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Abstract. We study nondeterministic state complexity of the comple-
ment operation on the classes of prefix-free, suffix-free, factor-free and
subword-free languages and on the class of ideal languages. For the cases
prefix-free and suffix-free we improve the lower bound, and improve the
upper bound for suffix-free languages in the binary case. In all other
cases, we find tight bounds for sufficient alphabet sizes.

1 Introduction

The complement of a formal language L over an alphabet Σ is the language
Lc = Σ∗ \ L, where Σ∗ is the set of all strings over an alphabet Σ. The comple-
mentation is an easy operation on regular languages represented by deterministic
finite automata (DFAs) since to get a DFA for the complement of a regular lan-
guage, it is enough to interchange the final and non-final states in a DFA for
this language.

On the other hand, complementation on regular languages represented by
nondeterministic finite automata (NFAs) is an expensive task. First, we have
to apply the subset construction to a given NFA, and only after that, we may
interchange the final and non-final states. This gives an upper bound 2n.

Sakoda and Sipser [9] gave an example of languages over a growing alpha-
bet size meeting this upper bound on the nondeterministic state complexity
of complementation. Birget claimed the result for a three-letter alphabet [1],
but later corrected this to a four-letter alphabet. Holzer and Kutrib [4] proved
the lower bound 2n−2 for a binary n-state NFA language. Finally, a binary n-
state NFA language meeting the upper bound 2n was described by Jirásková
in [5]. In the unary case, the complexity of complementation is known to be in
eΘ(

√
n ln(n)) [4,5].

Jirásková and Mlynárčik [7] gave tight bounds in case of prefix- and suffix-
free languages over a ternary alphabet and for binary languages gave the lower
bound F (n − 2) + 1, where F (n) is the Landau function, and F (n) is in the
class eθ(

√
n ln(n)). The upper bound for binary alphabet was improved to 2n−1 −

2n−3 + 1, but only in the prefix-free case. The suffix-free case remained open.
In this paper, we investigate the complementation operation on prefix-free

and suffix-free binary languages, where we give significantly better lower bounds
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2�n
2 �−1 and give an improved upper bound for the suffix-free language 2n−1 −

2n−3+2. We also deal with factor-free and subword-free languages, where we give
tight bounds for proper alphabet. For the factor-free case over binary alphabets
we get a result similar as to that mentioned above. In the second part of the
paper we deal with complementation ideal languages, including right ideals, left
ideals, two-sided ideals, and all-sided ideals. In the first three cases we give
a tight bound in binary case, and in the last case the tight bound is for an
exponentially-growing alphabet.

2 Preliminaries

Recall that a language is prefix-free if it does not contain two distinct strings,
one of which is a prefix of the other. The suffix-free languages are defined in a
similar way.

To prove the minimality of nondeterministic finite automata, we use a fooling
set lower-bound technique [1,8].

Definition 1. A set of pairs of strings {(x1, y1), (x2, y2), . . . , (xn, yn)} is called
a fooling set for a language L if for all i, j in {1, 2, . . . , n},
(F1) xiyi ∈ L, and
(F2) if i �= j, then xiyj /∈ L or xjyi /∈ L.

Lemma 2 ([1,8]). Let F be a fooling set for a language L. Then every NFA
(with multiple initial states) for the language L has at least |F| states. ��
Although the difference between the size of fooling set and the size of minimal
NFA can be large, we successfully use the fooling set technique throughout the
paper [6].

Landau’s function is frequently needed, and is defined as follows:
Let n be a positive integer. Then F (n) = max{lcm(x1, x2, . . . , xk)|x1 + x2 +

· · · + xk = n}. The function F (n) is in the class eθ(
√

n ln(n)) (Landau, 1903).

3 Free Languages

Let G be the language accepted by the NFA over {a, b} shown in Fig. 1 with
n − 1 states. Let L = cG. The language L is a suffix-free language over {a, b, c}
recognized by an n-state NFA A, shown in Fig. 2 and nsc(Lc) ≥ 2n−1 [7]. Now
let us define a homomorphism h as follows: h(c) = 00, h(a) = 10, h(b) = 11
(used in [2]). After applying h on the language L, we have a binary language
K = h(L) over {0, 1}.

Lemma 3. The language K is a suffix-free language.

