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a b s t r a c t

A language L over an alphabet Σ is a right (left) ideal if it satisfies L = LΣ∗ (L = Σ∗L).
It is a two-sided ideal if L = Σ∗LΣ∗, and an all-sided ideal if L = Σ∗ L, the shuffle
of Σ∗ with L. Ideal languages are not only of interest from the theoretical point of view,
but also have applications to pattern matching. We study the state complexity of common
operations in the class of regular ideal languages, but prefer to use the equivalent term
‘‘quotient complexity’’, which is the number of distinct left quotients of a language. We
find tight upper bounds on the complexity of each type of ideal language in terms of
the complexity of an arbitrary generator and of the minimal generator, and also on the
complexity of theminimal generator in terms of the complexity of the language. Moreover,
tight upper bounds on the complexity of union, intersection, set difference, symmetric
difference, concatenation, star, and reversal of ideal languages are derived.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A language is a right ideal if it is closed under concatenation on the right with an arbitraryword. Left ideals and two-sided
ideals are defined in a similar way. A language is an all-sided ideal if it is closed under the insertion of an arbitrary word in
any position in any word of the language. Ideal languages need not be regular, but our interest is in regular ideals only.

Ideals are studied for several reasons. They are fundamental objects in semigroup theory [26,37]. They appear in the
theoretical computer science literature as early as 1965 [32] and continue to be of interest in the present [2,3,12,13]. Ideal
languages are complements of prefix-, suffix-, factor-, and subword-closed languages, and closed languages constitute an-
other interesting class [2,10]. Ideal languages are closed with respect to the ‘‘has a word as a prefix’’ (respectively, suffix,
factor, subword) relation [2]. They are special cases of convex languages [2,38], which form a much larger class. Finally,
besides being of theoretical interest, ideals also play a role in algorithms for pattern matching.

Left and right ideals were studied by Paz and Peleg [32] in 1965 under the names ‘‘ultimate definite’’ and ‘‘reverse
ultimate definite events’’; their results include closure properties, decision procedures, and canonical representations for
these languages. All-sided ideals were used by Haines [18] (not under that name) in 1969 in connection with subword-
free and subword-closed languages, and by Thierrin [38] in 1973 in connection with subword-convex languages. De Luca
and Varricchio [27] showed in 1990 that a language is factor-closed (or ‘‘factorial’’) if and only if it is the complement of
a two-sided ideal. The 1994 work of Yu, Zhuang and Salomaa in [42] contains two results about left and right ideals. In
2001 Shyr [37] studied right, left, and two-sided ideals and their generators in connection with codes. In 2007 Okhotin [31]
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presented a result concerning all-sided ideals. Complexity issues of conversion of nondeterministic finite automata (nfa’s)
to deterministic finite automata (dfa’s), where these automata recognize right, left, and two-sided ideals were studied in
2009 by Bordihn, Holzer, and Kutrib [3], who used the names ‘‘ultimate definite’’, ‘‘reverse ultimate definite’’, and ‘‘central
definite’’ languages, respectively. The sizes of all-sided ideals were studied in 2009 by Gruber, Holzer and Kutrib [17]. In
2009 all four types of ideals and their closure properties were considered by Ang and Brzozowski [2] in the framework
of languages convex with respect to arbitrary binary relations. Decision problems for various classes of convex languages,
including ideals, were addressed in 2011 by Brzozowski, Shallit and Xu [12]. The sizes of the syntactic semigroups of right,
left, and two-sided ideals were studied in 2011 by Brzozowski and Ye [13].

As mentioned above, ideals also appear in the important area of pattern matching. For this application, a text is
represented by a word w over some alphabet Σ . A pattern can be as simple as a word or a finite set of words, or it can
be an arbitrary language L over Σ described by a regular expression. An occurrence of a pattern represented by L in text w
is a triple (u, x, v) such that w = uxv and x is in L. Searching text w for words in L is equivalent to looking for prefixes of w
that belong to the language Σ∗L, which is the left ideal generated by L [15].

Algorithms such as that of Aho and Corasick [1] can be used to determine all possible occurrences of words from a finite
set L in a given input w. For example, in a Unix-style editor, such as sed, if L is just a single word x, then /.*x$/, /^x.*/,
and /.*x.*/, or their simplified versions /x$/, /^x/, and /x/, find all the words ending in x (that is, all the words of the
left ideal Σ∗x) that occur in w; all the words beginning with x (that is, all the words of the right ideal xΣ∗) that occur in w;
and all the words that have x as a factor (that is, all the words of the two-sided ideal Σ∗xΣ∗) that occur in w, respectively.
The language Σ∗ x can be used to find subsequences occurring in the given text, for example, to determine whether a
report has all the required sections and that they are in the correct order. For more details we refer the reader to [1,15,16].

For another example of applications of pattern matching with regular languages see the recent work of Yu, Chen, Diao,
Lakshman and Katz [39]. They consider the problem of scanning at high speed the content of packets, which are units
of binary data routed through a computer communication network; this is crucial for network monitoring and security
applications. In such cases nfa’s are often used, because the exponential size of the naive dfa’s requires excessive memory.
Rewriting techniques on regular expressions are used to make fast dfa-based pattern matching feasible. Ideals, though not
so named, appear often is this work.

In this paper we study ideal languages from the descriptional complexity point of view. The fact that the four classes of
ideals are related to each other permits us to obtain many complexity results using similar methods.

