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Abstract. We study the nondeterministic state complexity of basic reg-
ular operations on the classes of prefix-, suffix-, factor-, and subword-free
and -convex regular languages. For the operations of intersection, union,
concatenation, square, star, reversal, and complementation, we get the
tight upper bounds for all considered classes except for complementa-
tion on factor- and subword-convex languages. Most of our witnesses
are described over optimal alphabets. The most interesting result is the
describing of a proper suffix-convex language over a five-letter alphabet
meeting the upper bound 2n for complementation.

1 Introduction

The nondeterministic state complexity of a regular language L, nsc(L), is the
smallest number of states in any nondeterministic finite automaton (NFA) with
a single initial state accepting the language L. The nondeterministic state com-
plexity of a regular operation is defined as the maximal nondeterministic state
complexity of languages resulting from the operation, considered as a function
of nondeterministic state complexities of the operands. The languages that meet
this maximal complexity for an operation are called witnesses for the opera-
tion. The (deterministic) state complexity of a regular language and a regular
operation are defined analogously.

If operands for an operation satisfy some additional properties, the resulting
complexity may be smaller than in the general case. In this paper we focus on
the classes of prefix-, suffix-, factor-, subword-free and -convex languages. In the
deterministic case, the complexity of basic regular operations on the classes of
closed, ideal, and free languages was examined by Brzozowski et al. [2,4,5]. Some
partial results in the classes of convex languages can be found in [3].

The nondeterministic state complexity of basic operations on regular lan-
guages was investigated by Holzer and Kutrib [9], and binary witnesses for
reversal and complementation were presented in [11]. Han et al. [7,8] studied
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the nondeterministic complexity of operations on prefix-free and suffix-free lan-
guages; some of their results were improved in [13]. Mlynárčik [15] examined
the nondeterministic complexity of complementation on the classes of free and
ideal languages. The remaining operations on ideal languages as well as all basic
operations on closed languages were investigated in [10].

In this paper we continue this research and study the nondeterministic com-
plexity of operations of intersection, union, concatenation, square, star, reversal,
and complementation on the classes of prefix-, suffix-, factor-, subword-free and
-convex languages. Except for complementation on factor- and subword-convex
languages, we provide tight upper bounds, and to prove tightness, we use a small
fixed alphabet in most cases. In some cases, we improve the known results by
decreasing the size of alphabet for witness languages. We fix a small bug from
the literature [8, Theorem 3.2] concerning union on prefix-free languages.

2 Preliminaries

We use a standard model of a nondeterministic finite automaton (NFA), as
explained, for example, in [16]. An NFA A = (Q,Σ, · , s, F ) is a (complete)
deterministic finite automaton (DFA) if for each state q in Q and each input
symbol a in Σ, the set q · a has exactly one element. If |q · a| ≤ 1 for each q
and a, then A is an incomplete DFA. In an ε-NFA, we also allow the transitions
on the empty string. It is known that for each ε-NFA there exists an equivalent
NFA with the same number of states [17, Theorem 2.3]. Sometimes, we allow an
NFA to have multiple initial states and use the shortcut NNFA for this model.

A state q of an NFA A is called a dead state if no string is accepted by A
from q, that is, if q ·w∩F = ∅ for each string w. An NFA A is a trim NFA if each
its state q is reachable, that is, there is a string u in Σ∗ such that q ∈ s · u, and,
moreover, no state of A is dead. We say that (p, a, q) is a transition in NFA A if
q ∈ p · a. We also say that the state q has an in-transition on symbol a, and the
state p has an out-transition on symbol a. An NFA is non-returning if its initial
state does not have any in-transitions, and it is non-exiting if each final state of
A does not have any out-transitions.

Definition 1. A set of pairs of strings {(u1, v1), (u2, v2), . . . , (un, vn)} is called
a fooling set for a language L if for all i, j in {1, 2, . . . , n},

(F1) uivi ∈ L, and
(F2) if i �= j, then uivj /∈ L or ujvi /∈ L.

