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Abstract. We study Kuratowski algebras generated by suffix-, factor-,
and subword-free languages under the operations of star and comple-
mentation. We examine 12 possible algebras, and for each of them, we
provide an answer to the question whether or not it can be generated by
a suffix-, factor-, or subword-free language. In each case when an algebra
can be generated by such a language, we show that this language may
be taken to be regular, and we compute upper bounds on the state com-
plexities of all the generated languages. Finally, we find generators that
maximize these complexities.

1 Introduction

The famous Kuratowski’s 14-theorem states that, in a topological space, repeat-
edly applying the operations of closure and complement to any given set can pro-
duce at most 14 distinct sets [6,12]. Kuratowski’s theorem in the settings of for-
mal languages has been studied by Brzozowski et al. [2]. It has been shown that
repeatedly applying Kleene closure and complementation to a given language
produces again up to 14 distinct languages. Moreover, all formal languages have
been classified according to the structure of the algebras they generate under
Kleene closure and complementation. It has been proved that there are precisely
12 such algebras, and even more, each of them can be generated by a binary
regular language.

Recently, Kuratowski algebras generated by certain restricted classes of lan-
guages have been investigated. Brzozowski et al. [4] proved that prefix-, suffix-,
factor-, and subword-closed languages can generate at most 8 languages under
the above mentioned operations. They also gave an example of a regular language
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in each of these four classes which generates 8 languages, and also maximizes
their state complexities.

In [10], Kuratowski algebras generated by prefix-free languages have been
investigated in detail. For each of the 12 possible algebras, the following questions
have been answered:

1. Can this algebra be generated by a prefix-free language?
2. Can this algebra be generated by a regular prefix-free language?
3. Can this algebra be generated by a regular prefix-free language of an arbitrary

state complexity?
4. What are the maximal state complexities of languages generated in this alge-

bra by a prefix-free regular language?
5. Is there a prefix-free regular generator which maximizes all of these complex-

ities at the same time?

In this paper, we answer the same questions for suffix-, factor-, and subword-
free languages. For each of these three classes and each of the 12 algebras, if the
algebra can be generated by a language in this class, we give an example of a
regular generator. We discuss state complexities of all the generated languages.

If an algebra can be generated by a prefix-free language, then it can also
be generated by a suffix-free language, and vice versa. However, we show that
there are algebras which are generated by a prefix- (or suffix-) free language, but
cannot be generated by any factor-free language. One interesting conclusion is
that while in the prefix-free case, if an algebra can be generated by a prefix-free
language, the answer to question 5 is always yes, for suffix-free languages this is
not always the case.

2 Preliminaries

We assume that the reader is familiar with basic notions in formal languages
and automata theory. For details, the reader may refer to [9,13,14].

If Σ is a finite alphabet, then Σ∗ is the set of strings over Σ, including the
empty string ε. The length of a string w is denoted by |w|. A language is any
subset of Σ∗. The complement of a language L is the language Lc = Σ∗ \ L.
The concatenation of languages K and L is KL = {uv | u ∈ K and v ∈ L}.
The Kleene closure, or star, of L is defined as L∗ = ∪i≥0L

i, while the positive
closure of L is L+ = ∪i≥1L

i, where L0 = {ε} and Li+1 = LiL. To simplify the
exposition, we use an exponent notation, so for example, Lc∗ and L∗c∗ stand for
(Lc)∗ and ((L∗)c)∗, respectively.

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, ·, s, F )
defined in a usual way. A state qd of an NFA A is called a dead state if no string
is accepted by A from qd, that is, if q · w ∩ F = ∅ for each string w. We say
that (p, a, q) is a transition in NFA A if q ∈ p · a. We also say that the state p
has an out-transition on a, and the state q has an in-transition on a. An NFA
is non-exiting if its final states have no out-transitions, and it is non-returning
if its initial state does not have any in-transitions.
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An NFA A is a deterministic finite automaton DFA if for each state q and
each input symbol a, the set q · a has exactly one element. The state complexity
of a regular language L, sc(L), is the smallest number of states in any DFA for
L. It is well known that a DFA is minimal with respect to the number of states
if all its states are reachable and pairwise distinguishable.

