFA A has a unique �nal state f which goes to itself on every input symbol,
that is, we have δ(f, a) = {f} for each a in Σ. It follows that in the subset automaton of
the NFA A, all �nal states are equivalent since they accept all the strings in Σ∗. Hence
the subset automaton has at most 2n−1+1 reachable and pairwice distinguishable states.
By interchanging the �nal and non-�nal states, we get a DFA B for Lc. The DFA B has
a dead state. After removing the dead state, we get an NFA N for Lc of at most 2n−1

states.
To prove tightness, let L = G · b · (a + b)∗, where G is the language accepted by the

binary (n− 1)-state NFA N shown in Figure 3.1. Then L is accepted by the n-state NFA
N shown in Figure 6.8 and by Proposition 6.1 it is a right ideal. The NFA N is minimal
because F = {(ai, an−2−ib) | 0 ≤ i ≤ n− 2} ∪ {(an−2b, ε)} is a fooling set for L.

Let F = {(uS, vS) | S ⊆ {1, 2, . . . , n − 1}} be a fooling set for Gc as described
in [30, Theorem 5]. We prove that the set F ′ = {(uS, vS · b) | S ⊆ {1, 2, . . . , n− 1}} is a
fooling set for Lc.

(F1) For each S, the string uSvS is in Gc, so it is not accepted by N . It follows that
the string uSvSb is not accepted by A. Thus uSvSb is in Lc.

(F2) Let S ̸= T . Then uSvT /∈ Gc or uTvS /∈ Gc. In the former case, the string
uSvT is accepted by the NFA N , and therefore the string uSvT b is accepted by A. Hence
uSvT b /∈ Lc. The latter case is symmetric.

Hence F ′ is a fooling set for Lc, which means that nsc(L) = 2n−1.

Second, let us consider left ideal languages.
Let A = (Q,Σ, δ, s, F ) be a minimal n-state NFA for a left ideal L. By Proposition 6.1

we can add a loop in the initial state s on every input symbol, we get an NFA N which is
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0 1 2 . . . n− 2 n− 1
a a, b a, b a, b a, b

a, b

b
b

b b

Figure 6.9: An NFA of a binary left ideal language L with nsc(Lc) = 2n−1

equivalent to A. Since the initial state s of N goes to itself on every input symbol, each
reachable subset of the subset automaton of N contains the initial state s, so the number
of all reachable subsets is at most 2n−1.

To prove tightness, let the language L be accepted by NFA A in Figure 6.9. Then L

is by Proposition 6.1 binary left ideal. The NFA A is minimal because F = {(ai, an−1−i) |
0 ≤ i ≤ n− 1} is fooling set for L.

We are going to consider Lc. Let us consider set of states {1, 2, . . . , n− 1} in NFA A.
Our aim is to �nd two strings uS and vS for every subset S of {1, 2, . . . , n− 1} such that
F = {(uS, vS) | S ⊆ {1, 2, . . . , n − 1}} would be a fooling set for Lc. Such strings are
described in Preliminaries in Theorem 3.1, for a little di�erent automaton but description
is the same unless the size of set of states. Summarize the property of strings uS, vS:
(1) string uS is such that the state 1 goes to the set S after reading uS

(2) if p ∈ S, then the string vS is rejected by the NFA A from the state p.
(3) if p /∈ S, then string vS is accepted by the NFA A form the state p.
The proof is almost the same as in [30, Theorem 5] and we omit it.

Now, we prove that the set F ′ = {(a · uS, vS) | S ⊆ {1, 2, . . . , n − 1}} is a fooling set
for Lc.

(F1) For each S, the string uSvS is not accepted from state 1, so it follows that the
string auSvS is not accepted by A. Thus auSvS is in Lc.

(F2) Let S ̸= T . Then uSvT /∈ Lc or uTvS /∈ Lc. Let uSvT be accepted by the NFA
A, and therefore the string auSvT is accepted by A. Hence auSvT /∈ Lc. The latter case
is symmetric.

Hence F ′ is a fooling set for Lc, which means that nsc(L) = 2n−1.
(b)
Let A = (Q,Σ, δ, s, F ) be a minimal n-state NFA for a two-sided ideal L. Then by

Proposition 6.2 A has a unique �nal state f which goes to itself on every input symbols.
We can also by Proposition 6.2 add a loop in initial state s for every input symbol. That
is, we have δ(f, a) = {f} for each a in Σ and δ(s, a) = {s} for each a in Σ. It follows
that in the subset automaton of the NFA A are at most 2n−1 reachable subsets, but every
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0 1 2 3 . . . n− 3 n− 2 n− 1
a a, b a, b a, b a, b a, b b
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Figure 6.10: An NFA of a binary two-sided ideal language L with nsc(Lc) = 2n−2
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a∅, a1, a2, a12
a1, a12

a2, a12

a∅, a2

a∅, a1, a2, a12

a∅, a1

a∅, a1, a2, a12

a∅, a1, a2, a12

Figure 6.11: Example of a all-sided ideal language with NFA of four states and alphabet
Σ = {a∅, a1, a2, a12}

subset containing �nal state f are equivalent, hence the subset automaton has at most
2n−2 + 1 reachable and pairwise distinguishable states. By interchanging the �nal and
non-�nal states, we get a DFA B for Lc. The DFA B has a dead state. After removing
the dead state, we get an NFA N for Lc of at most 2n−2 states.