Lemma 2 ([1, Lemma 1]). Let F be a fooling set for a language L. Then
every NNFA for the language L has at least |F| states. ��

Let us emphasize that the size of a fooling set for L provides a lower bound
on the number of states in any NNFA for L. If we insist on having just one initial
state, then the following modification of a fooling set method can be used.
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Lemma 3 ([12, Lemma 4]). Let A and B be sets of pairs of strings and let
u and v be two strings such that A ∪ B, A ∪ {(ε, u)}, and B ∪ {(ε, v)} are fooling
sets for a language L. Then every NFA for L has at least |A| + |B| + 1 states. ��

Let A = (Q,Σ, · , I, F ) be an NNFA and S, T ⊆ Q. We say that S is reachable
in A if there is a string w in Σ∗ such that S = I · w. Next, we say that T is
co-reachable in A if T is reachable in AR obtained from A by swapping the
role of initial and final states and by reversing all the transitions. The next two
observations are used throughout this paper.

Lemma 4. Let A be an NNFA. Let for each state q of A, the singleton set {q}
be reachable as well as co-reachable in A. Then A is minimal.

Proof. Let A = (Q,Σ, · , I, F ). Since {q} is reachable in A, there is a string uq

such that I ·uq = {q}. Since {q} is co-reachable in A, there is a string vq accepted
by A from and only from the state q. Then {(uq, vq) | q ∈ Q} is a fooling set for
L(A). By Lemma 2, the NNFA A is minimal. ��
Lemma 5. Let A be a trim NFA. If both A and AR are incomplete DFAs, then
A and AR are minimal NFAs.

Proof. If A is a trim incomplete DFA, then for each state q of A, the singleton set
{q} is reachable. If moreover AR is an incomplete DFA, then {q} is co-reachable
in A. By Lemma 4, A and AR are minimal NFAs. ��

If u, v, w, x ∈ Σ∗ and w = uxv, then u is a prefix of w, x is a factor of w,
and v is a suffix of w. If w = u0v1u1 · · · vnun, where ui, vi ∈ Σ∗, then v1v2 · · · vn

is a subword of w. A prefix v (suffix, factor, subword) of w is proper if v �= w.
A language L is prefix-free if w ∈ L implies that no proper prefix of w is

in L; it is prefix-closed if w ∈ L implies that each prefix of w is in L; and it
is prefix-convex if u,w ∈ L and u is a prefix of w imply that each string v
such that u is a prefix of v and v is a prefix of w is in L. Suffix-, factor-, and
subword-free, -closed, and -convex languages are defined analogously. It is known
that a minimal NFA for a prefix-free (suffix-free) language is non-exiting (non-
returning) [7,8]. The next lemma gives a sufficient condition for an incomplete
DFA accepting a suffix-free language.

Lemma 6. ([6, Lemma 1]). Let A be a non-returning incomplete DFA that
has a unique final state. If each state of A has at most one in-transition on every
input symbol, then L(A) is suffix-free. ��

3 Unary Convex Languages

We start with examination of unary free and unary convex languages. Notice
that if i ≤ j, then ai is a prefix, suffix, factor, and subword of aj . It follows
that in the unary case, all free classes and all convex classes coincide. Moreover,
if n ≥ 2 then L = {an−1} is the only unary free language with nsc(L) = n.
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Let L be a unary convex language and k be the length of the shortest string
in L. If L is infinite, then L = {ai | i ≥ k}. If L is finite and � is the length of the
longest string in L, then L = {ai | k ≤ i ≤ �}. The set {(ai, at−i) | 0 ≤ i ≤ t}
is a fooling set for L, where t = k for infinite L and t = � for finite L. Thus the
minimal incomplete DFA for L, which has t + 1 states, is a minimal NFA for L.

The next theorem provides tight upper bounds for unary convex languages.
All the results, except for the intersection and complementation, hold true for
free languages too. On unary free languages, the complexity of intersection is n
if m = n and 1 if m �= n, and the complexity of complementation is Θ(

√
n) [13].

Theorem 7 (Unary Convex Languages). Let m,n ≥ 2. Let K and L be
unary convex languages with nsc(K) = m and nsc(L) = n. Then

(a) nsc(K ∩ L),nsc(K ∪ L) ≤ max{m,n},
(b) nsc(KL) ≤ m + n − 1 and nsc(L2) ≤ 2n − 1,
(c) nsc(L∗) ≤ n − 1, nsc(LR) ≤ n, and nsc(Lc) ≤ n + 1,

and all these upper bounds are tight.

Proof. The upper bound for intersection and union can be verified by the case
analysis, where K and L can be finite or infinite. The upper bounds for con-
catenation, square, and complementation follow from the fact that the minimal
NFAs can be incomplete deterministic. The upper bound for reversal follows
from the fact that LR = L.

