
Journal of Automata, Languages and Combinatorics XX (201Y) Z, xxx–yyy
c© Otto-von-Guericke-Universität Magdeburg

ON THE NUMBER OF ACCEPTING STATES
OF FINITE AUTOMATA

Jürgen Dassow

Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

PSF 4120, D-39016 Magdeburg, Germany
e-mail: dassow@iws.cs.uni-magdeburg.de

ABSTRACT

In this paper, we start a systematic study of the number of accepting states. For
a regular language L, we define the complexity asc(L) as the minimal number of
accepting states necessary to accept L by deterministic finite automata. With respect
to nondeterministic automata, the corresponding measure is nasc(L). We prove that,
for any non-negative integer n, there is a regular language L such that asc(L) = n,
whereas we have nasc(R) ≤ 2 for any regular language R. Moreover, for a k-ary
regularity preserving operation ◦ on languages, we define gasc◦ (n1, n2, . . . , nk) as the
set of all integers r such that there are k regular languages Li, 1 ≤ i ≤ k, such that
asc(Li) = ni for 1 ≤ i ≤ k and asc(◦(L1, L2, . . . , Lk)) = r. We determine this set
for the operations complement, union, product, and Kleene closure and give a partial
result for set difference.

1. Introduction

State complexity is a fundamental part of automata theory. In the last 25 years,
its importance draws from many applications, e. g. in natural language and speech
processing, software engineering etc. where systems/automata with a large number
of states are used for the description of natural languages or the behaviour of certain
software systems. Thus one is interested in questions as minimization, construction
of relatively small finite automata from other devices, etc.

We mention some of the classical known facts. For any natural number n, there is
a regular language R such that the acceptance of R by deterministic or nondetermin-
istic finite automata requires an automaton with at least n states. There is an algo-
rithm which, for a regular language R with state complexity sc(R) = n, constructs
a deterministic finite automaton which has n states and accepts R. By the classi-
cal power-set-construction, any nondeterministic finite automaton A with n states
can be transformed into a deterministic finite automaton B with 2n states such that
T (A) = T (B), i. e., both automata accept the same language; moreover, already in
the sixties, it was independently shown by Lupanov, Moore, Meyer and Fischer, that
there are nondeterministic finite automata A with n states such that any deterministic

2 S. DASSOW

finite automaton B with T (A) = T (B) has 2n states. For any two regular languages
L1 and L2 with sc(L1) = m and sc(L2) = n, we have sc(L1 ∪ L2) ≤ m · n; and
furthermore, there are regular languages L1 and L2 with sc(L1) = m and sc(L2) = n
such that sc(L1 ∪ L2) = m · n.

However, there is another measure concerning finite automaton: the number of
accepting states, i. e., we are not interested in all states of the automaton and count
the accepting states only. This measure already occurred in some situations. For
instance (see e. g. [10]), if we consider the number states which are necessary to
accept the concatenation T (A1) ·T (A2) for two deterministic finite automata A1 and
A2, then it is known that sc(T (A1) · T (A2)) depends on the number of accepting
states of A1. An analogous situation holds if we consider the cut-operation instead
of concatenation (see [2]).

The state complexity was also considered for Büchi automata which accept lan-
guages of infinite words. In the paper [1], the authors discuss the minimization of
Büchi automata. The time complexity of the method they propose also depends on
the number of accepting states.

Büchi automata are often used in model checking where the model is based on
linear temporal logic. In the papers [3] and [4], the authors study algorithms for such
model checking; they show that the complexities of their algorithms depend on the
number of accepting states of the Büchi automaton, too.

In this paper we start a systematic investigation of the number of accepting states
of finite automata. We shall see that, with respect to minimization this measure has
properties analogous to those known from ”classical” state complexity, however, with
respect to the behaviour under operations, the measure number of accepting states
essentially differs from that of state complexity.