To prove tightness, let the language L be accepted by NFA A in Figure 6.10. Then
L is by Proposition 6.2 binary two-sided ideal. The NFA A is minimal because F =

{(ai, an−2−ib) | 0 ≤ i ≤ n − 2} ∪ {(an−2b, ε)} is fooling set for L. Let us de�ne set of
pairs as F ′ = {(a · uS, vS · b) | S ⊆ {1, 2, . . . , n − 2}}, where strings uS, vS are de�ne the
same way as in Preliminaries in Theorem 3.1. The set F ′ is fooling set for Lc with 2n−2

elements, thus nsc(Lc) ≥ 2n−2.
(c)
The upper bound is the same as for two-sided ideals. To prove tightness, let Σ =

{aS | S ⊆ {1, 2, . . . , n− 2}} be an alphabet with 2n−2 symbols. Consider the language L

accepted by the NFA A = ({0, 1, . . . , n − 1},Σ, δ, 0, {n − 1}) where for each symbol aS,
we have
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δ(0, aS) = {0} ∪ S;
δ(i, aS) = {i} if i ∈ S;
δ(i, aS) = {i, n− 1} if i ∈ {1, 2, . . . , n− 2} \ S;
δ(n− 1, aS) = {n− 1}.

At the Figure 6.11 is shown NFA with n = 4.
Since in each state of A, we have a loop on every input symbol, the language L is an
all-sided ideal by Proposition 6.3.

Let F = {(aS, aS) | S ⊆ {1, 2, . . . , n− 2}}. Let us show that F is a fooling set for Lc.
(F1) For each S, the NFA A reaches the set {0} ∪ S by aS. By the next aS, the NFA

A remains in the set {0} ∪ S, and rejects. Thus aSaS ∈ Lc.
(F2) Let S and T be two subsets of {1, 2, . . . , n − 2} with S ̸= T . Without loss of

generality, there is a state i with i ∈ S and i /∈ T . By aS, the NFA A goes to {0} ∪ S.
Since i ∈ S, the NFA A goes to i by aS. Then it goes to the state n−1 by aT since i /∈ T .
Hence A accepts aSaT , and therefore aSaT /∈ Lc.

Thus F is a fooling set for Lc. It follows that nsc(Lc) ≥ 2n−2.

6.4 Concluding remarks and open problems

We investigated the nondeterministic state complexity of basic regular operations on the
classes of ideal languages. For each class and for each operation, we obtained the tight
upper bounds. These bounds are the same as in the general case of regular languages for
intersection and star on all four classes, and reversal on left ideals, while in the remaining
cases the complexity is always smaller than for regular languages.

To prove tightness we usually used a binary alphabet which is always optimal. In all
the cases where we used a larger alphabet for describing witness languages, It remains
open whether the obtained upper bounds can be met also by languages de�ned over
smaller alphabets. We also considered the unary case. Our results are summarized in the
following tables.
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Class K ∩ L |Σ| K ∪ L |Σ| K · L |Σ|
Right ideal mn 2 m+ n 2 m+ n− 1 1
Left ideal mn 2 m+ n− 1 2 m+ n− 1 1

Two-sided ideal mn 2 m+ n− 2 2 m+ n− 1 1
All-sided ideal mn 2 m+ n− 2 2 m+ n− 1 1
Unary ideal max(m,n) min(m,n) m+ n− 1

Regular mn 2 m+ n+ 1 2 m+ n 2
Unary regular mn; m+ n+ 1; ≥ m+ n− 1

gcd(m,n) = 1 gcd(m,n) = 1 ≤ m+ n

Table 6.1: The nondeterministic complexity of intersection, union, and concatenation on
ideal languages. The results for regular languages are from [24].

