COMBINED OPERATIONS ON PREFIX-FREE AND SUFFIX-FREE LANGUAGES

Hae-Sung Eom ${ }^{(A)} \quad$ Matúš Palmovský ${ }^{(B)}$

${ }^{(A)}$ Department of Computer Science, Yonsei University
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Korea
haesung@cs.yonsei.ac.kr
${ }^{(B)}$ Mathematical Institute, Slovak Academy of Science, Grešákova 6, 04001 Košice, Slovakia
palmovsky@saske.sk

Abstract

We investigate the state complexity of combined operations for prefix-free and suffix-free regular languages. Prefix-free and suffix-free deterministic finite-state automata have some special properties that are crucial for obtaining the precise state complexity of basic operations. Based on these properties, we establish the state complexity of several operations: catenation-of-union, catenation-of-intersection, catenation-of-star.

1. Introduction

Given a regular language L, the state complexity of L is the number of states in the minimal deterministic finite-state automaton (DFA) for L. The state complexity of an operation on regular languages is the number of states that are necessary and sufficient in the worst-case for a DFA to accepts the language obtained from the operation. Maslov ([15]) obtained the state complexity of catenation and later Yu et al. ([21]) investigated the operational complexity further. The state complexity of an operation is calculated based on the structural properties of the input regular languages and a given operation. Many applications using regular languages require finite-state automata (FAs) of very large size. This makes the estimated upper bound of the state complexity useful in practice since it helps to manage resources efficiently. Moreover, it is a challenging quest to verify whether or not an estimated upper bound can be reached.
$\mathrm{Yu}([20])$ gave a comprehensive survey of the state complexity of regular languages. Salomaa et al. ([18]) studied classes of languages for which the reversal operation reaches an exponential upper bound. As special cases of the state complexity, researchers examined the state complexity of finite languages ($[2,7]$), the state complexity of unary language operations ($[17]$) and

[^0]the nondeterministic descriptional complexity of regular languages ([10]). For regular language codes, Han et al. ([9]) studied the state complexity of prefix-free regular languages. Similarly, based on suffix-freeness, Han and Salomaa ([8]) looked at the state complexity of suffix-free regular languages. There are several other results with respect to the state complexity of different operations ($[3,5,6,11,12,16])$.

In this paper we study the state complexity of several operations combined with catenation in the classes of prefix-free and suffix-free languages. We use unique structural properties of prefixfree and suffix-free deterministic automata to get tight upper bounds for union, intersection, and star combined with catenation. The paper is organized as follows. In Section 2, we define some basic notions and state some preliminary results. Then we present the state complexities of four combined operations in the following sections. We compare the state complexity of basic operations and the state complexity of combined operations for prefix-free and suffix-free regular languages, and conclude the paper in Section 7.

2. Preliminaries

We assume that the reader is familiar with basic notions in formal languages and automata theory, and for complete background knowledge, we refer to Wood [19].

Let Σ denote a finite alphabet of characters and Σ^{*} denote the set of all strings over Σ. The size $|\Sigma|$ of Σ is the number of characters in Σ. A language over Σ is any subset of Σ^{*}. The symbol \emptyset denotes the empty language and the symbol λ denotes the null string. For a finite set A, we denote by $|A|$ its size and by 2^{A} its power set. For strings x, y, and z such that $z=x y$, we say that x is a prefix of z and y is a suffix of z. We define a language L to be prefix (suffix)-free if for any two distinct strings x and y in L, x is not a prefix (suffix) of y.

A deterministic finite automaton (DFA) A is specified by a tuple $(Q, \Sigma, \delta, s, F)$, where Q is a finite set of states, Σ is an input alphabet, $\delta: Q \times \Sigma \rightarrow Q$ is a transition function, $s \in Q$ is the start state and $F \subseteq Q$ is a set of final states. The transition function δ can be extended to the domain $Q \times \Sigma^{*}$ in the natural way. Given a DFA A, we assume that A is complete; namely, for each state q and each letter a, the transition $\delta(q, a)$ is defined. However, in some constructions, we also use incomplete DFAs, in which δ is a partial function. A complete DFA may have a sink state, that is a state from which no string is accepted. We assume that a DFA has at most one sink state since all sink states are equivalent. For a transition $\delta(p, a)=q$ in A, we say that p has an out-transition and q has an in-transition. Furthermore, p is a source state of q and q is a target state of p. We say that A is non-returning if the start state of A does not have any in-transitions. A string x over Σ is accepted by A if $\delta(s, w) \in F$. The language $L(A)$ of A is the set of all strings that are accepted by A. We define a state q of A to be reachable if there is a path from the start state to q. Two states p and q are distinguishable if there is a string w such that exactly one of the states $\delta(p, w)$ and $\delta(q, w)$ is final.

The state complexity $\mathcal{S C}(L)$ of a regular language L is defined to be the size of the minimal (with respect to the number of states) DFA recognizing L.

It is well-known that a minimal DFA for a prefix-free language has a sink state and exactly one final state, from which all the transitions go to the sink state. Next, a minimal DFA for a suffix-free language must be non-returning.

We recall a known result that is useful to tackle the state complexity problem for suffix-free regular languages.

Lemma 2.1 (Cmorik and Jirásková [4]) Let A be a non-returning DFA with a sink state and a unique final state. If no two distinct states of A go to a non-sink state by the same symbol, then $L(A)$ is suffix-free.

A nondeterministic finite automaton (NFA) is a tuple $A=(Q, \Sigma, \delta, I, F)$, where Q is a finite state set, Σ is a finite input alphabet, $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is the transition function that can be extended to the domain $2^{Q} \times \Sigma^{*}, I \subseteq Q$ is the set of initial states, and $F \subseteq Q$ is the set of final states. If $q \in \delta(p, a)$, then we say that (p, a, q) is a transition in A. The language accepted by the NFA A is the set of strings $L(A)=\left\{w \in \Sigma^{*} \mid \delta(I, w) \cap F \neq \emptyset\right\}$. Every NFA $A=(Q, \Sigma, \delta, I, F)$ can be converted to an equivalent DFA $A^{\prime}=\left(2^{Q}, \Sigma, \delta^{\prime}, I, F^{\prime}\right)$, where $F^{\prime}=\left\{S \in 2^{Q} \mid S \cap F \neq \emptyset\right\}$ and $\delta^{\prime}(S, a)=\delta(S, a)$ for each S in 2^{Q} and each a in Σ. We call the DFA A^{\prime} the subset automaton of NFA A. The subset automaton may not be minimal since some of its states may be unreachable or equivalent to some other states.