Proof. Every string in L contains exactly one symbol c at the beginning, so every
string in K begins with the string 00 and this substring does not appear later
in string. If there is a string w = uv and u �= ε, then v does not contain 00 and
therefore v �∈ K. So K is suffix-free. ��
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Fig. 1. An NFA of a binary regular language G with nsc(G) = 2n−1
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Fig. 2. An NFA of a ternary suffix-free regular language L with nsc(G) = 2n−1

Now let us define NFA A′ for the language K. We use the description of automa-
ton A for original language L. Let A = (Q, {a, b, c}, δ, 0, {n − 1}) (NFA shown
in Fig. 2). The idea is replace every transition q

a−→ qa by adding a new state q′

and two transitions q
1−→ q′ 0−→ qa, and similarly for the symbol b q

1−→ q′ 1−→ qb

and transition 0 c−→ 1 we replace by adding 0′ and two transitions 0 0−→ 0′ 0−→ 1.

Lemma 4. The NFA A′ defined above recognizes the language K. ��
Lemma 5. The NFA A′ is a minimal NFA for the language K. ��
Lemma 6. Let n ≥ 3 and K be the binary language defined above.
Then nsc(Kc) ≥ 2n−1.

Proof. As shown in [7, Lemma 5], the set F = {(cxS , yS) | S ⊆ {1, 2, . . . , n − 1}}
is a fooling set for Lc. Let us define F ′ = {(h(cxS), h(yS)) | S ⊆ {1, 2, . . . , n−1}}.
Let us show that the F ′ is a fooling set for Kc.

(F1) For every pair (h(cxS), h(yS)), we have cxSyS ∈ Lc, so cxSyS �∈ L and
since homomorphism h is a bijection, we have h(cxSyS) �∈ K so (h(cxS),
h(yS)) ∈ Kc.

(F2) Let (h(cxS), h(yS)), (h(cxT ), h(yT )) be two distinct pairs. Without loss
of generality, let cxSyT �∈ Lc. So cxSyT ∈ L, then h(cxSyT ) ∈ K, so
h(cxSyT ) �∈ Kc.

Hence F ′ is a fooling set for Kc. Since |F ′| = 2n−1, nsc(Kc) ≥ 2n−1. ��
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Proposition 7. Let L be a suffix-free language L over alphabet Σ. Then for
every x ∈ Σ the language R = xL is suffix-free. ��
Above we found a binary language with an even nondeterministic state com-
plexity, and now we want to find a binary language with an odd one. Now let us
consider the language K1 = 0K, where K is described above. By Proposition 7,
K1 is a suffix-free language.

Lemma 8. Let K and K1 be binary suffix-free languages mentioned above. Then
nsc(K1) = 2n + 1.

Proof. Let us consider the automaton A′ for the language K. Let us construct
an automaton A′′ from A′ by simply adding a new state 0′ and transition from
0′ to the original initial state 0 on symbol 0. State 0′ becomes a new initial state.

Now let us consider the minimality of A′′. Let F be a fooling set for K. Let
us construct F ′ from F as follows: F ′ = {(0u, v) | (u, v) ∈ F} ∪ {ε, 000(10)n−2}.

The set F ′ is a fooling set for K1 and |F ′| = 2n + 1, so nsc(K1) = 2n + 1. ��
Lemma 9. Let n ≥ 3 and K1 be the binary language defined above. Then
nsc(Kc

1) ≥ 2n−1.

Proof. Let F be a fooling set for language Kc (see Lemma 6). Let us construct
the set F ′ = {(0u, v) | (u, v) ∈ F}. Let us show that F ′ is a fooling set for Kc

1.

(F1) If uv ∈ Kc, then uv �∈ K, then also 0uv �∈ K1, so 0uv ∈ Kc
1.

(F2) If (u, v), (x, y) ∈ F and without loss of generality, uy �∈ Kc, so uy ∈ K.
Then 0uy ∈ K1 and 0uy �∈ Kc

1.

Hence F ′ is a fooling set for Kc
1. Since |F ′| = 2n−1, nsc(Kc

1) ≥ 2n−1. ��
We summarize our results in the following theorem.

Theorem 10. Let n ≥ 6. There is a binary suffix-free language L such that
nsc(L) = n and nsc(Lc) ≥ 2�n

2 �−1.

Now we consider an upper bound. Let us recall the following result.

