
Tight Bounds for Cut-Operations
on Deterministic Finite Automata

Frank Drewes1, Markus Holzer2(B), Sebastian Jakobi2,
and Brink van der Merwe3

1 Department of Computing Science, Ume̊a University, Ume̊a, Sweden
drewes@cs.umu.se

2 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{holzer,sebastian.jakobi}@informatik.uni-giessen.de

3 Department of Mathematical Sciences, Computer Science Division,
University of Stellenbosch, Stellenbosch, South Africa

abvdm@cs.sun.ac.za

Abstract. We investigate the state complexity of the cut and iterated
cut operation for deterministic finite automata (DFAs), answering an
open question stated in [M. Berglund, et al.: Cuts in regular expres-
sions. In Proc. DLT, LNCS 7907, 2011]. These operations can be seen
as an alternative to ordinary concatenation and Kleene star modelling
leftmost maximal string matching. We show that the cut operation
has a matching upper and lower bound of (n − 1) · m + n states on
DFAs accepting the cut of two individual languages that are accepted
by n- and m-state DFAs, respectively. In the unary case we obtain
max(2n−1, m+n−2) states as a tight bound. For accepting the iterated
cut of a language accepted by an n-state DFA we find a matching bound
of 1 + (n + 1) · F(1, n + 2, −n + 2;n + 1 | −1) states on DFAs, where F
refers to the generalized hypergeometric function. This bound is in the
order of magnitude Θ((n − 1)!). Finally, the bound drops to 2n − 1 for
unary DFAs accepting the iterated cut of an n-state DFA and thus is
similar to the bound for the cut operation on unary DFAs.

1 Introduction

The equivalence of finite automata and regular expressions is well known, and
appropriate constructions for the conversion between these representations of
regular languages can be found in almost all monographs on automata and for-
mal languages. Although the concepts are the same, the implementation of reg-
ular expression matching engines may result in fundamentally different finite
state devices. Besides using deterministic or nondeterministic finite automata
as string matchers, the main difference is their performance characteristics and
operational semantics when performing the string matching of the input word
against the constructed matcher. Recently, the behaviour of nondeterministic
matchers was investigated in detail with respect to exponential matching time,
also referred to as catastrophic backtracking [2,6]. One possibility to control the

c© Springer International Publishing Switzerland 2015
J. Durand-Lose and B. Nagy (Eds.): MCU 2015, LNCS 9288, pp. 45–60, 2015.
DOI: 10.1007/978-3-319-23111-2 4

46 F. Drewes et al.

work-flow of the matcher is to use operations that prevent backtracking, simi-
larly as in the logic programming language Prolog [3]. In fact, language oper-
ations with such a behaviour were recently introduced in [1] as an alternative
to ordinary concatenation and Kleene star modelling leftmost maximal string
matching. In order to explain the behaviour of these new regularity preserving
operations consider the following pseudo-code example, which is literally taken
from [1]—and assume that match regex matches the longest prefix possible:

match = match_regex("(a*b)*", s);
if(match != null) then

match = match_regex("ab*c", match.string_remainder);
if(match != null) then

return match.string_remainder == "";
return false;

For the string s = abac, this program first matches R = (a∗b)∗ to the sub-string ab,
leavingacas a remainder,which ismatchedbyS = ab∗c, returning the empty string
as a remainder, indicating a positive match. On the other hand, for s = aababc in
an execution of the program above, regular expression R matches aabab, leaving
the remainder c, which cannot be matched by S, thus returning false, although s
belongs to R ·S. Exactly this behaviour on leftmost maximal matching is modelled
by the cut and iterated cut operation. In [1] basic properties of these operations
with respect to formal languages and computational complexity were investigated.
In particular, both operations preserve regularity. One of the many open questions
stated in [1] is to develop a better or complete understanding of the upper and lower
bounds on the state complexity of finite automata for both variants of cut opera-
tions. We solve this question by giving exact matching upper and lower bounds in
the number of states for deterministic finite automata (DFAs) accepting the cut of
two languages or the iterated cut of a single language.

In the next section we introduce the necessary notation on DFAs. Moreover,
the cut and iterated cut operation is defined and the basic automata construc-
tions for both cut operations on languages are recalled. Then in Sect. 3 the
state complexity of the cut-operation on DFAs in general and on unary DFAs
is investigated. Both bounds are polynomial in n and m. To be more precise,
(n − 1) · m + n states are sufficient and necessary to accept the cut of two lan-
guages accepted by n- and m-state DFAs, and max(2n − 1,m + n − 2) states
are sufficient and necessary for unary DFAs. Here a DFA is unary if it has a
singleton input alphabet. The tight bound for general regular languages is best
possible, since the lower bound even holds for languages over a two letter alpha-
bet. The iterated cut operation is studied in Sect. 4. Here the situation is much
more involved. For DFAs in general we obtain a sufficient and necessary bound of
1+(n+1) ·F(1, n+2,−n+2;n+1 | −1) on the exact number of states, where F
refers to the generalized hypergeometric function. It is shown that this bound is
in the order of Θ((n−1)!). In the unary case the bound drops to 2n−1. Observe
that the lower bound for the iterated cut operation for regular languages in gen-
eral even holds for languages over a three letter alphabet. Whether a bound in
the order of Θ((n − 1)!) can already be obtained by a language over a two letter

Tight Bounds for Cut-Operations on Deterministic Finite Automata 47

alphabet is left open. Moreover, for all presented results we also discuss the effect
of the number of accepting states in the involved automata to the upper and
lower bounds for the cut operations. Finally, we summarize our results in the
concluding section and state some open problems for future research. Owing to
space constraints some proofs had to be shortened or left out. Complete proofs
will be given in a forthcoming journal version of the paper.

