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Abstract. We show that the upper bound (n− k) · 2n + k · 2n−1 on the
state complexity of the square of a regular language recognized by an
n-state deterministic finite automaton with k final states is tight in the
ternary case for every k with 1 ≤ k ≤ n−2. Using this result, we are able
to define a language that is hard for the square operation on languages
accepted by alternating finite automata. In the unary case, the known
upper bound for square is 2n − 1, and we prove that each value in the
range from 1 to 2n − 1 may be attained by the state complexity of the
square of a unary language with state complexity n whenever n ≥ 5.

1 Introduction

Square is an operation on formal languages which is defined as L2 = L·L = {uv |
u ∈ L and v ∈ L}. It is known that if a regular language L is recognized by an n-
state deterministic finite automaton (DFA), then the language L2 is recognized
by a DFA of at most n · 2n − 2n−1 states [11]. This upper bound follows from
the upper bound m · 2n − 2n−1 on the state complexity of the concatenation
K · L = {uv | u ∈ K and v ∈ L} of languages K and L recognized by m-state
and n-state DFAs, respectively [9, 14]; here, the state complexity of a regular
language is the smallest number of states in any DFA recognizing this language.

Yu et al. [14] proved that the upper bound for concatenation is tight in the
ternary case by describing languages over a three-letter alphabet that meet this
upper bound for their concatenation. The binary witnesses have been presented
already in [9], however no proof has been given here. The tightness of this upper
bound in the binary case is proved in [5].

In [14] it is shown that the upper bound m·2n−2n−1 for concatenation cannot
be met if the first language is accepted by an m-state DFA that has more than
one final state. In such a case, the upper bound is (m− k) · 2n + k · 2n−1, where
k is the number of final states in the DFA for the first language [14].
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The tightness of these bounds has been studied in [4], where binary witnesses
are described for every k with 1 ≤ k ≤ n−1. Later these results have been useful
for defining languages that are hard for concatenation of languages accepted by
alternating finite automata (AFAs). The known upper bound for alternating
finite automata is 2m + n + 1 [3], and the authors of [3] wrote: ”. . . we show
that 2m + n + 1 states suffice for an AFA to accept the concatenation of two
languages accepted by AFA with m and n states, respectively. We conjecture
that this number is actually necessary in the worst case, but have no proof.”

This open problem is almost solved in [6] by taking binary languages KR

and LR accepted by 2m-state and 2n-state DFAs, respectively, both with half
of states final, that meet the upper bound for concatenation in [4]. Then, as
shown in [6], the languages K and L are accepted by m-state and n-state AFAs,
respectively, and every AFA for the languageK ·L requires at least 2m+n states.

Motivated by the same problem for the square operation on alternating finite
automata, we study this operation in more detail in this paper. The upper bound
n ·2n−2n−1 on the state complexity of the square of a language recognized by an
n-state DFA is known to be tight in the binary case. Rampersad [11] described
a language over a binary alphabet recognized by an n-state DFA with one final
state whose square meets this upper bound.

As in the case of concatenation, this upper bound cannot be met by a language
accepted by an n-state DFA that has more than one final state. Here, the upper
bound for concatenation gives the upper bound (n − k) · 2n + k · 2n−1 on the
state complexity of the square of a language recognized by an n-state DFA with
k final states. In the first part of our paper, we show that these upper bounds
are tight in the ternary case for every k with 1 ≤ k ≤ n− 2. We are not able to
prove the tightness in the case of k = n− 1, and we conjecture that in this case,
the upper bound cannot be met. The binary case remains open as well.

Using these results, we are able to describe a language L accepted by an n-
state AFA such that every AFA for the language L2 needs at least 2n+n states.
This is smaller just but one than the upper bound 2n+n+1 which follows from
the known upper bound 2m + n+ 1 for concatenation of AFA languages [3].

