
COMBINED OPERATIONS ON
PREFIX-FREE AND SUFFIX-FREE

LANGUAGES

Hae-Sung Eom(A) Matúš Palmovský(B)

(A)Department of Computer Science, Yonsei University
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Korea

haesung@cs.yonsei.ac.kr

(B)Mathematical Institute, Slovak Academy of Science, Grešákova 6, 040 01 Košice, Slovakia
palmovsky@saske.sk

Abstract
We investigate the state complexity of combined operations for prefix-free and su�x-free regu-

lar languages. Prefix-free and su�x-free deterministic finite-state automata have some special

properties that are crucial for obtaining the precise state complexity of basic operations. Based

on these properties, we establish the state complexity of several operations: catenation-of-union,

catenation-of-intersection, catenation-of-star.

1. Introduction

Given a regular language L, the state complexity of L is the number of states in the minimal
deterministic finite-state automaton (DFA) for L. The state complexity of an operation on
regular languages is the number of states that are necessary and su�cient in the worst-case
for a DFA to accepts the language obtained from the operation. Maslov ([15]) obtained the
state complexity of catenation and later Yu et al. ([21]) investigated the operational complexity
further. The state complexity of an operation is calculated based on the structural properties of
the input regular languages and a given operation. Many applications using regular languages
require finite-state automata (FAs) of very large size. This makes the estimated upper bound of
the state complexity useful in practice since it helps to manage resources e�ciently. Moreover,
it is a challenging quest to verify whether or not an estimated upper bound can be reached.

Yu ([20]) gave a comprehensive survey of the state complexity of regular languages. Salomaa et
al. ([18]) studied classes of languages for which the reversal operation reaches an exponential
upper bound. As special cases of the state complexity, researchers examined the state com-
plexity of finite languages ([2, 7]), the state complexity of unary language operations ([17]) and

(B)Research supported by VEGA grant 2/0084/15 and grant APVV-15-0091. The work on this paper was
done during a stay of the second author at the university Department of Computer Science, Yonsei University.

148 Hae-Sung Eom, Matúš Palmovský

the nondeterministic descriptional complexity of regular languages ([10]). For regular language
codes, Han et al. ([9]) studied the state complexity of prefix-free regular languages. Similarly,
based on su�x-freeness, Han and Salomaa ([8]) looked at the state complexity of su�x-free reg-
ular languages. There are several other results with respect to the state complexity of di↵erent
operations ([3, 5, 6, 11, 12, 16]).

In this paper we study the state complexity of several operations combined with catenation in
the classes of prefix-free and su�x-free languages. We use unique structural properties of prefix-
free and su�x-free deterministic automata to get tight upper bounds for union, intersection,
and star combined with catenation. The paper is organized as follows. In Section 2, we define
some basic notions and state some preliminary results. Then we present the state complexities
of four combined operations in the following sections. We compare the state complexity of
basic operations and the state complexity of combined operations for prefix-free and su�x-free
regular languages, and conclude the paper in Section 7.

2. Preliminaries

We assume that the reader is familiar with basic notions in formal languages and automata
theory, and for complete background knowledge, we refer to Wood [19].

Let ⌃ denote a finite alphabet of characters and ⌃⇤ denote the set of all strings over ⌃. The
size |⌃| of ⌃ is the number of characters in ⌃. A language over ⌃ is any subset of ⌃⇤. The
symbol ; denotes the empty language and the symbol � denotes the null string. For a finite
set A, we denote by |A| its size and by 2A its power set. For strings x, y, and z such that
z = xy, we say that x is a prefix of z and y is a su�x of z. We define a language L to be prefix
(su�x)-free if for any two distinct strings x and y in L, x is not a prefix (su�x) of y.

A deterministic finite automaton (DFA) A is specified by a tuple (Q,⌃, �, s, F), where Q is a
finite set of states, ⌃ is an input alphabet, � : Q⇥⌃ ! Q is a transition function, s 2 Q is the
start state and F ✓ Q is a set of final states. The transition function � can be extended to the
domain Q⇥⌃⇤ in the natural way. Given a DFA A, we assume that A is complete; namely, for
each state q and each letter a, the transition �(q, a) is defined. However, in some constructions,
we also use incomplete DFAs, in which � is a partial function. A complete DFA may have a
sink state, that is a state from which no string is accepted. We assume that a DFA has at most
one sink state since all sink states are equivalent. For a transition �(p, a) = q in A, we say that
p has an out-transition and q has an in-transition. Furthermore, p is a source state of q and q

is a target state of p. We say that A is non-returning if the start state of A does not have any
in-transitions. A string x over ⌃ is accepted by A if �(s, w) 2 F . The language L(A) of A is
the set of all strings that are accepted by A. We define a state q of A to be reachable if there
is a path from the start state to q. Two states p and q are distinguishable if there is a string
w such that exactly one of the states �(p, w) and �(q, w) is final.

The state complexity SC(L) of a regular language L is defined to be the size of the minimal
(with respect to the number of states) DFA recognizing L.

COMBINED OPERATIONS ON PREFIX-FREE AND SUFFIX-FREE LANGUAGES 149

It is well-known that a minimal DFA for a prefix-free language has a sink state and exactly
one final state, from which all the transitions go to the sink state. Next, a minimal DFA for a
su�x-free language must be non-returning.

We recall a known result that is useful to tackle the state complexity problem for su�x-free
regular languages.

Lemma 2.1 (Cmorik and Jirásková [4]) Let A be a non-returning DFA with a sink state

and a unique final state. If no two distinct states of A go to a non-sink state by the same

symbol, then L(A) is su�x-free.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,⌃, �, I, F), where Q is a finite
state set, ⌃ is a finite input alphabet, � : Q ⇥ ⌃ ! 2Q is the transition function that can be
extended to the domain 2Q ⇥ ⌃⇤, I ✓ Q is the set of initial states, and F ✓ Q is the set
of final states. If q 2 �(p, a), then we say that (p, a, q) is a transition in A. The language
accepted by the NFA A is the set of strings L(A) = {w 2 ⌃⇤ | �(I, w) \ F 6= ;}. Every
NFA A = (Q,⌃, �, I, F) can be converted to an equivalent DFA A

0 = (2Q,⌃, �0, I, F 0), where
F

0 = {S 2 2Q | S \ F 6= ;} and �

0(S, a) = �(S, a) for each S in 2Q and each a in ⌃. We call
the DFA A

0 the subset automaton of NFA A. The subset automaton may not be minimal since
some of its states may be unreachable or equivalent to some other states.