Lemma 11. Let n ≥ 12. Let L be a binary prefix-free language with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1 − 2n−3 + 1. [7, Lemma 9]

Notice that the proof at [7, Lemma 9] also works for NFAs with multiple initial
states. We are also going to use it for suffix-free languages.

Theorem 12. Let n ≥ 12. Let L be a binary suffix-free language with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1 − 2n−3 + 2.

Proof. After reversing an NFA for L, we obtain an n-state NFA (possibly with
multiple initial states) for a prefix-free language LR. By Lemma 11, nsc((LR)c) ≤
2n−1 −2n−3 +1. Since (LR)c = (Lc)R, we have nsc((Lc)R) ≤ 2n−1 −2n−3 +1. It
follows that (Lc)R is accepted by an NFA N which has at most 2n−1 − 2n−3 + 1
states. Now we reverse the NFA N , and get a NFA NR, possibly with multiple
initial states. By adding one more state, we get an NFA for Lc with at most
2n−1 − 2n−3 + 2 states and with a unique initial state. ��
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Similarly as in the case of suffix-free language, we can apply the same homomor-
phism h on the ternary prefix-free language L from [7, Lemma 3]. We only have
to be careful with the proof of the prefix-free property of the language h(L).
Now every string in h(L) ends with 00. The only proper prefix of a string in
h(L) which ends with 00 has an odd length. But such a string does not belong
to h(L). Therefore h(L) is prefix-free.

We can construct NFA A for h(L) with 2n states similarly as in the suffix-free
case. The main difference between the automaton for the case of a binary suffix-
free language, and for a binary prefix-free language is the final state. Similarly as
in suffix-free case we can prove that A is minimal and therefore nsc(h(L)) = 2n.
Finally, we use a similar approach to find a binary prefix-free language with an
odd number of states, such that we add a new state n′ and the transition from
original final state n to n′ on symbol 0. State n′ become a new final state. Such
a language is still prefix-free.

Hence we get the following result for binary prefix-free languages.
When we use the result from Lemma 11 we can state the following result.

Theorem 13 (ComplementonBinaryprefix-free, suffix-free languages).
Let n ≥ 12. Let L be a binary prefix-free or suffix free language with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1 − 2n−3 + 2. The lower bound is 2�n

2 �−1.

In the paper [7, Lemma 8] we presented a binary suffix-free and prefix-free lan-
guage L with nsc(L) ≤ n, such that every NFA for its complement requires at
least F (n−2)+1 states, where F (n) is the Landau function. The function F (n) is
in 2Θ(

√
n log(n)); therefore limn→∞ F (n − 2) + 1/2� n

2 �−1 = 0. So the lower bound
in our Theorem 13 is significantly higher.

After investigation of prefix and suffix free languages we will investigate other
free classes of languages: factor-free and subword-free languages. First we present
a lemma which we use in our next considerations.

Lemma 14. Let L be a language such that ε ∈ L. Let u and v be strings, and
let u /∈ L. Let A be a set of pairs of strings such that the sets A ∪ {(ε, v)} and
A ∪ {(u, v)} are fooling sets for L. Then nsc(L) ≥ |A| + 2. ��
Let w be a string. We say that a string v is a factor of the w iff there are strings
x, v, y, such that w = xvy. Moreover, if xy �= ε, we say that v is a proper factor.
We say a language L is factor-free iff there are no two strings u, v in L, such that
u is a proper factor of v.

Theorem 15. Let n ≥ 3. Let L be a factor-free language over an alphabet Σ
such that nsc(L) = n. Then nsc(Lc) ≤ 2n−2+1, and the bound is tight if |Σ| ≥ 3.

Proof. We first prove the upper bound. Let A be an n-state NFA for L. Since
L is factor-free, it is suffix-free and also prefix-free. It follows that no transition
goes to the initial state of A, and all the final states in the subset automaton
are equivalent. Hence the subset automaton has at most 2n−2 + 2 reachable and
pairwise distinguishable states. After exchanging the final and non-final states,
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we get a DFA for Lc of at most 2n−2+2 states. In the same way as for prefix-free
languages in [7, Lemma 2], we can use a nondeterminism to save one state. This
gives the upper bound 2n−2 + 1.

To prove tightness, consider the binary language G accepted by the (n − 2)-
state NFA N shown in Fig. 1. Let L = c ·G · c. Then L is accepted by an n-state
NFA A shown in Fig. 3.

