
Kleene Star on Unary Regular Languages

Krist́ına Čevorová1�

Mathematical Institute, Slovak Academy of Sciences
Štefánikova 49, 814 73 Bratislava, Slovakia

cevorova@mat.savba.sk

Abstract. We study possible deterministic state complexities of lan-
guages obtained as the Kleene star of a unary language with state com-
plexity n. We prove that for every n, depending on the parity of n, only
3 or 4 complexities from n2−4n+6 to n2−2n+2 are attainable. On the
other hand, we show that all the complexities from 1 to n are attainable.
In the end, we outline a connection to the Frobenius problem.

1 Introduction

How does the state complexity of the result of a given regular operation depend
on the complexity of operands? Questions of this nature are currently objectives
of many papers. Tight upper bounds for different operations both for the unary
and general case have been given in [1] and others.

This determines the range of possible outcomes, but does not say anything
about attainability of any particular value in this range. Two different ap-
proaches to this problem have emerged so far. Nicaud [2] studied an average
case. Because even enumeration of all automata with a given state complexity
is too difficult, he limited himself to basic operations on unary automata.

Another point of view was introduced by Iwama, Kambayashi and Takaki at
Third Conference on Developments in Language Theory. Thier question was,
whether, given any integers n and α with n ≤ α ≤ 2n, we are able to find
a language with nondeterministic state complexity n and deterministic state
complexity α [3]. If it is impossible, the number α is called magic for n. This
problem has been solved by Jirásková for ternary alphabet [4] with a positive
answer (there are no magic numbers). For a unary alphabet, a partial answer
was given by Geffert [5]. He showed, that magic numbers do exist and in some
sense, there are a lot of them.

Although the problem of magic numbers was originally stated for the tradeoff
of nondeterminism and determinism, this idea is more universal. How does the
state complexity of the language resulting from a regular operation depend on the
state complexities of operands? Is the spectrum of possible outcomes continuous,
or are there any gaps – magic numbers?

This question was investigated for several operations. So far it appears, that
magic numbers are quite unusual phenomenon: their existence was shown only for

� Research supported by grant VEGA 2/0183/11.

H. Jürgensen and R. Reis (Eds.): DCFS 2013, LNCS 8031, pp. 277–288, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

278 K. Čevorová

determinization of unary NFAs [5] and for determinization of unary symmetric
difference NFAs[6]. In the latter problem, Zijl has found necessary conditions for
attainable high complexities, but it is still unknown, whether there is any large
non-trivial non-magic number at all.

For the operation of Kleene Star with a growing alphabet, Jirásková has shown
that each value in the range from 1 to 3/4 · 2n can be obtained as the state
complexity of the star of an n-state DFA language [7].

This paper gives partial answer to this problem for Kleene star with unary
alphabet. If the state complexity of a unary language L is n, then the state
complexity of L∗ is at most (n − 1)2 + 1 [1], and in the average case, it is less
than a certain constant not depending on n [2].

With these results, it is not that surprising that we get two gaps of a linear
length near the upper bound that are not attainable, namely, the ranges from
n2−4n+7 to n2−3n+1 and from n2−3n+4 to n2−2n+1. On the other hand,
the numbers n2 − 3n+ 3 and n2 − 4n + 5 are attainable, and the attainability
of n2 − 3n + 2 is determined by the parity of n. Hence we solve the problem
of attainable complexities for unary star for each number in the range from
n2 − 4n + 6 up to the known upper bound n2 − 2n + 2. We also show, using
finite languages where possible, that values up to n can be obtained as the state
complexity of the star of a unary language with state complexity n.

2 Preliminaries

In this section, we give the basic notation and definitions used in this paper.
Let [n] = {0, 1, . . . , n}, and [c, d] denote the set {c, c+ 1, . . . , d} if c ≤ d, and

the empty set if c > d.
The power set of a set A is denoted by 2A. The greatest common divisor of a

non-empty set S is denoted by gcd(S). The ceiling (floor) of a real number �·�
(�·�) is the smallest integer not smaller than that number (greatest integer not
greater). The state complexity of a regular language L, sc(L), is the number of
states of its minimal DFA.