In the second part of the paper, we study the square operation on unary regu-
lar languages. In the unary case, the known upper bound on the state complexity
of the square of a language recognized by an n-state unary DFA is 2n− 1 [11].
We are interested in the question which values in the range from 1 to 2n−1 may
be attained by the state complexity of the square of a unary language with state
complexity n. We prove that for every n with n ≥ 5, the hierarchy of possible
complexities is contiguous with no gaps in it. For every n and α with n ≥ 5 and
1 ≤ α ≤ 2n− 1, we are able to define a unary language L with state complexity
n such that the state complexity of the language L2 is α. This is in contrast to
the results for the star of unary languages [2], where there are at least two gaps
of length n of values in the range from 1 to (n− 1)2 +1 that cannot be attained
by the star of any unary language with state complexity n.

We first recall some basic definitions; for further details, the reader may refer
refer to [12, 13].
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A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, I, F ),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → 2Q is the
transition function which is extended to the domain 2Q×Σ∗ in the natural way,
I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. The
language accepted by A is the set L(A) = {w ∈ Σ∗ | δ(I, w) ∩ F �= ∅}. An NFA
A is deterministic (and complete) if |I| = 1 and |δ(q, a)| = 1 for each q in Q and
each a in Σ. In such a case, we write q · a = q′ instead of δ(q, a) = {q′}.

The state complexity of a regular language L, sc(L), is the number of states
in the minimal DFA for L. It is well known that a DFA is minimal if all its states
are reachable from its initial state, and no two of its states are equivalent.

The concatenation of two languages K and L is the language K · L = {uv |
u ∈ K and v ∈ L}. The square of a language L is the language L2 = L · L.

The reverse of a string w is defined by εR = ε and (wa)R = awR for a string w
and a symbol a. The reverse of a language L is the language LR = {wR | w ∈ L}.

A language is called unary (binary, ternary) if it is defined over an alphabet
containing one (two, three, respectively) symbols.

2 Square for Automata with k Final States

In this section we consider languages over an alphabet of at least two symbols.
The state complexity of concatenation of regular languages accepted by an m-
state and an n-state DFAs is known to be m · 2n − 2n−1 [9, 14]. However, if the
first automaton has k final states, then the upper bound for concatenation is
(m − k) · 2n + k · 2n−1 [14], and it is known to be tight in the binary case for
every k with 1 ≤ k ≤ n− 1 [4].

It follows that the upper bound on the complexity of square is n · 2n − 2n−1.
A binary witness language meeting this bound is presented in [11]. If a language
is accepted by an n-state DFA with k final states, then the upper bound is
(n− k) · 2n + k · 2n−1. For the sake of completeness, we give a simple alternative
proof here.

Lemma 1. Let n ≥ 2 and 1 ≤ k ≤ n − 1. If a language L is accepted by an
n-state DFA with k final states, then sc(L2) ≤ (n− k) · 2n + k · 2n−1.

Proof. Let L be a language accepted by a DFA A = (Q,Σ, ·, 0, F ), where Q =
{0, 1, . . . , n − 1} and |F | = k. Construct an NFA N for the language L2 from
the DFA A as follows. Take two copies of the DFA A; the states in the first copy
are labeled by q0, q1, . . . , qn−1, and the states of the second copy are labeled by
0, 1, . . . , n−1. For each state qi and each symbol a, add the transition on a from
qi to the initial state 0 of the second copy whenever i ·a ∈ F . The initial state of
the NFA N is q0 if 0 /∈ F , otherwise N has two initial states q0 and 0. The final
states of N are final states in the second copy, thus states in F .

Consider the subset automaton of the NFA N . Each reachable subset of the
subset automaton is of the form {qi}∪S, where S ⊆ {0, 1, . . . , n− 1}. Moreover,
if i ∈ F , then S must contain the state 0. It follows that the number of reachable
states in the subset automaton is at most (n− k) · 2n + k · 2n−1. ��
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Fig. 1. A DFA A of a language meeting the bound (n− k) · 2n + k · 2n−1 for square

Our next aim is to show that the bounds (n − k) · 2n + k · 2n−1 can be met
by languages over a three-letter alphabet assuming that 1 ≤ k ≤ n− 2. We are
not able to prove the tightness in the case of k = n− 1, and we conjecture that
in this case, the bound 2n + (n− 1) · 2n−1 cannot be met.