Now we prove an upper bound for star. Let L be a unary convex language
with nsc(L) = n. If L is infinite, then L = an−1a∗, and the language L∗ is
accepted by the (n − 1)-state NFA N = ({0, 1, . . . , n − 2}, {a}, · , 0, {0}) where
i · a = {i + 1} if i < n − 2 and i · a = {0, n − 2} if i = n − 2.

If L is finite, then there is an integer k such that L = {ai | k ≤ i ≤ n − 1}.
Then the (n−1)-state NFA for L∗ can be constructed from a minimal incomplete
DFA ({0, 1, . . . , n − 1}, {a}, · , 0, {k, k + 1, . . . , n − 1}) for L by making the state
n − 1 initial, adding the transition (n − 1, a, 1), and removing the state 0.

The languages am−1a∗ and an−1a∗ meet the upper bound for intersection, the
languages am−1 and an−1 meet the upper bound for union and concatenation,
the language an−1 meets the upper bound for square, star, and reversal, and the
language {ai | i ≤ n − 1} meets the upper bound for complementation. ��
Table 1 summarizes our results on unary convex languages and compares them
to the known results on unary regular and free languages [9,13].
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Table 1. The nondeterministic complexity of operations on unary classes; the results
are from [13] (first row), Theorem 7 (second row), and [9] (third row).

K ∩ L K ∪ L KL L2 L∗ Lc

Unary free n;m = n max{m, n} m + n − 1 2n − 1 n − 1 Θ(
√

n)

Unary convex max{m, n} max{m, n} m + n − 1 2n − 1 n − 1 n + 1

Unary regular mn; gcd(m, n) = 1 m + n + 1;
gcd(m, n) = 1

≥m+n−1
≤m + n

≥2n − 1
≤2n

n + 1 2Θ(
√

n log n)

4 Prefix-, Suffix-, Factor-, Subword-Free Languages

The nondeterministic complexity of operations on prefix- and suffix-free lan-
guages was studied by Han et al. [7,8], where tight upper bounds were obtained
for basic regular operations. Some of their results were improved by decreasing
the size of the alphabet for witness languages in [14]. The aim of this section is to
get tight upper bounds on the nondeterministic state complexity of basic regular
operations on factor- and subword-free languages as they are shown in Table 2.
We also fix a small bug in [8] concerning union on prefix-free languages. For
tightness, we use a unary or binary alphabet in all cases except for intersection
on subword-free languages, and these alphabets are always optimal. The size of
alphabet is shown in the right part of each column. The dot denotes the same
complexity as in the previous column. The results for complementation are from
[13], and the ternary alphabet is also optimal here. We start with intersection.

Theorem 8 (Intersection). Let K and L be regular languages over an alpha-
bet Σ such that nsc(K) = m and nsc(L) = n.

(a) If K and L are prefix-free (suffix-free) then nsc(K ∩L) ≤ mn− (m+n− 2),
and the bound is tight if m ≥ 4, n ≥ 2, and |Σ| ≥ 2.

(b) If K and L are factor-free, then nsc(K ∩ L) ≤ mn − 2(m + n − 3), and the
bound is tight if m ≥ 5, n ≥ 3, and |Σ| ≥ 2.

(c) If m,n ≥ 3, then there exist subword-free regular languages K and L over
an (m + n − 5)-letter alphabet such that nsc(K) = m, nsc(L) = n, and
nsc(K ∩ L) = mn − 2(m + n − 3).

Proof. We first prove the upper bounds. Let A and B be minimal NFAs for
K and L, respectively. We may assume that the state sets of A and B are
{0, 1, . . . ,m − 1} and {0, 1, . . . , n − 1}, respectively, with the initial state 0 in
both automata. Construct the product automaton A × B for K ∩ L.

If K and L are prefix-free with the final states m − 1 and n − 1 respectively,
then all states in the last row and last column, except for (m−1, n−1), are dead,
so we can omit them. If K and L are suffix-free, then A and B are non-returning,
so all states in the first row and first column, except for (0, 0), are unreachable.
Since every factor-free language is both prefix-free and suffix-free, all the three
upper bounds follow from these observations.
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Table 2. The nondeterministic state complexity of operations on free classes; com-
plementation is from [13]. The dot means that the complexity is the same as in the
previous column.

