
SQUARE ON CLOSED LANGUAGES

Krist́ına

ˇ

Cevorová

Mathematical Institute, Slovak Academy of Sciences
Štefánikova 49, 814 73 Bratislava, Slovakia

cevorova@mat.savba.sk

Abstract
The square of a language is its concatenation with itself. We study the state complexity of this

square operation on su�x-, factor-, subword-, and unary-closed languages. We show that for

factor-, subword-, and unary-closed languages the worst case state complexity is the same as

for a concatenation of any two languages with the same state complexity, while for su�x-closed

languages the result asymptotically di↵ers by a factor of

1
2 .

1. Introduction

Sometimes a problem becomes less complex when you restrict the class of possible inputs.
Other times, restrictions do not change the worst case complexity.

State complexity of regular operations is now a well-established discipline. Pioneered by early
Russian works [8, 7], interest in the discipline was rekindled after [11] was published. The
state complexity of all common operations is already known; one of the new possible avenues of
research is a restriction from regular languages to subregular language families. A classic choice
are unary and finite languages. In many cases they were studied along with regular languages.

A systematic study of common regular operations was carried out on all types of free [3],
ideal [2] and closed [4] languages. Apart from the language-theoretic significance of these
language families (which itself justifies their study), they appear to be interesting from the
state complexity point of view; for many operations, the tight bounds for regular languages
cannot be met by languages from these subregular classes.

None of the cited works looked at the unary operation square – a special case of concatenation
– a concatenation of a language with itself. State complexity of square on regular and unary
languages was given in [9]. We studied square on free, ideal and prefix-closed languages in [5].
Other types of closed languages remained open problems until now. In this paper, however, we
address these gaps.

It is notable that the results on free, ideal and closed languages in [3, 2, 4] were obtained using
the language-theoretic term quotient complexity instead of the standard state complexity, which

Research supported by VEGA grant 2/0084/15 and grant APVV-15-0091.

122 Krist́ına Čevorová

is defined by the minimal DFA. But the values coincide and quotients of a language and states
of its minimal DFA have a one to one correspondence, so it is only a matter of choice. We
use the state complexity wherever possible, but the proof of an upper bound for su�x-closed
languages uses quotients.

The paper is organized as follows: preliminaries are in Section 2. We discuss su�x-closed
languages in Section 3, while factor-, subword- and unary-closed languages are studied in Section
4. Section 5 concludes the paper.

2. Preliminaries

We assume that the reader is familiar with the basics of language and automata theory, for a
reference see [10]. We recall only the essential notions here.

Cardinality of a set S is denoted by |S|. A partial order ⌫ over a poset, that is, a partially
ordered set (S,⌫) is a reflexive, antisymmetric and transitive binary relation over the set S.

The square of language L, denoted as L2, is a unary operation on languages that concatenates
a language with itself, that is, L2 = L · L.

Proposition 2.1 Let A be a DFA with a single accepting state that coincides with the initial

state. Then L(A)2 = L(A).

Let u, v, x, w be words such that w = uvx. We call u a prefix, x a su�x and v a factor of
word w. If w = u1v1u2v2 · · · uk

v

k

for some words u
i

, v

i

, then the word u = u1u1 · · · uk

is called
a subword of w. For unary languages, all these terms coincide.

L is xfix-closed if whenever u is an xfix of v and v 2 L, then also u 2 L. Moreover, if L is
unary, we call it unary-closed.

An xfix-closure is an operator cl
xfix

(·) on languages and the language cl
xfix

(L) is the minimal
xfix-closed language containing L.

The state complexity of a regular language L is a number sc(L) that represents the number of
states of the minimal DFA recognizing L.

3. Su�x-Closed Languages

How to discern that a DFA recognizes a su�x-closed language? The following two propositions
provide an outline of a deciding algorithm.

Proposition 3.1 [6, Theorem 10] Let A = (Q,⌃, �, q0, F) be a DFA without unreachable states.

Then the NFA (Q,⌃, �, Q, F) recognizes the su�x-closure of L(A).

SQUARE ON CLOSED LANGUAGES 123

Proposition 3.2 A language is su�x-closed if and only if it is equal to its su�x-closure.