The paper is organized as follows: In Section 2, we give the definitions of the consid-
ered complexity measures of finite automata and regular languages. Furthermore, we
present some basic properties of the measures. In Section 3, we discuss the behaviour
of the number of accepting states with respect to the operations complement, union,
product, Kleene closure, and set difference. In Section 4, we present some concluding
remarks.

2. Definitions and Basic Results

We assume that the reader is familiar with the basic concepts of the theory of au-
tomata and formal languages (see e. g. [9]). Here we give some notation.

By card(M) we denote the cardinality of the set M . The set of all positive integers
is denoted by N.

The empty word and the length of a word w are designated by λ and |w|, respec-
tively.

For a language L, by alph(L) we denote the minimal alphabet X (with respect to
inclusion) such that L ⊆ X∗, and define the complement C(L) by C(L) = alph(L)∗\L.

In this paper we consider only regular languages; therefore we omit the adjective
”regular”.

On the Number of Accepting States of Finite Automata 3

A nondeterministic finite automaton (shortly written as NFA) is a quintuple
A = (X, Z, z0, F, δ) where X is a finite non-empty set of input symbols, Z is a fi-
nite non-empty set of states, z0 ∈ Z is the initial state, F ⊆ Z is the set of accepting
states, and δ : Z × X → 2Z is the transition function of A. The language T (A)
accepted by A is defined as

T (A) = {w | δ(z0, w) ∩ F 6= ∅},
where the transition function δ is recursively extended to a mapping δ : Z ×X∗ → Z
as usual.

If δ is a total mapping and δ(z, x) is a singleton for any z ∈ Z and any x ∈ X, then
A is called a deterministic finite automaton (DFA, for short). In case of determinism,
we write simply δ(z, x) = z′ instead of δ(z, x) = {z′}.

Let A = (X, Z, z0, F, δ) be a DFA. Then we define

sc(A) = card(Z) and asc(A) = card(F).

For a regular language L, we define

sc(L) = min{sc(A) | A is a DFA and T (A) = L}
and

asc(L) = min{asc(A) | A is a DFA and T (A) = L}.
We call the functions sc and asc the state complexity and accepting state complex-

ity, respectively.
A deterministic finite automata A is called minimal if sc(A) = sc(T (A)), i. e.,

a minimal DFA has the minimal number of states which is necessary to accept the
language T (A). There exists a well-developed theory of minimization of finite au-
tomata (see e. g. [8]). We assume that the reader is familiar with basic concepts of
minimization as equivalent states, isomorphism of automata, etc.

A deterministic finite automata A is called a-minimal if asc(A) = asc(T (A)). We
first show that the minimization of automata with respect to the number of states is
also useful for the minimization with respect to the number of accepting states.

Theorem 1 i) If A is a minimal automaton, then we have asc(T (A)) = asc(A),
i. e., any minimal DFA is also a-minimal.

ii) There is an algorithm which, for a given regular language L, determines asc(L).

Proof. i) Let A = (X, Z, z0, F, δ) be a minimal automaton. Assume that
asc(T (A)) < card(F). Then there is an a-minimal DFA B = (X, Z ′, z′0, F

′, δ′)
such that T (A) = T (B) and card(F ′) = asc((T (A)). We now apply a mini-
mization algorithm to B and obtain a DFA B′ = (X,Z ′′, z′′0 , F ′′, δ′′). Obviously,
card(F ′) = card(F ′′) since B is a-minimal. Moreover, B′ is also minimal by con-
struction and T (B′) = T (A). Thus A and B′ are isomorphic which implies that
card(F) = card(F ′′). But this equality contradicts card(F) > asc(T (A)) = card(F ′′).

ii) Let A be a DFA which accepts L (note that A can be constructed if L is given
by a NFA, or a regular grammar, or a regular expression etc.). Now we apply a

4 S. DASSOW

minimization algorithm to A. The cardinality of the set of accepting states of the
resulting automaton gives then asc(L) by i). 2

We note that the converse of Theorem 1, i) does not hold. Obviously, the deter-
ministic finite automaton A = ({a}, {z0, z1, z2, z3}, z0, {z1}, δ) with δ(zi, a) = zi+1 for
i ∈ {0, 1, 2} and δ(z3, a) = z2 is a-minimal, since its number of accepting states is 1.
On the other hand, A is not minimal, because the states z2 and z3 are equivalent.

