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Abstract A language L is prefix-closed if, whenever a word w is in L, then every
prefix of w is also in L. We define suffix-, factor-, and subword-closed languages in an
analogous way, where by factor we mean contiguous subsequence, and by subword
we mean scattered subsequence. We study the state complexity (which we prefer
to call quotient complexity) of operations on prefix-, suffix-, factor-, and subword-
closed languages. We find tight upper bounds on the complexity of the subword-
closure of arbitrary languages, and on the complexity of boolean operations, concate-
nation, star, and reversal in each of the four classes of closed languages. We show
that repeated applications of positive closure and complement to a closed language
result in at most four distinct languages, while Kleene closure and complement give
at most eight.
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1 Introduction

The state complexity of a regular language L is the number of states in the mini-
mal deterministic finite automaton (dfa) recognizing L. The state complexity of an
operation in a subclass C of regular languages is defined as the worst-case size of
the minimal dfa accepting the language resulting from the operation, considered as a
function of the state complexities of the operands in C.

The first results on the state complexity of reversal of a regular language are due
to Mirkin [26] (1966), and of union, concatenation, and star of regular languages,
to Maslov [25] (1970). For a general discussion of state complexity see the 2001
survey by Yu [31], the 2010 article by Brzozowski [6], and the reference lists in those
papers. In 1994 the state complexities of concatenation, star, left and right quotients,
reversal, intersection, and union of regular languages were examined in detail by Yu,
Zhuang and K. Salomaa in [32]. The complexity of operations was also considered
recently in several subclasses of regular languages: unary [28, 32], finite [12, 31],
cofinite [3], prefix-free [20], suffix-free [19], bifix-, factor-, and subword-free [9], and
ideal [8]. These studies show that the state complexity can be significantly lower in
a subclass than in the general case. Here we examine state complexity in the classes
of prefix-, suffix-, factor-, and subword-closed regular language; these classes are
defined informally in the abstract and more formally in Sect. 3.

There are several reasons for considering closed languages. Subword-closed lan-
guages were studied in 1969 by Haines [18], in 1973 by Thierrin [29], and in 2010 by
Okhotin [27]. Suffix-closed languages were considered in 1974 by Gill and Kou [15],
in 1976 by Galil and Simon [14], in 1979 by Veloso and Gill [30], and in 2001 by
Holzer, K. Salomaa, and Yu [21]. Factor-closed languages, also called factorial, have
received some attention, for example, in 1990 by de Luca and Varricchio [13], and in
2005 by Avgustinovich and Frid [2]. The state complexities of the prefix-, suffix-, and
factor-closure of a language were examined in 2009 by Kao, Rampersad, and Shal-
lit [23]. Prefix-closed languages play a role in predictable semiautomata considered in
2009 by Brzozowski and Santean [10]. All four classes of closed languages were stud-
ied in 2009 by Ang and Brzozowski [1], and decision problems for closed languages
were discussed in 2009 by Brzozowski, Shallit, and Xu [11]. Closed languages are
closely related to ideals as follows [1]. A language is a left ideal (respectively, right,
two-sided, all-sided ideal) if L = Σ∗L, (respectively, L = LΣ∗, L = Σ∗LΣ∗, and
L = Σ∗ L, where Σ∗ L is the shuffle of Σ∗ with L). A non-empty language
is a right (respectively left, two-sided, or all-sided) ideal if and only if its comple-
ment is a prefix-closed (respectively suffix-, factor-, or subword-closed) language.
Closed languages are defined by the binary relation “is a prefix of” (respectively, “is
a suffix of”, “is a factor of”, “is a subword of”) [1], and are special cases of convex
languages introduced in 1973 by Thierrin [29], and generalized in 2009 by Ang and
Brzozowski [1]. Recent results concerning convex languages were surveyed in 2010
by Brzozowski [5]. The fact that the four classes of closed languages are related to
each other permits us to obtain many results about them using similar methods.
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The remainder of the paper is structured as follows. In Sect. 2 we discuss basic no-
tions, including that of quotient complexity. Closure operations are studied in Sect. 3.
The complexities of boolean operations, concatenation, star, and reversal are treated
in Sect. 4. In Sect. 5 we examine the Kuratowski algebras generated by closed lan-
guages under the operations of complement and star, and complement and positive
closure. Section 6 concludes the paper.

2 Quotient Complexity

The cardinality of a set S is denoted by |S|. If Σ is a non-empty finite alphabet, then
Σ∗ is the free monoid generated by Σ . A word is any element of Σ∗, and ε is the
empty word. A language over Σ is any subset of Σ∗.

The following set operations are defined on languages: complement (L = Σ∗ \L),
union (K ∪ L), intersection (K ∩ L), difference (K \ L), and symmetric difference
(K ⊕ L). All four of these boolean operations with two arguments are denoted by
K ◦ L. We also define the product KL, usually called concatenation or catenation:

KL = {
w ∈ Σ∗ ∣∣w = uv,u ∈ K,v ∈ L

}
,

and the (Kleene) star L∗ and the positive closure L+:

L∗ =
⋃

i≥0

Li, L+ =
⋃

i≥1

Li.