A state q of NFA A is uniquely distinguishable [1] if there is a string w in ⌃⇤ which is accepted
by A from and only from state q, that is, we have �(p, w) 2 F if and only if p = q. We also
say that q is uniquely distinguishable by the string w. Next, we say that (p, a, q) is a unique

in-transition on a going to q, if there is no state r in Q such that r 6= p and q 2 �(r, a). Finally,
we say that a state q is uniquely reachable from p if p = p0

a1�! p1
a2�! p2

a3�! · · · ak�! pk = q, and
each transition (pi�1, ai, pi) is a unique in-transition on ai going to pi.

In [1], the following su�cient conditions for an NFA N , under which the subset automaton of
N does not have equivalent states, are stated. For the sake of completeness, we recall their
proofs here.

Proposition 2.2 If each state of an NFA A is uniquely distinguishable, then the subset au-

tomaton of A does not have equivalent states.

Proof. Let S and T be two distinct subsets of the subset automaton. Then there is a state q in
Q such that q 2 S \ T . Since q is uniquely distinguishable, there is a string w with �(p, w) 2 F

if and only if p = q. Then w is accepted from S and rejected from T . 2

Proposition 2.3 Let q be uniquely distinguishable and (p, a, q) be a unique in-transition on a

going to state q. Then p is uniquely distinguishable.

Proof. Let q be uniquely distinguishable by w. Then the string aw is accepted from and only
from p, so p is uniquely distinguishable. 2

Proposition 2.4 Let G(N) be a subgraph of unique in-transitions of an NFA N . Let a uniquely

distinguishable state of N be reachable from each state of N in the subgraph G(N). Then the

subset automaton of N does not have equivalent states.

150 Hae-Sung Eom, Matúš Palmovský

Proof. If a uniquely distinguishable state is reached from a state p in G(N), then p is uniquely
distinguishable by Proposition 2.3. Hence each state of N is uniquely distinguishable. By
Proposition 2.2, the subset automaton of N does not have equivalent states. 2

3. State Complexity of L1 · (L2 [L3)

We start with the state complexity of L1 · (L2 [L3). Our aim is to show that for prefix-free
languages, the tight upper bound is m + np � 4 and for su�x-free languages, the tight upper
bound is (m� 1)2n+p�4 +1, where SC(L1) = m, SC(L2) = n, and SC(L3) = p. Our worst-case
examples are defined over a three-letter alphabet in the prefix-free case and over a six-letter
alphabet in the su�x-free case.

Theorem 3.1 Let m,n, p � 3 and L1, L2 and L3 be regular prefix-free languages over an alpha-

bet ⌃ with SC(L1) = m, SC(L2) = n, and SC(L3) = p. Then SC(L1 · (L2 [L3))  m+np� 4,
and the bound is tight if |⌃| � 3.

Proof. Let A1 = (Q1,⌃, �1, s1, {f1}), A2 = (Q2,⌃, �2, s2, {f2}), and A3 = (Q3,⌃, �3, s3, {f3})
be minimal DFAs for L1, L2, and L3, respectively, with sink states d1, d2, and d3. Construct an
NFA N for L1 · (L2 [L3) from DFAs A1, A2, and A3 as follows:
(1) omit states f1, d1, d2, d3 and all the transitions going to or from these states;
(2) merge states f2 and f3 into a new state f ;
(3) for each transition (q, a, f1) in A1 add two transitions (q, a, s2) and (q, a, s3);
(4) the initial state of N is s1, and the set of final states is {f};
see Figure 1 for an example.

Since A1, A2, A3 are deterministic, in the subset automaton of N , only the following sets may
be reachable:

• {q}, where q 2 Q1 \ {f1, d1};
• {r, t}, {r, f}, {r}, {t, f}, {t}, where r 2 Q2 \ {f2, d2} and t 2 Q3 \ {f3, d3};
• {f}, and the empty set.

In total we get at most (m�2)+(n�2)(p�2)+2(n�2)+2(p�2)+2 = m+np�4 reachable
subsets. This proves the upper bound.

For tightness, consider the languages L1, L2, and L3 accepted by DFAs A1, A2, and A3 shown
in Figure 1 (top); to keep our figures transparent, we do not display the sink states anywhere.
Construct an NFA N as described above; see Figure 1 (bottom). Then in the subset automa-
ton of N , the initial subset is {q0}, and for each i, j, k with 0  i  m � 3, 0  j  n � 3,
0  k  p� 3, we have

• {q0}
ai�! {qi};

• {qm�3}
a�! {r0, t0}

bjck��! {rj, tk};
• {rj, tp�3}

c�! {rj, f}
c�! {rj}; {rn�3, tk}

b�! {f, tk}
b�! {tk}; and {rn�3}xrightarrowb{f}

b�!
;.

COMBINED OPERATIONS ON PREFIX-FREE AND SUFFIX-FREE LANGUAGES 151

q0
a

q1

r0
b

r1
b

rn�3
b rn�2

c c c

t0
c

t1
c

tp�3
c

tp�2

b b b

q0
a

q1
a

qm�3
a

f

r0
b

r1
b

rn�3
b

c c c

t0
c

t1
c

tp�3
c

b b b

a

a
c

b

A1

A2

A3

N

a a qm�3
a qm�2

b

c

Figure 1: Prefix-free witnesses (top) and NFA N (bottom) for L1 · (L2 [L3).

Thus allm+np�4 subsets are reachable. To prove distinguishability, notice that each transition
in N is a unique in-transition, and that the unique final state f is reachable from each state in
N . By Proposition 2.4, the subset automaton of N does not have equivalent states. 2

Theorem 3.2 Let m,n, p � 3, and L1, L2, L3 be regular su�x-free languages over an alphabet ⌃
with SC(L1) = m, SC(L2) = n, and SC(L3) = p. Then SC(L1 · (L2 [L3))  (m�1)2n+p�4+1,
and the bound is tight if |⌃| � 6.