A DFA A = (Q, {a}, δ, q0, F) for a unary language are uniquely given by less
information than an arbitrary DFA. Identify states with numbers from [n − 1]
via q ∼ min{i| δ(q0, ai) = q}. Then A is unambiguously given by the number of
states n, the set of final numbers F and the “loop” number � = δ(q0, a

n). This
allows us to freely interchange states and their ordinal numbers and justifies
the notation convention used by Nicaud [2], where a unary automaton with n
states, loop number � and set of final states F is denoted as (n, �, F). Nicaud
also provided following characterization:

Theorem 1 ([2, Lemma 1]). A unary automaton (n, �, F) is minimal if and
only if both conditions below are true:

1. its loop is minimal, and
2. states n− 1 and � − 1 do not have the same finality (that is, exactly one of

them is final). �	

Kleene Star on Unary Regular Languages 279

If the language of a minimal unary automaton is cofinite, then its loop has a
single state, and this state is final. The state preceding the loop must be rejecting.
Since this state corresponds to the longest word that is not in the language, this
reasoning leads to the following proposition.

Proposition 1. If a unary language L is cofinite, then it is regular and
sc(L) = max{m | am /∈ L}+ 2. �	
Cofiniteness sometimes also allows us to find an upper bound on the state com-
plexity of a language using the state complexity of another language that is
accepted by some simpler automaton.

Lemma 1. Let 0 ≤ � ≤ n, and let Ft ⊆ F ′
t ⊆ [0, �− 1] and F� ⊆ F ′

� ⊆ [�, n− 1].
Let A = (n, �, Ft ∪F�) be a unary automaton such that L(A)∗ is cofinite, and let
B = (n, �, F ′

t ∪ F ′
�). Then sc(L(B)∗) ≤ sc(L(A)∗). �	

3 Lower Bound on Gaps in the Hierarchy of State
Complexities

In this section we show that each number from 1 to n can be obtained as the
state complexity of the star of an n-state unary language. Let us start with the
following two technical results.

Lemma 2. Let A = (n, �, F) be a unary automaton and k = min{F \ {0}}.
If there exists a non-negative integer m such that {am, am+1, . . . , am+k−1} ⊆
L(A)∗, then for every non-negative i, the word am+i is in L(A)∗.

Proof. Every i is representable as i = sk + r, where r and s are non-negative
integers with r < k. Then am+i = am+sk+r = (ak)sam+r. Since k is a final state,
word ak is in L(A). By the assumption of the lemma, the word am+r is in L(A)∗.
It follows that the word am+i is in L(A)∗. �	
Lemma 3. Let α ≥ 7 and k = �α/2�. Let Lα = {ak, ak+1, . . . , aα−3} ∪ {aα−1}
be a finite language. Then L∗

α is cofinite and sc(L∗
α) = α.

Proof. First, notice that aα−2 is not in L∗
α since it is not in Lα and the length

of any concatenation of two or more words in Lα is at least α− 1. To prove the
lemma, we only need to show that for every i ≥ 0, the word aα−1+i is in L∗

α.
By Lemma 2, it is enough to show that {aα−1, aα−1+1, . . . , aα−1+(k−1)} ⊆ L∗

α.
The word aα−1 is in Lα, thus also in L∗

α. If α is even, then we have α = 2k
and Lα = {ak, ak+1, . . . , a2k−3} ∪ {a2k−1}. Therefore for i = 1, 2, . . . , k − 2, we
have aα−1+i = a2k−1+i = akak+i−1 which is a concatenation of words in Lα.
Next aα−1+k−1 = aα−3+k+1 = aα−3ak+1 and since k+1 ≤ α− 3, this is also the
concatenation of words are in Lα. The proof for an odd α is similar. �	
Suppose we have a finite language L with cofinite star. We will use it to find
languages, with the same state complexity of star, but greater state complexity
of the language. Take any c > sc(L∗). Any concatenation using ac−2 has length
at least c−2, but by Proposition 1, all such words already were in L∗. Therefore
sc((L ∪ {ac−2})∗) = sc(L∗) but sc(L ∪ {ac−2}) = max{c, n}.

280 K. Čevorová

Lemma 4. Let n ≥ 8 and 7 ≤ α ≤ n−1. There exists a unary finite language L
such that sc(L) = n, and sc(L∗) = α.