By Theorem 1 we determine the complexity asc of a family of languages which are
needed later.

Example 1 For any alphabet X and any integers k, r1, r2, . . . , rk, r, s with k ≥ 0,
0 ≤ r1 < r2 < · · · < rk < r, s ≥ 0, and r − rk 6= s, let

LX(r1, r2, . . . , rk; r, s) = {w | w ∈ X∗, |w| ∈ {r1, r2, . . . , rk} ∪ {r + is | i ∈ {0} ∪ N}}.

Then we have

asc(LX(r1, r2, . . . , rk; r, s)) = k + 1.

Let r − rk > s. We consider the DFA

A = (X, {z0, z1, . . . , zr}, z0, {zr1 , zr2 , . . . , zrk
, zr}, δ)

with

δ(zi, a) = zi+1 for 0 ≤ i ≤ r − 1, δ(zr, a) = zr−s+1.

It is easy to see that T (A) = LX(r1, r2, . . . , rk; r, s)). We prove that A is minimal by
showing that all states zu and zv with u 6= v are pairwise not equivalent. Obviously,
without loss of generality we can assume that u > v. We distinguish the following
cases.

u−v is not a multiple of s. Let w be a word of length r−v. Then δ(zv, w) = zr ∈ F ,
δ(zu, w) = zq with q ≥ rs + 1 and q 6= r, i. e., δ(zu, w) /∈ F . Therefore zu and zv are
not equivalent.

u − v is a multiple of s. If v ≤ rk, we choose a word w′ of length r − s − y and
get δ(zv, w′) = zr−s /∈ F and δ(zu, w′) = zr ∈ F , which proves that zu and zv are not
equivalent. If v > rk, we choose a word w′′ of length r − u. Then δ(zu, w′′) = zr ∈ F
and δ(zv, w′′) = zq′ with rk < q′ < r, i. e., δ(zv, w′′) /∈ F , which proves that zu and
zv are not equivalent.

By Theorem 1, asc(T (A)) = asc(LX(r1, r2, . . . , rk; r, s)) = card(F) = k + 1.
If r − rk = u < s, then we consider the DFA

A = (X, {z0, z1, . . . , zr+s−u−1}, z0, {zr1 , zr2 , . . . , zrk
, zr}, δ)

with

δ(zi, a) = zi+1 for 0 ≤ i ≤ r −+s− u− 2, δ(zr+s−u−1, a) = zr−s+u,

prove its minimality and asc(LX(r1, r2, . . . , rk; r, s)) = card(F) = k + 1 as above.

On the Number of Accepting States of Finite Automata 5

Obviously, LX(r1, r2, . . . , rk; r, 0) = {w | w ∈ X∗, |w| ∈ {r1, r2, . . . , rk, r}}, for
which we also use the notation LX(r1, r2, . . . , rk, r).

From Example 1, we immediately obtain the following statement which shows that
asc is a useful complexity measure for DFAs.

Theorem 2 i) For any alphabet X and any natural number n ≥ 0, there is a finite
language Ln over X such that asc(Ln) = n.

ii) For any alphabet X and any natural number n ≥ 1, there is an infinite lan-
guage Ln over X such that asc(Ln) = n.

Obviously, asc(L) = 0 if and only if L = ∅. Therefore, we have the restriction
n ≥ 1 in Theorem 2, ii).