Let F = {(xS , yS) | S ⊆ {1, 2, . . . , n−2}} be a fooling set for the language Gc

[5, Theorem 5]. Notice that the strings xS and yS have the following properties:

(1) by xS , the initial state goes to the set S;
(2) the string yS is rejected by N from every state in S and it is accepted by N

from every state in {1, 2, . . . , n − 2} \ S.

Then F ′ = {(cxS , ySc) | S ⊆ {1, 2, . . . , n − 2}} is a fooling set for Lc. Let
A = {(cxS , ySc) | S ⊆ {1, 2, . . . , n − 2} and S �= ∅}, v = y∅ · c, u = can−3c. Let
us show that Lc, A, u and v satisfy the conditions of Lemma14.

First, we have ε ∈ Lc and u /∈ Lc. Next, the string ε · y∅ · c is in Lc since
it does not begin with c. The string uv = can−3c · y∅c is in Lc since it contains
three c’s. The set A is a fooling set for Lc since A ⊆ F ′. Notice that the string
y∅c is accepted by A from each state in {1, 2, . . . , n − 2} since y∅ is accepted by
N from each state in {1, 2, . . . , n − 2} [5, Theorem 5]. Thus, if S is non-empty,
then cxSy∅c /∈ Lc since by cxS the NFA A reaches the non-empty set S, from
which it accepts y∅c. It follows that the conditions in Lemma14 are satisfied,
and therefore we have nsc(Lc) ≥ |A| + 2 = 2n−2 + 1. This completes our proof.

��

a,b a,b a,b a,b

b

b

b

c
0 1 2 n−3 n−2 n−1

b

b

b

c

Fig. 3. An NFA of a ternary factor-free language L with nsc(Lc) = 2n−2 + 1

It remains to find the bounds for the binary case.
Let us start with the upper bound. Let L be a binary factor-free language

with nsc(L) = n, accepted by an n-state NFA N . The NFA N has to have
properties as an automaton for a prefix- or suffix-free language, so there is just
one final state with no outgoing transition and no transition goes to the initial
state. We obtain a similar lemma as in the case of binary prefix-free languages
in [7, Lemma 9].

Lemma 16. There is a positive integer n0 such that for every n > n0, if L is a
binary factor-free language with nsc(L) = n then nsc(Lc) ≤ 2n−2 − 2n−4 + 1.
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For the lower bound, let us consider the language L = cGc, where G is accepted
by the (n − 2)-state NFA shown in Fig. 1. Then L is accepted by an n-state
NFA A shown in Fig. 3. By a similar strategy as in the binary case of prefix- or
suffix-free language, we apply the homomorphism h on the language L. Every
string w in h(L) has the form 001u1100 or 001u1000 and the string u does not
contain the string 00. So in the first case, any proper factor belonging to h(L)
does not exist. In the second case, every proper factor belonging to h(L) has to
have the form 001u100 but it has an odd length, and since every string in h(L)
has an even length, such a string is not in h(L). So h(L) is factor-free. We get
an NFA A for h(L) in a similar way as in the suffix-free or prefix-free cases. The
NFA A is minimal and has 2n states, so nsc(h(L)) = 2n.

We deal with odd values of n similarly as before. Thus we get the following
result.

Lemma 17. Let n ≥ 8. There is a binary factor-free language L such that
nsc(L) = n and nsc(Lc) ≥ Ω(2

n
2 ).

We summarize our results about binary factor-free languages in the following
theorem.

Theorem 18. There is a positive integer n0 such that for every n > n0, if L is
a binary factor-free language with nsc(L) = n then nsc(Lc) ≤ 2n−2 − 2n−4 + 1.
The lower bound is Ω(2

n
2 ).

Let w be a string such that w = u0v1u1v2u2 · · · vmum, where every ui and uj

are strings in Σ∗. We say that the string v = v1v2 · · · vm is a subword of the w.
Moreover if v �= w, we say that v is a proper subword.

For example let w = abbacb. Strings abac, bbb, bc are subwords of w, but the
string aca is not a subword of w.

Let L be a language. We say L is subword-free iff there are no two strings
u, v in L such that u is a proper subword of v.

Proposition 19. Let L be a language. If L is subword-free, then L is finite.