Regular |Σ| Prefix-free |Σ| Suffix-free |Σ| Factor-free |Σ| Subword-free |Σ|
K ∩ L mn 2 mn−(m+n−2) 2 · 2 mn−2(m+n−3) 2 · m+n−5

K ∪ L m + n + 1 2 m + n 2 m + n − 1 2 m + n − 2 2 · 2

KL m + n 2 m + n − 1 1 · 1 · 1 · 1

L2 2n 2 2n − 1 1 · 1 · 1 · 1

L∗ n + 1 1 n 2 · 2 n − 1 1 · 1

LR n + 1 2 n 1 n + 1 2 n 1 · 1

Lc 2n 2 2n−1 3 · 3 2n−2 + 1 3 · 2n−2

To prove tightness, we first consider factor-free languages. Let m ≥ 5, n ≥ 3.
Let K and L be the languages accepted by the NFAs A and B shown in Fig. 1.

Every string w in K begins and ends with a, and |w|b mod (m−2) = (m−3).
Every proper factor v of w which begins and ends with a has a computation in A
which either starts in the state 0 and ends in the state 2, or starts and ends in 2,
or starts in 2 and ends in m − 1. However, in all three cases, |v|b mod (m − 2) �=
(m − 3), so v /∈ L. Hence the language K is factor-free. Next, every string in L
has exactly n − 1 a’s, but every proper factor of every string in L has less than
n − 1 a’s. Hence L is factor-free.

Construct the product automaton A × B and remove all the unreachable
and dead states to get a trim NFA N for K ∩ L. Since the NFA N and its
reverse NR are incomplete DFAs, the NFA N is minimal by Lemma 4. So we
have nsc(K ∩ L) = mn − 2(m + n − 3). Notice that there is no need to prove
that NFAs A and B are minimal because the upper bound cannot be met by
languages of a smaller complexity. For this reason we do not prove the minimality
of witnesses in what follows.

Next, the left quotients of K and L by the string a, that is, the languages
a\K and a\L, are prefix-free and meet the upper bound mn − (m + n − 2).
Similarly, the right quotients K/a and L/a are suffix-free witnesses.

Finally, we consider the complexity of intersection on subword-free languages.
Let Σ = {a} ∪ {bk | 2 ≤ k ≤ m − 2} ∪ {c� | 2 ≤ � ≤ n − 2}. Let K and L be

Fig. 1. Binary factor-free witnesses for intersection.
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languages accepted by incomplete DFAs A = ({0, 1, . . . ,m−1}, Σ, · , 0, {m−1})
and B = ({0, 1, . . . , n − 1}, Σ, ◦ , 0, {n − 1}), where for each i (0 ≤ i ≤ m − 2),
j (0 ≤ j ≤ n − 2), k (2 ≤ k ≤ m − 2), and � (2 ≤ � ≤ n − 2), we have

i · a = i + 1, j ◦ a = j + 1,
0 · bk = k and (k − 1) · bk = m − 1, 0 ◦ bk = 1 and (n − 2) ◦ bk = n − 1,
0 · c� = 1 and (m − 2) · c� = m − 1, 0 ◦ c� = � and (� − 1) ◦ c� = n − 1.

We can prove that K and L are subword-free and meet the upper bound for
intersection. ��

As a result of the previous theorem, we get the nondeterministic state com-
plexity of intersection on each of the four classes of free languages, as it is shown
in the corresponding row of Table 2.

Now we consider the union operation. In [8] it is claimed that the upper
bound m + n is met by the union of prefix-free languages K = (am−1)∗b and
L = (cn−1)∗d, and a set P of pairs of strings of size m+n is described in [8, Proof
of Theorem 3.2]. The authors claimed that P is a fooling set for K ∪L. However,
the language K ∪ L is accepted by an NNFA of m + n − 1 states. Therefore P
cannot be a fooling set for K∪L. Here we prove the tightness of the upper bound
m + n for union of prefix-free languages using a binary alphabet and a modified
fooling set method given by Lemma 3. Next we get the tight upper bound for
union of suffix-, factor-, and subword-free languages. To get tightness, we always
use a binary alphabet which is optimal for all four classes.

Theorem 9 (Union). Let K and L be regular languages over an alphabet Σ
such that nsc(K) = m and nsc(L) = n.