We now consider nondeterministic finite automata. For an NFA A =
(X,Z, z0, F, δ), we define

nsc(A) = card(Z) and nasc(A) = card(F),

and, for a regular language L, we set

nsc(L) = min{nsc(A) | A is an NFA and T (A) = L}
and

nasc(L) = min{nasc(A) | A is an NFA and T (A) = L}.
However, the measure nasc is not very interesting, since we have the following result.

Theorem 3 i) For any regular language L, nasc(L) ≤ 2.
ii) For any non-empty regular language L with λ /∈ L, nasc(L) = 1.

Proof. i) Let A = (X, Z, z0, F, δ) be a deterministic finite automata such that
T (A) = L. Then we construct the NFA B = (X,Z ∪ {q}, z0, F

′, δ′) with

δ′(z, a) = {δ(z, a)} for δ(z, a) /∈ F or δ(z, a) = z0,

δ′(z, a) = {δ(z, a), q} for δ(z, a) ∈ F \ {z0},

F ′ =

{
{q} for z0 /∈ F

{z0, q} for z0 ∈ F
.

For any w ∈ X∗, z0 ∈ δ′(z0, w) if and only if z0 = δ(z0, w). Moreover, for w = w′a
with a ∈ X, q ∈ δ′(z0, w) if and only if there is a z′ ∈ Z such that z′ ∈ δ′(z0, w

′) and
δ(z′, a) ∈ F if and only if z′ = δ(z0, w

′) and δ(z′, a) ∈ F if and only if δ(z0, w
′a) =

δ(z0, w) ∈ F . From these facts, it follows that δ(z0, w) ∩ F ′ 6= ∅ if and only if
δ(z0, w) ∈ F . This implies T (B) = T (A). Obviously, we have nasc(B) ≤ 2. Therefore
nasc(L) ≤ 2.

ii) If λ /∈ L, then z0 /∈ F . The construction in i) shows nasc(B) ≤ 1 and hence
nasc(L) ≤ 1. Because nasc(L) = 0 holds if and only if L = ∅, we get nasc(L) = 1.

2

6 S. DASSOW

First, we note that there also exist regular languages L with λ ∈ L and nasc(L) = 1.
As an example we give the language {a2n | n ≥ 0} which is accepted by the DFA
A = ({a}, {z0, z1}, z0, {z0}, δ) with δ(z0, a) = z1 and δ(z1, a) = z0 with one accepting
state.

It is left as an open problem to characterize those regular languages which satisfy
nasc(L) = 1.

We remark that Theorem 3 differs essentially from the fact that, for any n, there
is a regular language L such that nsc(L) = n.

By Theorem 2 (and its proof) and Example 1, it is easy to see that, for any natural
number n, there is a regular language Ln such that nasc(Ln) = 1 (or nasc(Ln) = 2)
and asc(Ln) = n.

3. Behaviour under Operations

We first define a set of integers which characterizes the behaviour of complexities
under operations.

Definition 1 For c ∈ {sc, asc}, a k-ary regularity preserving operation ◦ on lan-
guages, and natural numbers n1, n2, . . . , nk, we define gc

◦(n1, n2, . . . , nk) as the set
of all integers r such that there are k regular languages Li, 1 ≤ i ≤ k, such that
c(Li) = ni for 1 ≤ i ≤ k and c(◦(L1, L2, . . . , Lk)) = r.

We recall some results for the state complexity (see [5]).
For complement, it is obvious that

gscC (m) = {m} for m ≥ 1.

For union (denoted by ∪), in [6], M. Hricko, G. Jirásková, and A. Szabari showed
that

gsc∪ (m,n) = {1, 2, . . . ,mn} for m ≥ 2 and n ≥ 2.

For Kleene closure (denoted by ∗), by G. Jirásková in [7], it was proved that

gsc∗ (m) =

{
{1, 2} for m = 1
{1, 2, . . . , 2m−1 + 2m−2} for m ≥ 2

.

We now discuss gasc◦ .