A state q of NFA A is uniquely distinguishable [1] if there is a string w in Σ^{*} which is accepted by A from and only from state q, that is, we have $\delta(p, w) \in F$ if and only if $p=q$. We also say that q is uniquely distinguishable by the string w. Next, we say that (p, a, q) is a unique in-transition on a going to q, if there is no state r in Q such that $r \neq p$ and $q \in \delta(r, a)$. Finally, we say that a state q is uniquely reachable from p if $p=p_{0} \xrightarrow{a_{1}} p_{1} \xrightarrow{a_{2}} p_{2} \xrightarrow{a_{3}} \cdots \xrightarrow{a_{k}} p_{k}=q$, and each transition (p_{i-1}, a_{i}, p_{i}) is a unique in-transition on a_{i} going to p_{i}.

In [1], the following sufficient conditions for an NFA N, under which the subset automaton of N does not have equivalent states, are stated. For the sake of completeness, we recall their proofs here.

Proposition 2.2 If each state of an NFA A is uniquely distinguishable, then the subset automaton of A does not have equivalent states.

Proof. Let S and T be two distinct subsets of the subset automaton. Then there is a state q in Q such that $q \in S \backslash T$. Since q is uniquely distinguishable, there is a string w with $\delta(p, w) \in F$ if and only if $p=q$. Then w is accepted from S and rejected from T.

Proposition 2.3 Let q be uniquely distinguishable and (p, a, q) be a unique in-transition on a going to state q. Then p is uniquely distinguishable.
Proof. Let q be uniquely distinguishable by w. Then the string $a w$ is accepted from and only from p, so p is uniquely distinguishable.

Proposition 2.4 Let $G(N)$ be a subgraph of unique in-transitions of an NFA N. Let a uniquely distinguishable state of N be reachable from each state of N in the subgraph $G(N)$. Then the subset automaton of N does not have equivalent states.

Proof. If a uniquely distinguishable state is reached from a state p in $G(N)$, then p is uniquely distinguishable by Proposition 2.3. Hence each state of N is uniquely distinguishable. By Proposition 2.2, the subset automaton of N does not have equivalent states.

3. State Complexity of $L_{1} \cdot\left(L_{2} \cup L_{3}\right)$

We start with the state complexity of $L_{1} \cdot\left(L_{2} \cup L_{3}\right)$. Our aim is to show that for prefix-free languages, the tight upper bound is $m+n p-4$ and for suffix-free languages, the tight upper bound is $(m-1) 2^{n+p-4}+1$, where $\mathcal{S C}\left(L_{1}\right)=m, \mathcal{S C}\left(L_{2}\right)=n$, and $\mathcal{S C}\left(L_{3}\right)=p$. Our worst-case examples are defined over a three-letter alphabet in the prefix-free case and over a six-letter alphabet in the suffix-free case.

Theorem 3.1 Let $m, n, p \geq 3$ and L_{1}, L_{2} and L_{3} be regular prefix-free languages over an alphabet Σ with $\mathcal{S C}\left(L_{1}\right)=m, \mathcal{S C}\left(L_{2}\right)=n$, and $\mathcal{S C}\left(L_{3}\right)=p$. Then $\mathcal{S C}\left(L_{1} \cdot\left(L_{2} \cup L_{3}\right)\right) \leq m+n p-4$, and the bound is tight if $|\Sigma| \geq 3$.

Proof. Let $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1},\left\{f_{1}\right\}\right), A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2},\left\{f_{2}\right\}\right)$, and $A_{3}=\left(Q_{3}, \Sigma, \delta_{3}, s_{3},\left\{f_{3}\right\}\right)$ be minimal DFAs for L_{1}, L_{2}, and L_{3}, respectively, with sink states d_{1}, d_{2}, and d_{3}. Construct an NFA N for $L_{1} \cdot\left(L_{2} \cup L_{3}\right)$ from DFAs A_{1}, A_{2}, and A_{3} as follows:
(1) omit states $f_{1}, d_{1}, d_{2}, d_{3}$ and all the transitions going to or from these states;
(2) merge states f_{2} and f_{3} into a new state f;
(3) for each transition (q, a, f_{1}) in A_{1} add two transitions (q, a, s_{2}) and (q, a, s_{3});
(4) the initial state of N is s_{1}, and the set of final states is $\{f\}$;
see Figure 1 for an example.
Since A_{1}, A_{2}, A_{3} are deterministic, in the subset automaton of N, only the following sets may be reachable:

- $\{q\}$, where $q \in Q_{1} \backslash\left\{f_{1}, d_{1}\right\}$;
- $\{r, t\},\{r, f\},\{r\},\{t, f\},\{t\}$, where $r \in Q_{2} \backslash\left\{f_{2}, d_{2}\right\}$ and $t \in Q_{3} \backslash\left\{f_{3}, d_{3}\right\}$;
- $\{f\}$, and the empty set.

In total we get at most $(m-2)+(n-2)(p-2)+2(n-2)+2(p-2)+2=m+n p-4$ reachable subsets. This proves the upper bound.

For tightness, consider the languages L_{1}, L_{2}, and L_{3} accepted by DFAs A_{1}, A_{2}, and A_{3} shown in Figure 1 (top); to keep our figures transparent, we do not display the sink states anywhere. Construct an NFA N as described above; see Figure 1 (bottom). Then in the subset automaton of N, the initial subset is $\left\{q_{0}\right\}$, and for each i, j, k with $0 \leq i \leq m-3,0 \leq j \leq n-3$, $0 \leq k \leq p-3$, we have

- $\left\{q_{0}\right\} \xrightarrow{a^{i}}\left\{q_{i}\right\} ;$
- $\left\{q_{m-3}\right\} \xrightarrow{a}\left\{r_{0}, t_{0}\right\} \xrightarrow{b^{j} c^{k}}\left\{r_{j}, t_{k}\right\} ;$
- $\left\{r_{j}, t_{p-3}\right\} \xrightarrow{c}\left\{r_{j}, f\right\} \xrightarrow{c}\left\{r_{j}\right\} ;\left\{r_{n-3}, t_{k}\right\} \xrightarrow{b}\left\{f, t_{k}\right\} \xrightarrow{b}\left\{t_{k}\right\}$; and $\left\{r_{n-3}\right\}$ xrightarrowb $\{f\} \xrightarrow{b}$ \emptyset.

Figure 1: Prefix-free witnesses (top) and NFA N (bottom) for $L_{1} \cdot\left(L_{2} \cup L_{3}\right)$.

Thus all $m+n p-4$ subsets are reachable. To prove distinguishability, notice that each transition in N is a unique in-transition, and that the unique final state f is reachable from each state in N. By Proposition 2.4, the subset automaton of N does not have equivalent states.