Every NFA A = (Q,Σ, ·, s, F ) can be converted to an equivalent DFA A′ =
(2Q, Σ, ◦, {s}, F ′), where F ′ = {S ∈ 2Q | S ∩ F �= ∅} and S ◦ a = S · a for
each S in 2Q and each a in Σ. We call the DFA A the subset automaton of the
NFA A. The subset automaton may not be minimal since some of its states can
be unreachable or equivalent to other states. To prove distinguishability of states
of the subset automaton, the following notions from [3] are useful.

A state q of the NFA A is said to be uniquely distinguishable if there is a
string w which is accepted by A from and only from the state q. Next, we say
that a transition (p, a, q) is a unique in-transition if there is no state r different
from p such that (r, a, q) is a transition in A. Finally, we say that a state q is
uniquely reachable from a state p if there is a sequence of unique in-transitions
(pi−1, ai, qi) for i = 1, 2, . . . , k such that p0 = p and pk = q.

If a uniquely distinguishable state q of an NFA A be uniquely reachable
from a state p, then the state p is uniquely distinguishable as well. Next, if two
subsets of a subset automaton of an NFA A differ in a uniquely distinguishable
state of A, then the two subsets are distinguishable. It follows that if a uniquely
distinguishable state of an NFA A is uniquely reachable from any other state of
A, then the subset automaton of A does not have equivalents states.

If u, v, w, x ∈ Σ∗ and w = uxv, then u is a prefix of w, x is a factor of w,
and v is a suffix of w. If w = u0v1u1 · · · vnun, where ui, vi ∈ Σ∗, then v1v2 · · · vn
is a subword of w. A prefix v (suffix, factor, subword) of w is proper if v �= w.

A language L is prefix-free if w ∈ L implies that no proper prefix of w
is in L. Suffix-, factor-, and subword-free languages are defined analogously. A
language L is weakly-prefix-closed if w ∈ L implies that each non-empty prefix of
w is in L. It is known that a minimal DFA for a prefix-free (suffix-free) language
is non-exiting (non-returning) [7,8].

A language is (positive-)closed if it is closed under positive closure, that is, if
L = L+. It is open, if its complement is closed, and it is clopen if it is both closed
and open. The terms Kleene-closed and Kleene-open are defined analogously.
The (positive) interior of a language L is L⊕ = Lc+c. The Kleene interior is
L� = Lc∗c. Notice that L is open iff L = L⊕. Next, for every language L, L+ is
closed and L⊕ is open.

Let B(L) be the family of all languages generated from L by positive closure
and positive interior; see [2, Subsect. 4.1]. Let D(L) be the family of all languages
generated from L by complementation and Kleene closure. Let E(L) be the
family of all languages generated from L by Kleene closure and Kleene interior.
It is shown in [2, Lemma 20] that

D(L) = E(L) ∪ {M | M c ∈ E(L)}. (1)
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Moreover, if L is neither open nor closed, then by [2, Lemma 22],

E(L) = {L} ∪ {M ∪ {ε} | M ∈ B(L) and M is closed}
∪ {M \ {ε} | M ∈ B(L) and M is open}.

For each language L, the family D(L) has at most 14 distinct languages, and
Table 2 in [2, p. 312] describes 12 possible algebras, each of which is generated
by a regular language. Notice that there is an oversight in cases (2a) and (2b):
In case (2a) we should have ε /∈ L, |E(L)| = 3, |D(L)| = 6, and it is generated
by {a}. In case (2b) we should have ε ∈ L, |E(L)| = 4, |D(L)| = 8, and it
is generated by {ε, a} [1]. Here we show a modified table in which we do not
display |D(L)|, and instead of |E(L)|, we display the set E(L). We assume that
L is a prefix-free (suffix-, factor-, subword-free) language and use the facts that
M+ ∪ {ε} = M∗ and M \ {ε} = M if ε /∈ M . Notice that by (1), we only need
to know the state complexities of the languages in E(L).

