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Abstrakt

Zaoberáme sa stavovou zložitosťou zreťazenia. V práci uvádza-

me dôkaz pre dolnu hranicu zreťazenia. Ďalej sme sa zaober-

ali automatmi s polovicou koncových stavov. Pre tieto automati

uvádzame tiež dôkaz o dosahovaní hranice na nich, pričom tento

výsledok bol motivovaný alternujúcimi automatmi, kde sa práve

takéto stroje používajú na dôkaz dolnej hranice zreťazenia na al-

ternujúcich strojoch.

Abstract

We study the state complexity of concatenation of regular lan-

guages represented by finite automata. We provide proof of lower

bound of concatenation. Next we study automata with half of

states final. For this class we prove tight bound in binary case.

This result was motivated by work on alternating automata, where

it is used to prove lower bound of concatenation of alternating au-

tomata.
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Chapter 1

Introduction

Regular languages and finite automata are one of the oldest and the simplest topics

in computer science. They have been investigated since the 1950s. Despite their

simplicity, some problems are still open.

Motivating by applications of regular languages in software engineering, program-

ming languages, and other areas in computer science, as well as by their importance

in theory, this class of languages is intensively studied in recent years; for the discus-

sion, we refer the reader to [3, 13]. Various areas in this field are now deeply and

intensively examined. One of such areas is descriptional complexity which studies the

cost of description of languages represented by different formal systems such as de-

terministic and nondeterministic finite automata, alternating and boolean automata,

two-way automata, regular expressions, or grammars.

Rabin and Scott in 1959 [10] described an algorithm for the conversion of non-

deterministic finite automata into deterministic automata known as the "subset con-

struction". The algorithm shows that every n-state nondeterministic automaton can

be simulating by at most 2n state deterministic automaton. In 1963, Lupanov [6]

proved the optimality of this construction by describing a ternary and even a binary

regular language accepted by an n-state nondeterministic automaton that requires

exactly 2n deterministic states.

Maslov in 1970 [7] considered the state complexity of union, product, and Kleene

star. He gave binary worst-case examples for these three operations, however he did

not present any proofs. Birget in his work [1] examined intersection and union of

several languages. The systematic study of the state complexity of operations on

regular languages began in the paper by Yu, Zhuang, and Salomaa [14]. This work

was followed by many papers studying state complexity of operations, until nowadays.
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In this paper, we continue the study of the state complexity of concatenation of

regular languages. In 1994, Yu et al. [14] provided upper bound for concatenation.

They showed that m2n− k2n−1 states are sufficient for the DFA, which accepts L ·K,

where DFA for L has m states and k finall states, and K has n states. Later in 2005

by Jirásková [5] was shown that this bound is tight in binary case.

In this paper we provide theorem about lower bound[5], where we present new

proof. As this result was later used in [2]. But this application required more as-

sumptions then provided by theorem. So next we are providing theorem, proof and

automata which satisfies those assumptions, and therefore their results still holds true.
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Chapter 2

Preliminaries

This section provides some basic definitions, notions and constructions which are used

through this work. For more details and unlisted definitions and preliminary results,

we refer to [11, 12].

We denote finite alphabet by Σ, by Σ∗ we denote the set of all strings over alphabet

Σ, including empty string denoted by ε. Let w be string, then |w| means length of

string w. A language is any subset of Σ∗.

We denote the size of a set A by |A|, and its power-set by 2A.

A deterministic finite state automaton is a quintuple A = (Q,Σ, δ, s, F ), where Q

is a finite set of states; Σ is a finite alphabet; δ : Q×Σ → Q is the transition function,

s ∈ Q is the initial state; F ⊆ Q is the set of final states (or accepting states). A

non-final state q is a dead state if δ(q, a) = q for each a in Σ. The language accepted

or recognized by the DFA A is defined to be the set L(A) = {w ∈ Σ∗ | δ(s, w) ∈ F}.

A nondeterministic finite automaton is a quintuple A = (Q,Σ, δ, s, F ), where

Q,Σ, s, and F are the same as for a DFA, and δ : Q × Σ → 2Q is the transition

function. Through the paper we use the notation (p, a, q) to mean that there is a

transition from p to q on input a, that is, q ∈ δ(p, a). The language accepted by the

NFA A is defined to be the set L(A) = {w ∈ Σ∗ | δ(s, w) ∩ F 6= ∅}.

Two automata are equivalent if they recognize the same language.