Proof. Let L1, L2, L3 be su�x-free languages accepted by minimal DFAsA1 = (Q1,⌃, �1, s1, F1),
A2 = (Q2,⌃, �2, s2, F2), and A3 = (Q3,⌃, �3, s3, F3), with sink states d1, d2, d3, respectively.
Then A1, A2, A3 are non-returning. Construct an NFA N for L1 · (L2 [L3) from DFAs A1, A2,
and A3 as follows:
(1) omit states d1, s2, d2, s3, d3 and all transitions going to these states;
(2) for each symbol a in ⌃ and each state q in F1,

(a) if (�2(s2, a) 6= d2), then add the transition (q, a, �2(s2, a));
(b) if (�3(s3, a) 6= d3), then add the transition (q, a, �3(s3, a));

(3) the initial state of N is s1, and the set of final states is F2 [F3.
In the corresponding subset automaton, only the following sets may be reachable:

• {s1};
• {q} [S and S, where q 2 Q1 \ {s1, d1} and S ✓ (Q2 \ {s2, d2}) [(Q3 \ {s3, d3}).

This gives at most (m� 1)2n+p�4 + 1 reachable states, and proves the upper bound.

For tightness, consider the languages L1, L2, and L3 accepted by DFAs A1, A2, and A3 shown
in Figure 2. By Lemma 2.1, L1, L2, L3 are su�x-free. Construct the NFA N for L1 · (L2 [L3)
as described above; see Figure 3. Then in the subset automaton of N , the initial subset is {q0},
and we have {q0}

afm�3

����! {qm�2}
an+p

���! {qm�2} [{r1, . . . , rn�2} [{t1, . . . , tp�2}.

152 Hae-Sung Eom, Matúš Palmovský

q0
a

q1
f

q2
f f

qm�2qm�3
f

f

a, b, c, d, e

r0
a

r1
a, b

r2
a, b a, b

rn�2rn�3
a, b

b

d, e, fc, d, e, f c, d, e, f c, d, e, f

t0
a

t1
a, d

t2
a, d a, d

tp�2tp�3
a, d

d

b, c, fb, c, e, f b, c, e, f b, c, e, f

Figure 2: Su�x-free witnesses for L1 · (L2 [L3).

q0
a

q1
f

q2
f f

qm�2qm�3
f

f

a, b, c, d, e

r1
a, b

r2
a, b a, b

rn�2rn�3
a, b

b

d, e, fc, d, e, f c, d, e, f c, d, e, f

t1
a, d

t2
a, d a, d

tp�2tp�3
a, d

d

b, c, fb, c, e, f b, c, e, f b, c, e, f

a

a

Figure 3: The NFA N for L1 · (L2 [L3), where L1, L2, L3 are accepted by the DFAs from Figure 2.

Now notice that using b we can shift any subset of {r1, . . . , rn�2} cyclically by one, while using
c we can eliminate state rn�2 from any subset containing rn�2. It follows that each subset R
of {r1, . . . , rn�2} can be reached from {r1, . . . , rn�2} by a string uR over {b, c}. Moreover, we
have a loop on b, c in qm�2 and in each state tk. Thus we get

{qm�2} [{r1, . . . , rn�2} [{t1, . . . , tp�2}
uR�! {qm�2} [R [{t1, . . . , tp�2}.

Symmetrically, we can remove states from {t1, . . . , tp�2} using d, e, and reach every set T by

a string vT over {d, e}, so {qm�2} [R [{t1, . . . , tp�2}
vT�! {qm�2} [R [T . Next, we have

{qm�2} [R [T

f i

�! {qi} [R [T , and

{qm�2} [{r1, . . . , rn�2, t1, . . . , tp�2}
f�! {q1} [{r1, . . . , rn�2, t1, . . . , tp�2}

b�!
{r1, . . . , rn�2} [{t1, . . . , tp�2}

uRvT���! R [T.

This gives (m� 1)2n+p�4 + 1 reachable states. To get distinguishability, notice that the states
rn�2 and tp�2 are uniquely distinguishable in N since e is accepted from and only from rn�2

and c is accepted from and only from tp�2. Next, in the subgraph G(N) given by unique in-
transitions (q0, a, q1), (qi, f, qi+1) with 1  i  m�3, (qm�2, a, r1), (rj, a, rj+1) with 1  j  n�3,
(qm�2, a, t1), (tk, a, tk+1) with 1  k  p�3, either rn�2 or tp�2 can be reached from every state
of N . By Proposition 2.4, the subset automaton of N does not have equivalent states. 2

COMBINED OPERATIONS ON PREFIX-FREE AND SUFFIX-FREE LANGUAGES 153

4. State Complexity of (L1 [L2) · L3

Now we consider the state complexity of (L1[L2)·L3. We get tight upper bounds for prefix-free
and su�x-free regular languages L1, L2, and L3. To prove tightness, we use a binary alphabet
in the prefix-free case, and a six-letter alphabet in the su�x-free case.

Theorem 4.1 Let m,n, p � 3, and L1, L2, L3 be prefix-free languages over ⌃ with SC(L1) = m,

SC(L2) = n, and SC(L3) = p. Then SC((L1 [L2) · L3)  (m � 2) (n � 2) + (m + n � 4)p +
(p2 � p+ 2)/2, and the bound is tight if |⌃| � 2.