Theorem 3.2 Let $m, n, p \geq 3$, and L_{1}, L_{2}, L_{3} be regular suffix-free languages over an alphabet Σ with $\mathcal{S C}\left(L_{1}\right)=m, \mathcal{S C}\left(L_{2}\right)=n$, and $\mathcal{S C}\left(L_{3}\right)=p$. Then $\mathcal{S C}\left(L_{1} \cdot\left(L_{2} \cup L_{3}\right)\right) \leq(m-1) 2^{n+p-4}+1$, and the bound is tight if $|\Sigma| \geq 6$.

Proof. Let L_{1}, L_{2}, L_{3} be suffix-free languages accepted by minimal DFAs $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$, $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$, and $A_{3}=\left(Q_{3}, \Sigma, \delta_{3}, s_{3}, F_{3}\right)$, with sink states d_{1}, d_{2}, d_{3}, respectively. Then A_{1}, A_{2}, A_{3} are non-returning. Construct an NFA N for $L_{1} \cdot\left(L_{2} \cup L_{3}\right)$ from DFAs A_{1}, A_{2}, and A_{3} as follows:
(1) omit states $d_{1}, s_{2}, d_{2}, s_{3}, d_{3}$ and all transitions going to these states;
(2) for each symbol a in Σ and each state q in F_{1},
(a) if $\left(\delta_{2}\left(s_{2}, a\right) \neq d_{2}\right)$, then add the transition $\left(q, a, \delta_{2}\left(s_{2}, a\right)\right)$;
(b) if $\left(\delta_{3}\left(s_{3}, a\right) \neq d_{3}\right)$, then add the transition $\left(q, a, \delta_{3}\left(s_{3}, a\right)\right)$;
(3) the initial state of N is s_{1}, and the set of final states is $F_{2} \cup F_{3}$.

In the corresponding subset automaton, only the following sets may be reachable:

- $\left\{s_{1}\right\}$;
- $\{q\} \cup S$ and S, where $q \in Q_{1} \backslash\left\{s_{1}, d_{1}\right\}$ and $S \subseteq\left(Q_{2} \backslash\left\{s_{2}, d_{2}\right\}\right) \cup\left(Q_{3} \backslash\left\{s_{3}, d_{3}\right\}\right)$. This gives at most $(m-1) 2^{n+p-4}+1$ reachable states, and proves the upper bound.

For tightness, consider the languages L_{1}, L_{2}, and L_{3} accepted by DFAs A_{1}, A_{2}, and A_{3} shown in Figure 2. By Lemma 2.1, L_{1}, L_{2}, L_{3} are suffix-free. Construct the NFA N for $L_{1} \cdot\left(L_{2} \cup L_{3}\right)$ as described above; see Figure 3. Then in the subset automaton of N, the initial subset is $\left\{q_{0}\right\}$, and we have $\left\{q_{0}\right\} \xrightarrow{a f^{m-3}}\left\{q_{m-2}\right\} \xrightarrow{a^{n+p}}\left\{q_{m-2}\right\} \cup\left\{r_{1}, \ldots, r_{n-2}\right\} \cup\left\{t_{1}, \ldots, t_{p-2}\right\}$.

Figure 2: Suffix-free witnesses for $L_{1} \cdot\left(L_{2} \cup L_{3}\right)$.

Figure 3: The NFA N for $L_{1} \cdot\left(L_{2} \cup L_{3}\right)$, where L_{1}, L_{2}, L_{3} are accepted by the DFAs from Figure 2.

Now notice that using b we can shift any subset of $\left\{r_{1}, \ldots, r_{n-2}\right\}$ cyclically by one, while using c we can eliminate state r_{n-2} from any subset containing r_{n-2}. It follows that each subset R of $\left\{r_{1}, \ldots, r_{n-2}\right\}$ can be reached from $\left\{r_{1}, \ldots, r_{n-2}\right\}$ by a string u_{R} over $\{b, c\}$. Moreover, we have a loop on b, c in q_{m-2} and in each state t_{k}. Thus we get
$\left\{q_{m-2}\right\} \cup\left\{r_{1}, \ldots, r_{n-2}\right\} \cup\left\{t_{1}, \ldots, t_{p-2}\right\} \xrightarrow{u_{R}}\left\{q_{m-2}\right\} \cup R \cup\left\{t_{1}, \ldots, t_{p-2}\right\}$.
Symmetrically, we can remove states from $\left\{t_{1}, \ldots, t_{p-2}\right\}$ using d, e, and reach every set T by a string v_{T} over $\{d, e\}$, so $\left\{q_{m-2}\right\} \cup R \cup\left\{t_{1}, \ldots, t_{p-2}\right\} \xrightarrow{v_{T}}\left\{q_{m-2}\right\} \cup R \cup T$. Next, we have $\left\{q_{m-2}\right\} \cup R \cup T \xrightarrow{f^{i}}\left\{q_{i}\right\} \cup R \cup T$, and

$$
\begin{aligned}
& \left\{q_{m-2}\right\} \cup\left\{r_{1}, \ldots, r_{n-2}, t_{1}, \ldots, t_{p-2}\right\} \xrightarrow[\rightarrow]{f}\left\{q_{1}\right\} \cup\left\{r_{1}, \ldots, r_{n-2}, t_{1}, \ldots, t_{p-2}\right\} \xrightarrow{b} \\
& \left\{r_{1}, \ldots, r_{n-2}\right\} \cup\left\{t_{1}, \ldots, t_{p-2}\right\} \xrightarrow{u_{R} v_{T}} R \cup T .
\end{aligned}
$$

This gives $(m-1) 2^{n+p-4}+1$ reachable states. To get distinguishability, notice that the states r_{n-2} and t_{p-2} are uniquely distinguishable in N since e is accepted from and only from r_{n-2} and c is accepted from and only from t_{p-2}. Next, in the subgraph $G(N)$ given by unique intransitions $\left(q_{0}, a, q_{1}\right),\left(q_{i}, f, q_{i+1}\right)$ with $1 \leq i \leq m-3,\left(q_{m-2}, a, r_{1}\right),\left(r_{j}, a, r_{j+1}\right)$ with $1 \leq j \leq n-3$, $\left(q_{m-2}, a, t_{1}\right),\left(t_{k}, a, t_{k+1}\right)$ with $1 \leq k \leq p-3$, either r_{n-2} or t_{p-2} can be reached from every state of N. By Proposition 2.4, the subset automaton of N does not have equivalent states.

4. State Complexity of $\left(L_{1} \cup L_{2}\right) \cdot L_{3}$

Now we consider the state complexity of $\left(L_{1} \cup L_{2}\right) \cdot L_{3}$. We get tight upper bounds for prefix-free and suffix-free regular languages L_{1}, L_{2}, and L_{3}. To prove tightness, we use a binary alphabet in the prefix-free case, and a six-letter alphabet in the suffix-free case.