A DFA A is minimal if every equivalent DFA has at least as many states as A. It

is known that every regular language has a unique minimal DFA (up to isomorphism),

and that a DFA A = (Q,Σ, δ, s, F ) is minimal if and only if all its states are reachable

and distinguishable.

The state complexity of a regular language L, denoted by sc(L), is the number of

states in the minimal DFA accepting the language L.
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Every NFA can be converted to an equivalent DFA by the subset construction

[11, 12] as follows. Let A = (Q,Σ, δ, s, F ) be an NFA. Construct the DFA A′ =

(2Q,Σ, δ
′

, {s}, F ′), where F ′ = {R ⊆ Q | R ∩ F 6= ∅}, and δ
′

(R, a) =
⋃

r∈R δ(r, a) for

each R in 2Q and each a in Σ. The DFA A′ is called the subset automaton of the

NFA A. The subset automaton may not be minimal since some of its states may be

unreachable or equivalent.

For two regular languages K and L the concatenation K ·L is defined to be K ·L =

{uv | u ∈ K, v ∈ L}. For two DFA A,B with m,n states and A with k final states,

we can construct NFA for concatenation of L(A)L(B) with two constructions.

First construction using transitions on empty string ε, so called ε-acceptor. Let

us take automatons A,B now we define new ε transitions from every final state of

A which goes to initial state of B. All final states of A are non-final in NFA for

concatenation and final states of NFA are only final states of B. Initial state of NFA

is initial state of A.

Second construction define new transitions and possibly new initial states. Let

us take automatons A,B now we define new transitions. For every state q of A and

transition going on some symbol to final state of A, we add new transition from q by

same symbol, going to initial state of B. If initial state of A is also final then initial

states of NFA for concatenation are initial state of A and initial state B, so we get

NFA with non-deterministic choice of initial state. Same as in previous construction,

all final states of A are non-final in NFA for concatenation and final states of NFA

are only final states of B.
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Chapter 3

Upper bound of concatenation

The aim of this section is to show the tight bound on the state complexity of the

concatenation operation on binary regular languages. Tight bound of concatenation

was studied by Yu et al. [14] and by Jirásek et al. [4]. They showed that m2n−k2n−1

states are sufficient for the DFA, which accepts L ·K, where DFA for L has m states

and k finall states, and K has n states. We recall their theorem on tight bound for

binary alphabet, where we provide new proof. Yu also showed that in unary case

bound is mn, and is tight when m and n are relatively prime. Unary case when m,n

are not relatively prime was studied by Pighizziny nad Shallit in [8, 9].

We start with a lemma which provides strong argument for upper bound. This

lemma show how many states can not be reached.

Lemma 3.1 Let A,B be minimal automatons, FA be set of final states of automaton

A, and 0 initial state of B. Consider DFA D which is corresponding subset automaton

to NFA for A ·B. Then every state of D, which contain q ∈ FA, also contain state 0.

Proof.

We separately show case when q is initial and final state of automaton A. Then

automaton D has initial state {q, 0}. Let qj ∈ FA, σ ∈ Σ and qi be state of A which

goes to qj on σ. Depending on construction, there is ǫ transition from qj to state 0,

or there is transition from qi which goes on σ to state 0. So when we reach state qj,

we also reach state 0. Therefore when qj is in state of subset construction then there

must be also state 0.
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Figure 3.1: Examples of automata for tight bound. First automaton of concatenation
is situated on the top of picture, second on the bottom.

Theorem 3.2 ([4]) For any integers m,n, and k such that m ≥ 2, n ≥ 2 and 0 <

k < m, there exists a binary DFA A of m states and l accepting states, and a binary

DFA B of n states such that any DFA accepting the language L(A)L(B) needs at

least m2n − k2n−1 states.

Proof.

Let A be automaton shown in Fig. 3.1(top), and B be automaton shown in

Fig. 3.1(bottom). Construct NFA C for concatenation of languages L(A), L(B). We

will prove that corresponding subset automaton to C has m2n − k2n−1 reachable,

distinguishable states.

First, we show reachability of all m2n − k2n−1 states. The proof is by induction

on the size of sets S, such that S ⊆ {0, ..., n− 1}.

Assume three groups of states:

Ix =
⋃m−k−1

i=0 (qi ∪ S), where |S| = x,

IIx =
⋃m−1

i=m−k (qi∪{ 0 }∪S), where |S| = x,

IIIx =
⋃m−k−1

i=0 (qi∪{ 0 }∪S), where |S| = x. We also use S ⊖ x, what mean subset of

{0, . . . , n−1} which goes to S by ax. As there are not two transition of {0, . . . , n−1}

on a to same state this set is clearly determined.