Table 1. Classification of languages by the structure of (E(L),∗ ,� ); cf. [2, p. 312].

Case Necessary and sufficient conditions E(L) Regular
generator

(1a) L is clopen; ε ∈ L L, L \ {ε} a∗

(1b) L is clopen; ε /∈ L L, L ∪ {ε} a+

(2a) L is open but not clopen; ε /∈ L L, L∗, L+ a

(2b) L is open but not clopen; ε ∈ L L, L \ {ε}, L∗, L+ a ∪ ε

(3a) L is closed but not clopen; ε /∈ L L, L⊕, L⊕ ∪ {ε} aaa∗

(3b) L is closed but not clopen; ε ∈ L L, L ∪ {ε},
L⊕, L⊕ ∪ {ε}

aaa∗ ∪ ε

(4) L is neither open nor closed; L+ is
clopen and L⊕+ = L+

L, L∗, L+, L⊕ a ∪ aaa

(5) L is neither open nor closed; L⊕ is
clopen and L+⊕ = L⊕

L, L∗, L⊕ ∪ {ε}, L⊕ aa

(6) L is neither open nor closed; L+ is
open but L⊕ is not closed;
L⊕+ �= L+

L, L∗, L+,
L⊕, L⊕∗, L⊕+

G :=
a ∪ abaa

(7) L is neither open nor closed; L⊕ is
closed but L+ is not open;
L+⊕ �= L⊕

L, L∗, L⊕ ∪ {ε}, L⊕,
L+⊕ ∪ {ε}, L+⊕

(a ∪ b)+ \
G

(8) L is neither open nor closed; L⊕ is
not closed and L+ is not open;
L+⊕ = L⊕+

L, L∗, L⊕,
L+⊕ ∪ {ε}, L+⊕

a ∪ bb

(9) L is neither open nor closed; L⊕ is
not closed and L+ is not open;
L+⊕ �= L⊕+

L, L∗, L⊕,
L+⊕ ∪ {ε}, L+⊕,
L⊕∗, L⊕+

a ∪ ab ∪ bb



Kuratowski Algebras Gen. by Factor-, Subword-, and Suffix-Free Languages 193

3 Factor-Free and Subword-Free Languages

In this section we investigate Kuratowski algebras generated by factor- and
subword-free languages. In [10] we have already shown that algebras in cases (2b),
(3a), (3b), (4), and (7) cannot be generated by a prefix-free language. Therefore
these cases cannot be generated by a factor- or subword-free language either.
We examine all the remaining cases and either show that the algebra cannot
be generated by any factor-free (and therefore also any subword-free) language,
or we give an example of a subword-free (and therefore also factor-free) regular
generator. Moreover, the given generators maximize the state complexities of all
the generated languages. We begin by stating several helpful observations.

Proposition 1. Let n ≥ 3. If L is a factor free language over Σ with sc(L) = n,
then sc(L∗) ≤ n − 1 if |Σ| ≥ 2 and sc(L∗) = n − 2 if |Σ| = 1.

Proof. Let A = ({s, 1, 2, . . . , n−3, qf , qd}, Σ, ·, s, {qf}) be a minimal non-return-
ing and non-exiting DFA for L with the dead state qd. Construct a DFA for L∗

from A by making the state qf initial and the state s non-initial, and by replacing
each transition (qf , a, qd) with (qf , a, s · a). In the resulting DFA, the state s is
unreachable, so sc(L∗) ≤ n− 1. In the unary case, we must have L = {an−2}, so
sc(L∗) = n − 2. �

Since the language L⊕ contains those strings of L that cannot be expressed
as a concatenation of strings of Lc, we get the next proposition.