Theorem 4 We have

gascC (m) =

{1} for m = 0
{0} ∪ N for m = 1
N for m ≥ 2

.

Proof. Let L ⊆ X∗ be a language with asc(L) = 0. Then L = ∅ and C(L) = X∗.
Hence asc(C(L)) = 1.

On the Number of Accepting States of Finite Automata 7

Let m ≥ 1. We consider the language L = LX(0, 1, . . . , m− 2; m + r − 1, 1). Then
we have asc(L) = m by Example 1. Moreover, C(L) = LX(m− 1, m, . . . , m + r − 2)
which satisfies asc(C(L)) = r by Example 1. Thus N ⊆ gascC (m).

Let m ≥ 2. If asc(L) = m for some language L, then L 6= X∗ for all X. Hence
C(L) 6= ∅ and asc(C(L)) ≥ 1. Therefore 0 /∈ gC(m) and gascC (m) = N.

Let m = 1. For X∗, we get asc(X∗) = 1 and asc(C(X∗)) = asc(∅) = 0. Thus
gascC (1) = {0} ∪ N. 2

Lemma 5 For any three positive integers m,n, r with r ≥ m ≥ n ≥ 1 and any
alphabet X, there are languages Lm and Ln such that alph(Lm) = alph(Ln) = X,
asc(Lm) = m, asc(Ln) = n and asc(Lm ∪ Ln) = asc(Lm · Ln) = r.

Proof. Let x be a number with x ≥ m + 1 + 2(r −m). We consider

Lm = LX(0, x + 1, x + 2, . . . , x + m− 2;x + m + 1 + 2(r −m), 1)

and

Ln = LX(0, x + 1, x + 2, . . . , x + n− 2; x + m + 1, 2).

By Example 1, asc(Lm) = m and asc(Ln) = n. Clearly,

Lm ∪ Ln = LX(0, x + 1, x + 2, . . . , x + m− 2,

x + m + 1, x + m + 3, x + m + 1 + 2(r −m)− 2;
x + m + 1 + 2(r −m), 1).

By Example 1, asc(Lm ∪ Ln) = r.
Since λ ∈ Lm and λ ∈ Ln, Lm∪Ln ⊆ Lm ·Ln. Moreover, for two non-empty words

w1 ∈ Lm and w2 ∈ Ln, we have |w1 · w2| ≥ x + x ≥ x + m + 1 + 2(r − m) which
proves that w1 · w2 ∈ Lm ∪ Ln. Therefore Lm · Ln = Lm ∪ Ln and, consequently,
asc(Lm · Ln) = r. 2

Lemma 6 For any three positive integers m,n, r with m > r ≥ 1 and n ≥ 1 and any
alphabet X, there are languages Lm and Ln such that alph(Lm) = alph(Ln) = X,
asc(Lm) = m, asc(Ln) = n and asc(Lm ∪ Ln) = asc(Lm · Ln) = r.

Proof. Let m ≥ 2 and n ≥ 1. We consider

Lm = LX(0, 1, 2, . . . , r − 2, r + 1, r + 2 . . . m; m + 2, 1)

and

Ln = LX(0,m + 1,m + 2, . . . m + n− 1) for n ≥ 2

and

Ln = LX(; 0,m + 1) for n = 1.

By Example 1, asc(Lm) = m and asc(Ln) = n. Furthermore,

Lm ∪ Ln = LX(0, 1, 2, . . . , r − 2; r + 1, 1),

which gives asc(Lm ∪ Ln) = r by Example 1.

8 S. DASSOW

Moreover, since λ ∈ Lm and λ ∈ Ln, we have Lm ∪ Ln ⊆ Lm · Ln. Furthermore,
for two non-empty wordw w1 ∈ Lm and w2 ∈ Ln, we have |w1 ·w2| ≥ |w1|+ m + 1 ≥
m + 2 ≥ r + 1 which proves that w1 · w2 ∈ Lm ∪ Ln. Therefore Lm · Ln = Lm ∪ Ln.
Thus, asc(Lm · Ln) = r. 2

Since union is a commutative operation, we have the following statement.