Theorem 4.1 Let $m, n, p \geq 3$, and L_{1}, L_{2}, L_{3} be prefix-free languages over Σ with $\mathcal{S C}\left(L_{1}\right)=m$, $\mathcal{S C}\left(L_{2}\right)=n$, and $\mathcal{S C}\left(L_{3}\right)=p$. Then $\mathcal{S C}\left(\left(L_{1} \cup L_{2}\right) \cdot L_{3}\right) \leq(m-2)(n-2)+(m+n-4) p+$ $\left(p^{2}-p+2\right) / 2$, and the bound is tight if $|\Sigma| \geq 2$.

Proof. Let $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1},\left\{f_{1}\right\}\right), A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2},\left\{f_{2}\right\}\right)$, and $A_{3}=\left(Q_{3}, \Sigma, \delta_{3}, s_{3},\left\{f_{3}\right\}\right)$ be minimal DFAs for prefix-free languages L_{1}, L_{2}, and L_{3}, respectively, with sink states d_{1}, d_{2}, and d_{3}. Construct an NFA N for $\left(L_{1} \cup L_{2}\right) \cdot L_{3}$ from DFAs A_{1}, A_{2}, and A_{3} as follows:
(1) omit states $f_{1}, d_{1}, f_{2}, d_{2}, d_{3}$ and all transitions going to or from these states;
(2) if $\left(q, a, f_{1}\right) \in \delta_{1}$, then add $\left(q, a, s_{3}\right)$;
(3) if $\left(r, a, f_{2}\right) \in \delta_{2}$, then add $\left(r, a, s_{3}\right)$;
(4) the set of initial states is $\left\{s_{1}, s_{2}\right\}$ and the set of final states is $\left\{f_{3}\right\}$;
see Figure 4 for an example. In the subset automaton of N, only the following sets may be reachable:

- $\{q, r\}$, where $q \in Q_{1}-\left\{f_{1}, d_{1}\right\}$ and $r \in Q_{2}-\left\{f_{2}, d_{2}\right\}$;
- $\{q, t\}$ and $\{q\}$, where $q \in Q_{1}-\left\{f_{1}, d_{1}\right\}$ and $t \in Q_{3}-\left\{d_{3}\right\}$;
- $\{r, t\}$ and $\{r\}$, where $r \in Q_{2}-\left\{f_{2}, d_{2}\right\}$ and $t \in Q_{3}-\left\{d_{3}\right\}$;
- $\left\{t, t^{\prime}\right\}$ and $\{t\}$ and the empty set for $t, t^{\prime} \in Q_{3}-\left\{d_{3}\right\}$.

In total we get at most $(m-2)(n-2)+(m-2) p+(n-2) p+(p-1)(p-2) / 2+(p-1)+1=$ $(m-2)(n-2)+(m+n-4) p+\left(p^{2}-p+2\right) / 2$ reachable subsets, which proves the upper bound.

To prove tightness, consider binary prefix-free languages L_{1}, L_{2}, L_{3} accepted by DFAs A_{1}, A_{2}, A_{3} shown in Figure 4 (top).

Figure 4: Prefix-free witnesses (top) and NFA N (bottom) for $\left(L_{1} \cup L_{2}\right) \cdot L_{3}$.

Construct the NFA N for $\left(L_{1} \cup L_{2}\right) \cdot L_{3}$ as described above; see Figure 4 (bottom). Then in the subset automaton of N, the initial states are q_{0} and r_{0}, and for each i, j, k, ℓ with $0 \leq i \leq m-3$, $0 \leq j \leq n-3$, and $0 \leq k<\ell \leq p-2$,

- $\left\{q_{0}, r_{0}\right\} \xrightarrow{a^{i} b^{j}}\left\{q_{i}, r_{j}\right\} ;$
- $\left\{q_{i}, r_{n-3}\right\} \xrightarrow{b}\left\{q_{i}, t_{0}\right\} \xrightarrow{b^{k}}\left\{q_{i}, t_{k}\right\}$, and $\left\{q_{i}, t_{p-2}\right\} \xrightarrow{b}\left\{q_{i}\right\}$;
- $\left\{r_{j}, q_{m-3}\right\} \xrightarrow{a}\left\{r_{j}, t_{0}\right\} \xrightarrow{a^{k}}\left\{r_{j}, t_{k}\right\}$, and $\left\{r_{j}, t_{p-2}\right\} \xrightarrow{a}\left\{r_{j}\right\} ;$
- $\left\{q_{m-3}, t_{0}\right\} \xrightarrow{b^{\ell-k-1}}\left\{q_{m-3}, t_{\ell-k-1}\right\} \xrightarrow{a}\left\{t_{0}, t_{\ell-k}\right\} \xrightarrow{a^{k}}\left\{t_{k}, t_{\ell}\right\} ;$
- $\left\{q_{m-3}\right\} \xrightarrow{a}\left\{t_{0}\right\} \xrightarrow{a^{k}}\left\{t_{k}\right\}$ and $\left\{t_{p-2}\right\} \xrightarrow{a} \emptyset$.

This proves the reachability of $(m-2)(n-2)+(m+n-4) p+\left(p^{2}-p+2\right) / 2$ subsets. To prove distinguishability, notice that each transition in N is a unique in-transition, and that the unique final state state t_{p-2} is reachable from each state in N. By Proposition 2.4, the subset automaton of N does not have equivalent states.

Theorem 4.2 Let m, $n, p \geq 4$, and L_{1}, L_{2}, L_{3} be suffix-free languages over an alphabet Σ with $\mathcal{S C}\left(L_{1}\right)=m, \mathcal{S C}\left(L_{2}\right)=n$, and $\mathcal{S C}\left(L_{3}\right)=p$. Then $\mathcal{S C}\left(\left(L_{1} \cup L_{2}\right) \cdot L_{3}\right) \leq(m-1)(n-1) 2^{p-2}+1$, and the bound is tight if $|\Sigma| \geq 6$.