Proposition 2.
(a) Let K ⊆ L ⊆ Σ∗ and K be weakly-prefix-closed. Then K ⊆ L⊕.
(b) Let L ⊆ Σ∗ and Γ = L ∩ Σ. Then Γ ⊆ L⊕.
(c) Let L ⊆ Σ∗ and Γ = L ∩ Σ. If L is a factor-free language different from

{ε}, then L⊕ = Γ and L+⊕ = L⊕+ = Γ+.

Proof. (a) Since K is weakly-prefix-closed, every non-empty prefix of every string
in K is in K as well. Therefore, no string in K can be expressed as a concate-
nation of strings in Lc. Hence K ⊆ L⊕. Claim (b) follows directly from (a).

(c) We have Γ ⊆ L⊕ by (b). The empty string and strings in Σ \ Γ are not
in L, therefore they are not in L⊕. Let w ∈ L and |w| ≥ 2. Since L is factor-
free, no symbol occurring in w is in L. It follows that w can be partitioned into
one-symbol strings that are in Lc. Hence w /∈ L⊕, so L⊕ = Γ and L⊕+ = Γ+.
Since Γ+ ⊆ L+ and Γ+ is weakly-prefix-closed, we have Γ+ ⊆ L+⊕ by (a). Let
w be a string in L+ which contains a symbol in Σ \ Γ . Then w must contain at
least two such symbols. Therefore we can split w into substrings, each of which
contains exactly one symbol in Σ \ Γ. These strings cannot be in L+, therefore
w ∈ L+⊕. Hence L+⊕ = Γ+, so L+⊕ = L⊕+. �

Now we examine the individual cases of possible Kuratowski algebras gener-
ated by factor- and subword-free languages. Our aim is to get the results that
are summarized in Table 2. In each case we first recall sufficient and necessary
conditions from Table 1, and then we discuss the case in detail.
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Table 2. Binary subword-free generators of Kuratowski algebras maximizing complex-
ities of generated languages. Cases (2b), (3a), (3b), (4), (6), (7), and (9) cannot be
generated by any factor- or subword-free language.

Case E(L) Upper bounds on
state complexities

Subword-free generator

(1a) L, L \ {ε} 2, 1 {ε}
(1b) L, L ∪ {ε} 1, 2 ∅
(2a) L, L∗, L+ 3, 2, 3 {a} over {a, b}
(5) L, L∗, L⊕ ∪ {ε} n, n − 1, 2, 1 {an−2} over {a, b}
(8) L, L∗, L⊕, L⊕∗, L⊕+ n, n − 1, 3, 2, 3 {a, bn−2}

(1a) L is clopen; ε ∈ L (1b) L is clopen; ε /∈ L
If a factor-free language contains a non-empty string, then it is not closed. It
follows that the only two clopen factor-free languages are ∅ and {ε}, which gives
the results in the first two rows of Table 2.

(2a) L is open but not clopen; ε /∈ L
Let L be a factor-free language over an alphabet Σ such that ε /∈ L, L = L⊕

and L �= L+. By Proposition 2, we have L⊕ = L ∩ Σ. Hence, we must have
∅ �= L ⊆ Σ, so sc(L) = 3. Moreover, every such language satisfies the conditions
in case (2a). If L = Σ, then L∗ = Σ∗ and L+ = Σ+, so sc(L∗) = 1 and
sc(L+) = 2. Otherwise, sc(L∗) = 2 and sc(L+) = 3. The language {a} over
{a, b} mets the upper bounds (3, 2, 3) and {a} as a unary language meets the
upper bounds (3, 1, 2). Row (2a) in Table 2 displays the binary case.

(5) L is neither open nor closed; L⊕ is clopen and L+⊕ = L⊕

Let L be a factor-free language over an alphabet Σ satisfying the conditions in
case (5). Then L �= {ε}, and by Proposition 2, we have L⊕ = L ∩ Σ. Since L⊕

is closed, we must have L⊕ = ∅, so sc(L⊕) = 1 and sc(L⊕ ∪ {ε}) = 2. Next,
by Proposition 1, sc(L∗) ≤ n − 1 if |Σ| ≥ 2, and sc(L∗) ≤ n − 2 if |Σ| = 1.
The binary generator {an−2} meets the upper bounds (n, n − 1, 2, 1). In the
unary case, the upper bounds (n, n − 2, 2, 1) are met by the unary subword-free
generator {an−2}. Row (5) in Table 2 displays the binary case.