Lemma 2. Let n ≥ 3 and 1 ≤ k ≤ n − 2. There exists a ternary regular
language L accepted by an n-state DFA with k final states and such that sc(L2) =
(n− k) · 2n + k · 2n−1.

Proof. Let L be the language accepted by the DFA A = (Q, {a, b, c}, ·, 0, F )
shown in Fig. 1, in which Q = {0, 1, . . . , n− 1}, F = {i | n− k ≤ i ≤ n− 1}, and

q · a = (q + 1) mod n;
q · b = q if q �= 1 and 1 · b = 0;
q · c = 1 if q �= n− 1 and (n− 1) · c = n− 1;

notice that the automaton A restricted to the alphabet {a, b} and with k = 1 is
the Rampersad’s witness automaton meeting the upper bound n · 2n − 2n−1 on
the state complexity of the square of regular languages [11].

Construct an NFAN for the language L2 as described in the proof of Lemma 1.
The NFA N is shown in Fig. 2; to keep the figure transparent, we omitted the
transitions on c going to states q1 and 1.

Our goal is to show that the subset automaton corresponding to the NFA N
has (n− k) · 2n + k · 2n−1 reachable and pairwise distinguishable states.

To this aim consider the following family of subsets of the states of N :

R =
{{qi} ∪ S | 0 ≤ i ≤ n− k − 1, S ⊆ {0, 1, . . . , n− 1}}

∪ {{qi} ∪ T | n− k ≤ i ≤ n− 1, T ⊆ {0, 1, . . . , n− 1} and 0 ∈ T
}
.
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Fig. 2. An NFA N for the language (L(A))2; the transitions on c going to states q1
and 1 are omitted
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The family R consists of (n − k) · 2n + k · 2n−1 subsets, and we are going to
show that all of them are reachable and pairwise distinguishable in the subset
automaton of the NFA N .

We prove reachability by induction on the size of subsets. The initial state
of the subset automaton is {q0}, and the following transitions show that all the
subsets in R of size at most two are reachable:

{q0} a−→{q1} a−→ · · · a−→{qn−k−1} a−→{qn−k, 0} ab−→ {qn−k+1, 0} ab−→ · · · ab−→ {qn−1, 0},
{qn−1, 0} a−→ {q0, 1} b−→ {q0, 0},
{q0, 1} (ab)j−1

−−−−−→ {q0, j} where 2 ≤ j ≤ n− 1, and

{q0, (j − i) mod n} ai−→ {qi, j} where 1 ≤ i ≤ n− k − 1, 0 ≤ j ≤ n− 1.

Now let 2 ≤ t ≤ n, and assume that each subset in R of size t is reachable in
the subset automaton. Let us show that then also each subset in R of size t+ 1
is reachable.

To this aim let S = {qi, j1, j2, . . . , jt}, where 0 ≤ j1 < j2 < · · · < jt ≤ n− 1,
be a subset in R of size t+ 1. Consider several cases:

(1) Let n− k ≤ i ≤ n− 1, so j1 = 0. We show that the set S is reachable by
induction on i.

(1a) If i = n − k, then S is reached from {qn−k−1, j2 − 1, j3 − 1, . . . , jt − 1}
by a, and the latter set is reachable by induction on t.

(1b) Suppose i > n − k. If j2 ≥ 2, then the set S is reached from the set
{qi−1, 0, j2−1, . . . , jt−1} by ab. If j2 = 1, then the set S is reached from the set
{qi−1, n − 1, 0, j3 − 1, . . . , jt − 1} by a. Both sets containing qi−1 are reachable
by induction on i.

(2) Let i = 0. There are four subcases:
(2a) Let j1 = 0 and j2 = 1. Take S′ = {qn−1, n− 1, 0, j3− 1, . . . , jt− 1}. Then

S′ is reachable as shown in case (1), and it goes to S by a.
(2b) Let j1 = 0 and j2 ≥ 2. Take S′ = {qn−1, 0, j2−1, j3−1, . . . , jt−1}. Then

S′ is reachable as shown in case (1), and it goes to S by ab.
(2c) Let j1 = 1. Take S′ = {qn−1, 0, j2 − 1, j3 − 1, . . . , jt − 1}. Then S′ is

reachable as shown in case (1), and it goes to S by a.
(2d) Let j1 ≥ 2. Take S′ = {q0, 1, j2− j1+1, j3− j1+1, . . . , jt− j1+1}. Then

S′ is reachable as shown in case (2c), and it goes to S by (ab)j1−1.