The reverse wR of a word w in Σ∗ is defined as follows: εR = ε, and (wa)R = awR .
The reverse of a language L is denoted by LR and is defined as LR = {wR | w ∈ L}.

Regular languages over an alphabet Σ are languages that can be obtained from the
set of basic languages {∅, {ε}} ∪ {{a} | a ∈ Σ}, using a finite number of operations of
union, product, and star. Such languages are usually denoted by regular expressions.
If E is a regular expression, then L(E) is the language denoted by that expression. For
example, E = (ε ∪a)∗b denotes the language L(E) = ({ε}∪ {a})∗{b}. We usually do
not distinguish notationally between regular languages and regular expressions; the
meaning is clear from the context.

A deterministic finite automaton (dfa) is a quintuple

D = (Q,Σ, δ, q0,F ),

where Q is a set of states, Σ is the alphabet, δ : Q × Σ → Q is the transition
function, q0 is the initial state, and F is the set of final or accepting states. The
transition function of a dfa D = (Q,Σ, δ, q0,F ) is extended to a function from
Q × Σ∗ to Q, and this extension is also denoted by δ. The language accepted by
D is L(D) = {w | δ(q0,w) ∈ F }, and L(Dq) is the language accepted by the dfa
Dq = (Q,Σ, δ, q,F ), which is the same as D, except that its initial state is q; thus
L(D) = L(Dq0). If L(Dq) is empty, we call q the empty state, which is often called
the dead state. States p and q of D are equivalent if L(Dp) = L(Dq). If p and q

are not equivalent, there must exist some word w ∈ Σ∗ which is in L(Dp) but not in
L(Dq), or vice versa; then we say that p and q are distinguishable (by the word w).
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A nondeterministic finite automaton (nfa)1 is a quintuple

N = (Q,Σ,η,Q0,F ),

where Q, Σ , and F are as in a dfa, η : Q × Σ → 2Q is the transition function and
Q0 ⊆ Q is the set of initial states. If η also allows ε, that is, η : Q× (Σ ∪{ε}) → 2Q,
we call N an ε-nfa. The extended transition function η̂ : 2Q × Σ∗ → 2Q is defined
as follows. Let S ⊆ Q be a set of states of N , and let ηε(S) be the set of states that
can be reached from any state in S through ε-transitions. Then

η̂(S, ε) = ηε(S),

η̂(S, xa) =
⋃

q∈η̂(S,x)

ηε

(
η(q, a)

)
,

for all a ∈ Σ and x ∈ Σ∗. We usually refer to η̂ as η. The nfa or ε-nfa N accepts
x ∈ Σ∗ if η̂(Q0, x) ∩ F �= ∅, and L(N ) is the set of all words accepted by N . Thus
any nfa or ε-nfa is equivalent to some dfa D = (Q′,Σ, δ, q ′

0,F
′) in which Q′ = 2Q

is the set of states, δ is the transition function defined by δ(S, a) = η̂(S, a) for every
S ∈ Q′, q ′

0 = ηε(Q0) is the initial state, and F ′ = {S ⊆ Q | S ∩ F �= ∅} is the set of
final states. The language L(Nq) of a state q of nfa N is the language accepted by
the nfa Nq = (Q,Σ,η,ηε({q}),F ).

Our approach to quotient complexity follows closely that of [6]. Since state com-
plexity is a property of a language, we prefer to define it in language-theoretic terms.
The left quotient, or simply quotient, of a language L by a word w is the language
Lw = {x ∈ Σ∗ | wx ∈ L}. The quotient complexity of L is the number of distinct
quotients of L and is denoted by κ(L).

Quotients of regular languages [4, 6] can be computed as follows. First, the ε-
function Lε of a regular language L is

Lε =
{∅, if ε �∈ L;

ε, if ε ∈ L.
(1)

The quotient by a letter a in Σ is computed by induction:

ba =
{∅, if b ∈ {∅, ε}, or b ∈ Σ and b �= a;

ε, if b = a.
(2)

(L)a = La; (K ∪ L)a = Ka ∪ La; (KL)a = KaL ∪ KεLa;
(
K∗)

a
= KaK

∗.
(3)

The quotient by a word w ∈ Σ∗ is computed by induction on the length of w:

Lε = L; Lwa = (Lw)a. (4)

1In contrast to some authors, we use a set of initial states, since we require the reverse of an nfa to be an
nfa.
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A quotient Lw is accepting if ε ∈ Lw; otherwise it is rejecting. If the empty lan-
guage is one of the quotients of a language L, then we say that L has the empty
quotient.