2 Preliminaries

We recall some definitions on finite automata as contained in [5]. A deterministic
finite automaton (DFA) is a quintuple A = (Q,Σ, δ, q0, F), where Q is the finite
set of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states, and δ : Q × Σ → Q is the transition function. The
language accepted by the DFA A is defined as L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F },
where the transition function is recursively extended to δ : Q×Σ∗ → Q. A DFA
is unary, if the input alphabet Σ is a singleton set, that is, Σ = {a}, for some
input symbol a.

In [1] the cut operation on two languages L an L′, denoted by L ! L′, is
defined as

L ! L′ = {uv | u ∈ L, v ∈ L′, and uv′ �∈ L, for every v′ ∈ pref(v) },

where pref(v) denotes the set of all nonempty prefixes of the word v. Moreover,
also an iterated version of the cut operation was defined. The iterated cut of a
language L, denoted by L! ∗, is the smallest language that satisfies

{λ} ∪ (L !(L! ∗)) ⊆ L! ∗,

i.e., L !(L ! . . . (L !(L !{λ})) . . .) ⊆ L! ∗ for any number of repetitions of the cut. In
other words, the language L! ∗ is the least fixed point of X �→ {λ} ∪ (L ! X). We
also define L! + as the smallest language that satisfies L ∪ (L !(L! +)) ⊆ L! +, or
equivalently, as least fixed point of X �→ L∪(L ! X). Notice that L! ∗ = L! +∪{λ}.
The above defined cut operations preserve regularity as shown in [1]. Since we
are interested in the descriptional complexity of both operations we briefly recall
both constructions from [1]—we slightly adapt these constructions such that they
also work in case the initial state of the automaton has incoming transitions and
is a possible final state. We start recalling the construction for the cut operation.

Let A = (QA, Σ, δA, q0,A, FA) and B = (QB , Σ, δB , q0,B , FB) be two DFAs
accepting the languages L and L′, respectively. Then define the automaton C =
(Q,Σ, δ, q0, F), with state set Q = QA ∪ QAQB . The idea behind δ is to let C first
run A and then, as soon as A has accepted a prefix of the input, both A and B in
parallel, so that B can be reset to its initial state each time A encounters another
(longer) prefix in L. Therefore, for all states qA, rA ∈ QA, q′ = qA qB ∈ Q, and
inputs a ∈ Σ with δA(qA, a) = rA we define

δ(qA, a) =

{
rA if rA �∈ FA

rA q0,B otherwise

48 F. Drewes et al.

and

δ(q′, a) =

{
rA δB(qB , a) if rA �∈ FA

rA q0,B otherwise

and q0 = q0,A, if λ �∈ L(A), and q0 = q0,A q0,B , otherwise. The set of final states
is set to F = QAFB. Then L(C) = L ! L′. Since the states of C are non-empty
sequences of length at most two, we refer to an element q ∈ Q as a stack of
states or a stack state. The height of a stack state is the length of its sequence of
states. This view on the state set is used in the iterated cut construction, which
is more subtle.

Again, let A = (QA, Σ, δA, q0,A, FA) be a DFA accepting the language L.
Before we define the DFA C = (Q,Σ, δ, q0, F) that accepts L! +, we need some
prerequisites in order to keep the presentation of C simple. The idea for the
construction of C is as follows: first the automaton behaves like A. If it reaches
one of the final states of A, say q1, it continues in a state q1q0,A, working essen-
tially like the automaton for the language L(A) ! L(A). In particular, it resets
the second copy each time the first copy encounters a final state of A. However,
if the second copy reaches a final state q2 of A, while q1 �∈ F , a third copy is
initialized, thus resulting in a state of the form q1q2q0,A, and so on. In order
to keep the set of states finite we need a function π : Q+

A → Q
≤|QA|
A , which is

defined as follows: for all s = q1q2 . . . qk ∈ Q+
A: if k = 1, then π(s) = s, and if

k > 1, then

π(s) =

{
π(q1q2 . . . qk−1) if qk ∈ {q1, q2, . . . , qk−1}
π(q1q2 . . . qk−1)qk otherwise.

Obviously, function π removes repeated states in the state sequence from right
to left. Hence, the set π(Q+

A) consists only of those sequences, where every state
appears at most once. Now we are ready to describe C. Let Q = π(Q+

A) and
q0 = q0,A. As in the previous cut construction, the elements of Q are called
stacks of states from QA. Then for every q ∈ Q with q = q1q2 . . . qk and a ∈ Σ
let q′

i = δA(qi, a), for 1 ≤ i ≤ k, and set

δ(q, a) =

{
π(q′

1q
′
2 . . . q′

k) if q′
1, q

′
2, . . . , q

′
k �∈ FA

π(q′
1q

′
2 . . . q′

�q0,A) if � = min{ i | 1 ≤ i ≤ k and q′
i ∈ FA. }

The set of final states is

F = { q ∈ Q | q = q1q2 . . . qk with qk ∈ FA or k > 1 and qk−1 ∈ FA }.