Alter the DFA by marking all states as initial, determinize the resulting NFA and check whether
you obtained a DFA equivalent with the original. Both determinization and minimization makes
this deciding algorithm impractical to use on classes of DFAs, so a su�cient structural condition
guaranteeing that a DFA recognizes a su�x-closed language, is worthwhile. We introduce a
condition that requires a special sortability of states.

Lemma 3.3 Let A = ({0, 1, . . . , n� 1},⌃, �, 0, F) be an n-state DFA. If

1. F = {0, 1, . . . , k} for some integer k and

2. every letter is a nondecreasing function, that is, if x < y, then �(x, a) �(y, a) for every

letter a 2 ⌃,

then L(A) is a su�x-closed language.

Proof.

The key idea is, that the nondecreasing property of letters in A could be inductively generalized
to words, that is, if one takes two computations on the same word from two di↵erent states,
then the ending states will be in the same ordering as the starting states.

We will use the characterization of su�x-closed languages from Proposition 3.2 and show that
L(A) = cl

suffix

(L(A)). Consider the DFA A and an NFA A

0 recognizing cl
suffix

(L(A)) as
in Proposition 3.1. The only di↵erence between them is that the NFA has all states initial.
Therefore L(A0) ◆ L(A).

Consider an accepting computation of the NFA A

0 on word w. The only nondeterministic
choice is the selection of the first state. This computation is accepting, therefore ends in some
accepting state q and q k. A computation from the lowest state 0 cannot end in state higher
than q, therefore the computation on w in A is also accepting. Hence also L(A0) ✓ L(A). 2

Upper bound

To obtain an upper bound on the state complexity of square of a su�x-closed language, we
will use quotients of a language and the quotient complexity of a language that always has the
same numerical value as the state complexity of that language.

Let L be a language and w any word (not neccessarily from L). Then the quotient of L by
w is the language L

w

= {u 2 ⌃⇤ | wu 2 L}. The number of distinct quotients of L is called
the quotient complexity of L and is denoted as K(L). A quotient L

w

is called accepting if
" 2 L

w

; there is a one to one correspondence between quotients of a language and states of its
minimal DFA, where accepting quotients correspond to accepting states, hence the name. This
correspondence also ensures that the number of distinct quotients of a language – the quotient
complexity of a language – is equal to its state complexity. For a more detailed explanation of
quotients and quotient complexity, see [1].

124 Krist́ına Čevorová

Let L be a su�x-closed language with K(L) = n. Since " is a su�x of all words, " 2 L if L is
non-empty. It follows that L

"

is an accepting quotient unless L is empty. Moreover, L ✓ L

2.

Remark 3.4 If L
"

is the only accepting quotient of L, then the minimal DFA accepting L has
only one accepting state coinciding with the initial state and by Proposition 2.1 we have that
L

2 = L, thus K(L2) = n.

The hierarchical structure of quotients of a su�x-closed language is neatly organized; Remark 2
in [4] states the following relationship between quotients: if v is a su�x of w, then L

w

✓ L

v

;
in particular L

w

✓ L

"

for every quotient L
w

.

This enables us to study the poset of quotients of a su�x-closed language via the defining
words. Before doing so, we interrupt with a poset-related result that will be used later.

Lemma 3.5 Let (S,⌫) be a partially ordered set with n elements. Let ↵ : S �! N be a

function counting the number of elements that are above the given element, formally defined as

↵(s) = |{r 2 S | r ⌫ s}|. Then
X

s2S

↵(s) 1

2
(n2 + n).

Proof. We will estimate the value ↵(s) for every element s 2 S. Take any minimal element
m of S. Clearly ↵(m) n. Because m is minimal, we can remove it from the poset without
changing the value of function ↵ restricted to the domain S \ {m}.

This removing procedure can be iterated until the poset is empty and note that the i-th removed
element has value of ↵ of at most n� i+1. Therefore the sum over all elements of S is at most
n+ (n� 1) + · · ·+ 2 + 1 = 1

2(n
2 + n). 2

Now we are ready to prove the key result of this section. It heavily relies on the work on the
product of su�x-closed languages in [4].

Theorem 3.6 Let n � 3 and L be a su�x-closed language with the quotient complexity n.