(6) L is neither open nor closed; L+ is open but L⊕ is not closed; L⊕+ �= L+

Let L be a factor-free language satisfying (6). In particular, we have L �= ∅, L �=
{ε}, and L+ is open. Notice that ua ∈ L implies a ∈ L because otherwise we
would have u ∈ L+c and a ∈ L+c, so L+ would not be open. It follows that L
contains no string of length at least two. Hence L ⊆ Σ. However then L = L⊕, a
contradiction with the assumption that L is not open. Therefore the Kuratowski
algebra in case (6) cannot be generated by any factor-free language.

(8) L is neither open nor closed; L⊕ is not closed; L+ is not open; L+⊕ = L⊕+

Let L be a factor free language satisfying (8). By Proposition 1, we have sc(L∗) ≤
n − 1. Let Γ = L ∩ Σ. Then L⊕ = Γ by Proposition 2. Since L⊕ is not closed,
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we must have Γ �= ∅. Therefore sc(L⊕) = sc(Γ ) = 3, sc(L⊕∗) = sc(Γ ∗) ≤ 2,
and sc(L⊕+) = sc(Γ+) ≤ 3. Next, let L = {a, bn−2}. Then L⊕ = {a}, so L is
not open. Since we have aa ∈ L+ \ L and aa ∈ L⊕+ \ L⊕, the languages L and
L⊕ are not closed. Since bn−2 ∈ L+ \ L+⊕, the language L+ is not open. By
Proposition 2, L⊕+ = L+⊕. Hence {a, bn−2} is a binary subword-free generator
of case (8), and notice that it maximizes all the corresponding complexities. In
the unary case, we must have L = {an−2}. Then L⊕ = ∅ or L⊕ = L, so L does
not satisfy (8). Row (8) in Table 2 displays the binary case.

(9) L is neither open nor closed; L⊕ is not closed; L+ is not open; L+⊕ �= L⊕+

If L is a factor-free language satisfying (9), then L �= {ε}. However, then L+⊕ =
L⊕+ by Proposition 2, so L cannot generate case (9).

4 Suffix-Free Languages

Now we turn our attention to suffix-free languages. Since reversal commutes
with complementation and star, whenever an algebra is generated by a prefix-
free language, it is also generated by a suffix-free language. However, while the
complexities of L∗ and L∗c∗ in the prefix-free case are at most n and 2n−3 +
2, respectively, for a suffix-free language, the complexity of L∗ may be up to
2n−2 +1, and the complexity of L∗c∗ is not known. The exact complexity of this
combined operation is not known even in the general case of regular languages
[11].

Surprisingly, we need the language L∗c∗ only in case (9), and this is the only
case which is left open in this paper. In every other case, we are able to compute
the maximal complexities of all the generated languages. Next, again surpris-
ingly, the complexities of L⊕, L⊕+, and L⊕∗ are at most n, and a DFA for L⊕

can be obtained from a DFA for L just by omitting the non-final states. Finally,
it is interesting that in most cases, all the complexities cannot be maximized by
a single generator.

We start with a very useful Cmorik’s lemma which helps us easily prove
the suffix-freeness of our generators. Then we state and prove some observations
concerning suffix-free languages; let us recall that a minimal DFA for a suffix-free
language is non-returning.

Lemma 3 [5, Lemma 1]. Let A be a non-returning DFA that has a unique final
state. If each state of A, except for the dead state, has at most one in-transition
on every input symbol, then L(A) is suffix-free.