Proof. Let L_{1}, L_{2}, L_{3} be suffix-free languages accepted by minimal DFAs $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$, $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$, and $A_{3}=\left(Q_{3}, \Sigma, \delta_{3}, s_{3}, F_{3}\right)$, with sink states d_{1}, d_{2}, d_{3}, respectively. Then A_{1}, A_{2}, A_{3} are non-returning. Construct an NFA N for $\left(L_{1} \cup L_{2}\right) \cdot L_{3}$ from DFAs A_{1}, A_{2}, and A_{3} as follows:
(1) omit states $d_{1}, d_{2}, s_{3}, d_{3}$ and all the transitions going to or from these states;
(2) for each a in Σ and each q in $F_{1} \cup F_{2}$, if $\delta_{3}\left(s_{3}, a\right) \neq d_{3}$, then add the transition ($q, a, \delta_{3}\left(s_{3}, a\right)$);
(3) the set of initial states of N is $\left\{s_{1}, s_{2}\right\}$ and the set of final states is F_{3};
see Figure 5 for an example. Since A_{1}, A_{2}, A_{3} are deterministic and non-returning, in the subset automaton of N, only the following sets may be reachable:

- $\left\{s_{1}, s_{2}\right\} ;$
- $\{q, r\} \cup T$, where $q \in Q_{1} \backslash\left\{s_{1}, d_{1}\right\}, r \in Q_{2} \backslash\left\{s_{2}, d_{2}\right\}$, and $T \subseteq Q_{3} \backslash\left\{s_{3}, d_{3}\right\}$;
- $\{q\} \cup T$, where $q \in Q_{1} \backslash\left\{s_{1}, d_{1}\right\}$ and $T \subseteq Q_{3} \backslash\left\{s_{3}, d_{3}\right\}$;
- $\{r\} \cup T$, where $r \in Q_{2} \backslash\left\{s_{2}, d_{2}\right\}$ and $T \subseteq Q_{3} \backslash\left\{s_{3}, d_{3}\right\}$;
- T, where $T \subseteq Q_{3} \backslash\left\{s_{3}, d_{3}\right\}$.

In total, we get at most $1+(m-2)(n-2) 2^{p-2}+(m-2) 2^{p-2}+(n-2) 2^{p-2}+2^{p-2}=$ $(m-1)(n-1) 2^{p-2}+1$ reachable states. This proves the upper bound.

To prove tightness, let L_{1}, L_{2}, L_{3} be the languages accepted by DFAs A_{1}, A_{2}, A_{3} shown in Figure 5 (top). By Lemma 2.1, the languages L_{1}, L_{2}, L_{3} are suffix-free since we have $m, n \geq 4$. Construct the NFA N as described above, that is, remove the states $q_{m-1}, r_{n-1}, 0, p-1$, and add the transitions ($q_{m-2}, a, 1$) and $\left(r_{n-2}, a, 1\right)$; see Figure 5 (bottom). First, let us show that for each $T \subseteq\{1,2, \ldots, p-2\}$, the set $\left\{q_{m-2}, p_{n-2}\right\} \cup T$ is reachable in the subset automaton of N. The proof is by induction on $|T|$. The basis, with $|T|=0$, holds true since $\left\{q_{m-2}, p_{n-2}\right\}$ is reached from the initial state $\left\{q_{0}, r_{0}\right\}$ by $a c^{m-3} d^{n-3}$. Next, each set $\left\{q_{m-2}, r_{n-2}, k_{1}, k_{2}, k_{3}, \ldots, k_{\ell}\right\}$, where $1 \leq \ell \leq p-2$ and $1 \leq k_{1}<k_{2}<k_{3}<\cdots<k_{\ell}<=p-2$, is reached from the set $\left\{q_{m-2}, r_{n-2}, k_{2}-k_{1}, k_{3}-k_{1}, \ldots, k_{\ell}-k_{1}\right\}$ by $a b^{k_{1}-1}$. This proves our claim by induction. Next, for each i, j, and T such that $1 \leq i \leq m-2,1 \leq j \leq n-2$, and $T \subseteq\{1,2, \ldots, p-2\}$, we have

Figure 5: Suffix-free witnesses (top) and NFA N (bottom) for $\left(L_{1} \cup L_{2}\right) \cdot L_{3}$.

- $\left\{q_{m-2}, r_{n-2}\right\} \cup T \xrightarrow{c^{i} d^{j}}\left\{q_{i}, r_{j}\right\} \cup T$;
- $\left\{q_{i}, r_{j}\right\} \cup T \xrightarrow{e}\left\{q_{i}\right\} \cup T$;
- $\left\{q_{i}, r_{j}\right\} \cup T \xrightarrow{f}\left\{r_{j}\right\} \cup T$; and $\left\{q_{i}\right\} \cup T \xrightarrow{f} T$.

This proves the reachability of $(m-1)(n-1) 2^{p-2}+1$ subsets.
To prove distinguishability, notice that the states $p-2, q_{m-2}$, and r_{n-2} are uniquely distinguishable in NFA N : state $p-2$ is a unique final state of N, the string $e a^{p-2}$ is accepted by N from and only from q_{m-2}, and the string $f a^{p-2}$ is accepted by N from and only from r_{n-2}. Next, consider the subgraph $G(N)$ of unique in-transitions given by transitions (q_{0}, a, q_{1}), $\left(q_{i}, c, q_{i+1}\right)$ with $1 \leq i \leq m-3,\left(r_{0}, a, r_{1}\right),\left(r_{j}, d, r_{j+1}\right)$ with $1 \leq j \leq n-3$, and $(k, a, k+1)$ where $1 \leq k \leq p-3$; see dashed transitions in Figure 5 (bottom). This subgraph consists of three paths ending in states q_{m-2}, r_{n-2}, and $p-2$, respectively. Moreover, each state of N is on one of these three paths. Hence from each state of N a uniquely distinguishable state is reached in $G(N)$. By Proposition 2.4, the subset automaton of N does not have equivalent states.

5. State Complexity of $\left(L_{1} \cap L_{2}\right) \cdot L_{3}$ and $L_{1} \cdot\left(L_{2} \cap L_{3}\right)$

We consider the state complexity of $\left(L_{1} \cap L_{2}\right) \cdot L_{3}$ for prefix-free regular languages L_{1}, L_{2}, and L_{3}. We get the tight upper bound $(m-2)(n-2)+p$. Our worst-case examples are defined over a binary alphabet. Then we consider the same operation for suffix-free languages. We get an upper bound $((m-2)(n-2)+1) 2^{p-2}+1$, and prove its tightness using a quaternary alphabet. Notice that in both cases, no saving is obtained with respect to the composition of the operations.

Theorem 5.1 Let $m, n, p \geq 3$, and L_{1}, L_{2}, L_{3} be regular prefix-free languages over an alphabet Σ with $\mathcal{S C}\left(L_{1}\right)=m, \mathcal{S C}\left(L_{2}\right)=n$, and $\mathcal{S C}\left(L_{3}\right)=p$. Then $\mathcal{S C}\left(\left(L_{1} \cap L_{2}\right) \cdot L_{3}\right) \leq(m-2)(n-2)+p$, and the bound is tight if $|\Sigma| \geq 2$.

Proof. We compute the upper bound by the composition of the state complexity of intersection and catenation for prefix-free regular languages. For prefix-free regular languages, the state complexity of intersection is $m n-2(m+n)+6$, and the state complexity of catenation is $m+n-2$ [9]. Thus, the upper bound for $\left(L_{1} \cap L_{2}\right) \cdot L_{3}$ is $m n-2(m+n)+6+p-2=(m-2)(n-2)+p$. To prove tightness, consider the binary prefix-free languages accepted by the DFAs A_{1}, A_{2}, A_{3} shown in Figure 6 (top). Notice that A_{1} and A_{2} are binary witnesses for intersection on prefixfree languages [13, Theorem 1].