Class L∗ |Σ| LR |Σ| Lc |Σ|
Right ideal n+ 1 2 n 1 2n−1 2
Left ideal n+ 1 2 n+ 1 3 2n−1 2

Two-sided ideal n+ 1 2 n 1 2n−2 2
All-sided ideal n+ 1 2 n 1 2n−2 2n−2

Unary ideal n− 1 n n− 1

Regular n+ 1 1 n+ 1 2 2n 2
Unary regular n+ 1 n 2Θ(

√
n logn)

Table 6.2: The nondeterministic complexity of star, reversal, and complementation on
ideal languages. The results for regular languages are from [24].
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Chapter 7

Convex Languages

In this chapter we study the nondeterministic complexity of basic operations on convex-
languages. Recall that a language L is pre�x-convex if u,w ∈ L and u is a pre�x of w imply
that each string v such that u is a pre�x of v and v is a pre�x of w is in L. Su�x-, factor-,
and subword-convex languages are de�ned analogously. Except for complementation on
factor- and subword-convex languages, we always obtain tight upper bounds.

7.1 Properties of convex languages

Our �rst proposition provides a su�cient condition on a DFA to accept a pre�x-convex
language.

Proposition 7.1. Let D = (Q,Σ, · , s, F ) be a DFA. If for each �nal state q and each

symbol a in Σ, the state q · a is �nal or dead, then L(D) is pre�x-convex.

Proof. Let u and w be strings in L(D) such that u is a pre�x of w, that is, w = uv for a
string v. In the accepting computation on uv, the state reached after reading u is �nal. It
follows that all the following states in this computation must be �nal because otherwise
w would be rejected. Hence L(D) is pre�x-convex.

7.2 Unary convex languages

In this chapter we examine unary convex languages and nondeterministic state complexity
of operations on them. Notice that if i ≤ j, then ai is a pre�x, su�x, factor, and subword
of aj. It follows that in the unary case all convex classes coincide.
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Let L be a unary convex language and k be the length of the shortest string in L. If
L is in�nite, then L = {ai | i ≥ k}. If L is �nite and ℓ is the length of the longest string
in L, then L = {ai | k ≤ i ≤ ℓ}. In the �rst case the set {(ai, ak−i) | 0 ≤ i ≤ k} is a
fooling set for L. In the second case the set {(ai, aℓ−i) | 0 ≤ i ≤ ℓ} is a fooling set for L.
It follows that the minimal incomplete DFA for L, which has k + 1 states if L is in�nite,
and ℓ+ 1 states if L is �nite, is a minimal NFA for L.

The next theorem provides the tight upper bounds for unary convex languages. All the
results, except for the intersection, hold true for free languages too; notice that witness
languages for all operations, except for intersection, are free.

Theorem 7.2 (Operations on unary convex languages). Let m,n ≥ 2. Let K and

L be unary convex languages with nsc(K) = m and nsc(L) = n. Then

(1) nsc(K ∩ L), nsc(K ∪ L) ≤ max{m,n},

(2) nsc(KL) ≤ m+ n− 1,

(3) nsc(L∗) ≤ n− 1, nsc(LR) ≤ n, and nsc(Lc) ≤ n+ 1,

and all these upper bounds are tight.

Proof. The upper bound for intersection and union can be veri�ed by the case analysis,
where K and L can be �nal or non-�nal. The upper bounds for concatenation and
complement follow from the fact that the minimal NFAs can be incomplete deterministic.
The upper bound for reversal follows from the fact that LR = L.

Now we prove an upper bound for star. Let L be a unary convex language with
nsc(L) = n. If L is in�nite, then L = an−1a∗, and the language L∗ is accepted by the
(n− 1)-state NFA N = ({0, 1, . . . , n− 2}, {a}, · , 0, {0}) where i · a = {i+ 1} if i < n− 2

and i · a = {0, n− 2} if i = n− 2.
If L is �nite, then there is an integer k such that L = {ai | k ≤ i ≤ n − 1}. Then

the (n− 1)-state NFA for the language L∗ can be constructed from a minimal incomplete
DFA ({0, 1, . . . , n − 1}, {a}, · , 0, {k, k + 1, . . . , n − 1}) for L by making the state n − 1

initial, adding the transition (n− 1, a, 1), and removing the state 0.
The languages am−1a∗ and an−1a∗ meet the upper bound for intersection, the languages

am−1 and an−1 meet the upper bound for union and concatenation, the language an−1

meets the upper bound for square, star, reversal, and the language {ai | 0 ≤ i ≤ n − 1}
meets the upper bound for complementation.
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7.3 Operations on convex languages

We start with the operations of intersection and union.

Theorem 7.3 (Intersection). The nondeterministic state complexity of intersection on

all the four classes of convex languages is mn. The upper bound is met by binary subword-

convex languages, and it cannot be met in the unary case.

Proof. The upper bound is the same as for regular languages. Binary subword-closed,
so also subword-convex, languages meeting the bound mn for their intersection are given
in Theorem 5.6. By Theorem 7.2, the complexity of intersection in the unary case is
max{m,n}, so the bound mn cannot be met in the unary case.