(3) Let 1 ≤ i ≤ n− k − 1. Take S′ = {q0, (j1 − i) mod n, . . . , (jt − i) mod n}.
Then S′ is reachable as shown in cases (2a-2d), and it goes to S by ai.

This proves the reachability of all the subsets in R.
To prove distinguishability, notice that the string c is accepted by the NFA

N only from the state n − 1; remind that state 1 is not final since we have
k ≤ n − 2. Next, notice that exactly one transition on a goes to each of the
states in {q1, q2, . . . , qn−1, 1, 2, . . . , n − 1}, and exactly one transition on c goes
to state 0. It follows that the string an−1−ic is accepted only from the state i,
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where 0 ≤ i ≤ n − 2, the string can−1c is accepted only from the state qn−1,
and finally the string an−1−ican−1c is accepted only from the state qi, where
0 ≤ i ≤ n− 2. Fig. 3 illustrates this for n = 5 and k = 3. This means that all the
states in the subset automaton of the NFA N are pairwise distinguishable since
two distinct subsets must differ in a state q of N , and the string that is accepted
only from q distinguishes the two subsets. This proves distinguishability, and
concludes the proof. ��

0 1 2 3 4

a a a a

a a a a

cc

qq
0 1

caca c2a ca c 34

ca c44 444 2a ca c3a ca c4 aca ca ca c

q2 4qq
3

Fig. 3. The strings accepted only from the corresponding states; n = 5 and
k = 3. Notice that exactly one transition on a goes to each of the states in
{q1, q2, . . . , qn−1, 1, 2, . . . , n − 1}, and exactly one transition on c goes to state 0. The
unique acceptance of appropriate strings follows from these facts.

As a corollary of the two lemmata above, we get the following result.

Theorem 1 (Square: k Final States). Let n ≥ 3 and 1 ≤ k ≤ n− 2. Let L
be a language over an alphabet Σ accepted by an n-state DFA with k final states.
Then sc(L2) ≤ (n− k) · 2n + k · 2n−1, and the bound is tight if |Σ| ≥ 3. ��

2.1 An Application

In this subsection we show how the witness languages described in Lemma 2 can
be used to define languages that almost meet the upper bound on the square
operation on alternating finite automata.

First, let us give some basic definitions and notations. For details and all
unexplained notions, the reader may refer to [1, 3, 6–8, 12, 13].

An alternating finite automaton (AFA) is a quintuple A = (Q,Σ, δ, s, F ),
where Q is a finite non-empty set of states, Q = {q1, . . . , qn}, Σ is an input
alphabet, δ is the transition function that maps Q×Σ into the set Bn of boolean
functions, s ∈ Q is the initial state, and F ⊆ Q is the set of final states. For
example, let A1 = ({q1, q2}, {a, b}, δ, q1, {q2}), where transition function δ is
given in Table 1.
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Table 1. The transition function of the alternating finite automaton A1

δ a b

q1 q1 ∧ q2 1

q2 q2 q1 ∨ q2

The transition function δ is extended to the domain Bn ×Σ∗ as follows: For
all g in Bn, a in Σ, and w in Σ∗,

δ(g, ε) = g;

if g = g(q1, . . . , qn), then δ(g, a) = g(δ(q1, a), . . . , δ(qn, a));

δ(g, wa) = δ(δ(g, w), a).

Next, let f = (f1, . . . , fn) be the boolean vector with fi = 1 iff qi ∈ F . The lan-
guage accepted by the AFA A is the set L(A) = {w ∈ Σ∗ | δ(s, w)(f) = 1}.
In our example we have

δ(s, ab) = δ(q1, ab) =δ(δ(q1, a), b) = δ(q1 ∧ q2, b) = 1 ∧ (q1 ∨ q2) = q1 ∨ q2.