Observe, that a reachable final state q = q1q2 . . . qk with qk−1 ∈ FA must fulfill
qk = q0,A by construction. Moreover, if q = q1q2 . . . qk is a reachable final state
with qk ∈ FA \{q0,A}, then we must have q0,A ∈ {q1, q2, . . . , qk−1}. The language
accepted by C is L(C) = L! +. Because L! ∗ = L! + ∪ {λ}, a DFA for L! ∗ can
be obtained from C by simply introducing an additional accepting copy of the
initial state of C (unless q0,A ∈ FA and thus L(C) = L! + = L! ∗).

Tight Bounds for Cut-Operations on Deterministic Finite Automata 49

In the forthcoming sections we consider the descriptional complexity of both
operations, when the regular languages are given by DFAs. The above presented
constructions show an asymptotic upper bound of O(n·(m+1)) for the cut oper-
ation, and an asymptotic upper bound of O(n!) for the iterated cut operation,
if A and B are DFAs with n and m states, respectively.

3 The Descriptional Complexity of the Cut Operation

In this section we prove a tight bound for a DFA accepting the cut of two
languages, when these languages are represented by an n- and m-state DFA,
respectively. This exact tight bound is (n − 1) · m + n, which is witnessed by
automata using binary input alphabets. Then we consider the special case of
unary languages. Here we have to do a detailed analysis of the structure of
unary DFAs in order to prove a tight bound of max(2n − 1, n + m − 2) on the
number of states for unary DFAs. Notice that for m ≤ n this bound only depends
on the first automaton, but not on the second.

First we consider a few special cases. Let Σ be the input alphabet of the
DFA A. If all states in A are accepting, then L(A) = Σ∗, and if A does not have
an accepting state at all, then L(A) = ∅. Thus in both cases, the cut of L = L(A)
with any other language L′, i.e., L ! L′, is empty or equal to Σ∗ (the latter being
the case if L = Σ∗ and λ ∈ L′). Thus, in each of these cases the resulting
language can be described by a DFA with single state only. In general we obtain
the following result.

Theorem 1. Let A be an n-state and B an m-state deterministic finite automa-
ton. Then (n − 1) · m + n states are sufficient and necessary in the worst case
for any deterministic finite automaton accepting the language L(A) ! L(B). The
lower bound even holds for automata with binary input alphabet.

Proof. Let A = (QA, Σ, δA, q0,A, FA) and B = (QB , Σ, δB , q0,B , FB) be the
n- and m-state DFAs, respectively. Applying the previously described construc-
tion for the cut gives a DFA C that accepts L(A) ! L(B) with a state set consisting
of stack states of height at most two. A careful inspection of this construction
reveals that some stack states are not reachable, since they do not have any
incoming transitions. (i) Among the stack states of height one only those that
are not final states in A are possibly reachable. (ii) For the stack states of height
two we consider two sub-cases, namely if the first element of the sequence is
in FA, then the second one is always the initial state of B, and if the first ele-
ment of the sequence is in QA \FA, the second one may be an arbitrary element
of QB . Thus, the state set QC of C can be restricted to contain stack states from

QC = { p | p ∈ QA \ FA } ∪ FA{q0,B} ∪ { pq | p ∈ (QA \ FA) and q ∈ QB }

without changing the accepted language. Thus, we have at most

n − |FA| + |FA| + (n − |FA|) · m = (n − |FA|) · m + n

50 F. Drewes et al.

states, which is maximal if A has only a single accepting state, leading to an
upper bound of (n − 1) · m + n.

Next we show that this upper bound can be reached. To this end we define
the n-state DFA A = (QA, {a, b}, δA, q0,A, FA), where QA = {0, 1, . . . , n − 1},
q0,A = 0, FA = {n − 1}, and

δA(i, a) = i + 1 (mod n) and δA(i, b) = i, for 0 ≤ i ≤ n − 1.

Moreover, we define the m-state DFA B = (QB , {a, b}, δB , q0,B , FB), where
QB = {0, 1, . . . ,m − 1}, q0,B = 0, FB = {0}, and

δB(i, a) = i, for 0 ≤ i ≤ m − 1 and δB(i, b) = i + 1 (mod m)

Both finite automata are depicted in Fig. 1. Again, let C be the DFA constructed
from A and B by applying the construction for the cut, where the state set QC

is restricted according to our previous considerations. Moreover, let q0,C be the
initial state of C. To prove that C needs exactly the claimed number of states,
it can be shown that all states in QC are reachable and pairwise distinguishable.
Due to space constraints the proof is omitted.
�

As we have seen in the previous proof, the upper bound on the number of
states for the cut of two DFAs implicitly depends on the number of accepting
states of the first automaton. It is easy to generalize the above argument to lead
to an even more precise tight upper and lower bound of (n − f) · m + n states,
where f with 1 ≤ f < n refers to the number of accepting states of the “left”
automaton A. For the lower bound proof one simply has to alter the definition of
the automaton A by setting its accepting states to FA = {n−f, . . . , n−2, n−1}.
The details are left to the reader.

In the remainder of this section we briefly mention (without proofs) the
descriptional complexity of the cut operation on unary languages, that is, lan-
guages over a single letter alphabet. Deterministic finite automata for unary

Fig. 1. The binary DFAs A (left) and B (right) with n and m states, respectively, that
witness the state complexity lower bound for the cut operation.

Tight Bounds for Cut-Operations on Deterministic Finite Automata 51

languages obey a very simple structure: a (possibly empty) initial chain, fol-
lowed by a cycle.