1.1. State complexity versus quotient complexity

The study of state complexity of operations on regular languages is a well-established area of research in theoretical
computer science. The state complexity of a regular language L is the number of states in the (complete) minimal dfa
recognizing L.

For subclasses C and C′ of regular languages, the state complexity of an operation f : C × C → C′ is a function of the
state complexities of languages K and L from C that returns the maximal state complexity of the language f (K , L). If f is an
operation f : C → C′, then the state complexity of f returns the maximal state complexity of f (L), for L in C, as a function of
the state complexity of L.

A notion equivalent to state complexity is that of the quotient complexity of a language. For a language L over a finite
alphabet Σ and a word w ∈ Σ∗, the (left) quotient of L by w is the language Lw = {x | wx ∈ L}. The quotient complexity of a
language L is the number of distinct quotients of L. A language L is regular if and only if it has a finite number of quotients,
and this number is precisely the state complexity of L. The quotient complexity of an operation is a function, similar to the
state complexity function defined above, but here it returns the maximal number of quotients of f (K , L) or of f (L), which,
of course, is the same as the state complexity of f (K , L) or of f (L).

Although the two concepts – of state and quotient complexity – are equivalent in the numerical sense, they provide
different points of view for the same basic idea. The state complexity approach is automaton-oriented and leads to
constructions of automata recognizing the language resulting fromanoperation. The quotient approach is language-oriented
and leads to operations on languages. In particular applications one approach may be more convenient than the other. For
example, it is often easy to derive an upper bound on the state/quotient complexity of an operation using quotients. On the
other hand, to show that the state/quotient complexity of an operation meets an upper bound it is often more appropriate
to use automata. These techniques are illustrated several times in the present paper.

In this paper we use either one approach or the other, as is convenient. The terminology is a question of personal
preference, and we prefer to use ‘‘quotient complexity’’, since it is a language property defined in language-theoretic terms.
However, since we do not discuss any other type of complexity in this work, we will simply use the term complexity.

1.2. Previous work on complexity

The boundmn on the complexity of intersection was noted in 1959 by Rabin and Scott [36]. In 1963 Lupanov [28] proved
that the bound 2n for the conversion of nfa’s to dfa’s is tight. In 1966 Mirkin [30] showed that the 2n bound for the reversal
of a dfa is attainable. The state complexities of union, product, and star were first studied in 1970 by Maslov [29]. He stated
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upper bounds on the complexity of these operations and gave examples of languages meeting these bounds, but provided
no proofs.

In 1994 Yu, Zhuang and Salomaa [42] examined in detail the complexities of concatenation, star, left and right quotients,
reversal, intersection, and union in the class of regular languages. Since then, there have been many papers on this subject;
see, for example, the 2001 survey by Yu [41] and the reference lists in that work. Quotient complexity was introduced in
2010 by Brzozowski [6]; that paper also contains a short updated survey.

There has also been a considerable amount of work done on the complexity of operations in proper subclasses of regular
languages: in unary languages in 1994 by Yu, Zhuang and Salomaa [42] and in 2002 by Pighizzini and Shallit [34]; in finite
languages in 2001 by Yu [41] and Câmpeanu, Culik, Salomaa and Yu [14]; in prefix-free languages in 2009 by Han, Salomaa
and Wood [20]; in suffix-free languages in 2009 by Han and Salomaa [19]; in closed languages in 2010 by Brzozowski,
Jirásková and Zou [10]; in union-free languages in 2010 by Jirásková and Masopust [23]; in bifix-, factor- and subword-
free languages in 2011 by Brzozowski, Jirásková, Li and Smith [9]; and in star-free languages in 2011 by Brzozowski and
Liu [11]. In general, these studies of subclasses show that the complexity can be significantly lower in a subclass than in
the general case. There are, however, some surprises: Brzozowski and Liu [11] showed that all the bounds on operations
on regular languages, with some small exceptions, are also met by star-free languages—a very restricted class of regular
languages. Analogous results were proved by Holzer, Kutrib and Meckel [21] who showed that, in most cases, exactly the
same tight state-complexity bounds are reached by operations on nfa’s recognizing star-free languages as on general nfa’s.
This motivates us to study subclasses of regular languages to determine their complexity characteristics. Here we continue
this study in four related classes of regular languages: right, left, two-sided, and all-sided ideals.

1.3. Outline

In Section 2 we define our terminology and notation. The complexities of ideal languages in terms of their generators
and minimal generators, and the complexities of generators in terms of ideals are studied in Section 3. The complexities of
basic operations on ideals are then examined in Section 4. The special case of unary languages is treated in Section 5, and
Section 6 concludes the paper.

An earlier version of this work appeared at arXiv [7], and a much shorter version was published in the LATIN 2010
conference proceedings [8].

2. Preliminaries

We assume that the reader is familiar with basic concepts of regular languages and finite automata, as described in
[33,40], for example, or in many textbooks. For general properties of ideal languages we refer the reader to [26,37].

If Σ is a non-empty finite alphabet, then Σ∗ is the free monoid generated by Σ . A word is any element of Σ∗, and the
empty word is ε. The length of a word w ∈ Σ∗ is |w|. A language over Σ is any subset of Σ∗.