Lemma 4. Let ε /∈ L and L ∩ Σ = ∅. Then L⊕ = ∅ and L+⊕ = ∅.
Proof. If L = ∅, then L⊕ = ∅. Otherwise let w be a non-empty string in L. Then
w can be partitioned into one-symbol strings that are in Lc. Thus w /∈ L⊕, and
we have L⊕ = ∅. If L∩Σ = ∅, then also L+ ∩Σ = ∅, and by the same argument
L+⊕ = ∅. �

Lemma 5. Let n ≥ 3 and L be a suffix-free language accepted by a minimal
non-returning DFA A = ({s, 1, 2, . . . , n − 2, qd}, Σ, ·, s, F ). Then
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(a) sc(Lc+) ≤ n;
(b) sc(L⊕) ≤ |F | + 2;

(c1) L is open if and only if F = {1, 2, . . . , n − 2};
(c2) if L is open, then sc(L+) ≤ sc(L);
(d) sc(L⊕+) ≤ n;
(e) L+ is open if and only if L+ is weakly-prefix-closed;
(f) sc(L+) ≤ 2n−2 + 1 and sc(L∗) ≤ 2n−2 + 1.

Proof. (a) Let w ∈ Σ∗. If w ∈ Lc then w ∈ Lc+. If w ∈ L and some non-empty
prefix u of w is in Lc, that is, w = uv with u �= ε and u ∈ Lc, then v ∈ Lc since
L is suffix-free. Hence w ∈ Lc+. It follows that an n-state DFA for Lc+ can be
constructed from A as follows:

• interchange final and non-final states of A;
• in each final state p of the resulting DFA, except for the initial state, replace

each out-transition (p, a, q) with the loop (p, a, p).
(b) Since L⊕ = Lc+c, we get an n-state DFA for L⊕ by complementing the

DFA obtained in case (a). It follows that all non-final states of A, except for the
initial state s, are dead in the DFA for L⊕, so sc(L⊕) ≤ |F | + 2.

(c1) The language L is open if and only if L = L⊕. By the construction in
case (b), this holds if and only if F = {1, 2, . . . , n − 2}.

(c2) To get an NFA for L+, we add the transitions (q, a, s · a) for each final
state q and each input symbol a. If s · a = qd, then we can remove the transition
(q, a, qd) since it is not used in any accepting computation. Otherwise, we have
s · a ∈ F, and we must have q · a = qd because otherwise L would not be suffix-
free. Hence we can remove the transition (q, a, qd) for the same reason as above.
The resulting automaton is deterministic and has n states.

(d) We have L⊕ ⊆ L, so L⊕ is a suffix-free language. Since L⊕ is open, we
get sc(L⊕+) ≤ n by (c2) and (b).

(e) Assume that L+ is open. Let w ∈ L+, w = uv and u �= ε. If w ∈ L, then
v /∈ L and also v /∈ L+, since is L is suffix-free. Thus v ∈ L+c, and therefore
u /∈ L+c since L+ is open. Hence u ∈ L+. If w = w1w2 · · · wk with k ≥ 2 and
wi ∈ L, and u is a non-empty prefix of w, then u = w1w2 · · · wi−1x where x is a
non-empty prefix of wi. As shown above, we have x ∈ L+. Therefore u ∈ L+. It
follows that L+ is weakly-prefix-closed.

Conversely, assume that L+ is weakly-prefix-closed. Suppose for a contradic-
tion that there is a string w in L+ such that w /∈ L+⊕. Then w = w1w2 · · · wk

with k ≥ 2 and wi ∈ L+c and wi �= ε. Since L+ is weakly-prefix-closed, we must
have w1 ∈ L+, a contradiction.