It is well known that there is a one-to-one correspondence between the quotients
of a regular language L and the states of the minimal dfa accepting L. Hence the
quotient complexity of L is equal to the state complexity of L. Sometimes there are
some advantages to using quotient complexity [6]; in other cases, it may be preferable
to use state complexity and automata.

The formulas given next can be used to establish upper bounds on quotient com-
plexity. To simplify the notation, we write (Lw)ε as Lε

w .

Proposition 1 ([4, 6]) If K and L are regular languages over an alphabet Σ , and u

and v below are in Σ+, then

(L)w = Lw; (K ◦ L)w = Kw ◦ Lw; (5)

(KL)w = KwL ∪ KεLw ∪
( ⋃

w=uv

Kε
uLv

)
; (6)

(
L∗)

ε
= ε ∪ LL∗,

(
L∗)

w
=

(
Lw ∪

⋃

w=uv

(
L∗)ε

u
Lv

)
L∗ for w ∈ Σ+. (7)

3 Closure Operations

If w = uxv for some u,v, x in Σ∗, then u is a prefix of w, v is a suffix of w, and x is
a factor of w. If w = w0a1w1 · · ·anwn, where a1, . . . , an ∈ Σ , and w0, . . . ,wn ∈ Σ∗,
then the word a1 · · ·an is a subword of w.

A language L is prefix-closed if w ∈ L implies that every prefix of w is also in L.
In a similar way, we define suffix-, factor-, and subword-closed languages. A language
is closed if it is prefix-, suffix-, factor-, or subword-closed.

Let � be a partial order on Σ∗; the �-closure of a language L is the language

�L = {
x ∈ Σ∗ ∣∣x � w for some w ∈ L

}
.

For our applications, the partial order becomes one of the relations “is a prefix of”,
“is a suffix of”, “is a factor of”, or “is a subword of”.

The worst-case quotient complexity for closure was studied by Kao, Rampersad,
and Shallit [23]. For suffix-closure, the bound 2n − 1 holds in the case where L does
not have the empty quotient. We add the case where L has the empty quotient; here
the bound is 2n−1. Subword-closure was previously studied by Gruber, Holzer and
Kutrib [16, 17] and Okhotin [27], but tight upper bounds were not established; our
next theorem solves this problem. For completeness, we provide the proofs for all
four closure operations.

Theorem 1 (Closure Operations) Let n ≥ 2. Let L be a regular language over an
alphabet Σ with κ(L) = n.
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Fig. 1 An n-state dfa of a
language L that does not have
the empty quotient

1. If K is the prefix-closure of L, then κ(K) ≤ n, and the bound is tight if |Σ | ≥ 1.
2. If K is the suffix-closure of L, then κ(K) ≤ 2n − 1 if L does not have empty

quotient and κ(K) ≤ 2n−1 otherwise; both bounds are tight if |Σ | ≥ 2.
3. If K is the factor-closure of L, then κ(K) ≤ 2n−1, and the bound is tight if |Σ | ≥ 2.
4. If K is the subword-closure of L, then κ(K) ≤ 2n−2 + 1, and the bound is tight if

|Σ | ≥ n − 2.

Proof We assume that the given regular language L is represented by its minimal dfa
D = (Q,Σ, δ, q0,F ), and that the quotient complexity of L is n.

1. To get the dfa for the prefix-closure of L, we only need to make each non-empty
state of D accepting. This gives the upper bound n. For tightness, consider the unary
language L = {ai | i ≤ n − 2}. The prefix-closure of L is the same language. Thus
the upper bound is tight if |Σ | ≥ 1.

2. We can construct an nfa for the suffix-closure of L by making each non-empty
state of D initial. Then we apply the subset construction to this nfa.

If L does not have the empty quotient, then the construction begins with the set
Q, which is non-empty. Since D is deterministic, each set reached by a letter from Σ

from a non-empty set is non-empty. Hence the empty set cannot be reached, and so
the subset dfa has at most 2n − 1 states.

If L has the empty quotient, then the nfa for the suffix-closure of L has n − 1
states, and the minimal equivalent dfa has at most 2n−1 states.

To prove tightness in the case where L does not have the empty quotient, consider
the language L defined by the n-state dfa shown in Fig. 1.

Construct an nfa for the suffix-closure of L from this minimal dfa by making all
states initial. Since the word an−i is accepted by the nfa only from state i for i =
0,1, . . . , n− 1, no two different states of the corresponding subset dfa are equivalent.

Let us show that the corresponding subset dfa has 2n − 1 reachable states. The
proof is by induction on the size of subsets, going from n down to 1. The basis,
|S| = n, holds since {0,1, . . . , n − 1} is the initial state. Assume that each set of size
k is reachable and let S be a set of size k −1. If S contains state 0 but does not contain
state 1, then it can be reached from the set S ∪ {1} of size k by b. If S contains both
0 and 1, then there is a state i such that i ∈ S and i + 1 /∈ S. Then S can be reached
from {s − i mod n | s ∈ S} by ai . The latter set contains 0 and does not contain 1,
and so is reachable. If a non-empty S does not contain 0, then it can be reached from
{s − minS | s ∈ S}, which contains 0, by aminS . Hence the subset dfa has 2n − 1
reachable states, and no two different states are equivalent.