Theorem 20. Let n ≥ 4. Let L be a subword-free language over an alphabet
Σ such that nsc(L) = n. Then nsc(L) ≤ 2n−2 + 1, and the bound is tight if
|Σ| ≥ 2n−2.

Proof. The upper bound is the same as for factor-free languages. To prove tight-
ness, let Σ = {aS | S ⊆ {1, 2, . . . , n − 2} be an alphabet with 2n−2 symbols.

Consider the language L accepted by the NFA A = (Q,Σ, δ, 0, {n − 1}),
where Q = {0, 1, . . . , n − 1}, and the transition function δ is defined as follows:
for each symbol aS in Σ, δ(0, aS) = S; δ(i, aS) = ∅ if 1 ≤ i ≤ n − 2 and i ∈ S;
δ(i, aS) = {n − 1} if 1 ≤ i ≤ n − 2 and i /∈ S; and δ(n − 1, aS) = ∅.
Notice that each string in L is of length 2, so L is subword-free. Consider the
set of pairs F = {(aS , aS) | S ⊆ {1, 2, . . . , n − 2}}. Let us show that the set F is
a fooling set for Lc.
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(F1) For each S, the string aSaS is in Lc, since A goes to S by aS and aS is
rejected by A from each state in S.

(F2) Let S �= T . Then, without loss of generality, there is a state q in {1, 2, . . . , n−
2} such that q ∈ S and q /∈ T . Then aSaT in not in Lc since A goes to the
state q by aS , and then to the accepting state n − 1 by aT .

Hence F is a fooling set for Lc.
Let A = {(aS , aS) | ∅ �= S ⊆ {1, 2, . . . , n − 2}}, u = a{1}a{2}, v = a∅. Let

us show that Lc, A, u, and v satisfy the condition in Lemma14. First, we have
ε ∈ Lc and u /∈ Lc. Next, we have ε · v ∈ Lc since it is a one-symbol string,
and uv ∈ Lc since it is of length 3. Finally, notice that a∅ is accepted from each
state in {1, 2, . . . , n − 2}. It follows that if S �= ∅, then aSa∅ is accepted by A,
so it is not in Lc. Hence A ∪ {(ε, v)} and A ∪ {(u, v)} are fooling sets for Lc. By
Lemma 14, we have nsc(Lc) ≥ 2n−2 + 1. ��
Let us now consider the case for unary alphabets. An arbitrary free language L
can contain only one string. We have L = {an} for some fixed natural number
n ≥ 0. The complement of L consists of every string with length different from n.
We can extend the theorem in [7, Theorem 4] by a more general theorem about
every free language.

Theorem 21. Let L be a unary prefix-free or suffix-free or factor-free or subword-
free language with nsc(L) = n. Then nsc(Lc) = Θ(

√
n).

Proof. The proof is the same as in [7, Lemma 6]. ��

4 Complement on Ideal Languages

Definition 22. Let L be a language over an alphabet Σ. Then we have four
classes of ideals.

(1) The language L is a right ideal iff L = LΣ∗.
(2) The language L is a left ideal iff L = Σ∗L.
(3) The language L is two-sided ideal iff L = Σ∗LΣ∗.
(4) The language L is all-sided ideal iff L = L Σ∗, where operation is shuffle

operation.

The next proposition describes the form of a minimal NFA for some right ideal
language.

Proposition 23. Let L be a language over Σ and let A be a minimal NFA such
that L(A) = L. The language L is a right ideal if and only if A contains just
one final state with a loop on every letter of alphabet Σ.

Theorem 24. Let n ≥ 3. Let L be a right ideal over an alphabet Σ such that
nsc(L) = n. Then nsc(L) ≤ 2n−1, and the bound is tight if |Σ| ≥ 2.
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Proof. Let A = (Q,Σ, δ, s, F ) be a minimal n-state NFA for a right ideal L.
Then by Proposition 23 the NFA A has a unique final state f which goes to
itself on every input symbol; that is, we have δ(f, a) = {f} for each a in Σ. It
follows that in the subset automaton of the NFA A, all final states are equivalent
since they accept all the strings in Σ∗. Hence the subset automaton has at most
2n−1+1 reachable and pairwise distinguishable states. By interchanging the final
and non-final states, we get a DFA B for Lc. The DFA B has a dead state. After
removing the dead state, we get an NFA N for Lc of at most 2n−1 states.