1. Let |S| = 0.

State q0 is reachable because it is initial state of first automaton, thus it is initial

state of automaton for concatenation. State qi, such that i ∈ {0, ..., m− k − 1},

is rechable from state q0 by ai. So all states of I0 are reachable.

Next we will show reachability of all states of II0. State qm−k ∪{0} is reachable

by a from qm−k−1. Now assume other final states of first automaton with state 0.
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That means that, we assume states qi, where i {m− k, ..., m− 1}, then qi ∪ {0}

is reachable from qm−k ∪ {0} by ai−(m−k)bn.

We continue with rechability of states of IIIx. State q0 ∪ {0} is reachable from

qm−1 ∪ {0} by abn. States qi ∪ {0}, where i ∈ {0, ..., m− k − 1}, are reachable

from q0 ∪ {0} by aibn. This completes reachability of III0 and base case x = 0.

2. Let |S| = x ≥ 1.

Assume that we can reach all Iy, IIy, IIIy where y < x. We will use induction

hypothesis to prove reachability of Ix, IIx, IIIx.

2.1. Reachability of Ix.

Take qm−1∪{0}∪S ∈ IIx−1, with n−1 6∈ S. It goes to q0∪{1}∪Sa by a. Next

take qi−1 ∪ {0} ∪ S ∈ IIIx−1, with qi 6∈ FL. Which goes to qi ∪ {1} ∪ Sa by a.

By Sa we mean a set which is reached from a set S by a. We have all states of

Ix such that 1 ∈ Ix.

Next we will prove reachability of states without 1, this means that, we want to

reach qi∪S, where, |S| = x, S ⊆ {j, j + 1, . . . , n− 1} and j ∈ S. Assume qi∪S ′

where 1 ∈ S ′ and S ′ = S ⊖ j, so qi ∪ S ′ is reachable. State qi ∪ S is reachable

from qi ∪ S ′ by bj . Now all states of Ix are reachable.

2.2. Reachability of IIx.

We want to reach qm−k ∪ {0} ∪ S. Let us take qm−k−1 ∪ S ′ from Ix such that

n−1 6∈ S ′, S ′ = S⊖1. It goes by a to qm−k ∪{0}∪S. Now let us take qi−1∪S ′,

where i ∈ {m− k + 1, . . . , m− 1}. Assume qi−1 ∪ S ′, with same S ′ as above, it

goes by a to qi ∪ {0} ∪ S. So all states of IIx are reachable.

1. Reachability of IIIx.

Let us take qm−1 ∪{0}∪{n− 1}∪S ′ ∈ IIx, with n− 1 ∈ S ′. State qm−1 ∪{0}∪

{n−1}∪S ′ goes by a to q0∪{0}∪S, where 1 ∈ S. Let i be smallest element of

S. Until now we have arbitrary S with i = 1. To reach arbitrary S with i 6= 1,

it is necessary to apply bi to S ′, where S ′ = S ⊖ i, 1 ∈ S ′.

Next we use q0 ∪ {0} ∪ S ′ and q0 ∪ S ′ ∈ Ix to reach qi ∪ {0} ∪ S, where i ∈

{1, 2, . . . , m−k−1}. State qi∪{0}∪S, i ∈ S, can be reached from q0∪{0}∪S ′,

where S ′ = S⊖ i, by ai. Or state qi∪{0}∪S, i /∈ S, can be reached from q0∪S ′,

where S ′ = S ⊖ i, by ai. This completes reachability of all states of IIIx.
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Proof of reachability of all m2n − k2n−1 states is complete. Next we will prove

distinguishability of all reachable states . Let S, T be subsets of {0, 1, . . . , n− 1}, and

qs, qt be states of {q0, q1, . . . qm−1}. By appropriate choose of qs ∪ S and qt ∪ T we can

subscribe every state of subset construction.

1. S 6= T .

Without loss of generality, there exist i such that i ∈ S and i /∈ T . Therefore

state qs ∪ S goes by an−1−i to accepting state and qt ∪ T by same string goes to

rejecting state.

2. S = T and qs 6= qt.

Without loss of generality we assume that s < t. Define qi⊕1 to be a state, which

is reached from qi by a. This case contain three subcases.

2.1. qs⊕1, qt⊕1 6∈ FL.

qs ∪ S
am−k−t−1

−−−−−−→ qs+m−k−t−1 ∪ S ′, qs+m−k−t−1 6∈ FL, notice qs+m−k−t 6∈ FL.

qt ∪ T
am−k−t−1

−−−−−−→ qm−k−1 ∪ T ′, qm−k−1 6∈ FL, notice qm−k ∈ FL.