The following set operations are defined on languages: complement (L = Σ∗
\ L), union (K ∪ L), intersection (K ∩ L),

difference (K \ L), and symmetric difference (K ⊕ L). To indicate any one of these four boolean operations with two arguments
we use K ◦L.We also define the product, usually called concatenation or catenation, K ·L = {w ∈ Σ∗

| w = uv, u ∈ K , v ∈ L},
positive closure L+

=


i≥1 L
i, and star L∗

=


i≥0 L
i. The reverse wR of a word w in Σ∗ is defined as follows: εR

= ε, and
(wa)R = awR for a letter a and a word w. The reverse of a language L is defined as LR = {wR

| w ∈ L}.
Regular languages over an alphabet Σ are languages that can be obtained from the basic languages ∅, {ε}, and {a}, a ∈ Σ ,

using a finite number of operations of union, product, and star. Such languages are usually denoted by regular expressions.
For example, E = (ε ∪ a)∗b denotes L = ({ε}∪ {a})∗{b}. We use the symbols ∪, · (usually omitted), and ∗ for union, product,
and star of both regular expressions and languages, rather than using + in expressions and ∪ for languages.

A deterministic finite automaton (dfa) is a quintuple D = (Q , Σ, δ, q0, F), where Q is a finite, non-empty set of states,
Σ is a finite, non-empty alphabet, δ : Q × Σ → Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is
the set of final states. The transition function is naturally extended to the domain Q × Σ∗. The language accepted by dfa D
is L(D) = {w ∈ Σ∗

| δ(q0, w) ∈ F}. The language accepted from a state q of a dfa is the language accepted by the dfa
Dq = (Q , Σ, δ, q, F). Two states of a dfa are distinguishable if there exists a wordw which is accepted from one of the states
and rejected from the other. Otherwise, the two states are equivalent. A dfa is minimal if all of its states are reachable from
the initial state and no two states are equivalent.

A nondeterministic finite automaton (nfa) is a quintuple N = (Q , Σ, δ, S, F), where Q , Σ , and F are defined the same
way as in a dfa, S is the set of initial states,1 and δ is the nondeterministic transition function that maps Q × Σ to 2Q . The
transition function is extended to 2Q

× Σ∗. The language accepted by nfa N is L(N ) = {w ∈ Σ∗
| δ(S, w) ∩ F ≠ ∅}. The

language accepted from a state q of an nfa is the language accepted by the nfa (Q , Σ, δ, {q}, F).
Every nfa (Q , Σ, δ, S, F) can be converted to an equivalent dfa (2Q , Σ, δ′, S, F ′) by the well-known subset construction

[36]: The transition function δ′ is defined by δ′(R, a) =


r∈R δ(r, a), and a state R in 2Q is in F ′ if R ∩ F ≠ ∅. We call the

1 In contrast to some authors, we use a set of initial states, since we require the reverse of an nfa to be an nfa.
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Fig. 1. Reachability of all the subsets of {q0, q1, . . . , qn−1} containing state q0 .

resulting dfa the subset automaton corresponding to the given nfa. This automaton need not be minimal, since some of its
states may be unreachable or equivalent.

The following two lemmata are used often to show reachability and distinguishability of states of a subset automaton.

Lemma 1 (Reachability). Consider an nfa with initial state q0, in which there are transitions on inputs a and b in states
q0, q1, . . . , qn−2 as shown in Fig. 1. Then each subset of {q0, q1, . . . , qn−1} containing q0 is reachable in the corresponding subset
automaton.

Proof. The proof is by induction on the size of subsets. Subset {q0} is the initial state of the subset automaton. Every subset
{q0, qi2 , qi3 . . . , qik} of size k, where 2 ≤ k ≤ n and 1 ≤ i2 < i3 < · · · < ik ≤ n − 1, is reached from the subset
{q0, qi3−i2 , . . . , qik−i2} of size k − 1 by abi2−1. �

Lemma 2 (Distinguishability). If for every state q of an nfa there exists a word wq that is accepted by the nfa from state q and
rejected from any other state, then all the states of the corresponding subset automaton are pairwise distinguishable.

Proof. Two distinct subsets of the subset automaton must differ in some state q of the given nfa. These two subsets are
distinguished by word wq, which is accepted by the nfa only from state q. �

Next, we recall some properties of quotients. The quotient complexity of L is the number of distinct quotients of L, and is
denoted by κ(L).

The quotients of a regular language can be computed as follows. First, the ε-function Lε of a regular language L is defined
by Lε

= ∅ if ε /∈ L and Lε
= ε if ε ∈ L. The quotient by a letter a in Σ is computed by induction:

ba =


∅, if b ∈ {∅, ε}, or b ∈ Σ and b ≠ a,
ε, if b = a;

(L)a = La;
(K ◦ L)a = Ka ◦ La;
(KL)a = KaL ∪ K εLa;
(K ∗)a = KaK ∗.

The quotient by a word w ∈ Σ∗ is computed by induction on the length of w:

Lε = L; Lwa = (Lw)a.

Quotients computed this way are indeed the left quotients of a regular language [5,6]. A quotient Lw is final if ε ∈ Lw;
otherwise it is non-final.

We use the following formulas [5,6] for quotients of regular languages to establish upper bounds on quotient complexity:

Proposition 3. If K and L are regular languages, and u and v are in Σ+, then

(L)w = Lw; (K ◦ L)w = Kw ◦ Lw; (1)

(KL)w = KwL ∪ K εLw ∪


w=uv

K ε
u Lv


. (2)

The formulas for boolean operations are obvious. The quotient of a product KL by w consists of the quotient of K by w
concatenated with L, of the quotient of L by w if the empty word is in K , and of the quotients of L by non-empty suffixes v
of w, where the quotients of K by the corresponding prefixes u of w contain the empty word.