To determine whether ab ∈ L(A1), we evaluate δ(s, ab) at the vector f = (0, 1).
We obtain 0, hence ab /∈ L(A1). On the other hand, we have abb ∈ L(A1) since
δ(s, abb) = δ(q1 ∨ q2, b) = 1 ∨ (q1 ∧ q2), which gives 1 at (0, 1).

An alternating finite automaton A is nondeterministic (NFA) if δ(qk, a) are
of the form

∨
i∈I qi. If δ(qk, a) are of the form qi, then the automaton A is

deterministic (DFA).
Recall that the state complexity of a regular language L, sc(L), is the small-

est number of states in any DFA accepting L. Similarly, the alternating state
complexity of a language L, in short asc(L), is defined as the smallest number
of states in any AFA for L. The following results are well known.

Lemma 3 ([1, 3, 6, 7]). If L is accepted by an AFA of n-states, then LR is
accepted by a DFA of 2n states. If sc(LR) = 2n and the minimal DFA for LR

has 2n−1 final states, then asc(L) = n. ��
It follows that asc(L) ≥ log(sc(LR)). Using the results given by Lemma 2

and Lemma 3, we get a language that almost meets the upper bound on the
complexity of the square operation on AFAs.

Theorem 2 (Square on AFAs). Let L be a language over an alphabet Σ with
asc(L) = n. Then asc(L2) ≤ 2n + n+ 1. The bound 2n + n is met if |Σ| ≥ 3.

Proof. The upper bound follows from the upper bound 2m + n+ 1 on the con-
catenation of AFA languages [3]. Now let LR be the ternary witness for square
from Lemma 2 with 2n states and 2n−1 final states. Then, by Lemma 3, we have
asc(L) = n. By Lemma 2, we get

sc((L2)R) = sc((LR)2) = 2n−1 · 22n + 2n−1 · 22n−1 ≥ 2n−1 · 22n(1 + 1/2).

By Lemma 3, we have asc(L2) ≥ �log(2n−1 · 22n(1 + 1/2))� = 2n + n, which
proves the theorem. ��



On the Square of Regular Languages 143

The above result for square complements the results on the complexity of basic
operations on AFA languages obtained in [6]. The following table summarizes
these results, and compares them to the known results for DFAs [9, 11, 14].

union intersection concatenation reversal star square

AFAs m+ n+ 1 m+ n+ 1 ≥ 2m + n ≥ 2n ≥ 2n ≥ 2n + n

≤ 2m + n+ 1 ≤ 2n + 1 ≤ 2n + 1 ≤ 2n + n+ 1

DFAs mn mn m · 2n − 2n−1 2n 3/4 · 2n n · 2n − 2n−1

3 Square of Languages over Unary Alphabet

A unary alphabet is fundamentally different from the general case. It has a close
relation to the number theory – the length of strings is their only property that
really matters in complexity questions. From this point of view, unary languages
are nothing else than subsets of natural numbers. Instead of writing an ∈ L, we
will write n ∈ L. The square operation is then, in fact, the sum of two numbers
in the language. Let us start with some basic definitions and notations.

For integers i and j with i ≤ j, let [i, j] = {i, i+ 1, . . . , j}.
A DFA A = (Q, {a}, δ, q0, F ) for a unary language is uniquely given by less

information than an arbitrary DFA. Identify states with numbers from the in-
terval [0, n − 1] via q ∼ min{i | δ(q0, ai) = q}. Then A is unambiguously given
by the number of states n, the set of final numbers F , and the “loop” number
� = δ(q0, a

n). This allows us to freely interchange states and their ordinal num-
bers and justifies the notation convention used by Nicaud [10], where (n, �, F )
denotes a unary automaton with n states, the loop number �, and the set of final
states F . Nicaud also provided the following characterization of minimal unary
automata.

Theorem 3 ([10, Lemma 1]). A unary automaton (n, �, F ) is minimal if and
only if both conditions below are true:
(1) its loop is minimal, and
(2) states n − 1 and � − 1 do not have the same finality (that is, exactly one

of them is final). ��
Finite and cofinite languages are always regular, and if they are unary, then

it is easy to determine their state complexity.