Proof. Let Lα be the finite language given by Lemma 3. Define L = Lα∪{an−2}.
Then sc(L) = n. Since n− 2 ≥ α− 1, we have an−2 ∈ L∗

α. Hence sc(L
∗) = α. �	

This is almost all we need. The following two lemmas solve missing cases.

Lemma 5. Let n ≥ 4 and 3 ≤ α ≤ min{6, n− 1}. There exists a unary regular
language L such that sc(L) = n and sc(L∗) = α.

Proof. Let An,3 = (n, 0, {2, 3}), A5,4 = (5, 0, {0, 3, 4}) and An,4 = (n, 0, {3, 4, 5})
if n ≥ 6. Next, let An,5 = (n, 0, {2, 5}) for n ≥ 6, let A7,6 = (7, 0, {0, 3, 5, 6}),
A8,6 = (8, 7, {6}) and An,6 = (n, 0, {3, 5, 7, n − 2}) for n ≥ 9. Let L be the
language accepted by the DFA An,α. Then sc(L) = n and sc(L∗) = α. �	
Lemma 6. Let n ≥ 2 and α ∈ {1, 2, n}. There exists a unary regular language L
such that sc(L) = n and sc(L∗) = α.

Proof. The languages {a, amax{1,n−2}} and (an)∗ satisfy the conditions of the
lemma in the case of α = 1 and α = n, respectively.

Let α = 2. For an even n ≥ 4, consider the language L = a2(an)∗ accepted
by the minimal unary automaton (n, 0, {2}). For n = 3, let L = a2(a2)∗, and for
an odd n with n ≥ 5, let L = a2(an−1)∗ ∪ {ε} be the language accepted by the
minimal unary automaton (n, 1, {0, 2}). Then sc(L) = n and L∗ = (a2)∗. �	
The next theorem is a summarization of the results of this section.

Theorem 2. For all integers n and α with n ≥ 2 and 1 ≤ α ≤ n, there exists a
unary regular language L such that sc(L) = n and sc(L∗) = α. �	

4 State Complexity of Significant Classes of Automata

In order to prove our main result, we need to find the state complexity of certain
special types of automata. An useful tool for this is number theory.

Every non-negative linear combination of integers m and n will be a multiple
of their common factor. Thus any number not divisible by this factor trivially
does not have such a presentation. But we still may be interested in non-trivial
cases of absence of such presentation. The following result is a straightforward
generalization of [1, Lemma 5.1 (ii) and (iii)].

Lemma 7. Let m,n be positive integers.

a) The largest integer divisible by gcd(m,n) that cannot be presented as mx+ny
for any x > 0, y ≥ 0 is r = (m

gcd(m,n) − 1)n.

b) The largest integer divisible by gcd(m,n) that cannot be presented as mx+ny
for any x, y ≥ 0 is r = (mn

gcd(m,n))− (m+ n). �	
Now we can get the state complexity of star in some simple cases.

Kleene Star on Unary Regular Languages 281

Theorem 3. Let 1 ≤ k < n and 0 ≤ � < n. Let L be the language accepted by
a unary automaton (n, �, {k}).
a) If k < �, then sc(L∗) = k.
b) If k ≥ � and k divides n− � then sc(L∗) = k.
c) If k ≥ � and k does not divide n− �,

then sc(L∗) = (k
gcd(n−�,k) − 1)(n− �) + gcd(n− �, k) + 1.

Proof. a) Notice that L = {ak}. Therefore L∗ = (ak)∗ and sc(L∗) = k.
b) Since L = {ak+i(n−�) | i ≥ 0} and k divides n− �, the length of every word

in L and L∗ is divisible by k. Since ak ∈ L, we have L∗ = (ak)∗ and sc(L∗) = k.
c) Let d = gcd(k, n − �). The length of every non-empty word in L∗ can

be written as kx+ (n− �)y where x > 0, y ≥ 0. By Lemma 7a, the maximal
multiple of d unexpressable in this form is q = (kd − 1)(n− �). Since k � n− �, we
have d < k. Therefore q > 0 and L∗ is accepted by an automaton in the form
(q + d+ 1, q + 1, F), where F ∩ [q+1, q+ d] = {q+ d}, see Fig. 1. Its loop has a
single final state, thus it is minimal, and the states q and q + d do not have the
same finality. By Theorem 1, this automaton is minimal. �	

Fig. 1. The minimal automaton for star in Theorem 3c

In a similar way we can compute the state complexity of the star of languages
accepted by automata with two final states, when one of them is 0.