Theorem 2. Let A be an n-state and B an m-state deterministic finite automa-
ton accepting a unary language. Then g(n,m) states, where

g(n,m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if n = 1,
n if n ≥ 2 and m = 1,
2n − 1 if n,m ≥ 2 and m ≤ n,
n + m − 2 if n,m ≥ 2 and m > n,

are sufficient and necessary in the worst case for any deterministic finite automa-
ton accepting the language L(A) ! L(B).
�

Similarly to the non-unary case, the state complexity of the cut on unary
DFAs also depends on the number of accepting states of the “left” automaton A.
If L(A) is infinite, and automaton A has f accepting states, then we obtain a
tight bound of 2n − f states for a DFA that accepts the language L(A) ! L(B).
However, if L(A) is finite then the bound stays n + m − 2, regardless of the
number of accepting states.

Sometimes, when studying descriptional complexity of unary regular lan-
guages, one does not simply count the number of states of a DFA, but rather
distinguishes between the length of the initial chain and the length of the cycle.
So instead of asking for the number g(n,m) of states of a DFA for accepting the
cut of the languages described by n-state and m-state DFAs, one could also study
the following: given unary DFAs A1 and A2, with t1 (t2, respectively) states in
the initial chain and k1 (k2, respectively) states in the cycle, determine bounds
(as functions in t1, t2, k1, k2) for the number t of states in the initial chain and
the number k of states in the cycle of a DFA for the language L(A1) ! L(A2).
Since the results on tight bounds for t and k branch out into many different
sub-cases, we will not go into details here, but rather summarize our results in
Table 1.

4 The Descriptional Complexity of the Iterated-Cut
Operation

In this section we turn our attention to the state complexity of the iterated cut
operation on DFAs. In order to properly state our result we need some more
notation. A generalized hypergeometric function [4] is a power series in x with
r + s parameters, and it is defined as follows in terms of rising factorial powers:

F

(
a1, a2, . . . , ar

b1, b2, . . . , bs

∣∣∣∣ x

)
=

∑
�≥0

a�
1a

�
2 . . . a�

r

b�
1b

�
2 . . . b�

s

· x�

�!
.

Here the rising factorial is defined as x� = x(x + 1) · · · (x + (� − 1)) and the
falling factorial by x� = x(x − 1) · · · (x − (� − 1)). By convention x0 = x0 = 1.

52 F. Drewes et al.

Table 1. Tight bounds for the length t of the initial chain and the length k of the cycle
of a DFA for the language L(A1) !L(A2), where Ai has an initial chain of length ti and
a cycle of length ki, for i = 1, 2. The table is ordered by ascending values of k1. If a
tuple (t1, k2, t2, k2) matches multiple lines, the additional condition column has to be
checked.

t1 k1 t2 k2 condition t k

0 1 ≥ 0 ≥ 1 0 1
≥ 1 1 ≥ 0 ≥ 1 accepting state in cycle 1 t1 1
≥ 1 1 ≥ 0 ≥ 1 no accepting state in cycle 1 t1 + t2 − 1 k2
≥ 0 ≥ 2 0 1 t1 + k1 − 1 1
≥ 0 ≥ 2 ≥ 1 1 t1 + k1 − 1 k1
≥ 0 2 0 ≥ 2 t1 + k1 − 1 k1
≥ 0 2 1 2 t1 + k1 − 1 1
≥ 0 2 1 ≥ 3 t1 + k1 − 1 k1
≥ 0 2 ≥ 2 ≥ 2 t1 + k1 − 1 k1
≥ 0 ≥ 3 ≥ 0 ≥ 2 k1 ≤ t2 + k2 t1 + k1 − 1 k1
≥ 0 ≥ 3 0 ≥ 2 k1 > k2 and k2 mod k1 > 0 t1 + k1 − 1 k1
≥ 0 ≥ 3 0 ≥ 2 k1 > k2, and k1 = k · k2, and 1 accepting in k1-loop t1 + k1 − 1 k2
≥ 0 ≥ 3 0 ≥ 2 k1 > k2, and k1 = k · k2, and ≥ 2 accepting in k1-loop t1 + k1 − 2 k1
≥ 0 ≥ 3 ≥ 1 ≥ 2 k1 > t2 + k2 t1 + k1 − 1 k1

Then our result on the number of states that are sufficient and necessary to
accept the iterated cut L! + of a single language accepted by an n-state DFA
reads as follows—a corresponding result for L! ∗ will be given later.

Theorem 3. Let A be a deterministic finite automaton with n states. Then

(n + 1) · F
(

1, n + 2,−n + 2
n + 1

∣∣∣∣ −1
)

states are sufficient and necessary in the worst case for a deterministic finite
automaton to accept the language L(A)! +. The lower bound even holds for
automata with ternary input alphabet.

Before we prove this theorem by the upcoming two lemmata, we first show
that the following combinatorial identity holds.

Theorem 4. For natural numbers n with n ≥ 2 we have the identity

(n + 1) · F
(

1, n + 2,−n + 2
n + 1

∣∣∣∣ −1
)

=
n−2∑
�=0

(n + � + 1) · (n − 2)�. (1)

Proof. The proof outline follows the presentation on hypergeometric functions
given in [4]. Note that the sum on the right hand-side can be changed to sum
up for all � with � ≥ 0, because for � > (n − 2) the falling factorials (n − 2)�

are always zero, and thus these terms do not contribute anything to the sum.