Now consider the case where a language has the empty quotient. Let L be the
language defined by the n-state dfa shown in Fig. 2. Remove state n − 1 and the
transitions going to it, and then construct an nfa by making all non-empty states
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Fig. 2 An n-state dfa of a
language L that has the empty
quotient

initial. Since the word (ab)n is accepted by the nfa only from state 0, and the word
an−1−i (ab)n only from state i for i = 1,2, . . . , n − 2, no two different states of the
corresponding subset dfa are equivalent. The proof of reachability of all non-empty
subsets of {0,1, . . . , n − 2} is the same as above, and the empty set is reached from
{0} by b. Hence the subset dfa has 2n−2 reachable and pairwise distinguishable states.

3. To find an nfa for the factor-closure of L, we make all the non-empty states of
the minimal automaton of L both accepting and initial, and delete the empty state,
if it exists. If there is no empty state, then the factor-closure of L is Σ∗. Otherwise,
the nfa for the factor-closure has at most 2n−1 states. The language L defined by the
minimal automaton of Fig. 2 meets this bound.

4. If L does not have the empty quotient, then its subword-closure is Σ∗. Otherwise,
to get an ε-nfa for the subword-closure of L, we remove the empty state of D, and add
an ε-transition from state p to state q whenever there is a transition from p to q in D.
Since the initial state of the ε-nfa can reach every non-empty state by ε-transitions,
no other subset containing the initial state can be reached. Hence there are at most
2n−2 + 1 reachable subsets.

To prove tightness, if n = 2, let Σ = {a, b}; then L = a∗ meets the bound. If n ≥ 3,
let Σ = {a1, . . . , an−2}, and

L =
⋃

ai∈Σ

ai

(
Σ \ {ai}

)∗
.

Thus L consists of all the words over Σ in which the first letter of the word occurs
exactly once. Now consider any subword x obtained by deleting some letters from
a word w in ai(Σ \ {ai})∗. If ai is deleted from w, then ai does not appear in x.
If another letter, aj , is deleted from w, but another occurrence of aj remains in x,
then x is still in L, and need not be taken into account. Consequently, if K is the
subword-closure of L, then

K = L ∪ {
w ∈ Σ∗ ∣∣ at least one letter of Σ is missing in w

}
.

For each boolean vector b = (b1, b2, . . . , bn−2), we now define the word w(b) =
w1w2 · · ·wn−2, in which wi = ε if bi = 0 and wi = ai if bi = 1. Consider ε, and each
word a1w(b). All the quotients of K by these 2n−2 + 1 words are distinct: For each
binary vector b, we have a1a2 · · ·an−2 ∈ Kε \ Ka1w(b). Let b and b′ be two differ-
ent vectors with bi = 0 and b′

i = 1. Then we have a1a2 · · ·ai−1ai+1ai+2 · · ·an−2 ∈
Ka1w(b) \ Ka1w(b′). Thus all the quotients are distinct and κ(K) = 2n−2 + 1. �
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Example 1 Let L = a(b ∪ c)∗ ∪ b(a ∪ c)∗ ∪ c(a ∪ b)∗. Then L has five distinct quo-
tients:

Lε = L,

La = Lab = Lac = (b ∪ c)∗,

Lb = Lba = Lbc = (a ∪ c)∗,

Lc = Lca = Lcb = (a ∪ b)∗,

Laa = Laaa = Laab = Laac = Lbb = Lcc = ∅.

The subword-closure K of L has the form

K = L ∪ (b ∪ c)∗ ∪ (a ∪ c)∗ ∪ (a ∪ b)∗,

and K has nine distinct quotients:

Kε = K,

Ka = Kb = Kc = (b ∪ c)∗ ∪ (a ∪ c)∗ ∪ (a ∪ b)∗,

Kaa = (a ∪ c)∗ ∪ (a ∪ b)∗,

Kab = (b ∪ c)∗ ∪ (a ∪ b)∗,

Kac = (b ∪ c)∗ ∪ (a ∪ c)∗,

Kaab = (a ∪ b)∗,

Kaac = (a ∪ c)∗,

Kabc = (b ∪ c)∗,

Kaabc = ∅.

4 Basic Operations on Closed Languages

Now we study the quotient complexity of operations on closed languages. For regular
languages, the following tight upper bounds are known [25, 26, 32]: mn for boolean
operations, m2n − 2n−1 for product, 2n−1 + 2n−2 for star, and 2n for reversal. The
bounds for closed languages are smaller in most cases.