Proposition 1. Let L be a unary language. If L is cofinite, then we have sc(L) =
max{m | m /∈ L}+ 2. If L is finite, then sc(L) = max{m | m ∈ L}+ 2. ��
Proposition 2. If a language is (co)finite, then also its square is (co)finite. ��

If ε ∈ L, then every string w in L can be written as εw. This leads to the
following observation.

Proposition 3. If ε ∈ L, then L ⊆ L2. ��
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3.1 Finite Unary Languages

Interestingly, if we consider only finite languages with state complexity n, then
we cannot get any other complexity for square but 2n− 2.

Lemma 4. Let L be a finite unary regular language with sc(L) = n. Then
sc(L2) = 2n− 2.

Proof. By Proposition 1, the greatest number in L is n − 2. It follows that
the greatest member of L2 is the number 2n − 4. Hence L2 is also finite and
sc(L2) = 2n− 4 + 2 = 2n− 2. ��

3.2 General Unary Languages

If we take a unary language with state complexity n, the state complexity of
its square will be between 1 and 2n− 1 [11]. But could it be anywhere between
these two bounds? The next result shows that the answer is yes if n ≥ 5.

Theorem 4. Let n ≥ 5 and 1 ≤ α ≤ 2n− 1. There exists a unary language L
such that sc(L) = n and sc(L2) = α.

Proof. We will provide a witness for every liable combination of n and α. The
proof is structured to four main cases depending on α:

1. α = 2 (the proof works for n ≥ 6),
2. α = 2n− 2 (the proof works for n ≥ 2),
3. 1 ≤ α ≤ n− 1 and α �= 2 (the proof works for n ≥ 8),
4. n ≤ α ≤ 2n− 1 and α �= 2n− 2 (the proof works for n ≥ 2).

All witnesses uncovered by these general proofs are part of Table 2 which is
an overview of the situation for n < 5 and α ≤ n. If the combination of n and α
is liable, one witness is listed, non-existence is indicated by the symbol –.

Table 2. Witnesses for liable combinations of small values of n and α; 2 ≤ n ≤ 7 and
1 ≤ α ≤ n

α n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

1 – (3, 0, {0, 1}) (4, 3, {0, 1, 3}) (5, 4, {0, 1, 2, 4}) (6, 5, {0, 1, 2, 3, 5}) (7, 6, {0, 1, 2, 3, 4, 6})
2 (2, 0, {0}) – – (5, 1, {0, 2}) (6, 0, {0, 2}) (7, 5, {0, 2, 6})
3 (3, 0, {0}) (4, 2, {1, 2}) (5, 0, {0, 2, 3}) (6, 5, {0, 2, 3, 5}) (7, 6, {0, 2, 3, 4, 6})
4 (4, 0, {0}) (5, 0, {0, 3, 4}) (6, 2, {0, 3, 4, 5}) (7, 0, {0, 3, 4, 5})
5 (5, 0, {0}) (6, 2, {0, 2, 5}) (7, 6, {0, 1, 4, 6})
6 (6, 0, {0}) (7, 1, {0, 1, 3})
7 (7, 0, {0})
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1. Let α = 2 and n ≥ 6. The construction of witnesses depends on the parity
of n. If n is even, then we take the language recognized by the witness DFA
A = (n, 0, F ), where F = {i ∈ [0, n− 1] | i is even and i �= n − 2}. If n is odd,
then the witness DFA is A = (n, n− 2, {i ∈ [0, n− 1] | i is even and i �= n− 3}).

We claim that in both cases L(A)
2
is the language of even numbers with the

corresponding minimal DFA (2, 0, {0}). We give the proof for n even; the proof
for n odd has only slight technical differences.

We first show that A is minimal. The second condition of Theorem 3 is fulfilled
vacantly. The first condition – the minimality of the loop – is satisfied as well:
Any equivalent loop must be of even length as not to accept strings of different
parity. Since there is exactly one even non-accepting state, it cannot be equivalent
with any other state, and the loop is unfactorizable.

Now we show that L(A)2 is the language of all even numbers. Since L(A)
contains only even numbers and the sum of two even numbers is even, L(A)2

contains only even numbers. Let us show that L(A)2 contains all even numbers.