Lemma 7 For any non-negative integers m and n, gasc∪ (m,n) = gasc∪ (n, m).

Theorem 8 We have

gasc∪ (m,n) =

{m} for n = 0
{n} for m = 0
N for m ≥ 1, n ≥ 1

.

Proof. If asc(Lm) = 0, then Lm = ∅ and therefore Lm ∪ Ln = Ln which implies
asc(Lm ∪ Ln) = asc(Ln) = n. Thus gasc∪ (0, n) = {n}.

Analogously, gasc∪ (m, 0) = {m} can be shown.

If m ≥ 1 and n ≥ 1, then Lm and Ln are not empty, and consequently Lm∪Ln 6= ∅
which proves asc(Lm ∪ Ln) ≥ 1.

If m ≥ n, then any positive number can be obtained as asc(Lm∪Ln) by Lemmas 5
and 6. Thus gasc∪ (m,n) = N.

If n ≥ m, then from the preceding considerations we have gasc∪ (n,m) = N. By
Lemma 7, gasc∪ (m,n) = N. 2

Theorem 9 We have

gasc· (m,n) =

{0} for n = 0
{0} for m = 0
N for m ≥ 1, n ≥ 1

.

Proof. If asc(Lm) = 0, then Lm = ∅ and therefore Lm · Ln = ∅ which implies
asc(Lm · Ln) = 0. Thus gasc· (0, n) = {0}.

Analogously, gasc· (m, 0) = {0} can be shown.

If m ≥ 1 and n ≥ 1, then Lm and Ln are not empty, and consequently Lm ·Ln 6= ∅
which proves asc(Lm ∪ Ln) ≥ 1.

Let m ≥ n. Then any positive number can be obtained as asc(Lm·Ln) by Lemmas 5
and 6. Thus gasc· (m,n) = N.

Let n ≥ m, then from the preceding considerations we have gasc· (n,m) = N. Since
for all languages used in the proof of lemmas 5 and 6, Lm · Ln = Ln · Lm holds, we
get gasc· (m,n) = N. 2

For the set difference (denoted by \), the following result holds.

On the Number of Accepting States of Finite Automata 9

Theorem 10 We have

gasc\ (0, n) = {0},
gasc\ (m, 0) = {m},
{r | r ∈ N ∪ {0}, r ≥ m− n} ⊆ gasc\ (m,n) for m ≥ 1, n ≥ 1.

Proof. The first two statements immediately follow from ∅ \K = ∅ and K \ ∅ = K
for all languages K and asc(L) = 0 if and only if L = ∅.

For r > m ≥ 1 and n ≥ 1, we consider the languages

Lm = {1, 2, . . . , m− 1; m + n + 1, 1)

and

Ln = {m + 1,m + 2, . . .m + n− 1, r + n + 1}
with asc(Lm) = m and asc(Ln) = n. Then

Lm \ Ln = {1, 2, . . . ,m− 1,m + n + 1,m + n + 2, . . . , r + n; r + n + 2, 1)

satisfies asc(Lm \ Ln) = (m− 1) + (r −m) + 1 = r.
For m ≥ r ≥ m− n, and n ≥ 1, we consider the languages

Lm = {1, 2, . . . , m− 1,m)

and

Ln = {r + 1, r + 2, . . .m, m + 1,m + 2, . . . , r + n}
with asc(Lm) = m and asc(Ln) = n. Then Lm \ Ln = {1, 2, . . . , r), which satisfies
asc(Lm \ Ln) = r. 2

Obviously, we have gasc\ (m,n) = N ∪ {0} for n ≥ m ≥ 1; however, the exact
determination of gasc\ (m,n) for m ≥ n ≥ 1 remains an open problem.

Finally we discuss the Kleene closure denoted by ∗ and the positive Kleene closure
denoted by +.