Proof. Let A1 = (Q1,⌃, �1, s1, {f1}), A2 = (Q2,⌃, �2, s2, {f2}), and A3 = (Q3,⌃, �3, s3, {f3})
be minimal DFAs for prefix-free languages L1, L2, and L3, respectively, with sink states d1, d2,
and d3. Construct an NFA N for (L1 [L2) · L3 from DFAs A1, A2, and A3 as follows:
(1) omit states f1, d1, f2, d2, d3 and all transitions going to or from these states;
(2) if (q, a, f1) 2 �1, then add (q, a, s3);
(3) if (r, a, f2) 2 �2, then add (r, a, s3);
(4) the set of initial states is {s1, s2} and the set of final states is {f3};
see Figure 4 for an example. In the subset automaton of N , only the following sets may be
reachable:

• {q, r}, where q 2 Q1 � {f1, d1} and r 2 Q2 � {f2, d2};
• {q, t} and {q}, where q 2 Q1 � {f1, d1} and t 2 Q3 � {d3};
• {r, t} and {r} , where r 2 Q2 � {f2, d2} and t 2 Q3 � {d3};
• {t, t0} and {t} and the empty set for t, t0 2 Q3 � {d3}.

In total we get at most (m� 2)(n� 2) + (m� 2)p+ (n� 2)p+ (p� 1)(p� 2)/2+ (p� 1) + 1 =
(m�2)(n�2)+(m+n�4)p+(p2�p+2)/2 reachable subsets, which proves the upper bound.

To prove tightness, consider binary prefix-free languages L1, L2, L3 accepted by DFAs A1, A2, A3

shown in Figure 4 (top).

q0
a

q1
a

q2
a a

qm�2qm�3
a

b b b b

r0
b

r1
b

r2
b b

rn�2rn�3
b

a a a a

q0
a

q1
a

q2
a a

qm�3

b b b b

r0
b

r1
b

r2
b b

rn�3

a a a a

t0
a, b

t1
a, b

t2
a, b a, b

tp�2tp�3
a, b

t0
a, b

t1
a, b

t2
a, b a, b

tp�2tp�3
a, b

A3

A1

A2

N

a

b

Figure 4: Prefix-free witnesses (top) and NFA N (bottom) for (L1 [L2) · L3.

154 Hae-Sung Eom, Matúš Palmovský

Construct the NFA N for (L1[L2) ·L3 as described above; see Figure 4 (bottom). Then in the
subset automaton of N , the initial states are q0 and r0, and for each i, j, k, ` with 0  i  m�3,
0  j  n� 3, and 0  k < `  p� 2,

• {q0, r0}
aibj��! {qi, rj};

• {qi, rn�3}
b�! {qi, t0}

bk�! {qi, tk}, and {qi, tp�2}
b�! {qi};

• {rj, qm�3}
a�! {rj, t0}

ak�! {rj, tk}, and {rj, tp�2}
a�! {rj};

• {qm�3, t0}
b`�k�1

����! {qm�3, t`�k�1}
a�! {t0, t`�k}

ak�! {tk, t`};
• {qm�3}

a�! {t0}
ak�! {tk} and {tp�2}

a�! ;.
This proves the reachability of (m � 2)(n � 2) + (m + n � 4)p + (p2 � p + 2)/2 subsets. To
prove distinguishability, notice that each transition in N is a unique in-transition, and that the
unique final state state tp�2 is reachable from each state in N . By Proposition 2.4, the subset
automaton of N does not have equivalent states. 2

Theorem 4.2 Let m,n, p � 4, and L1, L2, L3 be su�x-free languages over an alphabet ⌃ with

SC(L1) = m, SC(L2) = n, and SC(L3) = p. Then SC((L1 [L2) · L3)  (m�1)(n�1)2p�2+1,
and the bound is tight if |⌃| � 6.

Proof. Let L1, L2, L3 be su�x-free languages accepted by minimal DFAsA1 = (Q1,⌃, �1, s1, F1),
A2 = (Q2,⌃, �2, s2, F2), and A3 = (Q3,⌃, �3, s3, F3), with sink states d1, d2, d3, respectively.
Then A1, A2, A3 are non-returning. Construct an NFA N for (L1 [L2) · L3 from DFAs A1, A2,
and A3 as follows:
(1) omit states d1, d2, s3, d3 and all the transitions going to or from these states;
(2) for each a in ⌃ and each q in F1[F2, if �3(s3, a) 6= d3, then add the transition (q, a, �3(s3, a));
(3) the set of initial states of N is {s1, s2} and the set of final states is F3;
see Figure 5 for an example. Since A1, A2, A3 are deterministic and non-returning, in the subset
automaton of N , only the following sets may be reachable:

• {s1, s2};
• {q, r} [T , where q 2 Q1 \ {s1, d1}, r 2 Q2 \ {s2, d2}, and T ✓ Q3 \ {s3, d3};
• {q} [T , where q 2 Q1 \ {s1, d1} and T ✓ Q3 \ {s3, d3};
• {r} [T , where r 2 Q2 \ {s2, d2} and T ✓ Q3 \ {s3, d3};
• T , where T ✓ Q3 \ {s3, d3}.

In total, we get at most 1 + (m � 2)(n � 2)2p�2 + (m � 2)2p�2 + (n � 2)2p�2 + 2p�2 =
(m� 1)(n� 1)2p�2 + 1 reachable states. This proves the upper bound.

To prove tightness, let L1, L2, L3 be the languages accepted by DFAs A1, A2, A3 shown in Fig-
ure 5 (top). By Lemma 2.1, the languages L1, L2, L3 are su�x-free since we have m,n � 4.
Construct the NFA N as described above, that is, remove the states qm�1, rn�1, 0, p�1, and add
the transitions (qm�2, a, 1) and (rn�2, a, 1); see Figure 5 (bottom). First, let us show that for each
T ✓ {1, 2, . . . , p� 2}, the set {qm�2, pn�2}[T is reachable in the subset automaton of N . The
proof is by induction on |T |. The basis, with |T | = 0, holds true since {qm�2, pn�2} is reached
from the initial state {q0, r0} by ac

m�3
d

n�3. Next, each set {qm�2, rn�2, k1, k2, k3, . . . , k`}, where
1  `  p � 2 and 1  k1 < k2 < k3 < · · · < k` <= p � 2, is reached from the set
{qm�2, rn�2, k2 � k1, k3 � k1, . . . , k` � k1} by ab

k1�1. This proves our claim by induction. Next,
for each i, j, and T such that 1  i  m� 2, 1  j  n� 2, and T ✓ {1, 2, . . . , p� 2}, we have