Then K(L2) 1
2(n

2 + n)� 1.

Proof. In the proof of [4][Theorem 3, case 2.] the authors derive an equation for a quotient
of concatenation of su�x-closed languages. Square is a concatenation of a language with itself,
so after substituting we obtain the following equation:

(L2)
w

= L

w

L [L

x

for some su�x x of w.

How many distinct quotients can we get? We fix a quotient L
w

and identify all possible pairings
with quotients L

x

. Consider the partially ordered set of quotients of L with the set inclusion.
Recall that if x is a su�x of w, then L

w

✓ L

x

. Therefore all pairable L

x

are above L

w

in this
poset. We are interested in the sum for all quotients and so our question reduces to Lemma 3.5
with the set of all quotients and ◆ as the partial order. The overall sum is 1

2(n
2 + n).

This upper bound can be slightly improved by taking the quotient acceptingness into account.
Recall that the quotient L

"

of a non-empty su�x-closed language L is always accepting. Hence,

SQUARE ON CLOSED LANGUAGES 125

if L has only one accepting quotient, it is the quotient L
"

. By Remark 3.4, for any language L
with the only accepting quotient L

"

holds sc(L2) = n. What if L has more than one accepting
quotient?

If a quotient L
w

is accepting, then by [4] we have that (L2)
w

= L

w

L, thus L
w

is associated with
only one quotient of L2. And in Lemma 3.5, for every quotient except L

"

we counted at least
two quotients ⌫ than it – the quotient itself and L

"

. Thus for languages with more than one
accepting quotients we counted at least one extra quotient. After subtracting 1, we obtain an
upper bound 1

2(n
2 + n)� 1 for such languages. Since for n � 2 holds that n 1

2(n
2 + n)� 1,

we obtain also a universal upper bound 1
2(n

2 + n)� 1. 2

Lower bound

In the previous section, we obtained the upper bound 1
2(n

2 + n)� 1 on the state complexity of
square of a su�x-closed language. To show that it is tight, we will construct a witness DFA.

Construction 3.7 Let n � 4. Let A = ({0, 1, . . . , n � 1}, {a, b, c}, �, {0}, {0, 1}) be a DFA
with the following transition function �:

�(i, a) =

8
><

>:

i, if i 2 {0, 1, n� 1};
i� 1, if i 2 {2, . . . , n� 3};
i+ 1, if i = n� 2.

�(i, b) =

(
i, if i = 0;

i� 1, otherwise.

�(i, c) =

(
i+ 1, if i 2 {0, 1, . . . , n� 3};
i, otherwise.

0 1 2 . . .

n� 3 n� 2 n� 1
c

b

a, b

a

c

a, b

c

a, b

c

a, b

c

b

a

b

c

a, c

Figure 1: A ternary witness for optimality of the upper bound 1
2(n

2+n)�1 on su�x-closed languages.

To show that DFA A from Construction 3.7 is indeed a witness, we need to verify its su�x-
closedness and that the state complexity of L(A)2 is equal to 1

2(n
2 + n)� 1. There is no need

to check the minimality of A because by Theorem 3.6, a square of a su�x-closed language with
state complexity lower than n has state complexity at most 1

2((n� 1)2 + (n� 1))� 1.
Note that A is by Lemma 3.3 su�x-closed, because accepting states 0 and 1 form a contiguous

126 Krist́ına Čevorová

interval and the function �(·, x) is non-decreasing for all letters x.
The following construction introduces a DFA recognizing L(A)2.

Construction 3.8 To construct the DFA A

2 accepting the language L(A)2, we first construct
an NFA for L(A)2 containing two structural copies of A as in Figure 2. Then we determinize
it by the standard Rabin-Scott subset construction.

q0 q1 q2 . . .

q

n�3 q

n�2 q

n�1

0 1 2 . . .

n� 3 n� 2 n� 1

c

b

a, b

a

c

a, b

c

a, b

c

a, b

c

b

a

b

c

a, c

" "

a, b

b

c

a

a, b

c

a, b

c

a, b

c

b

c

b

a

c a, c

Figure 2: An NFA for square of the su�x-closed ternary witness.

Technically, the DFA A

2 has 22n states, but not all of them are necessarily reachable. We will
show that at least 1

2(n
2 + n)� 1 of them are.