Tight Bounds for Cut-Operations on Deterministic Finite Automata 53

Now let the notation of the series be
∑

�≥0 t� with t0 �= 0. If the term ratio t�+1/t�
is a rational function in �, that is, a quotient of polynomials in � of the form

(� + a1)(� + a2) . . . (� + ar)
(� + b1)(� + b2) . . . (� + bs)

· x

(� + 1)

then we can use the ansatz

∑
�≥0

t� = t0 · F
(

a1, a2, . . . , ar

b1, b2, . . . , bs

∣∣∣∣ x

)
.

As t� = (n + � + 1)(n − 2)�, the first term of our sum is t0 = (n + 1), and the
other terms have the ratios given by

t�+1

t�
=

(n + � + 2)(n − 2)�+1

(n + � + 1)(n − 2)�
=

(n + � + 2)(n − 2 − �)
(n + � + 1)

,

which are rational functions of �. Rearranging the terms and introducing the
required factor (� + 1) in the denominator results in

t�+1

t�
=

(� + 1)(� + n + 2)(� − n + 2)
(� + n + 1)

· (−1)
(� + 1)

,

where we can read off the result: the given sum is equal to

(n + 1) · F
(

1, n + 2,−n + 2
n + 1

∣∣∣∣ −1
)

,

which proves the stated result.
�
The first few values of the hypergeometric function in Equation (1) starting

with n = 1 are 1, 3, 9, 31, 129, 651, 3913, 27399, 219201, 1972819, 19728201,
In the On-Line Encyclopedia of Integer Sequences (OEIS)—see www.oeis.org—
this matches the sequence A111063. A detailed analysis of the behaviour of this
sequence is given after the following two lemmata that prove Theorem 3.

Lemma 5. Let A be deterministic finite automaton with n states. Then

n−2∑
�=0

(n + � + 1) · (n − 2)�

states are sufficient for a deterministic finite automaton to accept L(A)! +.

Proof. The upper bound can be seen as follows. Let A = (Q,Σ, δ, q0,A, F) be
a DFA, and C be the DFA as constructed in Sect. 2 for accepting L(A)! +. By
construction the state set of C is π(Q+), consisting of stacks of states from Q.
Every such stack of height � ≥ 1 is of one of the following forms, called types—
recall that by the definition of π, all elements in a stack state are pairwise
distinct:

www.oeis.org

54 F. Drewes et al.

Type 1: q = q1q2 . . . q�, with q1, q2 . . . , q� ∈ Q \ F , or
Type 2: q = q1q2 . . . q�−1q0,A, with q1, q2, . . . , q�−1 ∈ Q \ F , and q0,A ∈ F , or
Type 3: q = q1q2 . . . q�−1q�, with q1, q2, . . . , q�−1 ∈ Q \ F , and q� ∈ F , and

q0,A ∈ {q1, q2, . . . q�−1}, or
Type 4: q = q1q2 . . . q�−2q�−1q0,A (and therefore q0,A /∈ {q1, q2, . . . q�−1}), with

q1, q2, . . . , q�−2 ∈ Q \ F and q�−1 ∈ F .

Let us count the number of states of the different types. Clearly, the number of
different stacks of type 1 is

∑n−|F |
�=1 (n−|F |)�, and the number of type 2 stacks is∑n−|F |+1

�=1 (n−|F |)�−1. To build a stack of type 3 we choose �− 2 non-accepting,
non-initial states, permute them, then shuffle q0,A somewhere into these states,
and put an accepting state on top. This gives

∑n−|F |+1
�=2 (n−|F |−1)�−2 ·(�−1)·|F |

different stacks. Finally, to count the number of stacks of type 4, we distinguish
between the two cases q0,A ∈ F and q0,A /∈ F . In the former case, a stack is built
by choosing and permuting �−2 non-accepting states, then putting an accepting,
non-initial state and state q0,A on top—this gives

∑n−|F |+2
�=2 (n−|F |)�−2 ·(|F |−1)

different stacks of type 4. Similarly, for the case where q0,A /∈ F we choose and
permute � − 2 non-accepting, non-initial states, put an accepting state and then
state q0,A on top, which gives

∑n−|F |+1
�=2 (n − |F | − 1)�−2 · |F | stacks.

The bound in the statement of the lemma will result from the case where
|F | = 1 and q0,A /∈ F . To see that this case indeed yields an upper bound for
all the cases, we first argue that the overall number of different possible stacks
increases when the number of accepting states decreases.

Given a deterministic finite automaton A = (Q,Σ, δ, q0,A, F) with |F | ≥ 2,
we construct an automaton B = (Q,Σ, δ, q0,A, F ′) such that

F ′ =

{
F \ {q0,A} if q0,A ∈ F ,
F \ {qf} for some qf ∈ F if q0,A /∈ F .