Theorem 11 We have

gasc∗ (m) =

{
{1} for m = 0
N for m ≥ 1

.

Proof. First we note that L∗ 6= ∅ for all languages L. Hence 0 /∈ g∗(m) for all m ≥ 0
If m = 0, then L0 = ∅ and L∗0 = {λ} and asc(L∗0) = 1. Therefore gasc∗ (0) = {1}.
If m ≥ 3 and r ≥ 2, we consider Lm = LX(2, 2r−1, 2r, . . . 2r+m−4; 2r+m−2, 1)

with asc(Lm) = m by Example 1. Then L∗m = LX(0, 2, 4, . . . , 2r− 4; 2r− 2, 1) (since
X2 ⊆ Lm implies that all words of even length are in L∗m, and all words of odd length
≤ 2r − 1 are in L∗m because X2 and X2r−1 are subsets of Lm) and asc(L∗m) = r by
Example 1.

If m ≥ 3 and r = 1, we consider Lm = LX(1, 3, 4, 5,m; m+2, 1) with asc(Lm) = m.
Then L∗m = X∗ and asc(L∗m) = 1.

10 S. DASSOW

Thus gasc∗ (m) = N for m ≥ 3.
If m = 2 and r ≥ 3, we consider L2 = LX(2; 2r − 2, 1) with asc(Lm) = 2 by

Example 1. Then L∗2 = LX(0, 2, 4, . . . , 2r−4; 2r−2, 1) and asc(L∗2) = r by Example 1.
If m = 2 and r = 2, we consider L2 = LX(0; 2, 1) with asc(Lm) = 2 by Example 1.

Then L∗2 = L2 and asc(L∗2) = 2.
If m = 2 and r = 1, we consider L2 = LX(1; 3, 1) with asc(Lm) = 2 by Example 1.

Then L∗2 = X∗ and asc(L∗m) = 1.
Thus gasc∗ (2) = N.
If m = 1 and r ≥ 2, we consider L1 = LX(; 2, 2r − 3) with asc(L1) = 1 by

Example 1. Then L∗1 = LX(0, 2, 4, . . . , 2r−4; 2r−2, 1) and asc(L∗1) = r by Example 1.
If m = 1 and r = 1, we consider L1 = LX(2) with asc(Lm) = 1 by Example 1.

Then L∗1 = LX(; 0, 2) and asc(L∗1) = 1 by Example 1.
Thus gasc∗ (1) = N. 2

By slight modifications of the parameters of the languages used in the proof of
Theorem 11, we obtain the following statement.

Theorem 12 We have

gasc+ (m) =

{
{0} for m = 0
N for m ≥ 1

.

4. Conclusion

In this paper we started a systematic study of the complexity measure asc (and nasc)
given by the number of accepting states of (non-)deterministic finite automata. We
have seen that the measure nasc is not interesting, because any regular language
satisfies nasc(L) ≤ 2. But, for the deterministic version, the situation changes com-
pletely, and for any natural number n ≥ 0, there is a regular language Ln such that
asc(Ln) = n. Moreover, for deterministic finite automata, we can use the classical
minimization theory in order to determine a-minimal automata.

With respect to the behaviour under automata, for the accepting state complexity
asc, we presented results, which strongly differ from the results known for the state
complexity sc. For complement, union, product, and (positive) Kleene-closure, we
have shown that, for m ≥ 1, n ≥ 1, and r ≥ 1, there are languages Lm and Ln with
accepting state complexities m and n, respectively, such that asc(α(Lm)) = r in case
of a unary operation α ∈ {C, ∗} and asc(Lm ◦ Ln) = r in case of a binary operation
◦ ∈ {∪, ·}.