Lemma 3.9 In the DFA A

2
obtained from DFA A from Construction 3.7 by Construction 3.8,

all states from the sets {{q
i

,m, i} | 0 m < i n � 1} and {{q
i

, i} | 0 i n � 1} except

{q1, 1} are reachable.

Proof. We will divide the states into four types and show their reachability:

• {q
i

, 0, i}:

{q0, 0}
c

n�2

�! {q
n�2, n� 3, n� 2} a�! {q

n�1, n� 4, n� 1} a

n�5

�! · · ·

· · · a

n�5

�! {q
n�1, 1, n� 1} b�! {q

n�2, 0, n� 2} b

n�2�i

�! {q
i

, 0, i}

The scheme above does not show reachability of state {q
n�1, 0, n�1}, which can be reached

as
{q

n�2, 0, n� 2} a�! {q
n�1, 0, n� 1}.

• {q
i+m

, i, i + m} for 1 m n � 2 � i: Note that we do not show reachability of states
containing the state q

n�1 here.

{q
m

, 0,m} c

i

�! {q
i+m

, i, i+m}

• {q
n�1, i, n� 1}:

{q
n�1, 0, n� 1} c

i

�! {q
n�1, i, n� 1}

SQUARE ON CLOSED LANGUAGES 127

• {q
i

, i}:
{q

n�1, n� 2, n� 1} a�! {q
n�1, n� 1} b

n�1�i

�! {q
i

, i} 2

In order to obtain the lower bound, we need to show that all states reached in the previous
lemma are also distinguishable.

Lemma 3.10 Let A

2
be the DFA from the previous lemma. States of A

2
from sets

{{q
i

,m, i} | 0 m < i n� 1} and {{q
i

, i} | 0 i n� 1} can be pairwise distinguished.

Proof. Whenever we write {q
i

,m, i} in this proof, we also admit the case m = i and this is in
fact the state {q

i

, i}. We will distinguish states {q
i

,m, i} and {q
j

, n, j}. The proof splits into
two cases.

First, suppose that m 6= n so without loss of generality m < n. If m = 0 and n � 2, the former
is accepting and the latter is not, so they are not equivalent. If m = 0 and n = 1, the letter c
distinguishes them, because one of the resulting states contains the state 1 and is thus accepting,
while the second has the lowest state of at least 2 and is non-accepting. The last subcase is
1 m < n. After reading b

m�1, the computation from one of the states leads to the accepting
state {q

i�m+1, 1, i�m+ 1}, while from the other to the state {q
j�m+1, n�m+ 1, j �m+ 1},

which is non-accepting because n�m+ 1 is at least 2 and j �m+ 1 is even more.

Now suppose that n = m. Therefore i 6= j and we may suppose i < j. After reading the word
b

i we end in states {q0, 0} and {q
j�i

, 0, j � i}. Then we read the word cc; the former ends in
state {q2, 1, 2} and the latter in state {q

t

, 2, t} for some t � 2. The former is accepting, while
the latter is not. 2

Previous two lemmata help us to provide a lower bound on state complexity of square on
su�x-free languages, which is the key result of this section.

Corollary 3.11 State complexity of the language recognized by the DFA A

2
constructed from

DFA A from Construction 3.7 by Construction 3.8 is

1
2(n

2 + n)� 1.

Proof. By Lemma 3.9 the DFA A

2 has at least 1
2(n

2+n)�1 states and Lemma 3.10 shows that
all of them are pairwise inequivalent. Therefore sc(L(A2)) � 1

2(n
2 + n)� 1. But since DFA A

2

recognizes a square of a su�x-closed language recognized by an n-state DFA, by Theorem 3.6
we also have sc(L(A2)) 1

2(n
2 + n)� 1. 2

We just obtained a lower bound. Compare it with the upper bound we already had – they are
identical. So our upper bound is tight and together we get:

Theorem 3.12 For n � 2, the state complexity of the square operation on the class of su�x-

closed languages is

1
2(n

2 + n)� 1, and for n = 1 it is 1.