Theorem 2 (Boolean Operations) Let K and L be prefix-closed (or factor-closed, or
subword-closed) languages over an alphabet Σ with κ(K) = m and κ(L) = n. Then

1. κ(K ∩ L) ≤ mn − (m + n − 2),
2. κ(K ∪ L), κ(K ⊕ L) ≤ mn,
3. κ(K \ L) ≤ mn − (n − 1).

For suffix-closed languages, κ(K ◦ L) ≤ mn. All bounds are tight if |Σ | ≥ 2, except
for the union and difference of suffix-closed languages, where we assume |Σ | ≥ 4.
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Proof Recall that the complement of a prefix-closed (respectively, suffix-closed,
factor-closed, or subword-closed) language is a right ideal (respectively, left, two-
sided, or all-sided ideal). By De Morgan’s laws and the results from [8, Theorem 7,
p. 45], we have

κ(K ∩ L) = κ(K ∪ L) = κ(K ∪ L) ≤ mn − (m + n − 2),

κ(K ∪ L) = κ(K ∩ L) = κ(K ∩ L) ≤ mn,

κ(K \ L) = κ(K ∩ L) = κ(L \ K) ≤ mn − (n − 1),

κ(K ⊕ L) = κ
(
(K \ L) ∪ (L \ K)

) = κ
(
(L \ K)

) ∪ (K \ L) = κ(K ⊕ L) ≤ mn.

�

Remark 1 If L is prefix-closed, then either L = Σ∗ or L has the empty quotient.
Moreover, each quotient of L is either accepting or empty.

Remark 2 For a suffix-closed language L, if v is a suffix of w, then Lw ⊆ Lv . In
particular, Lw ⊆ Lε = L for each word w in Σ∗.

Theorem 3 (Product) Let m,n ≥ 2. Let K and L be closed languages over an al-
phabet Σ with κ(K) = m, κ(L) = n, and let k be the number of accepting quotients
of K .

1. If K and L are prefix-closed, then κ(KL) ≤ (m + 1) · 2n−2.
2. If K and L are suffix-closed, then κ(KL) ≤ (m − k)n + k.
3. If K and L are both factor-closed or both subword-closed, then κ(KL) ≤ m +

n − 1.

The first two bounds are tight if |Σ | ≥ 3, and the third, if |Σ | ≥ 2. If κ(K) = 1 or
κ(L) = 1, then κ(KL) = 1.

Proof If m = 1, then K = ∅ or K = Σ∗. Hence KL = ∅ or KL = Σ∗, for if L �= ∅,
then ε ∈ L. Thus κ(KL) = 1. The case n = 1 is similar. Now let m,n ≥ 2.

1. If K and L are prefix-closed, then ε ∈ K and by Remark 1 both languages have
the empty quotient. The quotient (KL)w is given by Eq. (6). If Kw is accepting,
then L is always in the union, and there are 2n−2 non-empty subsets of non-empty
quotients of L that can be added. Since there are m − 1 accepting quotients of K ,
there are (m − 1)2n−2 such quotients of KL. If Kw is rejecting, then 2n−1 subsets of
non-empty quotients of L can be added. Altogether κ(KL) ≤ 2n−1 + (m− 1)2n−2 =
(m + 1)2n−2.

For tightness, consider the prefix-closed languages K and L defined by the dfa’s
shown in Fig. 3, except in the case where n = 2, in which case let L = {a, c}∗.

Construct an ε-nfa for the language KL from these minimal dfa’s by adding an
ε-transition from states q0, q1, . . . , qm−2 to state 0. The initial state of the ε-nfa is q0,
and the accepting states are 0,1, . . . , n − 2. We show that there are (m + 1) · 2n−2

reachable and pairwise distinguishable states in the corresponding subset dfa.
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Fig. 3 Dfa’s of prefix-closed languages K (top) and L (bottom)

State {q0,0} is the initial state, and each state {q0,0, i1, i2, . . . , ik}, where 1 ≤ i1 <

i2 < · · · < ik ≤ n − 2, is reached from state {q0,0, i2 − i1, . . . , ik − i1} by abi1−1.
For each subset S of {0,1, . . . , n − 2} containing 0, each state {qi} ∪ S with 1 ≤ i ≤
m − 1 is reached from {q0} ∪ S by ci . If a non-empty S does not contain 0, then
{qm−1}∪S is reached from {qm−1}∪ {s − minS | s ∈ S}, which contains 0, by aminS .
State {qm−1, n − 1} is reached from {qm−1, n − 2} by word b.

To prove that no two states of the subset dfa are equivalent, notice that the word
bn is accepted by the minimal dfa for L only from state 0, and the word an−1−ibn

only from state i (1 ≤ i ≤ n − 2). Therefore two different states {qm−1} ∪ S and
{qm−1} ∪ T are distinguishable since S and T must differ by at least one state of
the dfa for L, and state qm−1 is the empty state in the minimal dfa for K . It follows
that states {qi} ∪ S and {qi} ∪ T are distinguishable as well since they go to two
distinguishable states by cm−1−i . States {qi} ∪ S and {qj } ∪ T with i < j can be
distinguished by cm−1−j bnabn. Hence the subset dfa has (m + 1) · 2n−2 reachable
and pairwise distinguishable states, and so κ(KL) = (m + 1)2n−2.