Theorem 7.4 (Union). The nondeterministic state complexity of union on all the four

classes of convex languages is m+n+1. The upper bound is met by binary subword-convex

languages, and it cannot be met in the unary case.

Proof. The upper bound is the same as for regular languages. Binary subword-closed,
so also subword-convex, witnesses are described in Theorem 5.5. In the unary case, the
complexity of union is max{m,n} by Theorem 7.2.

Let us continue with concatenation, star, and reversal.

Theorem 7.5 (Concatenation). The nondeterministic state complexities of concatena-

tion on each of the four classes of convex languages is m+ n. The upper bound is met by

ternary subword convex languages.

Proof. The upper bound is the same as for regular languages. Ternary subword-closed, so
also subword-convex, languages meeting the bound m+n for concatenation are described
in Theorem 5.7.

Theorem 7.6 (Star). The nondeterministic state complexity of star on all the four

convex classes is n + 1. The upper bound is met by a binary subword-convex language,

and it cannot be met in the unary case.

Proof. The upper bound is the same as for regular languages. The binary all-sided ideal,
so subword-convex language, meeting the upper bound is described in Theorem 5.8. As
shown in Theorem 7.2, case (3), the upper bound cannot be met by any unary convex
language.
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Theorem 7.7 (Reversal). The nondeterministic state complexity of reversal on all the

four classes of convex languages is n+1. All the witnesses are binary, except for subword-

convex languages, where the witness is de�ned over an alphabet of size 2n− 2. The upper

bound cannot be met by any unary convex language.

Proof. The upper bound is the same as for regular languages. The subword-closed, so
also subword-convex, witness de�ned over an alphabet of size 2n−2 is described in The-
orem 5.9. Binary factor-closed, so also factor-convex, language given by Theorem 5.9,
proves the tightness for the remaining convex classes. The binary alphabet is optimal
since L = LR for every unary language L.

Now we turn our attention to the complementation operation. To get an automaton
for the complement of a language L represented by an n-state NFA, we �rst apply the
subset construction to this NFA. Then, we interchange the �nal and non-�nal states.
This gives an upper bound 2n. The binary witness is provided in [30, Theorem 5], and
binary pre�x-closed language meeting the bound 2n is described in Theorem 5.10. The
same theorem provides tight upper bound 2n−1 + 1 for complement on su�x-, factor-
, and subword-closed languages, with a binary su�x- and factor-closed witness and a
subword-closed witness de�ned over an alphabet of size 2n.

The aim of the next part is to describe a su�x-convex language meeting the upper
bound 2n for complementation. Notice that it must be so called proper su�x-convex
language, that is, a su�x-convex language which is neither su�x-free nor su�x-closed nor
left-ideal, since as mentioned above, the nondeterministic complexity of complementation
on su�x-closed and su�x-free languages is less than 2n; cf. Theorems 5.10, 4.22, and
4.37, and the same is true for left ideal languages; cf. Theorem 6.10.

Lemma 7.8. Let n ≥ 3. There exists a su�x-convex language L over a 5-letter alphabet

such that nsc(L) = n and nsc(Lc) = 2n.

Proof. Let L be the language accepted by the nondeterministic �nite automaton A =

({0, 1, . . . , n− 1}, {a, b, c, d, e}, 0, · , {1, 2, . . . , n− 1}), where the transitions on a and b are
shown in Figure 7.1, the transitions on c, d, e are as follows:

0 · c = {0, 1, . . . , n− 1},
0 · d = {1, 2, . . . , n− 1},
q · e = {n− 1} for each state q of A,

and all the remaining transitions go to the empty set. In the NFA AR, the �nal state 0
goes to itself on a, b, c and to the empty set on d and e. Next, every other state of AR

goes to 0 on d, and the state n− 1 goes to {0, 1, . . . , n− 1} on e.
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A 0 1 2 . . . n− 1

a, b b b

a a a

a

Figure 7.1: Transitions on a and b in su�x-convex witness for complementation.

Thus in the subset automaton of AR, each �nal subset, that is, a subset containing
the state 0, goes either to a �nal subset containing 0 or to the empty set on each input
symbol. By Proposition 7.1, LR is pre�x-convex, so L is su�x-convex.

Let us show that each subset of the state set of A is reachable and co-reachable. Notice
that

{0} · a = 0, {0} · b = {0},
0 · c = {0, 1, . . . , n− 1}, and
0 · d = {1, 2, . . . , n− 1}.

Moreover, we can shift each subset of {1, 2, . . . , n− 1} cyclically by one using the symbol
a. Next, we can eliminate the state 1 from each subset containing 1 by b. It follows that
each subset is reachable.