Proof. Theorem 3.6 shows the upper bound on complexity 1
2(n

2 + n) � 1. The DFA A from
Construction 3.7 therefore could not be non-minimal, showing that this bound is tight for n � 4.
Languages {w 2 {a, b}⇤ | bb is not a subword of w}, ⌃⇤ and {"} are the witnesses for n = 3, 2
and 1 respectively. 2

128 Krist́ına Čevorová

4. Subword-, Factor- and Unary-Closed Languages

The state complexity of concatenation is m + n� 1 both on subword-closed and factor-closed
languages. This gives an upper bound 2n�1 on the state complexity of square on these classes.
We will find a family of subword-closed languages that proves the tightness of this bound for
both types, since a subword-closed language is also factor-closed.

Lemma 4.1 For every n � 3 there exists a binary subword-closed language L such that sc(L) =
n and sc(L2) = 2n� 1.

Proof. Fix n and consider the language L of all words that can be divided into two partitions
w = w

0
a

i where every word w

0 contains at most n�3 letters a and i is an arbitrary non-negative
integer. A DFA A recognizing the language L is depicted in Figure 3.

0 1 . . .

n� 3 n� 2 n� 1
a a a a b

b b

b a

a, b

Figure 3: A binary witness for optimality of the upper bound 2n � 1 on subword- and factor-closed
languages. States from 0 to n� 3 count the number of already read a, state n� 2 enables unlimited
reading of a and n� 1 is the dead state.

Any letter can be omitted from any of the partitions – number of occurrences of the letter a
in the partition w

0 can not increase and a

i�1 is also a plausible second partition. Therefore the
language L is subword-closed. Since we have a semantical description of the language L, we
can construct a DFA A

2 as shown in Figure 4, recognizing the language L

2 directly.

0 . . . n� 3 n� 2 n� 1 . . . 2n� 4 2n� 3 2n� 2

b b a b b a a, b

a a a b a a a b

Figure 4: The DFA A2 for the square of the language of the DFA in Figure 3.

An outline why the DFA A

2 in Figure 4 indeed recognizes L2:

First we show that L(A2) ✓ L

2. Consider any accepting computation of A2. Since the sequence
of current states is nondecreasing, we can divide the computation into two parts, first containing
only states from {0, 1, . . . , n � 2} and the second only from {n � 1, n, . . . , 2n � 3}. Each part
corresponds to an accepting computation of A.

To prove equality, we also show the reverse inclusion L(A2) ◆ L

2. To prove this by a contradic-
tion, suppose there is a word w that is not accepted by A

2 but could be divided into two words

SQUARE ON CLOSED LANGUAGES 129

w1, w2 from L such that w = w1w2. Consider the non-accepting computation of A2 on w – it
ends in the state 2n� 2. Let q be the state reached after reading of w1 in A

2. Either q > n� 2
and then w1 cannot be accepted by A, or q n � 2 and then w2 cannot be accepted by A.
That is a contradiction with assumption that both w1 and w2 are from L.

To show that A

2 is minimal, consider the word d = a

n�2
ba

n�2
b and let d

i

be the su�x
of d containing the last 2n � 2 � i letters. Let i and j be two distinct states of A2, with-
out loss of generality i < j. Word d

j

distinguishes these states because computation on
d

j

from state i ends in some accepting state, while computation from state j ends in the
sole non-accepting state 2n � 2. Therefore the DFA A

2 is minimal and sc(L2) = 2n � 1.
Since sc(L2) � 2(n�1)�2, the subword-closed language L cannot be recognized by fewer than
n states, therefore sc(L) = n.

The language L is therefore a subword-closed language with state complexity n and state
complexity of square of L is 2n� 1. 2

For unary languages, terms su�x, factor, and subword coincide. The only unary-closed lan-
guage with state complexity n is {ai | i n�2}. The square of this language is {ai | i 2n�4}
and its state complexity is 2n� 2.

5. Conclusions

We studied the state complexity of the operation square on various types of closed languages.
Results on concatenation in [4] provide an instant upper bound but except for unary languages,
the witnesses of tightness provided by the authors cannot be reused for concatenation of a
language with itself. Yet poorer upper bound can be obtained from the results on square on
regular languages in [9].