(f) To get an NFA for L+ from the DFA A, we first remove the dead state d,
and then we add the transition (q, a, s · a) for each final state q and each input
symbol a such that s · a �= d. The resulting NFA is non-returning, so its subset
automaton is non-returning and it has at most 2n−2 +1 reachable states. To get
a DFA for L∗, we only make the initial state of the subset automaton final. �

Now we inspect the individual cases of possible Kuratowski algebras gener-
ated, this time, by suffix-free languages. Our aim is to get the results shown in
Table 3. Cases (1a) and (1b) are analogous to the previous section.
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Table 3. Suffix-free generators of Kuratowski algebras maximizing complexities of
corresponding generated languages. Cases (2b), (3a), (3b), (4), and (7) cannot be gen-
erated by any suffix-free language

Case E(L) Upper bounds on
state complexities

Suffix-free
generator

(1a) L, L \ {ε} 2, 1 ε

(1b) L, L ∪ {ε} 1, 2 ∅
(2a) L, L∗, L+ n, n, n Fig. 1

(5) L, L∗, L⊕ ∪
{ε}, L⊕

n, 2n−2 + 1, 2, 1 Fig. 2

(6) L, L∗, L+,
L⊕, L⊕∗, L⊕+

n, 2n−3 +
2, 2n−3 + 2,
n − 1, n − 1, n − 1

Fig. 3 (top) Fig. 3
(bottom)

(8) L, L∗, L⊕, L+⊕ ∪ {ε}, L+⊕ n, 2n−2 + 1,
n − 1, n − 1, n − 1

Fig. 4 (top) Fig. 4
(bottom)

(9) L, L∗,
L+⊕ ∪ {ε}, L+⊕,
L⊕, L⊕∗, L⊕+

n, 2n−2 + 1,
23n logn, 23n logn,
n − 1, n − 1, n − 1

Fig. 5 (top) ?
Fig. 5 (bottom)

(2a) L is open, L is not closed, ε /∈ L
Since L is open, we have sc(L+) ≤ n by Lemma 5 (c2). To get an n-state DFA
for L∗, we only make the initial state s final in the DFA for L+ obtained in
Lemma 5 (c2). Let L be the ternary suffix-free language accepted by the DFA
shown in Fig. 1. By Lemma 5 (c1), L is open. Since aa ∈ L+ \L, L is not closed.
Thus L satisfies the conditions (2a). We have sc(L) = sc(L∗) = sc(L+) = n since
the final states in {1, 2, . . . , n − 2} can be distinguished by strings in b∗, and in
the case of L∗, the final states s and n − 2 are distinguished by c. This gives the
results in row (2a) of Table 3.

s 1 2 . . . n−3 n−2 qd

a, b, c

a b b b b

c

Fig. 1. A suffix-free generator of the Kuratowski algebra in case (2a); the transitions
not shown are going to the dead state qd.

(5) L is neither open nor closed; L⊕ is clopen and L+⊕ = L⊕

Since L is neither open nor closed, we have L �= ∅ and L �= {ε}. Thus ε /∈ L. Next
L⊕ ⊆ L, so L⊕ is suffix-free. Moreover L⊕ is assumed to be clopen, therefore
L⊕ = ∅ or L⊕ = {ε}. Since ε /∈ L, we must have L⊕ = ∅. Hence sc(L⊕ ∪{ε}) = 2
and sc(L⊕ \ {ε}) = 1. Next we have sc(L∗) ≤ 2n−2 + 1 by Lemma 5 (f). Let
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L be the language accepted by the DFA A shown in Fig. 2. By Lemma 3, L is
suffix-free. We can show that L is the desired generator.

s 1 2 . . . n−3 n−2 qd

a, b, c

a b

c

b

a, c

b b

a, c a

b

Fig. 2. A suffix-free generator of the Kuratowski algebra in case (5); the transitions
not shown are going to the dead state qd.

(6) L is not open, L is not closed, L+ is open, L⊕ is not closed, L⊕+ �= L+

Let L be accepted by a minimal DFA A = ({s, 1, . . . , n− 2, qd}, Σ, ·, s, F ). First,
we prove that sc(L∗) ≤ 2n−3 +2 in this case. If L satisfies the conditions in case
(6), then L+ is open. By Lemma 5 (e), L+ is weakly-prefix-closed. Construct an
NFA N for L+ from A by adding the transitions (q, a, s · a) for each final state
q and each input symbol a.