To prove co-reachability, notice that the initial subset of AR is {1, 2, . . . , n− 1} and it
goes to {0, 1, . . . , n− 1} on e. We again use symbol a to shift subsets of {1, 2, . . . , n− 1}
and symbol b to eliminate the state 1. It follows that every subset is co-reachable. By
Proposition 2.7, we have nsc(Lc) = 2n.

The next theorem summarizes our results on the nondeterministic complexity of com-
plementation on the classes of convex languages.

Theorem 7.9 (Complementation). The nondeterministic state complexity of com-

plementation is 2n on pre�x- and su�x-convex languages. The pre�x-convex witness is

binary, and the su�x-convex witness is de�ned over a 5-letter alphabet. On factor- and

subword-convex languages, the complexity of complementation is at least 2n−1 + 1 and at

most 2n.

Proof. Binary pre�x-closed witness is given in 5.10. Lemma 7.8 provides a su�x-convex
witness over a 5-letter alphabet. The lower bound for factor- and subword-convex lan-
guages follows from 5.10 as well.
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7.4 Concluding remarks and open problems

Tables 7.1 and 7.2 summarizes our results on convex languages. In the second table, the ·
means that the complexity is the same as in the previous column. This table also displays
the sizes of alphabet used for describing wittnes languages. Whenever the alphabet is
binary or unary, it is always optimal, otherwise we do not know whether the upper
bounds are tight also for smaller alphabets. The exact complexity of complementation in
the classes of factor-convex and subword-convex languages remains open.

K ∩ L K ∪ L KL L∗ Lc

Unary convex max{m,n} max{m,n} m+ n− 1 n− 1 n+ 1

Unary regular [24] mn; m+ n+ 1; ≥ m+ n− 1 n+ 1 2Θ(
√
n logn)

gcd(m,n) = 1 gcd(m,n) = 1 ≤ m+ n

Table 7.1: Nondeterministic complexity of operations on unary convex classes.

Regular [24,30] Pre�x- Su�x- Factor- Subword-convex

K ∩ L mn 2 . 2 . 2 . 2 . 2

K ∪ L m+ n+ 1 2 . 2 . 2 . 2 . 2

KL m+ n 2 . 3 . 3 . 3 . 3

L∗ n+ 1 1 . 2 . 2 . 2 . 2

LR n+ 1 2 . 2 . 2 . 2 . 2n− 2

Lc 2n 2 . 2 . 5 ≥ 2n−1 + 1 2 ≥ 2n−1 + 1 2n

≤ 2n ≤ 2n

Table 7.2: Nondeterministic complexity of operations on convex classes. The · means that
the complexity is the same as in the previous column.
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Conclusions

In this thesis, we studied the nondeterministic state complexity of basic unary and binary
operations on the subregular classes of free, closed, ideal, and convex languages. After
providing basic de�nitions and notations, we summarized the known results concerning
the complexity of basic operations on the above mentioned classes in the deterministic
case, and on the class of regular languages in the nondeterministic case in Chapter 3.
In the next chapter, we described upper and lower bound methods used throughout this
thesis.

In Chapter 4 we examined the operations on the classes of pre�x-, su�x-, factor-,
and subword-free languages, and we obtained tight upper bounds in each case. The most
interesting result of this part of the thesis is obtaining the complexity of complementation
for pre�x-, su�x-, and factor-free languages. In each of these three classes, we described
witness languages over a ternary alphabet, and we were able to show that the upper
bounds cannot be met by any binary languages.

In Chapters 5 and 6 we studied closed and ideal languages. For each of these eight
subclasses, we again found the exact nondeterministic complexity of each considered oper-
ation. Except for three cases, all our witness languages are desribed over a �xed alphabet
of size at most three, and moreover binary alphabets are always optimal.

In Chapter 7 we used our previous results to show that the complexity of each op-
eration, except for complementation, in the class of convex languages is the same as in
the general case of regular languages. A careful reader might notice that the classes of
pre�x-free, pre�x-closed, and right ideal languages are subclasses of the class of pre�x-
convex languages; and we have similar inclusions in the other three convex classes. In the
case of complementation on su�x-convex languages, we obtained another very interesting
result of this thesis. We described a proper su�x-convex language, that is, a su�x-convex
language which is neither su�x-free, nor su�x-closed, nor left ideal, meeting the upper
bound 2n for its complementation. We had to �nd such a special language because the
complexity of complementation on the classes of su�x-free, su�x-closed, and left ideal
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languages is less than 2n.
Some problems remained open. For complementation on subword-free languages, we

de�ned witnesses over a growing alphabet. It is open whether the upper bound is tight for
some �xed alphabet. In the classes of closed and ideal languages, some of our witnesses
were described over a ternary alphabet. We do not know whether or not a binary al-
phabet can be used to describe the corresponding witnesses. The exact nondeterministic
state complexity of complementation in the classes of factor-convex and subword-convex
languages remains open as well.
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Appendix

7.5 The list of my published papers

This part contains the list of publications.