Theorem 4. Let 1 ≤ k < n and 0 ≤ � < n. Let L be the language accepted by
a unary automaton A = (n, �, {0, k}).
a) If k < �, then sc(L∗) = k.
b) If k ≥ �, and k divides n− �, then sc(L∗) = k.
c) If k ≥ �, k � n− �, and � �= 0,

then sc(L∗) = (k
gcd(n−�,k) − 1)(n− �) + gcd(n− �, k) + 1.

d) If k ≥ �, k � n− �, and � = 0, then sc(L∗) = nk
gcd(n,k) − (k+n)+ gcd(n, k)+ 1.

�	

Until now, we did not use the construction of a DFA for star operation to get
the state complexity of the resulting language. The standard construction is not
difficult. To get such a DFA, we first construct an NFA for star of a given unary
automaton by adding at most one new state and several transitions, and then
we apply the subset construction to this NFA.

282 K. Čevorová

For technical reasons, we will use a slightly different construction. Let L be the
language accepted by a minimal unary DFA A = ([n−1], {a}, δ, 0, F). Construct
an NFA N from the DFA A by adding a transition on a from a state i to the
state 0 whenever δ(i, a) ∈ F . This NFA accepts L∗, except for ε if 0 /∈ F .

Suppose that 0 /∈ F . In DFA A is state 0 either unreachable by non-empty
word, or reachable only from state n − 1. It follows, that if 0 /∈ F , then in the
subset automaton of N , there is no transition from any reachable state to the
initial state {0}, since the only candidate for such a transition is from state
{n− 1}, that needs to be non-final, but by induction, all reachable states would
be non-final. Thus if we mark the state {0} in the subset automaton of N as
final, we get a DFA A′ = (2[n−1], {a}, δ′, {0}, F ′) for L∗.

The DFA A′ is not necessarily minimal, but it provides an upper bound on
the state complexity of L∗, and this is a good starting point for a minimization.

Now we define an important notion of the set of states reached by the DFA
A′ after reading i symbols:

Ri = δ′({0}, ai).
Note that Ri+m = δ′(Ri, a

m). Next, if i < j, then it does not mean that neces-
sarily |Ri| ≤ |Rj |. Later, we will prove this inequality with additional constraints
placed on i and j. But sometimes, there are no additional requirements needed.

Lemma 8. Let 0 ≤ i < j and A = (n, �, F). If � = 0 or � ∈ F , then |Ri| ≤ |Rj |.
Proof. It is sufficient to prove that |Ri| ≤ |Ri+1|. If the state n− 1 is not in Ri,
then Ri+1 ⊇ {q + 1 | q ∈ Ri}, and therefore |Ri| ≤ |Ri+1|.

Now assume that n− 1 is in Ri. Since � = 0 or � ∈ F , the initial state 0 is in
δ′(n−1, a). Therefore Ri+1 ⊇ {q+1 | q ∈ Ri\{n−1}}∪{0}, so |Ri| ≤ |Ri+1|. �	
This will help us to find the complexity of more intricate type of automata.

Theorem 5. Let n ≥ 3 and 2 ≤ k ≤ n − 1. Let L be a language accepted by a
unary cyclic automaton (n, 0, [k, n− 1]). Then sc(L∗) = � k

n−k �k + 1.

Proof. First, we determine certain significant states of the DFA A′ for L∗.
Let us show that for i ∈ [1, � k

n−k�]

Ri·k−1 = [n− i(n− k)− 1, k − 1], (1)

Ri·k = {0} ∪ [n− i(n− k), k], (2)

and for i ∈ [1, � k
n−k� − 1] also

Ri·n−1 = [0, i(n− k)− 1] ∪ {n− 1}. (3)

The proof is by induction on i.
If i = 1, then Rk−1 corresponds to the first k − 1 deterministic computation

steps, so Rk−1 = {k − 1}. Since the state k is final, we have Rk = {0, k}. The
basis for (3) is meaningful iff � k

n−k � − 1 ≥ 1. In that case, n− k − 1 < k. Hence

Rn−1 = δ′(Rk, a
n−1−k) = δ′({0, k}, an−1−k). During this part of computation,

Kleene Star on Unary Regular Languages 283

we bubble trough final states in [k, n− 1] and in the end, n− 1 is reached. The
transition trough each of these final states derives zero. Since n−k−1 < k, these
zeros behaved deterministically in the subsequent computations, and finally we
get [0, n− k − 1]. Hence Rn−1 = [0, (n− k)− 1] ∪ {n− 1}.