The quotient dfa of a regular language L is D = (Q , Σ, δ, q0, F), where Q = {Lw | w ∈ Σ∗
}, δ(Lw, a) = Lwa, q0 = Lε = L,

and F = {Lw | ε ∈ Lw}. So the number of states in the quotient automaton of L is the quotient complexity of L. The quotient
dfa of L is isomorphic to the complete minimal dfa of L, and these terms are used here synonymously.

If u, v, w ∈ Σ∗ and w = uxv, then u is a prefix of w, v is a suffix of w, and x is a factor of w. If w = u1v1u2v2 · · · ukvkuk+1,
where the ui and vi are in Σ∗, then v1v2 · · · vk is a subword of w. A prefix (suffix, factor, subword) of w is proper if it is not
equal to w.

A language L is prefix-free (prefix-closed) if w ∈ L implies that no proper prefix of w is in L (that every prefix of w is in L).
In the same way, we define suffix-free, factor-free, and subword-free languages, and the corresponding closed versions.
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Fig. 2. The dfa of Gwith κ(G) = n and κ(Σ∗G) = 2n−1 .

The shuffle u v of two words u, v ∈ Σ∗ is defined as follows:

u v = {u1v1 · · · ukvk | u = u1 · · · uk, v = v1 · · · vk, u1, . . . , uk, v1, . . . , vk ∈ Σ∗
}.

The shuffle of two languages K and L is defined by

K L =


u∈K ,v∈L

u v.

Note that these operations are commutative.

3. Ideals, generators, and minimal generators

A language L ⊆ Σ∗ is a right ideal (left ideal, two-sided ideal, all-sided ideal) if it is non-empty and satisfies L = LΣ∗

(L = Σ∗L, L = Σ∗LΣ∗, L = Σ∗ L, respectively). We refer to all four types as ideal languages or simply ideals.
If L is a right (respectively, left, two-sided, all-sided) ideal, any language G ⊆ Σ∗ such that L = GΣ∗ (respectively,

L = Σ∗G, L = Σ∗GΣ∗, L = Σ∗ G) is a generator of L. The quotients of ideals GΣ∗, Σ∗G, and Σ∗GΣ∗ are derived from
Eq. (2) and given below, where words u, v, x, and y are in Σ+:

(GΣ∗)w =


Gw ∪ Gε

∪


w=uv

Gε
u


Σ∗

; (3)

(Σ∗G)w = Σ∗G ∪ Gw ∪


w=uv

Gv; (4)

(Σ∗GΣ∗)w = Σ∗(GΣ∗) ∪ (GΣ∗)w ∪


w=uv

(GΣ∗)v =


Σ∗G ∪


Gw ∪


w=uv

Gv


∪


w=uv


Gε
u ∪


v=xy

Gε
x


Σ∗. (5)

We use these formulas to establish upper bounds on the complexity of the ideals G Σ∗, Σ∗G, and Σ∗G Σ∗ generated
by G.

Theorem 4 (Complexity of Ideals in Terms of Generators). Let G be any generator of the right ideal GΣ∗ (left ideal Σ∗G, two-
sided ideal Σ∗GΣ∗, or all-sided ideal Σ∗ G) with κ(G) = n. Then

(1) For n ≥ 1, κ(GΣ∗) ≤ n, and the bound is tight if |Σ | ≥ 1;
(2) κ(Σ∗G) ≤ 2n−1, and the bound is tight if |Σ | = 1 for n = 1, and |Σ | ≥ 2, otherwise;
(3) For n = 1, κ(Σ∗GΣ∗) = 1, and for n ≥ 2, κ(Σ∗GΣ∗) ≤ 2n−2

+ 1 and the bound is tight if |Σ | ≥ 2;
(4) For n = 1, κ(Σ∗ G) = 1, and for n ≥ 2, κ(Σ∗ G) ≤ 2n−2

+ 1 and the bound is tight if |Σ | ≥ n− 2, and cannot be met
using any smaller alphabet.

Proof. The first two items follow from the results in [42]. We give short proofs using quotients.
1. If n = 1, then G = Σ∗ and κ(GΣ∗) = 1. If n ≥ 2, then G is non-empty. From Eq. (3), if w has no prefix in G, then

(GΣ∗)w = GwΣ∗. As κ(G) = n, there can be at most n − 1 such quotients, for there must be at least one quotient Gw with
w ∈ G. However, for every word w with a prefix x in G, we have (GΣ∗)w = (GΣ∗)x = Σ∗. Hence there are at most n
different quotients.

The unary language G = an−1a∗ meets the bound.
2. One of the n quotients of G, namely Gε = G, always appears on the right-hand side of Eq. (4). Thus there are at most

2n−1 subsets of quotients of G to be added to Σ∗G, and so Σ∗G has at most 2n−1 distinct quotients.
For tightness, if n = 1, then G = Σ∗ meets the bound. For n ≥ 2, let G be the language accepted by the dfa in Fig. 2. To

get an nfa for Σ∗G, add a loop on a in the initial state 0. By Lemma 1, every subset of {0, 1, . . . , n − 1} containing state 0 is
reachable in the corresponding subset automaton. Since for each state i, the word an−1−i is accepted by the nfa only from
state i, distinguishability follows by Lemma 2.