(a) If K and L are prefix-free then nsc(K ∪ L) ≤ m + n, and the bound is tight
if m ≥ 3, n ≥ 3, and Σ ≥ 2.

(b) If K and L are suffix-free then nsc(K ∪ L) ≤ m + n − 1, and the bound is
tight if m ≥ 3, n ≥ 3, and Σ ≥ 2.

(c) If K and L are factor-free, then nsc(K ∪ L) ≤ m + n − 2, and the bound is
met by binary subword-free languages if m ≥ 2 and n ≥ 2.

Proof. We first prove the upper bounds. Let A and B be minimal NFAs for K
and L, respectively, with disjoint state sets, and the initial states sA and sB ,
respectively.

Fig. 2. Binary prefix-free witnesses for union meeting the upper bound m + n.
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(a) If K and L are prefix-free, then NFAs A and B are non-exiting and have a
unique final state. To get an (m + n)-state NFA for K ∪ L from A and B,
add a new initial (non-final) state connected through ε-transitions to sA and
sB , make the states sA and sB non-initial, and merge the final states of A
and B.

(b) If K and L are suffix-free, then A and B are non-returning. We can get an
(m + n − 1)-state NFA for K ∪ L from A and B by merging their initial
states.

(c) If K and L are factor-free, then they are both prefix- and suffix-free. To get
an (m + n − 2)-state NFA for K ∪ L from A and B, we merge their initial
states, and then we merge their final states.

To prove tightness, consider languages K and L accepted by an m-state and
n-state NFAs A and B, respectively, shown in Fig. 2 (left). Notice that K is
prefix-free since every string in K ends with b while every proper prefix of every
string in K is in a∗. Similarly, L is prefix-free.

Construct the (m + n)-state NFA for their union by adding a new initial
state s, by adding transitions (s, a, p1) and (s, b, q1), by making states p0 and
q0 non-initial, and by merging their final states as shown in Fig. 2 (right). The
resulting trim NFA is an incomplete DFA, and its reverse is an incomplete DFA
as well. By Lemma 5, this NFA is minimal. It follows that nsc(K ∪ L) ≥ m + n.

Next, the languages KR and LR are suffix-free, and they are accepted by m-
state and n-state NFAs AR and BR, respectively. To get an NFA for KR∪LR, we
merge the initial states of AR and BR. For each state q of the resulting automa-
ton, the singleton set {q} is reachable, as well as co-reachable. By Lemma 4, this
NFA is minimal. Hence we get nsc(KR ∪LR) ≥ m+n− 1. Finally, we again use
Lemma 5 to show that the union of binary subword-free languages {am−1} and
{bn−1} meets the upper bound m + n − 2. ��

The theorem above gives the nondeterministic state complexity of union on
free languages, as it is shown in the corresponding row of Table 2.

The nondeterministic state complexity of concatenation on regular languages
is m + n with binary witnesses [9, Theorem 7]. For prefix-free and suffix-free
languages, the upper bound is m + n − 1 [7,8], and to prove tightness, a binary
alphabet was used in [8, Theorem 3.1] and [7, Theorem 4]. In this section, we
show that this upper bound is tight for all four classes of free languages, and to
prove tightness, we use a unary alphabet.

Theorem 10 (Concatenation, Square). Let K and L be prefix-free (suffix-
free) languages with nsc(K) = m and nsc(L) = n. Then nsc(KL) ≤ m + n − 1,
nsc(L2) ≤ 2n − 1, and these bounds are met by unary subword-free languages.

Proof. Let A and B be minimal NFAs for K and L, respectively. In the prefix-
free case, we can merge the final state of A and the initial state of B to get an
NFA for KL. In the suffix-free case, automata A and B are non-returning. To
get an NFA for KL, we add the transition (p, a, q) for each final state p of A
and each transition (sB , a, q) of B. Next, we make final states of A non-final,
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and remove the unreachable state sB. As a result, we get an NFA for KL of
m + n − 1 states in both cases. This upper bound is met by the concatenation
of unary subword-free languages {am−1} and {an−1}. Since the witnesses have
the same structure, the complexity 2n − 1 for square follows. ��

Using the theorem above, we obtain the nondeterministic state complexity
of concatenation and square on free languages, as shown in Table 2.