Assume that 1 ≤ i ≤ � k
n−k � − 1, and that (1), (2), and (3) hold. Then

Ri·n = [0, i(n−k)] and is non-final, since i(n−k) < k. The next (i+1)k− in−1
(under our assumptions, this is at least 0) steps before we reach state k are
deterministic for each member state, so R(i+1)·k−1 = [(i + 1)k − in − 1, k − 1]
and is non-final. R(i+1)·k = {0}∪ [(i+1)k− in, k]. In the next (i+1)(n− k)− 1
steps, we keep adding the initial state 0 while bubbling trough sequence of final
states. In the end, this sequence reduces to n− 1, originating from (i+1)k− in.
Thus R(i+1)·n−1 = [0, (i+ 1)(n− k)− 1] ∪ {n− 1}, hence (1),(2) and (3) hold.

We have R� k
n−k �·n = [0, � k

n−k �(n − k)]. It has at least k + 1 states. Since

� = 0, by Lemma 8, all its successors will have at least k + 1 states. There are
only k non-final states, so it follows that for every j with j ≥ � k

n−k�n, the state
Rj is final. Therefore, the last non-final state was R� k

n−k �k−1. It follows that

a�
k

n−k �k−1 is the longest word not accepted by the DFA A′. By Proposition 1,
sc(L∗) = � k

n−k �k − 1 + 2. �	
Now we will assert several dependencies between states of the DFA A′, and
derive an upper bound on the number of subsets reachable from its initial state,
that provides estimates on the state complexity.

Lemma 9. Let 0 ≤ i < j. Then for every non-negative integer m, we have
a) if Ri = Rj, then Ri+m = Rj+m,
b) if Ri ⊆ Rj, then Ri+m ⊆ Rj+m.

�	
Proof. a) If Ri = Rj , then Ri+m = δ′(Ri, a

m) = δ′(Rj , a
m) = Rj+m.

b) If Ri ⊆ Rj , then Ri+m = δ′(Ri, a
m) ⊆ δ′(Ri, a

m) ∪ δ′(Rj \Ri, a
m) =

δ′(Rj , a
m) = Rj+m.

�	
Corollary 1. Let i ≥ 0 and k ≥ 1. If Ri ⊆ Ri+k, then the DFA A′ has at most
k(n− 1) + i+ 1 reachable states.

Proof. By Lemma 9, we have a chain Ri ⊆ Ri+k ⊆ Ri+2k ⊆ · · · ⊆ Ri+(n−1)k.
Either one of these inclusions is an equality, or all of them are proper inclusions.
In the first case, we have a loop in A′ using less than k(n− 1) + i+ 1 subsets.

In the second case, since Ri is not empty, the set Ri+(n−1)k has at least n
elements. Hence Ri+(n−1)k = {0, 1, . . . , n− 1}, thus Ri+(n−1)k−1 ⊆ Ri+(n−1)k.

By Lemma 9b, with m equal to 1, we get Ri+(n−1)k ⊆ Ri+(n−1)k+1, and
so Ri+(n−1)k+1 = {0, 1, . . . , n − 1}. Therefore, with an obvious inductive step,
Ri+(n−1)k+m = {0, 1, . . . , n−1} for all non-negativem. It follows that the DFAA′

has at most i+ (n− 1)k + 1 reachable states. �	
Corollary 2. If k is a non-initial final state of A, then the DFA A′ has at most
k(n− 1) + 1 reachable states.

284 K. Čevorová

Proof. Let m = min{q | q �= 0 and q ∈ F}. Thus m ≤ k. Notice that we have
R0 = {0} ⊆ {0,m} = Rm. By Corollary 1, the DFA A′ has at most m(n− 1)+1
reachable states, and the lemma follows. �	
Corollary 3. Let 1 ≤ � < n, F \ {0} ⊆ [�, n − 1], and A = (n, �, F). Then the
DFA A′ for the language L(A)∗ has at most � + (n − �)(n − 1) + 1 reachable
states.