By Proposition 3, we have L(A) ⊆ L(A)
2
. All even numbers missing in L(A)

are in the form kn+(n−2). But these numbers are in L(A)2, since kn+(n−2) =
(2+kn)+(n−4), which is a sum of two numbers in L(A); recall, that 2 �= n−2,
since n ≥ 6.

2. Let α = 2n−2 and n ≥ 2. By Lemma 4, every finite language of complexity
n is a witness in this case; for example, we can take the language {n− 2}.

From now on, our strategy is based on Proposition 1. All our languages will
be cofinite, so their complexity is easily determined by answering the question –
how long is the longest string not contained in this language?

3. Let 1 ≤ α ≤ n − 1, α �= 2, and n ≥ 8. Technically, this case is further
divided to subcases α = 1, α = 3, α = 4, 5 ≤ α ≤ n where α �= n − 1, and
α = n− 1. However, the main idea of the construction is always the same, so we
provide only the witness automata in Fig. 4, and one exemplary proof in the case
of 5 ≤ α ≤ n where α �= n − 1. For this case, consider the language L accepted
by the unary automaton A = (n, n−1, F ), where F = [α−1, n−3]∪{0, 1, n−1}.

First, let us show that the numbers greater than α− 2 are in L2. Since ε ∈ L,
the language L is a subset of L2 by Proposition 3. The only number greater than
α− 2 that is not in L is n− 2. However, we have n− 2 = (n− 3) + 1, which is
the sum of two numbers in L. Therefore, the number n − 2 is in L2. It follows
that all numbers greater than α− 2 are in L2.

Now let us show that α − 2 is not in L2. The only numbers in L that are
smaller than α− 1 are 0 and 1. The sum of any two of them is at most 2, which
is less than α− 2. Thus, by Proposition 1, the state complexity of L2 is α.

4. n ≤ α ≤ 2n − 1 and α �= 2n − 2, n ≥ 2. Consider the unary language
L = {i | i ≥ n − 1}. Then sc(L) = n and sc(L2) = 2n − 1 since the greatest
number that is not in L2 is 2n − 3. By adding an arbitrary number different
than n− 2 to the language L, we get a language with the same state complexity
as L. But the state complexity of the square of the resulting language will be
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Fig. 4. The construction of witnesses for n and α with 1 ≤ α ≤ n

different. Let m = α − n. Then 0 ≤ m ≤ n− 1 and m �= n− 2. Let us see what
happens, if we add the number m to L.

Let Lm = L ∪ {m}. Then we have L2
m = {2m} ∪ {m+ i | i ≥ (n− 1)}. Since

m �= n− 2, we have 2m �= m+ n− 2, and therefore the greatest number that is
not in L2

m is m+ n− 2. It follows that sc(L2
m) = m+ n− 2 + 2 = α. ��

4 Conclusions

We considered the square operation on regular languages. In the unary case, the
state complexity of square is 2n− 1 [11]. We proved that each value in the range
from 1 to 2n − 1 may be attained by the state complexity of the square of a
unary language with state complexity n whenever n ≥ 5.

Next, we studied the square operation on languages over an alphabet of at
least two symbols. The known upper bound in this case is n · 2n − 2n−1, and
it is known to be tight in the binary case [11]. We investigated the square for
languages accepted by automata with more final states. The upper bound on the
state complexity of the square of a language accepted by an n-state DFA with
k final states is (n− k) · 2n + k · 2n−1. We showed that these upper bounds are
tight in the ternary case assuming that 1 ≤ k ≤ n− 2.

The case of k = n− 1 remains open, and we conjecture that the upper bound
2n + (n− 1) · 2n−1 cannot be met in this case. The binary case is open as well.

As an application, we were able to define a ternary language L accepted by an
n-state alternating finite automaton such that every alternating finite automaton
for the language L2 requires at least 2n + n states. This is smaller just by one
than the known upper bound 2n + n+ 1 [3]. Our result on the square operation
complements the results on the complexity of union, intersection, concatenation,
star, and reversal on AFA languages obtained in [6].
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