Denote by S(Q,F) the set of stacks that can be built by applying the automaton
construction for L! + to automaton A, and by S(Q,F ′) those that can be built
by applying the construction to B. We want to show |S(Q,F)| ≤ |S(Q,F ′)|.
In fact, treating the stacks as words over alphabet Q, we show the inclusion
S(Q,F) ⊆ S(Q,F ′). Clearly, every type 1 stack in S(Q,F) also appears as type 1
stack in S(Q,F ′), since Q\F is a subset of Q\F ′. Now assume we have a type 2
stack q1q2 . . . q�−1q0,A ∈ S(Q,F), which means that q0,A ∈ F . Then this stack
q1q2 . . . q�−1q0,A is a type 1 stack in S(Q,F ′). For stacks q1q2 . . . q�−1q� ∈ S(Q,F)
of type 3 we have q� ∈ F and q0,A /∈ F . Here we distinguish between the two
cases q� ∈ F ′ and q� /∈ F ′. In the former case, the stack q1q2 . . . q�−1q� also
appears as type 3 stack in S(Q,F ′), and in case q� /∈ F ′ this stack is of type 1
in S(Q,F ′). The argumentation for stacks q1q2 . . . q�−2q�−1q0,A ∈ S(Q,F) of
type 4, where q�−1 ∈ F is similar: if q�−1 ∈ F ′, then q1q2 . . . q�−2q�−1q0,A is also
a type 4 stack in S(Q,F ′), and if q�−1 /∈ F ′, then it appears in S(Q,F ′) as a
stack of type 1. We have shown S(Q,F) ⊆ S(Q,F ′), so the smaller the set of
accepting states, the larger is the number of possible stacks. Therefore, the case

Tight Bounds for Cut-Operations on Deterministic Finite Automata 55

where |F | = 1 forms an upper bound—we ignore |F | = 0 since the accepted
language would be empty. From [1] we already know that languages accepted by
DFAs where the initial state is the sole accepting state are closed under iterated
cut. Thus, for the upper bound we choose the case |F | = 1 and q0,A /∈ F . Using
the sums from above we obtain

n−1∑
�=1

(n − 1)� +
n∑

�=2

(n − 2)�−2 · (� − 1) +
n∑

�=2

(n − 2)�−2

=
n−1∑
�=1

(n − 1) · (n − 2)�−1 + (n − 2)�−1 · (� + 1)

=
n−2∑
�=0

(n + � + 1) · (n − 2)�

as an upper bound for the number of states of a DFA for the language L(A)! +.
Notice that we ignore type 2 stacks and choose the sum for the second case of
type 4 stacks, since we have q0,A /∈ F .
�

The next lemma provides a matching lower bound, and thus concludes the
proof of Theorem 3.

Lemma 6. For every n ≥ 4, there exists a deterministic finite automaton A
with n states, such that the number of states of the minimal deterministic finite
automaton for the language L(A)! + is

n−2∑
�=0

(n + � + 1) · (n − 2)�.

Proof. Let n ≥ 4 and A = (Q,Σ, δ, 0, F) with input alphabet Σ = {a, b, c}, state
set Q = {0, 1, . . . , n − 1} and accepting states F = {n − 1} be the DFA depicted
in Fig. 2. The transition function δ is defined as follows:

δ(q, a) =

⎧⎪⎨
⎪⎩

q + 1 if 0 ≤ q ≤ n − 3,
0 if q = n − 2,
n − 1 if q = n − 1,

δ(q, b) =

⎧⎪⎨
⎪⎩

1 if q = 0,
0 if q ∈ {1, n − 1},
q if 2 ≤ q ≤ n − 2,

and

δ(q, c) =

⎧⎪⎨
⎪⎩

n − 1 if q = 0,
q if 1 ≤ q ≤ n − 2,
0 if q = n − 1.

56 F. Drewes et al.

Fig. 2. The n-state DFA A for witnessing the state complexity lower bound for the
iterated cut operation.

First notice, that the two mappings q �→ δ(q, a) and q �→ δ(q, b) generate all
permutations on the set Q \ F—see, e.g., [7]. Let C = (QC , Σ, δC , q0,C , FC) be
the DFA constructed from A by applying the construction for L! +. To prove
that C needs exactly the claimed number of states, we show that all states, or
stacks, of types 1, 3, and 4 from the proof of Lemma 5 are reachable and pairwise
distinguishable—note that stacks of type 2 do not appear in C.

Reachability of stacks of type 1 is easy to see: using permutations on the
set Q \ F , which can be realized by reading appropriate words over {a, b}, every
type 1 stack can be transformed into every other type 1 stack of the same size.
Moreover, from a type 1 stack of the form q1q2 . . . q�−10 of size � ≤ n − 2, with
1 /∈ {q1, q2, . . . , q�−1}, we can reach a stack q1q2 . . . q�−1 1 0 of type 1 with size �+1
by reading cb. Now every type 4 stack q1q2 . . . q�−2 (n− 1) 0 can be reached from
the type 1 stack q1q2 . . . q�−2 0 by reading c. From type 4 stacks we can reach
type 3 stacks as follows. If the wanted stack has the initial state 0 directly below
state (n − 1), that is, if it has the form q1q2 . . . q�−2 0 (n − 1), then we can reach
it from q1q2 . . . q�−2 (n− 1) 0 by simply reading c. If the element 0 is not directly
below element (n − 1), that is, if we want to obtain a stack of the form

q1q2 . . . qi−1 0 qiqi+1 . . . q�−2 (n − 1),

with i ≤ � − 2, then we can reach it from the type 3 stack

p1p2 . . . pi−1 r pipi+1 . . . p�−2 (n − 1),

by reading aq�−2 , where pj = (qj − q�−2) mod (n − 2) for 1 ≤ j ≤ � − 2, and
r = (−q�−2) mod (n − 2). Notice that p�−2 = 0, so we already know how to
reach the latter stack from a type 4 stack.

It remains to prove that every pair of states, or stacks, s1 and s2 of C can
be distinguished by some input word. Clearly we only have to consider the cases
where either both stacks contain the accepting state n−1, or none of them does.