Proof. There is no ambiguity in a computation of NFA N after reading � − 1
symbols, thus R�−1 = {� − 1}. If � is not final, R� = {�} and from definition
of loop number, � ∈ Rn. Otherwise, if � is final, R� = {0, l}, but both 0 and
� are in Rn. Anyhow R� ⊆ Rn and by Corollary 1, the DFA A′ has at most
�+ (n− �)(n− 1) + 1 reachable states. �	

5 Gaps in Complexity Hierarchy for Unary Star

In this section we present our main result. We prove that there are two gaps in
the hierarchy of state complexities for unary star. The gaps are of linear length
and are close to the known tight upper bound (n − 1)2 + 1. Since this bound
follows directly from our previous observations, we provide the proof here.

Theorem 6 ([1, Theorem 5.3]). Let n ≥ 2 and let L be a unary regular
language with sc(L) = n. Then sc(L∗) ≤ (n− 1)2 + 1, and the bound is tight.

Proof. If the initial state of the minimal DFA for L is a unique final state, then
L = L∗, and sc(L∗) = n ≤ (n− 1)2 + 1.

Otherwise, there exists a final state k with 0 < k ≤ n− 1. By Corollary 2, the
DFA A′ for L∗ has at most k(n− 1) + 1 ≤ (n− 1)2 + 1 reachable states.

If n = 2, then the witness automaton is (2, 0, {0}). Otherwise, the witness
automaton is the cyclic automaton (n, 0, {n − 1}). Since gcd(n, n − 1) = 1, by
Theorem 3c star of its language has the state complexity (n − 2)n + 1 + 1 =
(n− 1)2 + 1. �	
Using previous sections, we would be able to show that various state complexities
of star of n-state unary languages are attainable. Since we are interested in high
complexities, the next result will be important for us.

Lemma 10. For every n ≥ 2, there is a unary language L such that sc(L) = n
and sc(L∗) = (n− 2)(n− 1) + 1.

Proof. If n = 2, then we can take the automaton (2, 1, {1}). Otherwise, consider
the unary automaton (n, 0, {0, n− 1}). Since 0 and n− 1 are subsequent states,
the loop is minimal. Because n− 1 does not divide n if n ≥ 3, by Theorem 4d,
we have sc(L∗) = n(n− 1)− (n− 1 + n) + 1 + 1 = (n− 1)(n− 2) + 1. �	
The next two theorems show that, with sparse exceptions, high state complexities
of star are unattainable.

Kleene Star on Unary Regular Languages 285

Theorem 7. Let n ≥ 3. There is no unary language L with sc(L) = n and
(n− 2)(n− 1) + 1 < sc(L∗) < (n− 1)2 + 1.

Proof. We will use two estimates from the section 4 to obtain necessary con-
ditions on minimal automaton A = (n, �, F) recognizing some language L with
sc(L∗) > (n− 2)(n− 1) + 1.

If 0 is the only final state, then L = L∗ and sc(L∗) = n < (n− 2)(n− 1) + 2.
Therefore, the automaton A has a final state k such that k ≥ 1. By Corollary 2,

the DFA A′ for L∗ has at most k(n− 1)+1 states. We must have k(n− 1)+1 >
(n−2)(n−1)+1, and since k < n, the only solution is k = n−1. Hence n−1 is the
only non-initial final state. It is inside the loop, so by Corollary 3, the DFA A′ has
at most �+(n−�)(n−1)+1 states. We need �+(n−�)(n−1)+1 > (n−1)(n−2)+1,
and therefore If n ≥ 4, then � ≤ 2. If n = 3, then � ≤ 2 as well since [2] = {0, 1, 2}.

These restrictions yield only six types of automata. The state complexities
of these candidates are in Table 1. If n ≥ 3, then none of them is in the range
[(n− 2)(n− 1) + 2, (n− 1)2] = [n2 − 3n+ 4, n2 − 2n+ 1]. �	

Theorem 8. Let n ≥ 6. Then there is no language L such that sc(L) = n and
n2 − 4n + 6 < sc(L∗) < n2 − 3n + 2. Furthermore, the number n2 − 3n + 2 is
attainable as the complexity of star if n is odd, and it is unattainable if n is even.

Proof. Similarly as in the previous proof, we can find the restrictions on the first
non-zero final state k and the loop number �. By Corollary 2 we have k ≥ n− 2.