(a) Mlynár£ik,P.: On average complexity of InsertSort. ITAT 2005, Information Tech-
nologies - Applications and Theory, Proceedings, Slovakia, 117-122

(b) �evorová, K., Jirásková, G., Mlynár£ik, P., Palmovský, M., �ebej, J.: Operations on
Automata with All States Final. Z. Ésik and Z. Fülöp (Eds.): Automata and Formal
Languages 2014 (AFL 2014) EPTCS 151, 2014, pp. 201�215, doi:10.4204/EPTCS.151.14

(c) Jirásek, J., Jirásková, G., Krausová, M., Mlynár£ik, P., �ebej, J.: Pre�x-Free Lan-

guages: Right Quotient and Reversal In: H. Jürgensen et al. (Eds.): DCFS 2014,
LNCS 8614, pp. 210-221. Springer International Publishing Switzerland (2014)

(d) Jirásková, G., Mlynár£ik, P.: Complement on Pre�x-Free, Su�x-Free, and Non-

Returning NFA Languages. In: H. Jürgensen et al. (Eds.): DCFS 2014, LNCS 8614,
pp. 222-233. Springer International Publishing Switzerland (2014)

(e) Mlynár£ik,P.: Complement on Free and Ideal Languages. In: Shallit, Okhotin (Eds.):
DCFS 2015, LNCS 9118, pp. 185-196. Springer International Publishing Switzerland
(2015)

(f) Hospodár, M., Jirásková, G., and Mlynár£ik: Nondeterministic Complexity of Oper-

ations on Closed and Ideal Languages. In: Han YS., Salomaa K. (eds) Implementa-
tion and Application of Automata. CIAA 2016. LNCS 9705, pp. 125-137. Springer
(2016)

(g) Hospodár, M., Jirásková, G., and Mlynár£ik: Nondeterministic Complexity of Op-
erations on Free and Convex Languages. Accepted in CIAA 2017.
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7.6 The list of given talks

This part contains the list of my talks in signi�cant conferences concerning to the topic
of my thesis.

(a) 16th International Workshop on Descriptional Complexity of Formal Systems.

August 5-8, 2014, Turku, Finland

(b) DCFS 2015 Descriptional Complexity of Formal Systems

June 25-27, 2015, Waterloo, Ontario, Canada

(c) CIAA 2016 21st International Conference on Implementation and Application of

Automata

July 19-22, 2016, Seoul, South Korea

84



Bibliography

[1] Bach, E., Shallit, J.: 2.7 in Algorithmic Number Theory, Vol. 1: E�cient Algorithms.
Cambridge, MA: MIT Press (1996)

[2] Berman, P., Lingas, A.: On the complexity of regular languages in terms of �nite
automata. Technical Report 304 (Polish Academy of Sciences, 1977)

[3] Birget, J.: Intersection and union of regular languages and state complexity. Inf.
Process. Lett. 43(4), 185�190 (1992), http://dx.doi.org/10.1016/0020-0190(92)
90198-5

[4] Birget, J.: Partial orders on words, minimal elements of regular languages and state
complexity. Theoretical Computer Science 119(2), 267�291 (1993), http://dx.doi.
org/10.1016/0304-3975(93)90160-U

[5] Brzozowski, J., Jirásková, G., Li, B., Smith, J.: Quotient complexity of bi�x-, factor-,
and subword-free regular languages. Acta Cybernetica 21, 507�527 (2014)

[6] Brzozowski, J.A.: Complexity in convex languages. In: Dediu, A., Fernau, H.,
Martín-Vide, C. (eds.) Language and Automata Theory and Applications, 4th In-
ternational Conference, LATA 2010, Trier, Germany, May 24-28, 2010. Proceed-
ings. Lecture Notes in Computer Science, vol. 6031, pp. 1�15. Springer (2010),
http://dx.doi.org/10.1007/978-3-642-13089-2_1

[7] Brzozowski, J.A., Jirásková, G., Li, B.: Quotient complexity of ideal languages.
Theor. Comput. Sci. 470, 36�52 (2013), http://dx.doi.org/10.1016/j.tcs.2012.
10.055

[8] Brzozowski, J.A., Jirásková, G., Zou, C.: Quotient complexity of closed lan-
guages. Theory Comput. Syst. 54(2), 277�292 (2014), http://dx.doi.org/10.1007/
s00224-013-9515-7

[9] Brzozowski, J.A., Liu, B.: Quotient complexity of star-free languages. Int. J.
Found. Comput. Sci. 23(6), 1261�1276 (2012), http://dx.doi.org/10.1142/