Theorem 5.2 Let $m, n, p \geq 4$, and L_{1}, L_{2}, L_{3} be suffix-free languages over Σ with $\mathcal{S C}\left(L_{1}\right)=m$, $\mathcal{S C}\left(L_{2}\right)=n$, and $\mathcal{S C}\left(L_{3}\right)=p$. Then $\mathcal{S C}\left(\left(L_{1} \cap L_{2}\right) \cdot L_{3}\right) \leq((m-2)(n-2)+1) 2^{p-2}+1$, and the bound is tight if $|\Sigma| \geq 4$.

Proof. We compute the upper bound by the composition of the state complexity of intersection and catenation for suffix-free regular languages. For suffix-free regular languages, the state complexity of intersection is $(m-2)(n-2)+2$ and the state complexity of catenation is $(m-1) 2^{n-2}+1[9]$. Thus, the upper bound for $\left(L_{1} \cap L_{2}\right) \cdot L_{3}$ is $((m-2)(n-2)+1) 2^{p-2}+1$. To prove tightness, consider the binary prefix-free languages accepted by the DFAs A_{1}, A_{2}, A_{3} shown in Figure 7 (top). Notice that A_{1} and A_{2} are binary witnesses for intersection on suffixfree languages [14, Lemma 6].

Now we consider the state complexity of $L_{1} \cdot\left(L_{2} \cap L_{3}\right)$ for prefix-free regular languages L_{1}, L_{2} and L_{3}. We get an upper bound as the composition of state complexities of catenation and intersection for prefix-free languages. Then we describe prefix-free languages over a binary alphabet meeting this upper bound.

Theorem 5.3 Let $m, n, p \geq 3$, and L_{1}, L_{2}, L_{3} be regular prefix-free languages over an alphabet Σ with $\mathcal{S C}\left(L_{1}\right)=m, \mathcal{S C}\left(L_{2}\right)=n$, and $\mathcal{S C}\left(L_{3}\right)=p$. Then $\mathcal{S C}\left(L_{1} \cdot\left(L_{2} \cap L_{3}\right)\right) \leq m+(n-2)(p-2)$, and the bound is tight if $|\Sigma| \geq 2$.

Figure 6: Prefix-free witnesses (top) and DFA D (bottom) for $\left(L_{1} \cap L_{2}\right) \cdot L_{3}$.

Figure 7: Suffix-free witnesses (top) and NFA N (bottom) for $\left(L_{1} \cap L_{2}\right) \cdot L_{3}$.

Proof. We compute the upper bound by the composition of the state complexity of intersection and catenation for prefix-free regular languages. For prefix-free regular languages, the state complexity of catenation is $m+n-2$, and the state complexity of intersection is $(m-2)(n-2)+2$ [9]. Thus, the upper bound for $L_{1} \cdot\left(L_{2} \cap L_{3}\right)$ is $m+(n-2)(p-2)$. This gives the upper bound. For tightness, let $L_{1}=\left\{b^{m-2}\right\}$ and L_{2}, L_{3} be binary prefix-free witnesses for intersection [13, Theorem 1]; see Figure 8 (top).

We next consider the state complexity of $L_{1} \cdot\left(L_{2} \cap L_{3}\right)$ for suffix-free regular languages L_{1}, L_{2} and L_{3}. We compute the upper bound by composition of state complexity of catenation and intersection for suffix-free regular languages. For suffix-free regular languages, the state complexity of intersection is $m n-2(m+n)+6$ and the state complexity of catenation is $(m-1) 2^{n-2}+1[9]$. Thus, the upper bound for $L_{1} \cdot\left(L_{2} \cap L_{3}\right)$ is $(m-1) 2^{(n-2)(p-2)}+1$.

6. State Complexity of $L_{1} \cdot L_{2}^{*}$ and $L_{1}^{*} \cdot L_{2}$

We consider the state complexity of $L_{1} \cdot L_{2}^{*}$ for prefix-free regular languages L_{1} and L_{2}. Let us first recall the construction of a DFA for L_{2}^{*}. Let a prefix-free language L_{2} be accepted by an n-state DFA $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2},\left\{f_{2}\right\}\right)$ with the sink state d_{2}. We can construct an n-state DFA for L_{2}^{*} from A_{2} by making the state f_{2} initial, and by replacing each transition $\left(f_{2}, a, d_{2}\right)$ with the transition $\left(f_{2}, a, \delta_{2}\left(s_{2}, a\right)\right)$. We use this construction to get the next result.

Theorem 6.1 Let $m, n \geq 3$, and L_{1}, L_{2} be regular prefix-free languages over an alphabet Σ with $\mathcal{S C}\left(L_{1}\right)=m, \mathcal{S C}\left(L_{2}\right)=n$. Then $\mathcal{S C}\left(L_{1} \cdot L_{2}^{*}\right) \leq m+n-2$, and the bound is tight if $|\Sigma| \geq 2$.

D

Figure 8: Prefix-free witnesses (top) and DFA D (bottom) for $L_{1} \cdot\left(L_{2} \cap L_{3}\right)$.

Figure 9: Prefix-free witnesses (top) and DFA D (bottom) for $L_{1} \cdot L_{2}^{*}$.

Proof. Let $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1},\left\{f_{1}\right\}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2},\left\{f_{2}\right\}\right)$ be minimal DFAs for prefixfree languages L_{1} and L_{2}, respectively, with sink states d_{1} and d_{2}. Construct an incomplete DFA D for $L_{1} \cdot L_{2}^{*}$ from DFAs A_{1} and A_{2} as follows:
(1) omit the states f_{1}, d_{1}, d_{2} and all the transitions going to or from these states;
(2) for each symbol a add the transition $\left(f_{2}, a, \delta_{2}\left(s_{2}, a\right)\right)$;
(3) for each transition $\left(q, a, f_{1}\right)$ in A_{1}, add the transition (q, a, f_{2});
(4) the initial state is s_{1} and the final state is f_{2}.

By adding the sink state, we get a DFA for $L_{1} \cdot L_{2}^{*}$ of $m+n-2$ states, which proves the upper bound. For tightness, consider binary prefix-free languages L_{1} and L_{2} accepted by DFAs shown in Figure 9 (top).

Now we consider the state complexity of $L_{1} \cdot L_{2}^{*}$ for suffix-free regular languages L_{1} and L_{2}. Since the empty string is in L_{2}^{*}, we have $L_{1} \subseteq L_{1} \cdot L_{2}^{*}$. Notice that the upper bound coincide with the one for the catenation of suffix-free languages.