First suppose there is a non-initial final state outside the loop. Since n − 2
is the smallest possible final state, we have only two such minimal automata:
(n, n − 1, {n − 2}) and (n, n − 1, {0, n − 2}). In both cases the star is (an−2)∗

with state complexity n− 2.
Thus we may assume that no non-initial state outside the loop is final. Then

by Corollary 3 we have � ≤ 3. This yields 24 different types of automata. Tables
1 and 2 summarize complexities of stars of types with single nonzero final state.
All of them could be get by direct use of Theorem 3 or 4.

Now consider automata with both states n−1 and n−2 final. Since n−1 and
n− 2 are final, all nonnegative linear combinations of n− 1 and n− 2 are in the
star. If � ∈ {1, 2}, using the loop does not add anything new to the star. Since
n− 1 and n− 2 are coprime if n ≥ 6, by 7b, the largest integer not representable

Table 1. The candidates for L with sc(L∗) > (n− 1)(n− 2) + 1

type of automata complexity by Th. notes

(n, 0, {n− 1}) n2 − 2n + 2 3c if n ≥ 3, then n − 1 � n and
gcd(n, n− 1) = 1(n, 0, {0, n− 1}) n2 − 3n + 3 4d

(n, 1, {n− 1})
n− 1

3b
(n, 1, {0, n− 1}) 4b not minimal

(n, 2, {n− 1})
n2 − 4n + 6

3c if n ≥ 4, then n − 2 � n − 1 and
gcd(n− 1, n− 2) = 1(n, 2, {0, n− 1}) 4c

286 K. Čevorová

Table 2. Directly computable candidates for state complexity > n2 − 4n + 6

Type of automata complexity by Th. notes

(n, 3, {n− 1}) if n is even n2 − 5n + 8 3c for n > 5 is � = 3 ≤ n− 1
(n, 3, {0, n− 1}) if n is odd n2/2 − 3n + 15/2 4c and n− 3 � n− 1

(n, 0, {n− 2})
if n is even n2/2 − 2n + 3

3c
if n is odd n2 − 3n + 2

(n, 0, {0, n− 2})
if n is even n2/2 − 3n + 5

4d
if n is odd n2 − 4n + 4

(n, 1, {n− 2})
n2 − 4n + 5

3c not minimal
(n, 1, {0, n− 2}) 4c

(n, 2, {n− 2})
n− 2

3b

not minimal
(n, 2, {0, n− 2}) 4b
(n, 3, {n− 2})

n2 − 6n + 11
3c

(n, 3, {0, n− 2}) 4c

as their nonnegative linear combination is (n−1)(n−2)−(2n−3) = n2−5n+5. It

follows that an
2−5n+5 is the longest word that is not in the star. By Proposition 1,

the state complexity of the star is n2 − 5n+ 7.
The automata with � = 3 are “supersets” of the automata in the last two rows

of Table 2. Since these correspond to cofinite languages (since n − 2 and n − 3
are coprime), then by Lemma 1, their state complexity is at most n2 − 6n+ 11.

The automaton A = (n, 0, {n− 2, n − 1}) is a special case of Theorem 5 for
k = 2 and sc(L∗) = (n− 2)�n−2

2 �+ 1.
If n ≥ 6, then all obtained state complexities are at most n2 − 4n+ 5, except

for n2 − 3n+ 2 if n is odd. This completes our proof. �	

6 Connection to the Frobenius Problem

The problem of the state complexity of the star of a given unary language has
an interesting connection to the well-known Frobenius problem. There are no
results in this sections, but it shows our problem in different light.

The lengths of words in L∗ forms a subsemigroup of the semigroup of natu-
ral numbers with the operation of addition. A cofinite numerical semigroup is
called a numerical monoid. The maximal integer that is not a member of a given
numerical monoid is called its Frobenius number and is well defined. Since nu-
merical semigroups are finitely generated, this directly reflects our use of finite
languages with cofinite star.

The problem of finding the Frobenius number given a basis of a numerical
monoid is called the Frobenius problem (FP). An alternative formulation of
the FP is to find the greatest natural number, that cannot be expressed as a
non-negative linear combination of given natural numbers. Computing the state
complexity of cofinite languages is the same problem, but with special additional
constraints on coefficients. Exactly stated as follows.