S0129054112400515

85



[10] Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity
of shu�e of regular languages. Journal of Automata, Languages and Combinatorics
7(3), 303�310 (2002)

[11] �evorová, K., Jirásková, G., Mlynár£ik, P., Palmovský, M., Sebej, J.: Operations
on automata with all states �nal. In: Ésik, Z., Fülöp, Z. (eds.) Proceedings 14th
International Conference on Automata and Formal Languages, AFL 2014, Szeged,
Hungary, May 27-29, 2014. EPTCS, vol. 151, pp. 201�215 (2014), http://dx.doi.
org/10.4204/EPTCS.151.14

[12] Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3),
149�158 (1986), http://dx.doi.org/10.1016/0304-3975(86)90142-8

[13] Cmorik, R., Jirásková, G.: Basic operations on binary su�x-free languages. In:
Kotásek et al. [35], pp. 94�102, http://dx.doi.org/10.1007/978-3-642-25929-6_
9

[14] Domaratzki, M.: State complexity of proportional removals. Journal of Automata,
Languages and Combinatorics 7(4), 455�468 (2002)

[15] Eom, H., Han, Y., Salomaa, K.: State complexity of k-union and k-intersection for
pre�x-free regular languages. In: Descriptional Complexity of Formal Systems �
15th International Workshop, DCFS 2013, London, ON, Canada, July 22-25, 2013.
Proceedings. pp. 78�89 (2013), http://dx.doi.org/10.1007/978-3-642-39310-5_
9

[16] Eom, H., Han, Y., Salomaa, K., Yu, S.: State complexity of combined operations
for pre�x-free regular languages. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.)
Discrete Mathematics and Computer Science. In Memoriam Alexandru Mateescu
(1952-2005). pp. 137�151. The Publishing House of the Romanian Academy (2014)

[17] Ésik, Z., Fülöp, Z. (eds.): Automata, Formal Languages, and Related Topics - Dedi-
cated to Ferenc Gécseg on the occasion of his 70th birthday. Institute of Informatics,
University of Szeged, Hungary (2009)

[18] Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
�nite automata. Inf. Process. Lett. 59(2), 75�77 (1996), http://dx.doi.org/10.
1016/0020-0190(96)00095-6

[19] Han, Y., Salomaa, K.: State complexity of basic operations on su�x-free regular
languages. Theor. Comput. Sci. 410(27-29), 2537�2548 (2009), http://dx.doi.org/
10.1016/j.tcs.2008.12.054

86



[20] Han, Y., Salomaa, K.: Nondeterministic state complexity for su�x-free regular
languages. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings Twelfth Annual
Workshop on Descriptional Complexity of Formal Systems, DCFS 2010, Saska-
toon, Canada, 8-10th August 2010. EPTCS, vol. 31, pp. 189�196 (2010), http:

//dx.doi.org/10.4204/EPTCS.31.21

[21] Han, Y., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic op-
erations for pre�x-free regular languages. Fundam. Inform. 90(1-2), 93�106 (2009),
http://dx.doi.org/10.3233/FI-2009-0008

[22] Han, Y., Salomaa, K., Wood, D.: Operational state complexity of pre�x-free regular
languages. In: Ésik and Fülöp [17], pp. 99�115

[23] Han, Y., Salomaa, K., Wood, D.: Operational state complexity of pre�x-free regular
languages. In: Ésik and Fülöp [17], pp. 99�115

[24] Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages 14(6), 1087�1102 (2003), http://dx.doi.org/10.1142/S0129054103002199

[25] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

[26] Hospodár, M., Jirásková, G., Mlynár£ik, P.: Nondeterministic complexity of oper-
ations on closed and ideal languages. In: Han, Y., Salomaa, K. (eds.) Implemen-
tation and Application of Automata - 21st International Conference, CIAA 2016,
Seoul, South Korea, July 19-22, 2016, Proceedings. Lecture Notes in Computer
Science, vol. 9705, pp. 125�137. Springer (2016), http://dx.doi.org/10.1007/

978-3-319-40946-7_11

[27] Hromkovi£, J.: Communication Complexity and Parallel Computing. Texts in Theo-
retical Computer Science. An EATCS Series, Springer (1997), http://dx.doi.org/
10.1007/978-3-662-03442-2

[28] Hromkovi£, J.: Descriptional complexity of �nite automata: Concepts and open
problems. Journal of Automata, Languages and Combinatorics 7(4), 519�531 (2002)

[29] Jirásková, G.: Note on minimal automata and uniform communication protocols. In:
Martín-Vide, C., Mitrana, V. (eds.) Grammars and Automata for String Processing:
From Mathematics and Computer Science to Biology, and Back: Essays in Honour
of Gheorghe Paun. Topics in Computer Mathematics, vol. 9, pp. 163�170. Taylor and
Francis (2003)