Theorem 6.2 Let $m, n \geq 4$, and L_{1}, L_{2} be suffix-free languages over Σ with $\mathcal{S C}\left(L_{1}\right)=m$ and $\mathcal{S C}\left(L_{2}\right)=n$. Then $\mathcal{S C}\left(L_{1} \cdot L_{2}^{*}\right) \leq(m-1) 2^{n-2}+1$, and the bound is tight if $|\Sigma| \geq 4$.

Proof. Let L_{1}, L_{2} be suffix-free languages accepted by minimal DFAs $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$, with sink states d_{1}, d_{2}, respectively. Then A_{1}, A_{2} are non-returning. Construct an NFA N for $L_{1} \cdot L_{2}^{*}$ from DFAs A_{1}, A_{2} as follows:
(1) omit the states d_{1}, s_{2}, d_{2} and all the transitions going to or from these states;
(2) for each r in F_{2} and each a in Σ, add the transition $\left(r, a, \delta_{2}\left(s_{2}, a\right)\right.$);
(3) for each q in F_{1} and each a in Σ, add the transition ($q, a, \delta_{2}\left(s_{2}, a\right)$);
(4) the initial state of N is s_{1}, and the set of final states is $F_{1} \cup F_{2}$;
see Figure 10 for an example. Since A_{1}, A_{2} are non-returning DFAs, in the subset automaton of N, only the following states may be reachable:

- $\left\{s_{1}\right\}$;
- $\{q\} \cup R$ and R, where $q \in Q_{1} \backslash\left\{s_{1}, d_{1}\right\}$ and $R \subseteq Q_{2} \backslash\left\{s_{2}, d_{2}\right\}$.

In total, we get at most $(m-1) 2^{n-2}+1$ reachable states. For tightness, consider the languages L_{1} and L_{2} accepted by DFAs A_{1} and A_{2} shown in Figure 10 (top).

We conclude the paper with the state complexity of $L_{1}^{*} \cdot L_{2}$ on prefix-free and suffix-free languages. In both cases, we get tight upper bounds. Our worst-case examples are defined over a growing alphabet of size $n+3$ for prefix-free languages, and over a 5 -letter alphabet for suffix-free languages.

Theorem 6.3 Let $m, n \geq 4$, and L_{1}, L_{2} be prefix-free languages over Σ with $\mathcal{S C}\left(L_{1}\right)=m$ and $\mathcal{S C}\left(L_{2}\right)=n$. Then $\mathcal{S C}\left(L_{1}^{*} \cdot L_{2}\right) \leq(m-1)\left(2^{n-1}-1\right)+1$, and the bound is tight if $|\Sigma| \geq n+3$.

Proof. Let $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1},\left\{f_{1}\right\}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2},\left\{f_{2}\right\}\right)$ be minimal DFAs for prefixfree languages L_{1} and L_{2}, respectively, with sink states d_{1} and d_{2}. Construct an NFA N for $L_{1}^{*} \cdot L_{2}$ from DFAs A_{1} and A_{2} as follows:
(1) omit the states d_{1}, d_{2} and all the transitions going to or from these states;
(2) for each symbol a add the transition $\left(f_{1}, a, \delta_{1}\left(s_{1}, a\right)\right)$; denote the resulting DFA by A_{1}^{*}
(3) for each transition $\left(q, a, f_{1}\right)$ in A_{1}^{*}, add the transition $\left(q, a, s_{2}\right)$;
(4) the set of initial states of N is $\left\{f_{1}, s_{2}\right\}$ and the final state is f_{2}.

In the subset automaton of N, only the following sets can be reachable and pairwise distinguishable:

- $\left\{f_{1}\right\} \cup R$, where $R \subseteq Q_{2} \backslash\left\{d_{2}\right\}$ and $s_{2} \in R$;
- $\{q\} \cup R$ and R, where $q \in Q_{1} \backslash\left\{f_{1}, d_{1}\right\}$ and $R \subsetneq Q_{2} \backslash\left\{d_{2}\right\}$;

Figure 10: Suffix-free witnesses (top) and NFA N (bottom) for $L_{1} \cdot L_{2}^{*}$.

Figure 11: Prefix-free witnesses (top) and NFA N (bottom) for $L_{1}^{*} \cdot L_{2}$.
notice that $\{q\} \cup Q_{2} \backslash\left\{d_{2}\right\}$ cannot be reachable if $q \neq f_{1}$, and each set $\left\{s_{1}\right\} \cup R$ is equivalent to $\left\{f_{1}\right\} \cup R$ since the states s_{1} and f_{1} go to the same sets on each symbol in N. It follows that the subset automaton of N has at most $1+(m-2)\left(2^{n-1}-1\right)+\left(2^{n-1}-1\right)=(m-1)\left(2^{n-1}-1\right)+1$ reachable and pairwise distinguishable subsets. For tightness, consider prefix-free languages L_{1} and L_{2} accepted by DFAs shown in Figure 11 (top).

Theorem 6.4 Let $m, n \geq 4$, and L_{1}, L_{2} be suffix-free languages over Σ with $\mathcal{S C}\left(L_{1}\right)=m$ and $\mathcal{S C}\left(L_{2}\right)=n$. Then $\mathcal{S C}\left(L_{1}^{*} \cdot L_{2}\right) \leq 2^{m+n-4}+1$, and the bound is tight if $|\Sigma| \geq 5$.

Proof. Let L_{1}, L_{2} be suffix-free languages accepted by minimal DFAs $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$, with sink states d_{1}, d_{2}, respectively. Then A_{1}, A_{2} are non-returning. Construct an NFA N for $L_{1}^{*} \cdot L_{2}$ from DFAs A_{1}, A_{2} as follows:
(1) omit the states d_{1}, s_{2}, d_{2} and all the transitions going to or from these states;
(2) for each a in Σ and each q in F_{1}, if $\delta_{1}\left(s_{1}, a\right) \neq d_{1}$, then add the transition $\left(q, a, \delta_{1}\left(s_{1}, a\right)\right)$;
(3) for each a in Σ and each q in $F_{1} \cup\left\{s_{1}\right\}$, if $\delta_{2}\left(s_{2}, a\right) \neq d_{2}$, then add $\left(q, a, \delta_{2}\left(s_{2}, a\right)\right)$;
(4) the initial state of N is s_{1}, and the set of final states is F_{2};
see Figure 12 for an example. The resulting NFA is non-returning and has $(m+n-4)+1$ states. The corresponding subset automaton has at most $2^{m+n-4}+1$ reachable states which gives the upper bound. To prove tightness, consider the languages L_{1} and L_{2} accepted by DFAs A_{1} and A_{2} shown in Figure 12 (top).