2. If K and L are suffix-closed, then, by Remark 2, for each word w in Σ∗ and for
all u,v in Σ+, we have

(KL)w = KwL ∪ KεLw ∪
( ⋃

w=uv

Kε
uLv

)
= KwL ∪ Lx

for some suffix x of w. If Kw is a rejecting quotient, there are at most (m − k)n

such quotients. If Kw is accepting, then ε ∈ Kw , and since Lx ⊆ Lε = L ⊆ KwL, we
have (KL)w = KwL. There are at most k such quotients. Therefore there are at most
(m − k)n + k quotients in total.

To prove tightness, let K and L be the ternary suffix-closed languages defined by
the dfa’s of Fig. 4.

Consider the words ε = a0b0, and aibj with 1 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1. Let
us show that all the quotients of KL by these words are distinct. Let (i, j) �= (k, �),
and let x = aibj and y = akb�. If i < k, take z = am−1−kbnc. Then xz is in KL,
while yz is not, and so z ∈ (KL)x \ (KL)y . If i = k and j < �, take z = ambn−1−�c.
We again have z ∈ (KL)x \ (KL)y .
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Fig. 4 Dfa’s of suffix-closed languages K (top) and L (bottom)

Notice that, if the quotients Kai with 0 ≤ i ≤ k−1 are accepting, then the resulting
product has quotient complexity (m − k)n + k.

3. It suffices to derive the bound for factor-closed languages, because every subword-
closed language is also factor-closed. Since factor-closed languages are suffix-closed,
κ(KL) ≤ (m − k)n + k. Because K is prefix-closed, it has at most one rejecting
quotient. Thus, k = m − 1 and κ(KL) ≤ m + n − 1.

To prove tightness, let

K = {
w ∈ {a, b}∗ ∣∣am−1 is not a subword of w

}

and

L = {
w ∈ {a, b}∗ ∣

∣bn−1 is not a subword of w
}
.

Then K and L are subword-closed and κ(K) = m and κ(L) = n. Consider the word
w = am−1bn−1. This word is not in the product KL. However, removing any non-
empty subword from w results in a word in KL. Therefore, κ(KL) ≥ m + n − 1. �

Theorem 4 (Star) Let n ≥ 3, and let L be a closed language over an alphabet Σ

with κ(L) = n.

1. If L is prefix-closed, then κ(L∗) ≤ 2n−2 + 1.
2. If L is suffix-closed, then κ(L∗) = n if L = L∗, and κ(L∗) ≤ n − 1 if L �= L∗.
3. If L is factor- or subword-closed, then κ(L∗) ≤ 2.

The first bound is tight if |Σ | ≥ 3, and all the other bounds are tight if |Σ | ≥ 2. If
n = 1, then κ(L∗) ≤ 2. If n = 2, then κ(L∗) = 2.

Proof Suppose L is closed under one of the four binary relations. If n = 1, then L

is either empty or Σ∗, and L∗ is either {ε} or Σ∗. Thus κ(L∗) ≤ 2. If n = 2, then L

cannot be empty, and must contain ε since it is closed. Hence L must be {ε}, since
the quotient which is not L must be rejecting. Thus L∗ = {ε}, and κ(L∗) = 2.

1. For every non-empty word w, the quotient (L∗)w is given by Eq. (7). If L is prefix-
closed, then so is L∗ and (L∗)w . Thus, if (L∗)w is non-empty, then it contains ε.
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Fig. 5 An n-state dfa of prefix-closed language L

Hence (L∗)w ⊇ L∗ ⊇ L. Since ∅ and L are always contained in every non-empty
quotient of L∗, there are at most 2n−2 non-empty quotients of L∗. Since there is at
most one empty quotient, there are at most 2n−2 + 1 quotients in total. The quotient
(L∗)ε has already been counted, since L is closed and ε ∈ L implies (L∗)ε = LL∗,
which has the form of Eq. (7) for w in Σ+.

Now let n ≥ 3 and let L be the prefix-closed language defined by the dfa of Fig. 5;
transitions not depicted in the figure go to state n − 1.

Construct an ε-nfa for L∗ by removing state n − 1 and adding an ε-transition
from all the remaining states to the initial state. Let us show that 2n−2 + 1 states are
reachable and pairwise distinguishable in the corresponding subset dfa.