87



[30] Jirásková, G.: State complexity of some operations on binary regular languages. The-
oretical Computer Science 330(2), 287�298 (2005), http://dx.doi.org/10.1016/j.
tcs.2004.04.011

[31] Jirásková, G., Masopust, T.: Complexity in union-free regular languages. Int.
J. Found. Comput. Sci. 22(7), 1639�1653 (2011), http://dx.doi.org/10.1142/

S0129054111008933

[32] Jirásková, G., Mlynár£ik, P.: Complement on pre�x-free, su�x-free, and non-
returning NFA languages. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.)
Descriptional Complexity of Formal Systems - 16th International Workshop, DCFS
2014, Turku, Finland, August 5-8, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8614, pp. 222�233. Springer (2014), http://dx.doi.org/10.1007/

978-3-319-09704-6_20

[33] Jirásková, G., Okhotin, A.: State complexity of cyclic shift. ITA 42(2), 335�360
(2008), http://dx.doi.org/10.1051/ita:2007038

[34] Jirásková, G., Olejár, P.: State complexity of intersection and union of su�x-free
languages and descriptional complexity. In: Bordihn, H., Freund, R., Holzer, M.,
Kutrib, M., Otto, F. (eds.) Workshop on Non-Classical Models for Automata and
Applications - NCMA 2009, Wroclaw, Poland, August 31 - September 1, 2009. Pro-
ceedings. books@ocg.at, vol. 256, pp. 151�166. Austrian Computer Society (2009)

[35] Kotásek, Z., Bouda, J., �erná, I., Sekanina, L., Vojnar, T., Antos, D. (eds.): Mathe-
matical and Engineering Methods in Computer Science - 7th International Doctoral
Workshop, MEMICS 2011, Lednice, Czech Republic, October 14-16, 2011, Revised
Selected Papers, Lecture Notes in Computer Science, vol. 7119. Springer (2012),
http://dx.doi.org/10.1007/978-3-642-25929-6

[36] Krausová, M.: Pre�x-free regular languages: Closure properties, di�erence, and
left quotient. In: Kotásek et al. [35], pp. 114�122, http://dx.doi.org/10.1007/
978-3-642-25929-6_11

[37] Maslov, A.N.: Estimates of the number of states of �nite automata. Soviet Mathe-
matics Doklady 11, 1373�1375 (1970)

[38] Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: 12th Annual Symposium on Switching and Automata Theory,
East Lansing, Michigan, USA, October 13-15, 1971. pp. 188�191. IEEE Computer
Society (1971), http://dx.doi.org/10.1109/SWAT.1971.11

88



[39] Mlynár£ik, P.: Complement on free and ideal languages. In: Shallit, J., Okhotin, A.
(eds.) Descriptional Complexity of Formal Systems - 17th International Workshop,
DCFS 2015, Waterloo, ON, Canada, June 25-27, 2015. Proceedings. Lecture Notes
in Computer Science, vol. 9118, pp. 185�196. Springer (2015), http://dx.doi.org/
10.1007/978-3-319-19225-3_16

[40] Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between de-
terministic, nondeterministic, and two-way �nite automata. IEEE Trans. Computers
20(10), 1211�1214 (1971), http://doi.ieeecomputersociety.org/10.1109/T-C.
1971.223108

[41] Pighizzini, G., Shallit, J.: Unary language operations, state complexity
and jacobsthal's function 13(1), 145�159 (2002), http://dx.doi.org/10.1142/

S012905410200100X

[42] Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 114�125 (Apr 1959), http://dx.doi.org/10.1147/rd.32.0114

[43] Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way �nite automata.
In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.)
Proceedings of the 10th Annual ACM Symposium on Theory of Computing, May
1-3, 1978, San Diego, California, USA. pp. 275�286. ACM (1978), http://doi.acm.
org/10.1145/800133.804357

[44] Sipser, M.: Introduction to the theory of computation. PWS Publishing Company
(1997)

[45] To, A.W.: Unary �nite automata vs. arithmetic progressions. Inf. Process. Lett.
109(17), 1010�1014 (2009), http://dx.doi.org/10.1016/j.ipl.2009.06.005

[46] Yershov, Y.L.: On a conjecture of V. A. Uspenskii. Algebra i logika (seminar) 1,
45�48 (1962 (in Russian))

[47] Yu, S.: Regular languages. Department of Computer Science, University of Western
Ontario, London, Ontario, Canada

[48] Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Word, Language,
Grammar, Handbook of Formal Languages, vol. 1, pp. 41�110. Springer-Verlag (1997)

[49] Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoretical Computer Science 125(2), 315�328 (1994), http:
//dx.doi.org/10.1016/0304-3975(92)00011-F

89