Kleene Star on Unary Regular Languages 287

Let Ft = {t1, . . . , ti}, F� = {�1, . . . , �j} be sets of positive integers and let r

be a positive integer. Then f̃(Ft, F�, r) is the greatest integer not contained in
the numerical semigroup

G(Ft, F�, r) = {
i∑

k=1

cktk +

j∑

k=1

dk�k + ρ r | (ck, dk, ρ ≥ 0) ∧ (ρ = 0 ∨
j∑

k=0

dk > 0)}

Since solving FP for basis S is equivalent with computation of f̃(S,∅,∅), this
is a generalization of FP.

On the other hand, it could be reduced to FP for the cost of a more complex
basis. If we suppose, that �1 ≤ �k for all k, then one of basis of G(Ft, F�, r) is
{t1, . . . ti} ∪ {lk +mr| k ∈ [1, j],m ∈ [0, l1 − 1]}. As a consequence, f̃(Ft, F�, r)
is well defined iff gcd(Ft ∪ F� ∪ {r}) = 1.

For finite languages, we solve the classical FP. For an automaton with cofinite
star (n, �, {t1, . . . , ti} ∪ {�1, . . . �j}), where tk < � and �k ≥ �, we need to find

f̃({t1, . . . , ti}, {�1, . . . �j}, {n− �}). If the star is not cofinite, then the common
divisor of all lengths is nontrivial, and we proceed similarly as in Lemma 7.

We have seen, that results in the language of FP could be translated to the
language of the state complexity of unary star and vice versa. If we do this
with Theorem 5, we get a generalization of Roberts’s formula for FP with an
arithmetic sequence as a basis[8], but only for difference 1.

7 Conclusion

We studied the state complexity of unary languages obtained as Kleene star of
a language with state complexity n.

Fig. 2. Computations for n ≤ 18

288 K. Čevorová

We have shown, using mostly finite languages, that we can reach any value
from 1 to n as the state complexity of the star of an n-state unary language.
Computations indicates, that n is not a tight lower bound on ”attainable” num-
bers, and we assume that it could be improved significantly.

Next, we studied the range from n2 − 4n+6 to the known tight upper bound
n2 − 2n+ 2 and we showed that the complexities n2 − 2n+ 2, n2 − 3n+ 3, and
n2 − 4n+6 are reachable. Additionally, if n is odd, th complexity n2 − 3n+2 is
also reachable. Our main result is, that all numbers in the studied range different
from these three values are not reachable. Investigating any broadening of this
interval would be probably hindered by problems with divisibility.

Fig. 2 illustrates these results on computations for unary languages with state
complexity at most 18. A dot indicates an existence of a language with given
properties, and its absence means that no such language exists. Lines indicate
significant non-magic numbers, dashed line non-magic numbers for odd n and
shaded area scope of our results.

Acknowledgement. I would like to thank to my supervisor Galina Jirásková
for her guidance and to the anonymous reviewers for many valuable remarks.

References

1. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)

2. Nicaud, C.: Average state complexity of operations on unary automata. In:
Kuty�lowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 231–240. Springer, Heidelberg (1999)

3. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of
DFAs that are equivalent to n-state NFAs. Theor. Comput. Sci. 237(1-2), 485–494
(2000)

4. Jirásková, G.: Magic numbers and ternary alphabet. Int. J. Found. Comput.
Sci. 22(2), 331–344 (2011)

5. Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inf. Com-
put. 205(11), 1652–1670 (2007)

6. van Zijl, L.: Magic numbers for symmetric difference NFAs. Int. J. Found. Comput.
Sci. 16(5), 1027–1038 (2005)

7. Jirásková, G.: On the state complexity of complements, stars, and reversals of regular
languages. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 431–442.
Springer, Heidelberg (2008)

8. Roberts, J.B.: Note on linear forms. Proceedings of the American Mathematical
Society 7(3), 465–469 (1956)

	Kleene Star on Unary Regular Languages
	1 Introduction
	2 Preliminaries
	3 Lower Bound on Gaps in the Hierarchy of State Complexities
	4 State Complexity of Significant Classes of Automata
	5 Gaps in Complexity Hierarchy for Unary Star
	6 Connection to the Frobenius Problem
	7 Conclusion
	References