COMBINED OPERATIONS ON PREFIX-FREE AND SUFFIX-FREE LANGUAGES 155

q0
a

q1
A1

A2

A3

N

c
q2

d, e d, e

c c qm�3
c

d, e

qm�2

a, b, d, e

c

r0
a

r1
d

r2

c.f c, f

d d rn�3
d

c, f

rn�2

d

a, b, c, f

0
a

1
a, b

2

c, d, e, f c, d, e, f

a, b a, b
p�3

a, b

c, d, e, f

p�2

c, d, e, f

q0
a

q1
c

q2

d, e d, e

c c qm�3
c

d, e

qm�2

c

r0
a

r1
d

r2

c.f c, f

d d rn�3
d

c, f

rn�2

d

a, b, c, f
1

a, b
2

c, d, e, f c, d, e, f

a, b a, b
p�3

a, b

c, d, e, f

p�2

c, d, e, f
a

a

a, b, d, e

Figure 5: Su�x-free witnesses (top) and NFA N (bottom) for (L1 [L2) · L3.

• {qm�2, rn�2} [T

cidj��! {qi, rj} [T ;
• {qi, rj} [T

e�! {qi} [T ;

• {qi, rj} [T

f�! {rj} [T ; and {qi} [T

f�! T .
This proves the reachability of (m� 1)(n� 1)2p�2 + 1 subsets.
To prove distinguishability, notice that the states p � 2, qm�2, and rn�2 are uniquely distin-
guishable in NFA N : state p � 2 is a unique final state of N , the string ea

p�2 is accepted
by N from and only from qm�2, and the string fa

p�2 is accepted by N from and only from
rn�2. Next, consider the subgraph G(N) of unique in-transitions given by transitions (q0, a, q1),
(qi, c, qi+1) with 1  i  m�3, (r0, a, r1), (rj, d, rj+1) with 1  j  n�3, and (k, a, k+1) where
1  k  p � 3; see dashed transitions in Figure 5 (bottom). This subgraph consists of three
paths ending in states qm�2, rn�2, and p� 2, respectively. Moreover, each state of N is on one
of these three paths. Hence from each state of N a uniquely distinguishable state is reached in
G(N). By Proposition 2.4, the subset automaton of N does not have equivalent states. 2

5. State Complexity of (L1 \ L2) · L3 and L1 · (L2 \ L3)

We consider the state complexity of (L1 \L2) ·L3 for prefix-free regular languages L1, L2, and
L3. We get the tight upper bound (m � 2)(n � 2) + p. Our worst-case examples are defined
over a binary alphabet. Then we consider the same operation for su�x-free languages. We
get an upper bound ((m � 2)(n � 2) + 1)2p�2 + 1, and prove its tightness using a quaternary
alphabet. Notice that in both cases, no saving is obtained with respect to the composition of
the operations.

Theorem 5.1 Let m,n, p � 3, and L1, L2, L3 be regular prefix-free languages over an alphabet ⌃
with SC(L1) = m, SC(L2) = n, and SC(L3) = p. Then SC((L1 \ L2) · L3)  (m�2)(n�2)+p,

and the bound is tight if |⌃| � 2.

156 Hae-Sung Eom, Matúš Palmovský

Proof. We compute the upper bound by the composition of the state complexity of intersection
and catenation for prefix-free regular languages. For prefix-free regular languages, the state
complexity of intersection ismn�2(m+n)+6, and the state complexity of catenation ism+n�2
[9]. Thus, the upper bound for (L1\L2) ·L3 is mn� 2(m+n)+6+ p� 2 = (m� 2)(n� 2)+ p.
To prove tightness, consider the binary prefix-free languages accepted by the DFAs A1, A2, A3

shown in Figure 6 (top). Notice that A1 and A2 are binary witnesses for intersection on prefix-
free languages [13, Theorem 1]. 2

Theorem 5.2 Let m,n, p � 4, and L1, L2, L3 be su�x-free languages over ⌃ with SC(L1) = m,

SC(L2) = n, and SC(L3) = p. Then SC((L1 \ L2) · L3)  ((m � 2)(n � 2) + 1)2p�2 + 1, and
the bound is tight if |⌃| � 4.

Proof. We compute the upper bound by the composition of the state complexity of intersection
and catenation for su�x-free regular languages. For su�x-free regular languages, the state
complexity of intersection is (m � 2)(n � 2) + 2 and the state complexity of catenation is
(m� 1)2n�2 + 1 [9]. Thus, the upper bound for (L1 \ L2) · L3 is ((m� 2)(n� 2) + 1)2p�2 + 1.
To prove tightness, consider the binary prefix-free languages accepted by the DFAs A1, A2, A3

shown in Figure 7 (top). Notice that A1 and A2 are binary witnesses for intersection on su�x-
free languages [14, Lemma 6]. 2

Now we consider the state complexity of L1 · (L2 \ L3) for prefix-free regular languages L1,
L2 and L3. We get an upper bound as the composition of state complexities of catenation
and intersection for prefix-free languages. Then we describe prefix-free languages over a binary
alphabet meeting this upper bound.

Theorem 5.3 Let m,n, p � 3, and L1, L2, L3 be regular prefix-free languages over an alphabet ⌃
with SC(L1) = m, SC(L2) = n, and SC(L3) = p. Then SC(L1 · (L2 \ L3))  m+(n�2)(p�2),
and the bound is tight if |⌃| � 2.

q0
a

q1
A1

A2

A3

D

a qm�3

b b

a b

b

qm�2

r0
b

r1
b

r2

a a

b b rn�3
b

a

rn�2

t0
a

t1
a

t2
a a

tp�3
a tp�2

q0, r0
b

01
b

02
b

03

a

a

b

a

10
b

11
b

12
b 13

20 21 22 23

a a a a

a a a a

a
a a a

b

a
t1

q3, r4
= t0

a
t2

a
t3

a
t4

a
t5

Figure 6: Prefix-free witnesses (top) and DFA D (bottom) for (L1 \ L2) · L3 .