We next consider the Kleene star and reversal operations. Both operations
have nondeterministic complexity n + 1 on regular languages with a unary wit-
ness for star [9, Theorem 9] and a binary witness for reversal [11, Theorem 2].
The following theorem provides tight upper bounds for star on all four classes of
free languages, as shown in Table 2. To get tightness, we use an optimal binary
alphabet in the prefix- and suffix-free case, and a unary alphabet otherwise.

Theorem 11 (Star). Let L be a language over an alphabet Σ with nsc(L) = n.

(a) If L is prefix- or suffix-free then nsc(L∗) ≤ n. These upper bounds are tight
if |Σ| ≥ 2, and the size of alphabet cannot be decreased.

(b) If L is factor-free, then nsc(L∗) ≤ n − 1, and the bound is met by a unary
subword-free language.

Proof. Let A = (Q,Σ, · , s, F ) be a minimal NFA for L.

(a) If L is prefix-free, then A is non-exiting and has a unique final state qf . We
can construct an n-state ε-NFA for the language L∗ from A by making state
qf initial and state s non-initial, and by adding the ε-transition from qf to
s. If L is suffix-free, then A is non-returning. Now we construct an n-state
ε-NFA for L∗ from A by making the initial state s final, and by adding the
ε-transition from every final state to the initial state s. Suffix-free language
an−1b∗ and prefix-free language b∗an−1 meet the upper bound n.

(b) If L is factor-free, then A is non-returning, non-exiting, and it has a unique
final state qf . We construct an NFA for L∗ by making state qf initial, by
adding transition (qf , a, q) for each transition (s, a, q), and by omitting the
state s. The unary subword-free language {an−1} meets this upper bound. ��
Now we turn our attention to the reversal operation. Han et al. obtained

tight upper bounds for reversal on prefix-free and suffix-free languages and they
provided a binary prefix-free witness [8, Theorem 3.4] and a ternary suffix-free
witness [7, Theorem 9]. As shown in the next theorem, the upper bound for
reversal on prefix-free languages is n, so it is met by any unary language. In the
suffix-free case, we provide a binary witness meeting the upper bound n + 1.
Notice that the reverse of a language accepted by an n-state NFA is accepted
by an n-state NNFA. This means that we cannot use a fooling set method to
prove the tightness of the bound n + 1. However, a modified fooling set method
described in Lemma 3 can be successfully used here. As a result of this theorem,
we get the corresponding row of Table 2.
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Theorem 12 (Reversal).

(a) Let L be a prefix-free language with nsc(L) = n. Then nsc(LR) ≤ n, and this
bound is met by a unary subword-free language.

(b) If n ≥ 5, then there exists a binary suffix-free regular language L such that
nsc(L) = n and nsc(LR) = n + 1.

Proof.

(a) If L is prefix-free, then every minimal NFA for L has a unique final state.
Thus nsc(LR) ≤ n. The bound is met by the language {an−1}.

(b) Set L=ban−4(an−3)∗ + ab(bb)∗. Since every string in L contain both a and
b, but every proper suffix of every string in L is in a∗ ∪ b∗, the language L
is suffix-free. Let

A = {(an−3, an−4b)} ∪ {(ai, an−4−ib) | 1 ≤ i ≤ n − 4} ∪ {(an−4b, ε)},
B = {(bb, ba), (b, a)},
u = ba, and v = an−4b.

Using Lemma 3, we show that every NFA for LR needs at least n + 1 states. ��

5 Convex Languages

In this section, we examine the nondeterministic state complexity of basic reg-
ular operations on convex languages. Recall that prefix-closed and right ideal
languages are prefix-convex, and similar inclusions exist for suffix-, factor-, and
subword-closed, and left, two-sided, and all-sided ideal classes.

The complexity of operations on closed and ideal languages was studied
in [10], where for each operation, except for complementation, and for each of the
four convex classes, a closed or an ideal witness, meeting the complexity of the
operation in the class of regular languages, is described: binary subword-closed
languages meeting the upper bound mn for intersection, and binary subword-
closed witnesses meeting the upper bound m + n + 1 for union are given in
Theorems 4 and 5, ternary subword-closed languages meeting the bound m + n
for concatenation and 2n for square, are described in Theorem 6 and Corollary 7,
the binary all-sided ideal meeting the upper bound n + 1 for star is provided in
Theorem 16, and for reversal, the binary prefix-closed, ternary factor-closed, and
subword-closed witness defined over an alphabet of size 2n−2 are described in
Theorem 9. Therefore, as shown in Table 3, the complexity of operations on con-
vex languages, except for complementation, is the same as for regular languages,
although, to get tightness, larger alphabets are used in some cases.