3. Since quotient G is always present in the expression in Eq. (5), there are at most 2n−1 distinct unions of quotients of
language G. Since G is non-empty, it has at least one final quotient. If the final quotient is G, then the resulting language is
Σ∗. Otherwise, at least 2n−2 unions contain a final quotient ofG, and the corresponding quotients of two-sided idealΣ∗GΣ∗

are Σ∗. Thus 2n−2
+ 1 is an upper bound.
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Fig. 3. The dfa of Gwith κ(G) = n and κ(Σ∗GΣ∗) = 2n−2
+ 1.

Fig. 4. The dfa of a minimal generatorM with κ(MΣ∗) = n and κ(Σ∗M) = 2n−2 .

To prove the tightness of the bounds, for n = 1 use Σ∗ and for n = 2 use the language a∗b(a ∪ b)∗. For n ≥ 3 consider
the language G defined by the dfa in Fig. 3. To get an nfa for Σ∗GΣ∗, add a loop on a in the initial state 0. By Lemma 1,
every subset of {0, 1, . . . , n − 2} containing state 0 is reachable in the corresponding subset automaton. For each state i
in {0, 1, . . . , n − 2}, the word an−2−ib is accepted by the nfa only from states i and n − 1. It follows that the subsets of
{0, 1, . . . , n − 2} are pairwise distinguishable. All of them are non-final states of the subset automaton. Also, the final state
{0, n − 1} is reached from {0, n − 2} by b. The lower bound 2n−2

+ 1 follows.
4. If n = 1, then G = Σ∗ and κ(Σ∗ G) = 1. For n ≥ 2, since an all-sided ideal is a two-sided ideal, the upper bound

2n−2
+1 applies. For n = 2, the language aa∗ meets the bound. For n ≥ 3, Okhotin [31] used the alphabetΣ = {a1, . . . , an−2}

and the language G =
n−2

i=1 aiΣ∗aiΣ∗ to prove the tightness of the bound. He also showed that the bound cannot be met if
n − 3 letters are used. �

In Theorem 4, notice the lack of symmetry in the complexities of right and left ideals, and the equality of complexities
of two-sides and all-sided ideals. Note also that a provably growing alphabet is required for all-sided ideals [31]. As an
anonymous referee correctly points out, in such a situation it is no longer clear whether state complexity is an appropriate
measure of complexity. This result should perhaps be restated as follows.

Let G be any generator of the all-sided ideal Σ∗ G with κ(G) = n ≥ 2, and |Σ | ≥ n − 2. Then κ(Σ∗ G) ≤ 2n−2
+ 1, and

this bound is tight.

Here themeasure of complexity ofG should be some function of both the state complexity and the alphabet size—perhaps
their product—because the bound cannot be reached if the alphabet size is bounded by a constant. Conversely, if the size of
the alphabet is fixed, then the bound for that alphabet – though it may be hard to find – surely exists, and is guaranteed to
be smaller than 2n−2

+ 1 [31].
Next, we consider the complexities of ideals in terms of their minimal generators. The following are well-known

properties of ideals [26].

(1) If L is a right ideal, the minimal generator of L is M = L \ (LΣ+), and M is prefix-free. If M is prefix-free, then it is the
minimal generator ofMΣ∗.

(2) If L is a left ideal, the minimal generator of L is M = L \ (Σ+L), and M is suffix-free. If M is suffix-free, then it is the
minimal generator of Σ∗M .

(3) If L is a two-sided ideal, theminimal generator of L isM = L\(Σ+LΣ∗
∪Σ∗LΣ+), andM is factor-free. IfM is factor-free,

then it is the minimal generator of Σ∗MΣ∗.
(4) If L is an all-sided ideal, the minimal generator of L is the set M of all words of L that have no proper subwords in L, and

thusM is subword-free. IfM is subword-free, then it is the minimal generator of Σ∗ M .

Theorem 5 (Complexity of Ideals in Terms of Minimal Generators). Let M be the minimal generator of the right ideal MΣ∗, (left
ideal Σ∗M, two-sided ideal Σ∗MΣ∗, or all-sided ideal Σ∗ M) with κ(M) = n ≥ 3. Then

(1) κ(MΣ∗) ≤ n and the bound is tight if |Σ | ≥ 2;
(2) κ(Σ∗M) ≤ 2n−2 and the bound is tight if |Σ | ≥ 2;
(3) κ(Σ∗MΣ∗) ≤ 2n−3

+ 1 and the bound is tight if |Σ | ≥ 2;
(4) κ(Σ∗ M) ≤ 2n−3

+ 1, and the bound is tight if |Σ | ≥ n − 3.

Proof. 1. The upper bound n follows from Theorem 4. Let Σ = {a, b}, and let M = aΣn−3. The dfa for M is shown in Fig. 4.
Then M has n quotients and generates the right ideal L = aΣn−3Σ∗, which also has n quotients. Since M is prefix-free, it is
the minimal generator.
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Fig. 5. The dfa of a minimal generatorM with κ(Σ∗MΣ∗) = 2n−3
+ 1.

Fig. 6. The dfa of minimal generatorM of all-sided ideal N with κ(N) = 2n−3
+ 1.

2. Replace G byM in Eq. (4). One of the n quotients ofM , namelyMε = M , always appears in the union. Thus there are at
most 2n−1 subsets of quotients of M to be added to Σ∗M . Moreover, since M is suffix-free, M has the empty quotient [19].
Consider the n − 1 quotients other than M . Each union of a subset of such quotients that contains the empty quotient is
equivalent to a union without the empty quotient; hence there are at most 2n−2 quotients of Σ∗M .