Next we apply bn:

If S = T = ∅, then:

qs+m−k−t−1 ∪ S ′ bn

−→ qs+m−k−t−1
a
−→ qs+m−k−t

qm−k−1 ∪ T ′ bn

−→ qm−k−1
a
−→ qm−k ∪ {0}

On the other hand if S, T are non-empty:

qs+m−k−t−1 ∪ S ′ bn

−→ qs+m−k−t−1 ∪ {0}
a
−→ qs+m−k−t ∪ {1}

qm−k−1 ∪ T ′ bn

−→ qm−k−1 ∪ {0}
a
−→ qm−k ∪ {0, 1}

Both cases bring us to different subsets of {0, 1, . . . , n−1}. That was considered

in case 1.. Thus case is complete.

2.2. qs⊕1 6∈ FL, qt⊕1 ∈ FL.

If S = T = ∅, then:

qs ∪ S
bn

−→ qs
a
−→ qs⊕1

qt ∪ T
bn

−→ qt
a
−→ qt⊕1 ∪ {0}

If S, T are non-empty:

qs ∪ S
bn

−→ qs ∪ {0}
a
−→ qs⊕1 ∪ {1}

qt ∪ T
bn

−→ qt ∪ {0}
a
−→ qt⊕1 ∪ {0, 1}

Again both cases bring us to different subsets of {0, 1, . . . , n − 1}. That was

considered in case 1.. Thus case is complete.
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2.3. qs⊕1, qt⊕1 ∈ FL.

qs ∪ S
am−1−t

−−−−→ qm−1−t+s ∪ S ′

qt ∪ T
am−1−t

−−−−→ qm−1 ∪ T ′

Let qs′ = qm−1−t+s a qt′ = qm−1. Then we can denote qt′⊕1 6∈ FL, and qs⊕1 ∈ FL.

This bring us to case 2.2.

We showed that all states of subset automaton are pairwise distinguishable. There-

fore we get minimal m2n − l2n−1 state automaton for concatenation. So our proof is

complete.
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Chapter 4

Automata with half final states

Previous chapter provided tight bound for concatenation with arbitrary amount of

final states of first automaton. Paper [2] Chapter 2.1 An Application using mentioned

result from [4] to prove lower bound on alternating finite automata (AFA). This result

does not holds true when both automata have half of their states final, for example we

can take m = n = 4. In this chapter we provide theorem, automata and proof which

can be used in [2] as replacement. So their result that lower bound of concatenation

of two AFA, with m and n states, is 2m + n holds true.

Theorem 4.1 For any even integers m,n ≥ 4, there exists a binary DFA A of m

states and m/2 accepting states, and a binary DFA B of n states and n/2 accepting

states, such that any DFA accepting the language L(A)L(B) needs m2n − m2n−2

states.

0 1 2 n− 2 n− 1
a, b

a

a a

ba

b

q0 q1 qm

2
qm

2
−1

a a a

a

a qm−1
aaa

qm−2

bbb b b

bb

a

Figure 4.2: Examples of automata for tight bound with half of states final. First
automaton of concatenation is situated on the top of picture, second on the bottom.
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Proof.

Automata which satisfies assumptions of theorem are shown in Fig. 4.2. First we

will prove reachability of m2n −m2n−2 states in subset automaton corresponding to

concatenation of shown automata. The proof is by induction on the size of sets S,

such that S ⊆ {1, ..., n− 1}. Through the proof we use three notations for groups of

states of subset automaton:

Ik =
⋃

m

2
−1

i=0 (qi ∪ S);

IIk =
⋃m−1

i=qm
2

(qi ∪ {0} ∪ S);

IIIk =
⋃

m

2
−1

i=0 (qi∪{0}∪S); where |S| = k. We also use S⊖x, what mean subset of

{1, . . . , n−1} which goes to S by ax. As there are not two transition of {1, . . . , n−1}

on a to same state this set is clearly determined.

Base case consist of showing reachability of I0, II0, III0. Group of states I0 are

only non-final states of first automaton. State q0 is reachable because it is initial state.