To prove tightness, let L = G · b · (a + b)∗, where G is the language accepted
by the binary (n− 1)-state NFA N shown in Fig. 1. Then L is a right-ideal. The
NFA N is minimal because F = {(ai, an−2−ib) | 0 ≤ i ≤ n − 2} ∪ {(an−2b, ε)} is
a fooling set for L.

Let F = {(uS , vS) | S ⊆ {1, 2, . . . , n−1}} be a fooling set for Gc as described
in [5, Theorem 5]. We prove that the set F ′ = {(uS , vS ·b) | S ⊆ {1, 2, . . . , n−1}}
is a fooling set for Lc.

(F1) For each S, the string uSvS is in Gc, so it is not accepted by N . It follows
that the string uSvSb is not accepted by A. Thus uSvSb is in Lc.

(F2) Let S �= T . Then uSvT /∈ Gc or uT vS /∈ Gc. In the former case, the string
uSvT is accepted by the NFA N , and therefore the string uSvT b is accepted
by A. Hence uSvT b /∈ Lc. The latter case is symmetric.

Hence F ′ is a fooling set for Lc, which means that nsc(L) = 2n−1. ��
The next proposition describes the form of a minimal NFA for some left ideal
languages.

Proposition 25. Let L be a language over Σ and let A be a minimal NFA such
that L(A) = L. The language L is a left ideal if and only if there is a minimal
NFA A in which the initial state has a loop on every input.

Theorem 26. Let n ≥ 3. Let L be a left ideal over an alphabet Σ such that
nsc(L) = n. Then nsc(L) ≤ 2n−1, and the bound is tight if |Σ| ≥ 2.

Proof. Let A = (Q,Σ, δ, s, F ) be a minimal n-state NFA for a left ideal L. By
Proposition 25 we can add a loop on the initial state s on every input symbol,
we get an NFA N which is equivalent to A. Since the initial state s of N goes to
itself on every input symbol, each reachable subset of the subset automaton of
N contains the initial state s, so the number of all reachable subsets is at most
2n−1.

To prove tightness, let the language L be accepted by NFA A in Fig. 4.
Then L is a binary left ideal by Proposition 25. The NFA A is minimal because
F = {(ai, an−1−i) | 0 ≤ i ≤ n − 1} is a fooling set for L.

We are going to consider Lc. Let F = {(uS , vS) | S ⊆ {1, 2, . . . , n − 1}},
where string uS is such that the state 1 goes to the set S after reading uS in
NFA A and the string vS is such that it is rejected by the NFA from every state
p ∈ S and it is accepted by the NFA from every state p /∈ S for any subset S.

Now, we prove that the set F ′ = {(a · uS , vS) | S ⊆ {1, 2, . . . , n − 1}} is a
fooling set for Lc.
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a,b a,b a,b a,b

Fig. 4. An NFA of a binary left ideal language L with nsc(Lc) = 2n−1

(F1) For each S, the string uSvS is not accepted from state 1, so it follows that
the string auSvS is not accepted by A. Thus auSvS is in Lc.

(F2) Let S �= T . Then uSvT /∈ Lc or uT vS /∈ Lc. Let uSvT be accepted by the
NFA A, and therefore the string auSvT is accepted by A. Hence auSvT /∈
Lc. The latter case is symmetric.

Hence F ′ is a fooling set for Lc, which means that nsc(L) = 2n−1. ��

Proposition 27. Let L be a language over Σ and let A be a minimal NFA such
that L(A) = L. The language L is a two-sided ideal if and only if there is a
minimal NFA A with an initial state with a loop on every input and just one
final state with a loop on every input.

Proof. A language L is two-sided ideal if and only if it is left ideal and right
ideal; therefore, the proposition follows from Propositions 23, 25. ��
Theorem 28. Let n ≥ 3. Let L be a two-sided ideal over an alphabet Σ such
that nsc(L) = n. Then nsc(L) ≤ 2n−2, and the bound is tight if |Σ| ≥ 2.

Proposition 29. Let L be a language over Σ. The language L is an all-sided
ideal if and only if there is a minimal NFA A with just one final state and with
a loop in every state on every letter of an alphabet Σ, such that L(A) = L.

We can notice that it is not necessary to have a loop for every state on every input
symbol. For example a minimal NFA for the binary language L with strings of
length at least 3 does not need to have loops on every states except the final one.