COMBINED OPERATIONS ON PREFIX-FREE AND SUFFIX-FREE LANGUAGES 157

q0
c

q1
A1

A2

A3

D

d qm�3

c

d

c

qm�2

r0
c

r1
c, d

r2
c, d c, d rn�3

c, d rn�2

t0
a

t1
a, b

t2
a, b a, b

tp�3
a, b tp�2

11 12 13 14

d

21 22 q2, r3 24

31 32 33 q3, r4

q2
dd

a, b, c

d

a, b

c, d c, d c, d c, d

q0, r0

a, b

d

a t1
a, b

t2

c, d c, d

a, b
t3

c, d

a, b
t4

c, d

a, b
t5

c, d

c

Figure 7: Su�x-free witnesses (top) and NFA N (bottom) for (L1 \ L2) · L3.

Proof. We compute the upper bound by the composition of the state complexity of intersection
and catenation for prefix-free regular languages. For prefix-free regular languages, the state
complexity of catenation ism+n�2, and the state complexity of intersection is (m�2)(n�2)+2
[9]. Thus, the upper bound for L1 · (L2\L3) is m+(n� 2)(p� 2). This gives the upper bound.
For tightness, let L1 = {bm�2} and L2, L3 be binary prefix-free witnesses for intersection [13,
Theorem 1]; see Figure 8 (top). 2

We next consider the state complexity of L1 · (L2 \ L3) for su�x-free regular languages L1,
L2 and L3. We compute the upper bound by composition of state complexity of catenation
and intersection for su�x-free regular languages. For su�x-free regular languages, the state
complexity of intersection is mn � 2(m + n) + 6 and the state complexity of catenation is
(m� 1)2n�2 + 1 [9]. Thus, the upper bound for L1 · (L2 \ L3) is (m� 1)2(n�2)(p�2) + 1.

6. State Complexity of L1 · L⇤
2 and L

⇤
1 · L2

We consider the state complexity of L1 · L⇤
2 for prefix-free regular languages L1 and L2. Let

us first recall the construction of a DFA for L⇤
2. Let a prefix-free language L2 be accepted by

an n-state DFA A2 = (Q2,⌃, �2, s2, {f2}) with the sink state d2. We can construct an n-state
DFA for L⇤

2 from A2 by making the state f2 initial, and by replacing each transition (f2, a, d2)
with the transition (f2, a, �2(s2, a)). We use this construction to get the next result.

Theorem 6.1 Let m,n � 3, and L1, L2 be regular prefix-free languages over an alphabet ⌃ with

SC(L1) = m, SC(L2) = n. Then SC(L1 · L⇤
2)  m+ n� 2, and the bound is tight if |⌃| � 2.

158 Hae-Sung Eom, Matúš Palmovský

q0
b

q1
A1

A2

A3

D

b qm�3
b

qm�2

r0
a

r1 aa a rn�3
b rn�2

t0
b

t1
b

t2
b b

tp�3
b tp�2

q2
bb

a a a

b b b

a

a

q0
b

q1 b q2 b q3
b q4

b
01

b
02

b
03

10
b

11
b

12
b 13

20 21 22 23

a a a a

a a a a

a
a a a

q5=
r0, t0

r3, t4

b

b

Figure 8: Prefix-free witnesses (top) and DFA D (bottom) for L1 · (L2 \ L3).

q0
a

q1
A1 A2

D

qm�3
a

qm�2 r0
b

r1
b b rn�3

b rn�2
aa

a

q0
a

q1 qm�3
aa

r0
b

r1
b b rn�3

b rn�2

a

b

a

a

Figure 9: Prefix-free witnesses (top) and DFA D (bottom) for L1 · L⇤
2.

Proof. Let A1 = (Q1,⌃, �1, s1, {f1}) and A2 = (Q2,⌃, �2, s2, {f2}) be minimal DFAs for prefix-
free languages L1 and L2, respectively, with sink states d1 and d2. Construct an incomplete
DFA D for L1 · L⇤

2 from DFAs A1 and A2 as follows:
(1) omit the states f1, d1, d2 and all the transitions going to or from these states;
(2) for each symbol a add the transition (f2, a, �2(s2, a));
(3) for each transition (q, a, f1) in A1, add the transition (q, a, f2);
(4) the initial state is s1 and the final state is f2.
By adding the sink state, we get a DFA for L1 ·L⇤

2 of m+ n� 2 states, which proves the upper
bound. For tightness, consider binary prefix-free languages L1 and L2 accepted by DFAs shown
in Figure 9 (top). 2

Now we consider the state complexity of L1 · L⇤
2 for su�x-free regular languages L1 and L2.

Since the empty string is in L

⇤
2, we have L1 ✓ L1 · L⇤

2. Notice that the upper bound coincide
with the one for the catenation of su�x-free languages.

Theorem 6.2 Let m,n � 4, and L1, L2 be su�x-free languages over ⌃ with SC(L1) = m and

SC(L2) = n. Then SC(L1 · L⇤
2)  (m� 1)2n�2 + 1, and the bound is tight if |⌃| � 4.

COMBINED OPERATIONS ON PREFIX-FREE AND SUFFIX-FREE LANGUAGES 159

Proof. Let L1, L2 be su�x-free languages accepted by minimal DFAs A1 = (Q1,⌃, �1, s1, F1)
and A2 = (Q2,⌃, �2, s2, F2), with sink states d1, d2, respectively. Then A1, A2 are non-returning.
Construct an NFA N for L1 · L⇤

2 from DFAs A1, A2 as follows:
(1) omit the states d1, s2, d2 and all the transitions going to or from these states;
(2) for each r in F2 and each a in ⌃, add the transition (r, a, �2(s2, a));
(3) for each q in F1 and each a in ⌃, add the transition (q, a, �2(s2, a));
(4) the initial state of N is s1, and the set of final states is F1 [F2;
see Figure 10 for an example. Since A1, A2 are non-returning DFAs, in the subset automaton
of N , only the following states may be reachable:

• {s1};
• {q} [R and R, where q 2 Q1 \ {s1, d1} and R ✓ Q2 \ {s2, d2}.