Other states qi, where i ∈ {1, 2, . . . , m
2
− 1} are reachable by ai from q0. Group of

states II0 are final states of first automaton with state 0 from second automaton. Let

qi be final state of first automaton, that means i ∈ {m
2
, m

2
+1, . . . , m−1}. Let us take

state qm

2
−1, which goes to qi, 0 by ai−

m

2
−1. Group of states III0 are non-final states of

first automaton with state 0 from second automaton. They are reached analogous as

shown above. Assume states qi, where qi, where i ∈ {0, 1, . . . , m
2
− 1}. Then they can

be reached from qm−1, 0 by ai+1. Base case is now complete.

Next we will prove reachability of groups Ik, IIk, IIIk using induction hypothesis

about reachability of all groups with less elements. Now we will prove reachability of

Ik. Let us take set qF ∪{0}∪S ′, which is from IIk−1, by qF we mean some final state

of first automaton. Consider four cases depending on states 1, 2:

if 1, 2 6∈ S ′, then qF ∪ {0} ∪ S ′ b
−→ qF−

m

2
∪ {1} ∪ S ′, S = S ′ ∪ {1},

if 1 ∈ S ′, 2 6∈ S ′, then qF ∪ {0} ∪ S ′ b
−→ qF−

m

2
∪ {2} ∪ S ′, S = S ′ ∪ {2},

if 1 6∈ S ′, 2 ∈ S ′, then qF ∪ {0} ∪ S ′ b
−→ qF−

m

2
∪ {1} ∪ S ′, S = S ′ ∪ {1},

if 1, 2 ∈ S ′, then qF ∪ {0} ∪ S ′ b
−→ qF−

m

2
∪ S ′, S = S ′.

Last case is mentioned only for sake of completeness, because size of S is not

increased in fourth case. Also S is identical in second and third case. Until now we

showed how to get S, such that S contains 1 or 2 or both of them.

Next we will show how to get S with smallest element bigger then 1. Let i be the

smallest element of S, and i ≥ 2. Then q0 ∪ S can be reached by applying (ab)i−1 on
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one of above mentioned cases, which contain 1; note that to get S, we need to start

from S ⊖ (i − 1). We get q0 with arbitrary S. To get qi ∪ S we need to apply string

ai to q0 ∪ S ⊖ i.

We will use Ik to prove reachability of IIk. Let us take qm

2
−1 ∪ S ′ from Ik, by

ai−(m
2
−1) it goes to qi ∪ 0 ∪ S, where S ′ = S ⊖ (i− m

2
− 1) for i ∈

{

m
2
, . . . , m− 1

}

.

Let us take qm−1 ∪ {0} ∪ S ′ from IIk. It goes by ai+1 to qi ∪ {0} ∪ S, where

i ∈
{

0, . . . , m
2
− 1

}

; note that as S ′ is necessary to take S ⊖ (i+ 1).

Finally, let: I =
⋃m−1

k=0 Ik, II =
⋃m−1

i=0 IIk, III =
⋃m−1

k=0 IIIk.

Then |I|+ |II|+ |III| = m
2
.2n−1 + m

2
.2n−1 + m

2
.2n−1 = 3

4
.m.2n = m2n −m2n−2, what

completes proof about reachability.

Next we will prove distinguishability of all reachable states by finding unique

accepted string for every state of NFA for concatenation. That means finding string

such that it is accepted only from this state but is rejected from every other string.

Therefore every reachable state of subset construction is distinguishable from other

states.

We start with state 2. Let w2 be the unique string for state the 2, it is following:

w2 = (

n−4
∏

i=0

an−3−ibbai+2)an−k−2

. Next we will analyse string w2. Every state qi goes by every an−3−ibbai+2 to some

state of first automaton or after bb it is in state 2 from which it goes to 2+ i+2. State

0 goes again to 2+ i+2. States i, where i ∈ {1, . . . , n− 1} goes by an−3−ibbai+2 itself

if i 6= i + 3, and to itself plus one otherwise. So after applying product part of w2,

on all states we get some state from first part together with 1, 2, all states except 2

went to state 1, only state 2 went to itself. Now it is easy to show how to bring state

2 into final state and 1 into non-final state, what can be done by string an−k−2.

Next we will show unique words how to get into state 2 from which we can continue

with w = 2. As states i, where i ∈ {1, 3, 4, . . . , n− 1}, i goes to state 2 by an−1+2−i.

State 0 goes to 2 by ba.

For the states of first automaton we will show string for qm−1 and then unique

string how to get to qm−1. State qm−1 goes to 2 by baba. Every other state qi where

i ∈ 0, 1, . . . , m− 2, goes to qm−1 by am−1−i.

This completes proof distinguishability, therefore our proof is complete.
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