We first prove that each subset of {0,1, . . . , n−2} containing state 0 is reachable in
the subset dfa. The proof is by induction on the size of the subsets. The basis, |S| = 1,
holds since {0} is the initial state of the subset dfa. Assume that each set of size
k containing 0 is reachable, and let S = {0, i1, i2, . . . , ik}, where 0 < i1 < i2 < · · · <

ik ≤ n−2, be a set of size k+1. Then S is reached from the set {0, i2 − i1, . . . , ik − i1}
of size k by abi1−1. Since the latter set is reachable by the induction hypothesis, the
set S is reachable as well. The empty set can be reached from {0} by b, and we have
2n−2 + 1 reachable states. To prove distinguishability, notice that bn−3 is accepted
by the nfa only from state 1, and each word bn−2−icbn−3 (2 ≤ i ≤ n − 2), only from
state i.

2. If L = L∗, then κ(L∗) = n. Let L = (a ∪ ban−2)∗; then L is suffix-closed, κ(L) =
n, and L∗ = L.

Now suppose that L �= L∗. For a non-empty suffix-closed language L, the quotient
(L∗)ε is LL∗, which is of the same form as the quotients by a non-empty word w in
Eq. (7). By that equation, we have

(
L∗)

w
= (Lw ∪ Lv1 ∪ · · · ∪ Lvk

)L∗,

where the vi are suffixes of w, and vk is the shortest. By Remark 2, (L∗)w = Lvk
L∗

for all w ∈ Σ∗, and κ(L∗) ≤ n.
Assume for the sake of contradiction that κ(L) = κ(L∗). Then we must have

(L∗)x = (L∗)y if and only if Lx = Ly . Since L �= L∗, there exist x, y ∈ L such
that xy /∈ L. Hence Lx �= Lε , since y ∈ Lε and y /∈ Lx . But, by Eq. (7), L∗ ⊆
LxL

∗ ⊆ (L∗)x ⊆ L∗ since ε ∈ Lx . So (L)∗x = (L)∗ε , which is a contradiction. Hence
κ(L) > κ(L∗) and κ(L∗) ≤ n − 1.

If L = ε ∪ ⋃n−3
i=0 aib, then L is suffix-closed, κ(L) = n, L∗ = (

⋃n−3
i=0 aib)∗, and

κ(L∗) = n − 1.
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3. If each letter of Σ appears in some word of a factor-closed language L, then L∗ =
Σ∗ and κ(L∗) = 1. Otherwise, κ(L∗) = 2. The bound is met by the subword-closed
language L = {w ∈ {a, b}∗ | w = ai and 0 ≤ i ≤ n − 2}. �

Since the operation of reversal commutes with complementation, the next theorem
follows from the results on ideal languages [8, Theorem 11, p. 48].

Theorem 5 (Reversal) Let n ≥ 2. Let L be a closed language over an alphabet Σ

with κ(L) = n.

1. If L is prefix-closed, then κ(LR) ≤ 2n−1, and the bound is tight if |Σ | ≥ 2.
2. If L is suffix-closed, then κ(LR) ≤ 2n−1 + 1, and the bound is tight if |Σ | ≥ 3.
3. If L is factor-closed, then κ(LR) ≤ 2n−2 + 1, and the bound is tight if |Σ | ≥ 3.
4. If L is subword-closed, then κ(LR) ≤ 2n−2 +1, and the bound is tight if |Σ | ≥ 2n.

If κ(L) = 1, then κ(LR) = 1.

Unary Languages Unary languages have special properties because the product of
unary languages is commutative. The classes of prefix-closed, suffix-closed, factor-
closed, and subword-closed unary languages all coincide. If a unary closed language
L is finite, then either it is empty and so κ(L) = 1, or has the form {ai | i ≤ n − 2}
and then κ(L) = n. If L is infinite, then L = a∗ and κ(L) = 1. The bounds for unary
languages are in Tables 1 and 2.

5 Kuratowski Algebras Generated by Closed Regular Languages

A theorem of Kuratowski [24] states that, given a topological space, at most 14 dis-
tinct sets can be produced by repeatedly applying the operations of closure and com-
plement to a given set. A closure operation on a set S is an operation � : 2S → 2S

satisfying the following conditions for any subsets X,Y of S:

X ⊆ X�; X ⊆ Y implies X� ⊆ Y�; X�� ⊆ X�.

Kuratowski’s theorem was studied in the setting of formal languages in [7]. Pos-
itive closure and Kleene closure (star) are both closure operations. It then follows
that at most 10 distinct languages can be produced by repeatedly applying the opera-
tions of positive closure and complement to a given language, and at most 14 distinct
languages can be produced with Kleene closure instead of positive closure. Here we
consider the case where the given language is closed and regular, and give upper
bounds on the quotient complexity of the resulting languages. In this section, we de-
note the complement of a language L by L−, the positive closure of the complement
of L by L−+, etc.