7. Conclusions

We can usually obtain a much lower state complexity for combined operations compared with the compositions of state complexities of individual operations. However, for some cases, the state complexity of combined operations and the composition of state complexities are the same. We have examined prefix-free and suffix-free regular languages and computed the state complexity of combined operations. Table 1 summarizes our results. It also displays the size of alphabet used for describing our worst-case examples.

Figure 12: Suffix-free witnesses (top) and NFA N (bottom) for $L_{1}^{*} \cdot L_{2}$.

operation	prefix-free	$\|\Sigma\|$	suffix-free	$\|\Sigma\|$
$L_{1} \cdot\left(L_{2} \cup L_{3}\right)$	$m+n p-4$	3	$(m-1) 2^{n+p-4}+1$	6
$\left(L_{1} \cup L_{2}\right) \cdot L_{3}$	$(m-2)(n-2)+(m+n-4) p+\left(p^{2}-p+2\right) / 2$	2	$(m-1)(n-1) 2^{p-2}+1$	6
$\left(L_{1} \cap L_{2}\right) \cdot L_{3}$	$(m-2)(n-2)+p$	2	$((m-2)(n-2)+1) 2^{p-2}+1$	4
$L_{1} \cdot\left(L_{2} \cap L_{3}\right)$	$m+n p-2(n+p)+4$	2	$\leq(m-1) 2^{(n-2)(p-2)}+1$	-
$L_{1} \cdot L_{2}^{*}$	$m+n-2$	2	$(m-1) 2^{n-2}+1$	4
$L_{1}^{*} \cdot L_{2}$	$(m-1)\left(2^{n-1}-1\right)+1$	$n+3$	$2^{m+n-4}+1$	5

Table 1: State complexity of combined operations on prefix-free and suffix-free languages; $m, n \geq 4$.

References

[1] J. A. BrZoZowski, G. Jirásková, B. Liu, A. RAJASEKARAN, M. SZYKULA, On the State Complexity of the Shuffle of Regular Languages. In: C. CÂMPEANU, F. MANEA, J. SHALLIT (eds.), Descriptional Complexity of Formal Systems - 18th IFIP WG 1.2 International Conference, DCFS 2016, Bucharest, Romania, July 5-8, 2016. Proceedings. Lecture Notes in Computer Science 9777, Springer, 2016, 73-86.
http://dx.doi.org/10.1007/978-3-319-41114-9_6
[2] C. CÂMPEANU, K. CULIK II, K. SALOMAA, S. YU, State Complexity of Basic Operations on Finite Languages. In: Proceedings of WIA'99. Lecture Notes in Computer Science 2214, 2001, 60-70.
[3] C. CÂMPEANU, K. SALOMAA, S. YU, Tight Lower Bound for the State Complexity of Shuffle of Regular Languages. Journal of Automata, Languages and Combinatorics 7 (2002) 3, 303-310.
[4] R. CMORIK, G. JIRÁSKOVÁ, Basic Operations on Binary Suffix-Free Languages. In: Proceeding of MEMICS'11. Lecture Notes in Computer Science 7119, 2011, 94-102.
[5] M. DOMARATZKI, State Complexity of Proportional Removals. Journal of Automata, Languages and Combinatorics 7 (2002) 4, 455-468.
[6] M. DOMARATZKI, K. SALOMAA, State complexity of shuffle on trajectories. Journal of Automata, Languages and Combinatorics 9 (2004) 2-3, 217-232.
[7] Y.-S. HAN, K. SALOMAA, State Complexity of Union and Intersection of Finite Languages. International Journal of Foundations of Computer Science 19 (2008) 3, 581-595.
[8] Y.-S. HAN, K. SALOMAA, State Complexity of Basic Operations on Suffix-Free Regular Languages. Theoretical Computer Science 410 (2009) 27-29, 2537-2548.
[9] Y.-S. HAN, K. SALOMAA, D. WOOD, Operational State Complexity of Prefix-Free Regular Languages. In: Automata, Formal Languages, and Related Topics - Dedicated to Ferenc Gécseg on the occasion of his 70th birthday. 2009, 99-115.
[10] M. HOLZER, M. KUTRIB, Nondeterministic Descriptional Complexity Of Regular Languages. International Journal of Foundations of Computer Science 14 (2003) 6, 1087-1102.
[11] M. HRICKO, G. JIRÁSKOVÁ, A. SZABARI, Union and Intersection of Regular Languages and Descriptional Complexity. In: Proceedings of DCFS'05. 2005, 170-181.
[12] J. JIRÁSEK, G. JIRÁSKOVÁ, A. SZABARI, State complexity of concatenation and complementation. International Journal of Foundations of Computer Science 16 (2005) 3, 511-529.
[13] G. JIRÁSKOVÁ, M. KRAUSOVÁ, Complexity in Prefix-Free Regular Languages. In: I. MCQUILLAN, G. PIGHIZZINI (eds.), Proceedings Twelfth Annual Workshop on Descriptional Complexity of Formal Systems, DCFS 2010, Saskatoon, Canada, 8-10th August 2010.. EPTCS 31, 2010, 197-204.
[14] G. JIRÁSKOVÁ, P. OLEJÁR, State Complexity of Intersection and Union of Suffix-Free Languages and Descriptional Complexity. In: H. BORDIHN, R. FREUND, M. HOLZER, M. KUTRIB, F. OTTO (eds.), Workshop on Non-Classical Models for Automata and Applications - NCMA 2009, Wroclaw, Poland, August 31 - September 1, 2009. Proceedings. books@ocg.at 256, Austrian Computer Society, 2009, 151-166.
[15] A. MASLOV, Estimates of the number of states of finite automata. Soviet Mathematics Doklady 11 (1970), 1373-1375.
[16] C. NICAUD, Average State Complexity of Operations on Unary Automata. In: Proceedings of MFCS'99. Lecture Notes in Computer Science 1672, 1999, 231-240.
[17] G. PIGHIZZINI, J. SHALLIT, Unary Language Operations, State Complexity and Jacobsthal's Function. International Journal of Foundations of Computer Science 13 (2002) 1, 145-159.
[18] A. SALOMAA, D. WOOD, S. YU, On the state complexity of reversals of regular languages. Theoretical Computer Science 320 (2004) 2-3, 315-329.
[19] D. WOOD, Theory of Computation. John Wiley \& Sons, Inc., New York, NY, 1987.
[20] S. YU, State Complexity of Regular Languages. Journal of Automata, Languages and Combinatorics 6 (2001) 2, 221-234.
[21] S. YU, Q. ZHUANG, K. SALOMAA, The state complexities of some basic operations on regular languages. Theoretical Computer Science 125 (1994) 2, 315-328.

[^0]: ${ }^{(B)}$ Research supported by VEGA grant 2/0084/15 and grant APVV-15-0091. The work on this paper was done during a stay of the second author at the university Department of Computer Science, Yonsei University.