Tight Bounds for Cut-Operations on Deterministic Finite Automata 57

We start with the case where n − 1 does not appear in the stacks. If there
is some element qi that appears in one of the two stacks but not in the other,
then we can use a permutation that interchanges qi and 0, and leaves the other
elements stable—if qi = 0, we just take the identity permutation. Now one stack
contains element 0 and the other does not, so we can distinguish between those
two by reading c. Now assume that both stacks contain the same elements, but
differ in their ordering. If the two stacks already differ in their bottom elements,
that is, if s1 = q1t1 and s2 = q2t2 with q1 �= q2 and appropriate sequences t1
and t2, then we use a permutation to interchange q1 and 0, and obtain stacks
0 t′1 and q′

2t
′
2, with q′

2 �= 0. With a permutation for interchanging q′
2 and 2, we

obtain stacks 0 t′′1 and 2 t′′2 . These are distinguished by reading cb: the second
stack yields a stack containing the element 2, but the stack 0 t′′1 yields 0 1, which
does not contain this element, and we have seen above how to distinguish the
stacks in this case.

Next we show that we can also distinguish between stacks s1 and s2 that
both contain the accepting state n − 1. Let us consider the lowest (leftmost)
position in which the two stacks differ. We have s1 = s0 q1 t1 and s2 = s0 q2 t2,
for appropriate sequences s0, t1, t2 and elements q1 �= q2. If at least one of the ele-
ments q1 and q2 is from the set {2, 3, . . . , n−2}, then the stacks obtained from s1
and s2 after reading b are still different because every state q ∈ {2, 3, . . . , n − 2}
loops on input b and no other b-transitions lead to q. Now there are only
three cases remaining, namely {q1, q2} = {0, 1}, {q1, q2} = {0, n − 1}, and
{q1, q2} = {1, n − 1}. In the first two cases, where one of the elements q1 and q2
is 0, we can also read input b to get rid of element n−1, and again we obtain two
different stacks because the transition from 0 to 1 is the only b-transition that
leads to state 1. For the remaining case, we may assume q1 = 1 and q2 = n − 1,
so we have stacks

s1 = s0 1 t1 and s2 = s0 (n − 1) t2,

for appropriate sequences s0, t1, and t2, where in particular element 1 does not
appear in s0. Now we read the input word ab. First, after reading a we have
stacks

s′
1 = s′

0 2 t′1 and s′
2 = s′

0 (n − 1) 0,

where element 2 does not appear in s′
0, and thus, not in s′

2. Now by reading the b
symbol, stack s′

1 yields a stack of the form s′′
1 = s′′

0 2 t′′1 that contains element 2,
while stack s′

2 results in stack s′′
2 = s′′

0 0 or s′′
2 = s′′

0 0 1, depending on whether
element 1 appears in s′′

0 . In either case the stacks s′′
1 and s′′

2 are different and
none of them contains element n − 1, so they can be distinguished as described
earlier. This concludes our proof.
�

Recall that the DFA for L! + can be turned into a DFA for L! ∗ by adding a
new accepting initial state. Therefore, the upper bound for the state complexity
for L! ∗ is by one larger than the bound for L! +. In fact, one can see as follows
that this bound is also tight by using the same witness automaton as in the

58 F. Drewes et al.

previous proof. Let q′
0,C be the new accepting initial state; it has the same

outgoing transitions as state q0,C = 0. We only need to distinguish state q′
0,C

from all other accepting states of C, which are the stack states that contain
element (n − 1). This can simply be done by reading letters a: the successor of
the accepting stack state also contains element (n − 1), and thus is accepting,
but the successor of state 0, and thus also of q′

0,C , is the non-accepting state 1.
Therefore we obtain the following result on the state complexity of the iterated
cut L! ∗.

Theorem 7. Let A be a deterministic finite automaton with n states. Then

1 + (n + 1) · F
(

1, n + 2,−n + 2
n + 1

∣∣∣∣ −1
)

states are sufficient and necessary in the worst case for a deterministic finite
automaton to accept the language L(A)! ∗. The lower bound even holds for
automata with ternary input alphabet.
�

As in the case of the (non-iterated) cut operation, one can also derive a
more precise bound for the state complexity of the iterated cut operation, which
depends on the number f of accepting states of the automaton. From the upper
bound analysis in the proof of Lemma 5, a bound of

n−f−1∑
�=0

(n − f − 1)� · (n + f · (� + 1))

states can be derived for the case where the initial state q0,A is not accepting.
In fact, by some calculations and combinatorial argumentation, one can show
that the case, where the initial state is accepting, yields the same upper bound.
By adapting the automaton from the lower bound proof of Lemma 6, one can
obtain witness automata for the more precise bound as follows. Instead of a
single accepting state n − 1 we choose f accepting states n − 1, n − 2, . . . , n − f ,
that are connected to a cycle of n − f non-accepting states in a similar fashion
as shown in Fig. 2: for each accepting state n − i, for 1 ≤ i ≤ f , we use another
input symbol ci that switches between states n − i and 0; on input symbol b the
states n − i also go to state 0.

Now let us come to the asymptotics of the bounds stated in Theorems 3
and 7 in order to get a better feeling for their size. This can be done by first
proving the following upper and lower bounds.