In total, we get at most (m� 1)2n�2+1 reachable states. For tightness, consider the languages
L1 and L2 accepted by DFAs A1 and A2 shown in Figure 10 (top). 2

We conclude the paper with the state complexity of L⇤
1 · L2 on prefix-free and su�x-free lan-

guages. In both cases, we get tight upper bounds. Our worst-case examples are defined over
a growing alphabet of size n + 3 for prefix-free languages, and over a 5-letter alphabet for
su�x-free languages.

Theorem 6.3 Let m,n � 4, and L1, L2 be prefix-free languages over ⌃ with SC(L1) = m and

SC(L2) = n. Then SC(L⇤
1 · L2)  (m� 1)(2n�1 � 1) + 1, and the bound is tight if |⌃| � n+ 3.

Proof. Let A1 = (Q1,⌃, �1, s1, {f1}) and A2 = (Q2,⌃, �2, s2, {f2}) be minimal DFAs for prefix-
free languages L1 and L2, respectively, with sink states d1 and d2. Construct an NFA N for
L

⇤
1 · L2 from DFAs A1 and A2 as follows:
(1) omit the states d1, d2 and all the transitions going to or from these states;
(2) for each symbol a add the transition (f1, a, �1(s1, a)); denote the resulting DFA by A

⇤
1

(3) for each transition (q, a, f1) in A

⇤
1, add the transition (q, a, s2);

(4) the set of initial states of N is {f1, s2} and the final state is f2.
In the subset automaton of N , only the following sets can be reachable and pairwise distin-
guishable:

• {f1} [R, where R ✓ Q2 \ {d2} and s2 2 R;
• {q} [R and R, where q 2 Q1 \ {f1, d1} and R (Q2 \ {d2};

q0
a

q1

A1 A2

N

c qm�3
c

qm�2 r0
a

r1
a, b a, b

rn�3
a, b rn�2q2

cc

c, d c, da, b

c

a, b
r2

c, d c, d

q0
a

q1 c qm�3
c

qm�2q2
cc

a, b

c

r1
a, b a, b

rn�3
a, b rn�2

c, d c, d

a, b
r2

c, d c, d
a

a

Figure 10: Su�x-free witnesses (top) and NFA N (bottom) for L1 · L⇤
2.

160 Hae-Sung Eom, Matúš Palmovský

q0
d, e

q1

A1 A2

N

qm�3
d, e

qm�2 r0
a

r1
a, b a, b

rn�3
a, b rn�2

d, ed, e

c, d, e, fj c, d, e, fjc, e, fj e, fj e, fj

a, b

a, b a, b

c, d, e

rj

fj

c, d, fj

q0
d, e

q1 qm�3
d, e

qm�2 r0
a

r1
a, b a, b

rn�3
a, b rn�2

d, ed, e

c, d, e, fj c, d, e, fjc, e, fj e, fj e, fj

a, b

a, b a, b

c, d, e

rj

fj

c, d, fj

a, b

a, b
d

a, b
c, e, fj

d

Figure 11: Prefix-free witnesses (top) and NFA N (bottom) for L⇤
1 · L2.

notice that {q}[Q2 \ {d2} cannot be reachable if q 6= f1, and each set {s1}[R is equivalent to
{f1}[R since the states s1 and f1 go to the same sets on each symbol in N . It follows that the
subset automaton of N has at most 1+ (m� 2)(2n�1 � 1)+ (2n�1 � 1) = (m� 1)(2n�1 � 1)+ 1
reachable and pairwise distinguishable subsets. For tightness, consider prefix-free languages L1

and L2 accepted by DFAs shown in Figure 11 (top). 2

Theorem 6.4 Let m,n � 4, and L1, L2 be su�x-free languages over ⌃ with SC(L1) = m and

SC(L2) = n. Then SC(L⇤
1 · L2)  2m+n�4 + 1, and the bound is tight if |⌃| � 5.

Proof. Let L1, L2 be su�x-free languages accepted by minimal DFAs A1 = (Q1,⌃, �1, s1, F1)
and A2 = (Q2,⌃, �2, s2, F2), with sink states d1, d2, respectively. Then A1, A2 are non-returning.
Construct an NFA N for L⇤

1 · L2 from DFAs A1, A2 as follows:
(1) omit the states d1, s2, d2 and all the transitions going to or from these states;
(2) for each a in ⌃ and each q in F1, if �1(s1, a) 6= d1, then add the transition (q, a, �1(s1, a));
(3) for each a in ⌃ and each q in F1 [{s1}, if �2(s2, a) 6= d2, then add (q, a, �2(s2, a));
(4) the initial state of N is s1, and the set of final states is F2;
see Figure 12 for an example. The resulting NFA is non-returning and has (m + n � 4) + 1
states. The corresponding subset automaton has at most 2m+n�4 + 1 reachable states which
gives the upper bound. To prove tightness, consider the languages L1 and L2 accepted by DFAs
A1 and A2 shown in Figure 12 (top). 2

7. Conclusions

We can usually obtain a much lower state complexity for combined operations compared with
the compositions of state complexities of individual operations. However, for some cases, the
state complexity of combined operations and the composition of state complexities are the
same. We have examined prefix-free and su�x-free regular languages and computed the state
complexity of combined operations. Table 1 summarizes our results. It also displays the size of
alphabet used for describing our worst-case examples.