The nondeterministic state complexity of complementation on regular lan-
guages is 2n with a binary witness [9,11]. The upper bound 2n is met by binary
prefix-closed languages [10, Theorem 10]. On the other hand, this upper bound
cannot be met by suffix-closed, suffix-free, or left ideal languages [10,13,15].

Our last result shows that the upper bound 2n for complementation is tight
on suffix-convex languages. We describe a proper suffix-convex language, that is,
a suffix-convex languages which is neither suffix-free, nor suffix-closed, nor left
ideal, that meets this upper bound for complementation.
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Table 3. The nondeterministic state complexity of operations on convex classes. The
results for regular languages are from [9]. All the remaining results, except for comple-
mentation on suffix-convex languages, follow from [9,10].

Regular |Σ| Prefix-convex |Σ| Suffix-convex |Σ| Factor-convex |Σ| Subword-convex |Σ|
K ∩ L mn 2 · 2 · 2 · 2 · 2

K ∪ L m + n + 1 2 · 2 · 2 · 2 · 2

KL m + n 2 · 3 · 3 · 3 · 3

L2 2n 2 · 3 · 3 · 3 · 3

L∗ n + 1 1 · 2 · 2 · 2 · 2

LR n + 1 2 · 2 · 3 · 3 · 2n − 2

Lc 2n 2 · 2 · 5 ≥2n−1 + 1 ≤ 2n 2 ≥2n−1 + 1 ≤ 2n 2n

Theorem 13 (Complementation on Suffix-Convex Languages). Let
n ≥ 3. There exists a suffix-convex regular language L over a 5-letter alphabet
such that nsc(L) = n and nsc(Lc) = 2n.

Proof. Let L be the language accepted by the nondeterministic finite automaton
A = ({0, 1, . . . , n − 1}, {a, b, c, d, e}, · , 0, {1, 2, . . . , n − 1}), where the transitions
on a and b are shown in Fig. 3, the transitions on c, d, e are as follows: 0 · c =
{0, 1, . . . , n−1}, 0 ·d = {1, 2, . . . , n−1}, q ·e = {n−1} for each state q of A, and
all the remaining transitions go to the empty set. In the NFA AR, the final state
0 goes to itself on a, b, c and to the empty set on d and e. Next, every other state
of AR goes to 0 on d, and the state n−1 goes to {0, 1, . . . , n−1} on e. Thus in the
subset automaton of AR, each final subset, that is, a subset containing the state
0, goes either to a final subset containing 0 or to the empty set on each input
symbol. It follows that the language LR is prefix-convex, so L is suffix-convex.
We can show that each subset of the state set of A is reachable and co-reachable.
Hence for each subset S, there exists a string uS in Σ∗ such that s · uS = S.
Next, Sc is co-reachable, so there is a string vS which is accepted by A from
each state in Sc, but rejected from each state in S. Thus {(uS , vS) | S ⊆ Q} is
a fooling set for Lc of size 2n, so nsc(Lc) ≥ 2n by Lemma 2. ��

Fig. 3. Transitions on a and b in suffix-convex witness for complementation.
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6 Conclusions

We investigated the nondeterministic state complexity of basic operations on
the classes of prefix-, suffix-, factor-, subword-free and -convex languages. For
each class and for each operation, except for complementation on factor- and
subword-convex languages, we obtained the tight upper bounds.

Our results are summarized in Tables 1, 2, and 3. For complementation on
factor- and subword-convex languages we do not know whether or not the upper
bound 2n is tight. All the remaining upper bounds are tight. Whenever we used
a binary alphabet, it is always optimal in the sense that the upper bound is not
tight for any smaller alphabet. In any other case, we do not know whether the
upper bounds are tight for a smaller alphabet. The complexity of complementa-
tion on factor- and subword-convex languages remains open as well.

Acknowledgment. We would like to thank Jozef Jirásek, Jr., for his help with finding
the suffix-convex witness for complementation and for fruitful discussions on the topic.
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5. Brzozowski, J.A., Jirásková, G., Zou, C.: Quotient complexity of closed languages.
Theory Comput. Syst. 54(2), 277–292 (2014). doi:10.1007/s00224-013-9515-7
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