For tightness, let Σ = {a, b}, and consider the suffix-free language M = aΣn−3 accepted by the dfa in Fig. 4. To get an
nfa for the generated left ideal Σ∗M , omit the dead state n − 1 and all transitions incident to it, and add a loop in state 0
on letters a, b. By Lemma 1, all the subsets of {0, 1, . . . , n− 2} containing state 0 are reachable in the corresponding subset
automaton. These reachable states are pairwise distinguishable since for each state i, the word an−2−i is accepted by the nfa
only from state i. This gives 2n−2 reachable and pairwise distinguishable states, and proves the lower bound.

3. Replace G by M in Eq. (5). Since Mε = M is always present, there are at most 2n−1 subsets of quotients of M to add to
Mε . Since M is the minimal generator of L, it is factor-free, and hence prefix-free. Thus it has only one final quotient, ε, and
also has the empty quotient, and so we have at most 2n−2 subsets. Finally, half of those 2n−2 subsets contain Σ∗, and hence
are equivalent to Σ∗. This leaves 2n−3

+ 1 subsets, and so κ(L) ≤ 2n−3
+ 1.

For n = 3, letΣ = {a} andM = a; thenM is theminimal generator of a∗aa∗ andmeets the bound. For n ≥ 4, consider the
factor-free languageM = aΣn−4a given by the dfa of Fig. 5. To get an nfa for the generated two-sided idealΣ∗MΣ∗, omit the
dead state n−1 and add loops on letters a, b in states 0 and n−2. By Lemma 1, all the subsets of {0, 1, . . . , n−3} containing
state 0 are reachable in the corresponding subset automaton. For states 0, 1, . . . , n − 3, the word an−2−i is accepted by
the nfa only from state i. Therefore, the non-final subsets of {0, 1, . . . , n − 3} are pairwise distinguishable. The final subset
{0, 1, n − 2} is reached from {0, n − 3} by a, and the lower bound 2n−3

+ 1 follows.
4. Since an all-sided ideal is a two-sided ideal, the bound of 2n−3

+ 1 applies. If n = 3, thenM = ameets the bound. For
n ≥ 4, consider the subword-free language M = a1a1 ∪ · · · ∪ an−3an−3 over the alphabet {a1, . . . , an−3}. Fig. 6 shows the
dfa forM; all the undefined transitions go to the dead state n − 1 (not shown in the figure).

To get an nfa for Σ∗ M , add loops on every ai in every state. In the corresponding subset automaton, each subset
{0, i1, . . . , ik} of {0, 1, . . . , n−3} is reached from the initial state {0} by ai1 · · · aik . Since ai with 1 ≤ i ≤ n−3 is accepted by
the nfa only from states i and n − 2, the non-final subsets of {0, 1, . . . , n − 3} are pairwise distinguishable. One of the final
subsets, {0, 1, n − 2}, is reached from {0, 1} by a1a1. This proves the reachability and distinguishability of 2n−3

+ 1 subsets,
and concludes the proof. �

Theorem5 shows that using theminimal generator does not affect the complexity of the resulting right ideal, but reduces
the complexity of the other ideals roughly by a factor of 2 for large n. There is still lack of left–right symmetry, and the bounds
for two-sided and all-sided ideals are again equal.

We now consider the converse problem: Given an ideal L of quotient complexity n, what is the quotient complexity of
its minimal generator? We will need the next observation about left ideals which follows from the fact that vw ∈ L implies
uvw ∈ L if L is a left ideal.

Remark 1. If L is a left ideal and u, v ∈ Σ∗, then Lv ⊆ Luv .

Theorem 6 (Complexity of Minimal Generators). Let L be an ideal with κ(L) = n, and let M be its minimal generator.

(1) If L is a right ideal, then κ(M) ≤ n + 1, and the bound is tight if |Σ | ≥ 1.
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a

b

Fig. 7. The dfa’s of a left ideal L and of the language ΣL.

(2) If L is a left ideal, then κ(M) ≤ n(n − 1)/2 + 2, and the bound is tight if |Σ | ≥ 2.
(3) If L is a two-sided ideal and n = 1, then κ(M) = 2. Otherwise2 κ(M) ≤ 3+ (n− 1)(n− 2)/2; the bound is tight if |Σ | ≥ 1

when n ∈ {2, 3}, and if |Σ | ≥ 3 when n ≥ 4.

Proof. If n = 1, then L = Σ∗, M = ε, κ(M) = 2, and the bounds are satisfied in all three cases. Assume from now on that
n > 1, which implies that ε ∉ L.

1. Let L be a right ideal andM itsminimal generator. ThenM is prefix-free, and therefore theminimal dfa forM has exactly
one final state, which goes to the dead state under each letter. To get a dfa for L = MΣ∗, we remove all the transitions going
from the final state to the dead state, and add a loop on each letter in the final state. In the resulting dfa, the dead state may
be unreachable; however, all the remaining states are reachable and pairwise distinguishable. It follows that κ(M) ≤ n+ 1.
The bound is met by the right ideal L = an−1a∗ with κ(L) = n. The minimal generator isM = an−1 and κ(M) = n + 1.