COMBINED OPERATIONS ON PREFIX-FREE AND SUFFIX-FREE LANGUAGES 161

q0
a

q1

A1 A2

N

a, b
qm�3

b qm�2 r0
a

r1
a, d a, d

rn�3
a, d rn�2q2

a, ba, b

b, c b, c, ea, c, d, e

a, d
r2

b, c, e b, c, ec, d, ec, d, ed, e

b

q0
a

q1
a, b

qm�3
b qm�2 r1

a, d a, d
rn�3

a, d rn�2q2
a, ba, b

b, c b, c, ea, c, d, e

a, d
r2

b, c, e b, c, ec, d, ec, d, ed, e

b

a

a
a

Figure 12: Su�x-free witnesses (top) and NFA N (bottom) for L⇤
1 · L2.

operation prefix-free |⌃| su�x-free |⌃|

L1 · (L2 [L3) m+ np� 4 3 (m� 1)2n+p�4 + 1 6

(L1 [L2) · L3 (m� 2)(n� 2) + (m+ n� 4)p+ (p2 � p+ 2)/2 2 (m� 1)(n� 1)2p�2 + 1 6

(L1 \ L2) · L3 (m� 2)(n� 2) + p 2 ((m� 2)(n� 2) + 1)2p�2 + 1 4

L1 · (L2 \ L3) m+ np� 2(n+ p) + 4 2  (m� 1)2(n�2)(p�2) + 1 -

L1 · L⇤
2 m+ n� 2 2 (m� 1)2n�2 + 1 4

L⇤
1 · L2 (m� 1)(2n�1 � 1) + 1 n+ 3 2m+n�4 + 1 5

Table 1: State complexity of combined operations on prefix-free and su�x-free languages; m,n � 4.

References

[1] J. A. BRZOZOWSKI, G. JIRÁSKOVÁ, B. LIU, A. RAJASEKARAN, M. SZYKULA, On
the State Complexity of the Shu✏e of Regular Languages. In: C. CÂMPEANU, F. MANEA,
J. SHALLIT (eds.), Descriptional Complexity of Formal Systems - 18th IFIP WG 1.2 Interna-

tional Conference, DCFS 2016, Bucharest, Romania, July 5-8, 2016. Proceedings. Lecture Notes
in Computer Science 9777, Springer, 2016, 73–86.
http://dx.doi.org/10.1007/978-3-319-41114-9_6

[2] C. CÂMPEANU, K. CULIK II, K. SALOMAA, S. YU, State Complexity of Basic Operations
on Finite Languages. In: Proceedings of WIA’99 . Lecture Notes in Computer Science 2214, 2001,
60–70.

[3] C. CÂMPEANU, K. SALOMAA, S. YU, Tight Lower Bound for the State Complexity of Shu✏e
of Regular Languages. Journal of Automata, Languages and Combinatorics 7 (2002) 3, 303–310.

[4] R. CMORIK, G. JIRÁSKOVÁ, Basic Operations on Binary Su�x-Free Languages. In: Proceeding
of MEMICS’11 . Lecture Notes in Computer Science 7119, 2011, 94–102.

[5] M. DOMARATZKI, State Complexity of Proportional Removals. Journal of Automata, Lan-

guages and Combinatorics 7 (2002) 4, 455–468.

[6] M. DOMARATZKI, K. SALOMAA, State complexity of shu✏e on trajectories. Journal of Au-
tomata, Languages and Combinatorics 9 (2004) 2-3, 217–232.

http://dx.doi.org/10.1007/978-3-319-41114-9_6

162 Hae-Sung Eom, Matúš Palmovský

[7] Y.-S. HAN, K. SALOMAA, State Complexity of Union and Intersection of Finite Languages.
International Journal of Foundations of Computer Science 19 (2008) 3, 581–595.

[8] Y.-S. HAN, K. SALOMAA, State Complexity of Basic Operations on Su�x-Free Regular Lan-
guages. Theoretical Computer Science 410 (2009) 27-29, 2537–2548.

[9] Y.-S. HAN, K. SALOMAA, D. WOOD, Operational State Complexity of Prefix-Free Regular
Languages. In: Automata, Formal Languages, and Related Topics - Dedicated to Ferenc Gécseg

on the occasion of his 70th birthday . 2009, 99–115.

[10] M. HOLZER, M. KUTRIB, Nondeterministic Descriptional Complexity Of Regular Languages.
International Journal of Foundations of Computer Science 14 (2003) 6, 1087–1102.

[11] M. HRICKO, G. JIRÁSKOVÁ, A. SZABARI, Union and Intersection of Regular Languages
and Descriptional Complexity. In: Proceedings of DCFS’05 . 2005, 170–181.

[12] J. JIRÁSEK, G. JIRÁSKOVÁ, A. SZABARI, State complexity of concatenation and comple-
mentation. International Journal of Foundations of Computer Science 16 (2005) 3, 511–529.

[13] G. JIRÁSKOVÁ, M. KRAUSOVÁ, Complexity in Prefix-Free Regular Languages. In: I. MC-
QUILLAN, G. PIGHIZZINI (eds.), Proceedings Twelfth Annual Workshop on Descriptional Com-

plexity of Formal Systems, DCFS 2010, Saskatoon, Canada, 8-10th August 2010.. EPTCS 31,
2010, 197–204.

[14] G. JIRÁSKOVÁ, P. OLEJÁR, State Complexity of Intersection and Union of Su�x-Free
Languages and Descriptional Complexity. In: H. BORDIHN, R. FREUND, M. HOLZER,
M. KUTRIB, F. OTTO (eds.), Workshop on Non-Classical Models for Automata and Applica-

tions - NCMA 2009, Wroclaw, Poland, August 31 - September 1, 2009. Proceedings . books@ocg.at
256, Austrian Computer Society, 2009, 151–166.

[15] A. MASLOV, Estimates of the number of states of finite automata. Soviet Mathematics Doklady

11 (1970), 1373–1375.

[16] C. NICAUD, Average State Complexity of Operations on Unary Automata. In: Proceedings of

MFCS’99 . Lecture Notes in Computer Science 1672, 1999, 231–240.

[17] G. PIGHIZZINI, J. SHALLIT, Unary Language Operations, State Complexity and Jacobsthal’s
Function. International Journal of Foundations of Computer Science 13 (2002) 1, 145–159.

[18] A. SALOMAA, D. WOOD, S. YU, On the state complexity of reversals of regular languages.
Theoretical Computer Science 320 (2004) 2-3, 315–329.

[19] D. WOOD, Theory of Computation. John Wiley & Sons, Inc., New York, NY, 1987.

[20] S. YU, State Complexity of Regular Languages. Journal of Automata, Languages and Combina-

torics 6 (2001) 2, 221–234.

[21] S. YU, Q. ZHUANG, K. SALOMAA, The state complexities of some basic operations on regular
languages. Theoretical Computer Science 125 (1994) 2, 315–328.