Theorem 30. Let n ≥ 3. Let L be an all-sided ideal over an alphabet Σ such
that nsc(L) = n. Then nsc(Lc) ≤ 2n−2, and the bound is tight if |Σ| ≥ 2n−2.

Proof. The upper bound is the same as for two-sided ideals. To prove tightness,
let Σ = {aS | S ⊆ {1, 2, . . . , n−2}} be an alphabet with 2n−2 symbols. Consider
the language L accepted by the NFA A = ({0, 1, . . . , n − 1}, Σ, δ, 0, {n − 1})
where for each symbol aS , we have δ(0, aS) = {0} ∪ S; δ(i, aS) = {i} if i ∈ S;
δ(i, aS) = {i, n − 1} if i ∈ {1, 2, . . . , n − 2} \ S; δ(n − 1, aS) = {n − 1}.

Since in each state of A, we have a loop on every input symbol, the language
L is an all-sided ideal by Proposition 29.

Let F = {(aS , aS) | S ⊆ {1, 2, . . . , n − 2}}. Let us show that F is a fooling
set for Lc.
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(F1) For each S, the NFA A reaches the set {0} ∪ S by aS . By the next aS , the
NFA A remains in the set {0} ∪ S, and rejects. Thus aSaS ∈ Lc.

(F2) Let S and T be two subsets of {1, 2, . . . , n − 2} with S �= T . Without loss
of generality, there is a state i with i ∈ S and i /∈ T . By aS , the NFA A
goes to {0} ∪ S. Since i ∈ S, the NFA A goes to i by aS . Then it goes to
the state n − 1 by aT since i /∈ T . Hence A accepts aSaT , and therefore
aSaT /∈ Lc.

Thus F is a fooling set for Lc. It follows that nsc(Lc) ≥ 2n−2. ��
Let us consider a unary alphabet. Every type of ideal language has the form
L = {ak | k ≥ n}, where n is some fixed natural number. Thus, every minimal
NFA A for every type of an ideal language L has a tail of n − 1 states ending
by final state with a loop (see the example in Fig. 5). Such an automaton A is
a DFA, so after exchanging of finality and nonfinality of states we get the DFA
A′ with every state final except one, which is the dead state. After leaving the
dead state we get the NFA B with n − 1 states accepting a complement Lc.

These considerations can be summarized in the following theorem.

Theorem 31. Let L be ideal over an unary alphabet, such that nsc(L) = n.
Then nsc(Lc) = n − 1.

a a a

a

a
0 1 n−1 n

Fig. 5. Minimal NFA for language ak, k ≥ n

5 Conclusions

Let us summarize our results. Let L be a language such that nsc(L) = n.
Firstly, let us review the case for alphabets of size 3 or more. For the suffix-

free and prefix-free cases the results come from [7]. The bounds 2n−1 are tight in
both cases. For the case of factor-free, the bounds 2n−2+1 are tight. For the case
of subword-free the upper bound is 2n−2 + 1 and it is tight when |Σ| ≥ 2n−2.

Secondly, let us review the case for binary free languages. For suffix-free
languages, the lower bound is 2�n

2 �−1 and upper bound is 2n−1 − 2n−3 + 2, for
prefix-free languages the lower bound is the same as in case of suffix-free and the
upper bound [7, Lemma 9] is 2n−1 − 2n−3 + 1, for factor-free the lower bound is
Ω(2

n
2 ) and the upper bound is 2n−2 − 2n−4 + 1.

For right and left ideals the bounds 2n−1 are tight. For two-sided ideals the
bounds 2n−2 are tight. For all-sided languages the upper bound is 2n−2 and it
is tight when |Σ| ≥ 2n−2.

Finally, we will discuss the case for unary alphabets. In this case, the situation
is the same for every class is : the lower bound is Θ(

√
n) and the upper bound

is Θ(
√

n).
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For ideals, the situation is the same: nsc(Lc) = n − 1.
The possibility of improving the bounds for binary cases for prefix-, suffix- and

factor-free languages remains open. Also in the case for subword-free languages it
remains to solve the binary case. Also the possibility of finding non-exponential
alphabets for witness languages for the lower bound in the case of subword-free
languages remains open. The possibility of finding non-exponential alphabet for
witness language for lower bound in case of all-sided ideal languages remains open.
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