2. If L is a left ideal and u, v ∈ Σ∗, then Lv ⊆ Luv by Remark 1. Since L = Σ∗L, we have ΣL = Σ+L, showing that
M = L \ ΣL. Let L have quotients L1, L2, . . . , Ln. If w = av is a nonempty word, thenMw = Lav \ Lv , which is a difference of
two quotients of L. Next, we have Lv ⊆ Lav . This means, that if i ≠ j, then at most one of Li \ Lj and Lj \ Li may be a non-empty
quotient ofM . Also, Li \ Li = ∅ for all i. Hence there are at most n(n− 1)/2+ 2 quotients ofM:Mε , at most one quotient for
each i ≠ j, and ∅.

If n = 2, the unary language a∗a meets the bound. For Σ = {a, b}, n ≥ 3, let L = (b ∪ ab)∗a(ab∗)n−3aΣ∗. The dfa for L
is shown in Fig. 7(a). Note that w ∈ L if and only if w = xa(ab∗)n−3ay for some words x and y, because every quotient of L
contains a(ab∗)n−3a, or, equivalently, the language a(ab∗)n−3a is accepted from every state of the dfa. Thus L is a left ideal
with κ(L) = n.

The dfa of ΣL is shown in Fig. 7(b). Let M = L \ ΣL, and construct the cross-product automaton for M; see Fig. 8 for
n = 5. The initial state (1, 0) goes by b to state (1, 1), which turns out to be a dead state, and by a to state (2, 1). Every state
(i, 1) with i ≥ 3 in column 1 is reached from state (2, 1) by (ab)i−2. Then every state (i, j) with i > j ≥ 2 is reached from a
state in column 1 by a word in a∗, and there are n(n − 1)/2 such states. Adding the initial state and the dead state we get
n(n − 1)/2 + 2 reachable states.

Now consider only the abovementioned reachable states. Two states (i, j) and (k, ℓ)with i < k, that is, states in different
rows, are distinguished by an−k, which is accepted from (k, ℓ) and rejected from (i, j). Two states (i, j) and (i, ℓ) with j < ℓ,
that is, two distinct states in the same row, go to two states (n, j′) and (n, ℓ′) with j′ < ℓ′ in row n by an−i. The latter states
are distinguished by an−ℓ′

, which is rejected from (n, ℓ′) and accepted from (n, j′). Thus the reachable states are pairwise
distinguishable, and our proof is complete.

3. Since M = L \ (Σ+LΣ∗
∪ Σ∗LΣ+) and L = Σ∗LΣ∗, the minimal generator is M = L \ (ΣL ∪ LΣ), and

Mw = Lw \

(ΣL)w ∪ (LΣ)w


for every w in Σ∗. If w = ε, then Mw = M; otherwise, w = av = ub for some words

u, v in Σ∗ and letters a, b in Σ . We have

(ΣL)w = (ΣL)av = {x | avx ∈ ΣL} = {x | vx ∈ L} = Lv. (6)

Next,

(LΣ)w = (LΣ)ub = {x | ubx ∈ LΣ}. (7)

There are now two cases:

(1) If u ∈ L, then (LΣ)ub = Σ∗ since L is a two-sided ideal and therefore u ∈ L implies uz ∈ L for every word z.
(2) If u ∉ L, then (LΣ)ub = {x = x′c | ubx′

∈ L and c ∈ Σ} = LwΣ .

2 We are grateful to Marcus Holzer and Sebastian Jakobi for pointing out two errors in an earlier version of our paper and for providing the witness that
satisfies the bound stated here.
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Fig. 8. The dfa’s of a left ideal L and of the language ΣL.

Fig. 9. The dfa of a two-sided ideal L meeting the bound for a minimal generator.

Fig. 10. The dfa’s for ΣL and LΣ .

Let us now return toMw . If u ∈ L, then (LΣ)w = Σ∗ andMw = Lw \ Σ∗
= ∅. If u ∉ L, thenMw = Lw \ (Lv ∪ LwΣ). Since

L is also a left-ideal, we have Lv ⊆ Lav = Lw . Suppose the quotients of L are L1, . . . , Ln, where Ln = Σ∗. Then for any pair
(i, j), i ≠ j, at most one of Li \ (Lj ∪ LiΣ) and Lj \ (Li ∪ LjΣ) may be nonempty. In particular, for any j ≠ n, since Lj ≠ Σ∗, we
must have ε ∉ Lj; so Ln \ (Lj ∪ LnΣ) = Σ∗

\ (Lj ∪ Σ+) = ε. We also have Lj \ (Ln ∪ LjΣ) = ∅. Therefore, there are at most
3 + (n − 1)(n − 2)/2 distinct quotients ofM: Mε , ε, ∅, and at most one quotient for each pair (i, j), with i ≠ j and i, j ≠ n.

If n = 2 (n = 3), the unary ideal L = a∗aa∗ (L = a∗aaa∗) hasminimal generatorM = a (M = aa), whichmeets the bound
3 (4). It was conjectured byMarcus Holzer and Sebastian Jakobi3 that the language L accepted by the dfa in Fig. 9 might have
the highest complexity; we now prove this conjecture.

Construct the dfa’s for the languages ΣL and LΣ as shown in Fig. 10. The minimal generator of L isM = L \ (ΣL∪ LΣ) =

ΣL ∩ L ∩ LΣ .
Construct the direct product ofΣL, L, and LΣ with initial state (0, 1, 1); this is the only statewith first component 0. From

state (0, 1, 1) we reach state (1, 2, 2) by a. By applying (ab)j−2, we reach (1, j, j) for j = 3, . . . , n − 1. Thus we can reach

3 Personal communication.
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n− 2 states of the form (1, j, j). From (1, 2, 2) we reach (2, 3, 3) by a, and then (2, j, j) by (ba)j−3, for j = 4, . . . , n− 1. Thus
we can reach n − 3 states of the form (2, j, j). Having reached (i, j, j), we reach (i + 1, j + 1, j + 1) by a for i = 2, . . . , n − 3
and j = 3, . . . , n − 2.