We showed that the bound from concatenation is tight for factor-, subword- and unary-closed
languages. For su�x-closed languages the bound is only asymptotically tight with factor 1

2 . We
provided a new upper bound and proved its optimality on a ternary alphabet. Tightness on a
binary alphabet is an open question, but computations suggest that this upper bound cannot
be attained by a binary language. Our results solve the open problems in [5]. We also obtained
a structural su�cient condition on DFAs recognizing su�x-closed languages.

square |
P

| concatenation |
P

|

closed

unary 2n� 2 m+ n� 2
su�x 1

2(n
2 + n)� 1 3 (m� 1)n+ 1 3

prefix (n+ 4)2n�3 � 1 2 (m+ 1)2n�1 3
factor, subword 2n� 1 2 m+ n� 1 2

regular
unary 2n� 1 mn if (m,n) = 1
general n2n � 2n�1 2 m2n � 2n�1 2

Table 1: Comparison of state complexity of square and concatenation on closed and regular languages.

130 Krist́ına Čevorová

References

[1] J. A. BRZOZOWSKI, Quotient Complexity of Regular Languages. Journal of Automata, Lan-
guages and Combinatorics 15 (2010) 1/2, 71–89.

[2] J. A. BRZOZOWSKI, G. JIRÁSKOVÁ, B. LI, Quotient Complexity of Ideal Languages. Theo-
retical Computer Science 470 (2013), 36–52.
http://dx.doi.org/10.1016/j.tcs.2012.10.055

[3] J. A. BRZOZOWSKI, G. JIRÁSKOVÁ, B. LI, J. SMITH, Quotient Complexity of Bifix-,
Factor-, and Subword-Free Regular Languages. In: P. DÖMÖSI, S. IVÁN (eds.), AFL. AFL
2011, 2011, 123–137.
http://dblp.uni-trier.de/db/conf/afl/afl2011.html#BrzozowskiJLS11

[4] J. A. BRZOZOWSKI, G. JIRÁSKOVÁ, C. ZOU, Quotient Complexity of Closed Languages.
Theory of Computing Systems 54 (2014) 2, 277–292.
http://dx.doi.org/10.1007/s00224-013-9515-7

[5] K. ČEVOROVÁ, Square on Ideal, Closed and Free Languages. In: J. SHALLIT, A. OKHOTIN
(eds.), Descriptional Complexity of Formal Systems - 17th International Workshop, DCFS 2015,
Waterloo, ON, Canada, June 25-27, 2015. Proceedings. Lecture Notes in Computer Science 9118,
Springer, 2015, 70–80.
http://dx.doi.org/10.1007/978-3-319-19225-3_6

[6] J.-Y. KAO, N. RAMPERSAD, J. SHALLIT, On NFAs Where All States are Final, Initial, or
Both. Theoretical Computer Science 410 (2009) 4749, 5010 – 5021.
http://www.sciencedirect.com/science/article/pii/S0304397509005477

[7] A. N. MASLOV, Estimates of the Number of States of Finite Automata. Doklady Akademii
Nauk SSSR 194 (1970), 1266–1268. English translation in Soviet Mathematics Doklady 11 (1970)
1373–1375.

[8] B. G. MIRKIN, On Dual Automata. Kibernetica 2 (1966) 1, 7–10. English translation in Cyber-
netics 2, 69 (1970).

[9] N. RAMPERSAD, The State Complexity of L2 and Lk. Information Processing Letters 98 (2006)
6, 231–234.

[10] M. SIPSER, Introduction to the Theory of Computation. Second edition, Course Technology,
2006.

[11] S. YU, Q. ZHUANG, K. SALOMAA, The State Complexities of Some Basic Operations on
Regular Languages. Theoretical Computer Science 125 (1994) 2, 315 – 328.
http://www.sciencedirect.com/science/article/pii/030439759200011F

http://dx.doi.org/10.1016/j.tcs.2012.10.055
http://dblp.uni-trier.de/db/conf/afl/afl2011.html#BrzozowskiJLS11
http://dx.doi.org/10.1007/s00224-013-9515-7
http://dx.doi.org/10.1007/978-3-319-19225-3_6
http://www.sciencedirect.com/science/article/pii/S0304397509005477
http://www.sciencedirect.com/science/article/pii/030439759200011F