We begin with positive closure. Let L be a �-closed language not equal to Σ∗.
Then L− is an ideal, and L−+ = L−. In addition, L+ is also �-closed, so L+−+ =
L+−. Hence there are at most 4 distinct languages that can be produced with positive
closure and complementation.
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Theorem 6 (Positive Closure) The worst-case complexities in the 4-element algebra
generated by a closed language L with κ(L) = n under positive closure and comple-
ment are κ(L) = κ(L−) = n, κ(L+) = κ(L+−) = f (n), where

1. f (n) = 2n−2 + 1 for prefix-closed languages,
2. f (n) = n − 1 for suffix-closed languages,
3. f (n) = 2 for factor- and subword-closed languages.

There exist closed languages that meet these bounds.

Proof Since L+ = L∗ for a non-empty closed language we have κ(L+) = κ(L∗),
and the upper bounds f (n) follow from our results on the quotient complexity of the
star operation; in the case of suffix-closed languages, to get a 4-element algebra we
need L �= L∗. All the languages that we have used in Theorem 4 to prove tightness
can be used as examples meeting the bound f (n). �

Kleene closure is similar. Let L be a non-empty �-closed language not equal to
Σ∗. Then L− is an ideal and L− does not contain ε. Thus L−∗ = L− ∪ε and L−∗− =
L \ ε, which gives at most four languages thus far. Now L∗ = (L \ ε)∗, and the lan-
guage L∗ is also �-closed. By the previous reasoning, we have at most four addi-
tional languages, giving a total of eight languages as the upper bound. The 8-element
algebras are of the form (L, L−, L−∗ = L− ∪ ε, L−∗− = L \ ε, L∗, L∗−, L∗−∗ =
L∗− ∪ ε, L∗−∗− = L∗ \ ε).

Theorem 7 (Kleene Closure) The worst-case quotient complexities in the 8-element
algebra generated by a closed language L with κ(L) = n under star and com-
plement are as follows: κ(L) = κ(L−) = n, κ(L∗) = κ(L∗−) = f (n), κ(L∗−∗) =
κ(L∗−∗−) = f (n) + 1, κ(L−∗) = κ(L−∗−) = n + 1, where f (n) is defined as in
Theorem 6. There exist closed languages that meet these bounds.

Proof Since L−∗− = L \ ε and L∗−∗− = L∗ \ ε we have κ(L−∗−) ≤ n + 1 and
κ(L∗−∗−) ≤ f (n)+1. In the case of suffix-closed languages, since L must be distinct
from L∗, we have f (n) = n − 1 by Theorem 4.

1. Let L be the prefix-closed language defined by the minimal dfa in Fig. 5; then L

meets the upper bound on star. Add a loop with a new letter d in each state and denote
the resulting language by K . Then K is a prefix-closed language with κ(K) = n

and κ(K \ ε) = n + 1. Next we have κ(K∗) = κ(L∗) = 2n−2 + 1 and κ(K∗ \ ε) =
2n−2 + 2.

2. Let L = b∗ ∪ ⋃n−3
i=1 b∗aib. Then L is a suffix-closed language with κ(L) = n and

κ(L \ ε) = n + 1. Next κ(L∗) = n − 1 and κ(L∗ \ ε) = n.

3. Let L = {w ∈ {a, b, c}∗ | w = b∗ai and 0 ≤ i ≤ n−2}. Then L is a subword-closed
language with κ(L) = n and κ(L \ ε) = n + 1. Next L∗ = {a, b}∗, and so κ(L∗) = 2
and κ(L∗ \ ε) = 3. �
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Table 1 Bounds on quotient complexity of boolean operations

Unary closed

K ∪ L |Σ | K ∩ L |Σ | K \ L |Σ | K ⊕ L |Σ |
max(m,n) 1 min(m,n) 1 m 1 max(m,n) 1

prefix-, factor-,

subword-closed mn 2 mn − (m + n − 2) 2 mn − (n − 1) 2 mn 2

suffix-closed mn 4 mn 2 mn 4 mn 2

regular mn 2 mn 2 mn 2 mn 2

Table 2 Bounds on quotient complexity of closure, product, star and reversal

Unary closed
�L |Σ | KL |Σ | K∗ |Σ | KR |Σ |
n 1 m + n − 2 1 2 1 n 1

prefix–closed n 1 (m + 1)2n−2 3 2n−2 + 1 3 2n−1 2

suffix-closed 2n − 1 2 (m − 1)n + 1 3 n 2 2n−1 + 1 3

factor-closed 2n−1 2 m + n − 1 2 2 2 2n−2 + 1 3

subword-closed 2n−2 + 1 n − 2 m + n − 1 2 2 2 2n−2 + 1 2n

regular − − m2n − 2n−1 2 2n−1 + 2n−2 2 2n 2

6 Conclusions

Tables 1 and 2 summarize our complexity results. The complexities for regular lan-
guages are from [22, 25, 26, 32], except those for difference and symmetric differ-
ence, which are from [6]. The bounds for boolean operations and reversal of closed
languages are direct consequences of the results in [8]. The tables also show the size
of the alphabet of the witness languages. In all cases when the size of the alphabet is
more than two, we do not know whether the bounds are tight for a smaller alphabet.
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