Theorem 8. The following lower and upper bounds apply:

2 · (n + 2) · (n − 2)! ≤
n−2∑
k=0

(n + k + 1)(n − 2)k ≤ e · (2n − 1) · (n − 2)!
�

The upper and the lower bound are quite close, since the former is asymp-
totically only a factor of e away from the latter. This allows us to show that the
bounds provided in Theorems 3 and 7 in the exact number of states asymptoti-
cally behave like (n − 1)!.

Tight Bounds for Cut-Operations on Deterministic Finite Automata 59

Fig. 3. A DFA A with binary input alphabet Σ = {a, b}, where the minimal DFA
for L(A)! + needs at least

∑n−3
�=1 (n − 3)� > (n − 3)! states.

Theorem 9. Let A be a deterministic finite automaton with n states. Then
Θ((n−1)!) states are sufficient and necessary in the worst case for a deterministic
finite automaton to accept the language L(A)! +. The same holds for a determin-
istic finite automaton for L(A)! ∗.
�

Notice that the witness automaton from the proof of Lemma 6 uses a ternary
input alphabet. Theorem 10 will give a tight bound of 2n − 1 for the state
complexity of the iterated cut operation on DFAs with unary input alphabet.
So it remains to study the exact bound for automata using a binary alphabet.
Here we do not have a tight bound yet. However, we know that already a binary
alphabet is enough to provide a huge blow-up in the number of states. Consider
the binary n-state DFA A depicted in Fig. 3. One can show that the minimal
DFA for the language L(A)! + needs more than

∑n−3
�=1 (n − 3)� > (n − 3)! states.

The basic idea to prove this is that all stack states with elements from the
set {0, 1, . . . , n − 4} can be reached: permutations on this set can be obtained
with the help of the input words a (cycling through the set) and b3 (switching
elements n − 5 and n − 6). New elements can be obtained by reading b2ab4 from
a stack of the form s = s′ (n − 4), where n − 5 does not appear in s′.

Now we come to our result on the state complexity of the iterated cut opera-
tion on unary languages. The upcoming theorem only considers input automata
with at least three states. The reader may convince him- or herself that every
minimal two-state DFA A (there are only four possibilities) yields as iterated
cut L(A)! ∗ a language that can also be accepted by a DFA with at most two
states. Moreover, the iterated cut languages of the single-state languages ∅
and {a}∗ are {λ} and {a∗} respectively, and thus are accepted by a two-state,
respectively, single-state DFA.

We now state the already mentioned theorem providing the tight bound for
the iterated cut in the case of a unary alphabet.

Theorem 10. Let A be a deterministic finite automaton with n ≥ 3 states that
accepts a unary language. Then 2n − 1 states are sufficient and necessary in the
worst case for a deterministic finite automaton to accept the language L(A)! +.
The same holds for a deterministic finite automaton for L(A)! ∗.
�

60 F. Drewes et al.

Again one can prove a more precise bound of 2n − f states, where f is the
number of accepting states of A.

5 Conclusions

We have investigated the state complexity of the cut and iterated cut opera-
tion for DFAs. In all cases, we obtained tight upper and lower bounds in the
exact number of states. Thus, we have solved an open problem stated in [1].
Nevertheless, many open questions and details remain to be worked out:

– Consider the upper and lower bounds for nondeterministic finite automata
(NFAs) on cut operations. Can we do better than first determinizing the
involved devices and then performing the cut or iterated cut construction
for DFAs? Note that for cuts one does not need to determinize the second
automaton B in order to construct the (then nondeterministic) automaton
for L(A) ! L(B) as in Sect. 2.

– The complexity of decision problems related to the cut and iterated cut opera-
tion on finite automata, in particular, on DFAs. An example of such a problem
is the following: given a finite automaton A, is L(A)! ∗ = L(A)∗?

– Succinctness of cut expressions (these are regular expressions that also use
the cut operation) compared to DFAs and NFAs were discussed in [1]. There
exponential lower bounds for both types of finite state devices were obtained.
So what about the succinctness of iterated cut expressions (regular expressions
that also use iterated cut) compared to finite automata?

Acknowledgments. Thanks to Rogério Reis for his help doing and verifying some
calculations with the computer algebra system MapleTM.

References

1. Berglund, M., Björklund, H., Drewes, F., van der Merwe, B., Watson, B.: Cuts in
regular expressions. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907,
pp. 70–81. Springer, Heidelberg (2013)

2. Berglund, M., Drewes, F., van der Merwe, B.: Analyzing catastrophic backtracking
behavior in practical regular expressions matching. In: Ésik, Z., Fülöp, Z. (eds.) Pro-
ceedings of the 14th International Conference on Automata and Formal Languages.
EPTCS, vol. 151, pp. 109–123, Szeged, Hungary (2014)

3. Clocksin, W.F., Mellish, C.S.: Programming in Prolog. Springer, Heidelberg (1981)
4. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A foundation

for Computer Science. Addison-Wesley, Boston (1994)
5. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Boston

(1978)
6. Kirrage, J., Rathnayake, A., Thielecke, H.: Static analysis for regular expression

denial-of-service attacks. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013.
LNCS, vol. 7873, pp. 135–148. Springer, Heidelberg (2013)

7. Piccard, S.: Sur les bases du groupe symétrique et les couples de substitutions qui
engendrent un groupe régulier. Librairie Vuibert, Paris (1946)

	Tight Bounds for Cut-Operations on Deterministic Finite Automata
	1 Introduction
	2 Preliminaries
	3 The Descriptional Complexity of the Cut Operation
	4 The Descriptional Complexity of the Iterated-Cut Operation
	5 Conclusions
	References