We mention that such a result does not hold for the intersection. The following
statement is well-known: If Lm is accepted by a DFA Am = (X, Zm, z0m, Fm, δm)
with card(Fm) = m ≥ 1 and Ln is accepted by a DFA An = (X, Zn, z0n, Fn, δn) with
card(Fn) = n ≥ 1, then Lm ∩ Ln is accepted by the deterministic finite automaton
A = (X, Zm×Zn, (z0m, z0n), Fm×Fn, δ) with δ((z, z′), a) = (δm(z, a), δ(z′, a)). Hence,
gasc∩ (m,n) ≤ m · n for m ≥ 1 and n ≥ 1. We were able to determine languages Lm

and Ln such that asc(Lm ∩ Ln) = m · n; and obviously, there are languages L′m

On the Number of Accepting States of Finite Automata 11

and L′n such that asc(L′m ∩ L′n) < m · n; but we have not completely determined
gasc∩ (m,n). This remains as an open problem as well as the exact determination of
gasc\ (m,n) for m > n ≥ 1 as well as the study of gasc◦ for further operations ◦ (as
reversal, proportional removals, etc.).

We mention that, in the case of the measure sc, with respect to the behaviour under
operations, the situations between finite and arbitrary languages as well as between
languages over arbitrary alphabets and over single letter alphabets are different (see
[5] and [10]).

Our results show that, for the measure asc, there is no difference between arbitrary
alphabets and single letter alphabets for the operations complement, union, product,
and (positive) Kleene-closure.

Moreover, if we start with finite languages Lm and Ln over a single letter alphabet
and asc(Lm) = m and asc(Ln) = n, then asc(Lm ∪ Ln) ≤ m + n. Hence we expect
that we get different results if we restrict to finite languages, but an investigation of
this problem remains to do.

References

[1] J.-M. Champarnaud, F. Coulon, Büchi automata reduction by means of left
and right trace inclusion preorder. Manuscript, 2004.

[2] F. Drewes, M. Holzer, S. Jakobi, B. van der Merwe, Tight bounds for
cut-operations on deterministic finite automata. In: J. Durand-Lose, B. Nagy
(Eds.), Machines, Computations, Universality, LNCS 9288, Springer-Verlag, Hei-
delberg, 2015, 45–60.

[3] St. Edelkamp, Sh. Jabbar, Large scale directed model checking LTL. In:
A. Valmer (ed.), Model Checking Software - SPIN, LNCS 3925, Springer-Verlag,
Berlin, 2006, 1–18.

[4] S. Evangelista, L.M. Kristensen, Hybrid on-the-fly LTL model checking
with the sweep-line method. In: S. Haddad, L. Pomello (Eds.), Applications
and Theory of Petri Nets, LNCS 7347, Springer-Verlag, Berlin, 2012, 248–267.

[5] Y. Gao, N. Moreira, R. Reis, Sh. Yu, A review on state complexity of
individual operations. Techn. report series DCC-2011-08, Version 1.1 September
2012, University of Porto, Faculty of Sciences, Department of Computer Science,
2012.

[6] M. Hricko, G. Jirásková, A. Szabari, Union and intersection of regu-
lar languages and descriptional complexity. In: C. Mereghetti, B. Palano,
G. Pighizzini, D. Wotschke (Eds.), Proc. 7th Intern. Workshop of Descrip-
tional Complexity of Formal Systems, University of Milano, 2005, 170–181.

[7] G. Jirásková, On the state complexity of complements, stars, and reversals of
regular languages. In: M. Ito, M. Toyama (Eds.), Developments in Language
Theory, LNCS 5257, Springer-Verlag, Berlin, 2008, 431–442.

[8] D. Kozen, Automata and Computability. Springer-Verlag, New York, Berlin,
1997.

12 S. DASSOW

[9] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages.
Vol. I –III, Springer-Verlag, Berlin, 1997.

[10] Sh. Yu, State complexity of regular languages. Journal of Automata, Languages
and Combinatorics 6 (2001) 221–234.

(Received: ????? ??, 2016; revised: ?????? ??, ????)