In the subset automaton of the NFA N , each reachable non-final subset,
except for the initial subset, must be dead since L+ is weakly-prefix-closed. We
can show that no reachable subset contains two final states of A. Hence the
subset automaton has at most |F | · 2n−|F |−2 reachable pairwise distinguishable
states. This is at most 2n−3 + 2, and to meet this bound, |F | must be 1 or 2. To
get a DFA for L∗, we make the initial state final in the subset automaton of the
NFA N .

Now consider L⊕. By Lemma 5 (b), we have sc(L⊕) ≤ |F | + 2. Thus sc(L⊕)
is maximal if F = {1, 2, . . . , n−2}. However, then L would be open by Lemma 5
(c1). Therefore we have sc(L⊕) ≤ n − 1. Notice that if n ≥ 6, then there is no
language that maximizes both the complexities of L+ and L⊕.

We can show that the suffix-free generator accepted by the DFA A shown in
Fig. 3 (top) maximizes the complexities of L+ and L∗, and the suffix-free genera-
tor accepted by the DFA B shown in Fig. 3 (bottom) maximizes the complexities
of the remaining languages in E(L).

(8) L is neither open nor closed; L⊕ is not closed; L+ is not open; L+⊕=L⊕+

Let L be a suffix-free generator in case (8). We can show that the complexities
of the generated languages are as in the corresponding row of Table 3. Similarly
as in case (6) we can show that the upper bounds on the complexity of L∗ and
L⊕ cannot be met by a single generator. The suffix-free generator accepted by
the DFA A shown in Fig. 4 (top) maximizes the complexity of L∗, and the suffix-
free generator accepted by the DFA B shown in Fig. 4 (bottom) maximizes the
complexities of the remaining languages in E(L).
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A: s 1 2 . . . n−3 n−2 qd

a, b, c

a a

b

a, b a, b a, b

c

B: s 1 2 3 4 . . . n−2 qd

a, b, c, d

a

c

a b b b b

d d de

Fig. 3. Suffix-free generators of the Kuratowski algebra in case (6); the transitions not
shown are going to the dead state qd.

A: s 1 2 . . . n−3 n−2 qd

a, b, c

a a, c

b

a, b

c

a, b

c
c

c a

B: s 1 2 3 . . . n−2 qd

a, b, c, d

c

a

d b b b

d

Fig. 4. Suffix-free generators of the Kuratowski algebra in case (8); the transitions not
shown are going to the dead state qd.

A: s 1 2 . . . n−3 n−2 qd

a, b, c

a a, c

b

a, b a, b a, b

c c c

c

B: s 1 2 3 . . . n−2 qd

a, b, c, d

b

a

b

c

b

c c

d d d

Fig. 5. Suffix-free generators of the Kuratowski algebra in case (9); the transitions not
shown are going to the dead state qd.

(9) L is neither open nor closed; L⊕ is not closed; L+ is not open; L+⊕ �= L⊕+

Since the complexity of L∗c∗ is not known for suffix-free languages, this part of
case (9) remains open. The suffix-free generator accepted by the DFA A shown
in Fig. 5 (top) maximizes the complexity of L∗, and the suffix-free generator
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accepted by the DFA B shown in Fig. 5 (bottom) maximizes the complexities of
L⊕, L⊕∗, L⊕+.

5 Conclusions

We investigated Kuratowski algebras generated by factor-, subword-, and suffix-
free languages under the operations of star and complement. For each of these
three classes and each of the 12 possible algebras we either showed that this
algebra cannot be generated by a language in this class, or we gave a regular
generator. For each of the possible algebras, we gave upper bounds on the state
complexities of the generated languages. For factor- and subword- free languages,
all the upper bounds can be met simultaneously by a single generator.

This also holds for cases (1a), (1b), (2a), and (5) for suffix-free languages. In
cases (6) and (8), not all upper bounds can be met simultaneously. We gave exam-
ples of generators maximizing each of the upper bounds separately. In case (9),
we were unable to find an automaton maximizing the complexity of L+⊕ ∪ {ε}
and L+⊕, here we only gave upper bounds.
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