So far, we have reached state (0, 1, 1) and (n − 1)(n − 2)/2 states of the form (i, j, j) with i = 1, . . . , n − 2 and
j = i + 1, . . . , n − 1. All these states are non-final, because the second component is less than n, which is the only final
state of the dfa for L. From (n − 2, n − 1, n − 1), we reach (1, n, n), which is final, because state 1 is non-final in the dfa for
L, state n is final in the dfa for ΣL, and non-final in the dfa for LΣ .

From the initial state, we reach (1, 1, 1) by b. From any state of the form (i, i, i), we can only reach another state with all
three components equal or the state (n, n, n + 1). All these states are non-final, and hence empty.

In summary, we have shown that the following 3+ (n−1)(n−2) states are reachable: the initial state (0, 1, 1), the final
state (1, n, n), the (n − 1)(n − 2)/2 states given above, and an empty state.

We now prove that all these states are distinguishable. The initial state (0, 1, 1) is the only state accepting a(ab)n−3c ,
(1, 1, 1) is empty, and (1, n, n) is the only final state. Thus we are left with the remaining (n − 1)(n − 2)/2 states.

For any two different states (i, j, j) and (i′, j′, j′), where 1 ≤ i < j ≤ n − 1 and 1 ≤ i′ < j′ ≤ n − 1, we have two cases:

(1) j ≠ j′: Assume that j < j′ without loss of generality. Then state (i′, j′, j′) accepts w = an−1−j′c , but state (i, j, j) rejects w.
(2) j = j′ and i ≠ i′: Assume that i < i′. Then state (i′, j′, j′) accepts w = an−2−i′c , but state (i, j, j) rejects w.

Thus (i, j, j) and (i′, j′, j′) are distinguishable in both cases.
Therefore the quotient complexity ofMn is (n − 1)(n − 2)/2 + 3. �

The construction of the minimal generator of L can be viewed as an operation on L, as has been done by Pribavkina and
Rodaro [35]. They define the following operators on an arbitrary regular language L ⊆ Σ+ and derive their complexities:

(1) The prefix operator Lp = L \ LΣ+; complexity n + 1.
(2) The suffix operator Ls = L \ Σ+L; complexity (n − 1)2n−2

+ 2.
(3) The infix operator Li = L \ (Σ+LΣ∗

∪ Σ∗LΣ+); complexity (n − 2)2n−2
+ 3.

(4) The hypercode operator Lh = L \


a1a2···an∈L Σ∗a1Σ∗a2 · · · Σ∗anΣ∗; complexity (n − 2)2n−2
+ 3.

Our results show that the complexity is also n + 1 if L is a right ideal. However, the results differ considerably for left
and two-sided ideals, since the complexity of the suffix operation is only n(n − 1)/2 + 2 for left ideals, and that of the infix
is only 3 + (n − 1)(n − 2)/2 for two-sided ideals. We do not know the complexity of the hypercode operator for all-sided
ideals.

4. Basic operations on ideals

Wenowexamine the complexity of commonoperations on ideal languages. For regular languages, the bounds are known,
and they are tight in the binary case; referenceswill be given for each operation later. In this section,we show that the bounds
for ideals are generally lower, and tight for languages over small fixed alphabets, except for reversal of all-sided ideals, which
requires a growing alphabet.

4.1. Boolean operations

For the boolean operations of union [29,42], intersection [36,42], difference [6] and symmetric difference [6], the bound
for regular languages ismn, and it is tight for all four operations for binary alphabets.

We show first that the bounds for right, two-sided, and all-sided ideals are still mn for intersection and symmetric
difference. However, the bound for union is decreased bym+n−2, and that for difference, bym−1. To prove the tightness
of these bounds, the same two languages can be used for all four operations, as is shown in the next theorem.

Theorem 7 (Boolean Operations: Right, 2-Sided, All-Sided Ideals). Let K and L be right ideals (respectively, two-sided ideals, or
all-sided ideals) over an alphabet Σ with κ(K) = m ≥ 1 and κ(L) = n ≥ 1. Then

(1) κ(K ∩ L), κ(K ⊕ L) ≤ mn,
(2) κ(K ∪ L) ≤ mn − (m + n − 2),
(3) κ(K \ L) ≤ mn − (m − 1),

and all the bounds are tight if |Σ | ≥ 2.

Proof. The upper bound mn for intersection and symmetric difference holds since it holds for regular languages. Since K
and L both have Σ∗ as a quotient, κ(K ∪ L) ≤ mn − (m + n − 2) and κ(K \ L) ≤ mn − (m − 1) by Theorem 6(iv) of [6].

For tightness of all four bounds, consider the all-sided ideals K and L accepted by dfa’s in Fig. 11. Construct the
corresponding cross-product automaton with state set {0, . . . ,m − 1} × {0, . . . , n − 1}, with (0, 0) as the initial state.
By a, each state (i, j) goes to (i+1, j), except for states (m−1, j) that go to themselves. By b, each state (i, j) goes to (i, j+1),
except for states (i, n−1) that go to themselves. In this cross-product automaton, each state (i, j) is reached from the initial
state (0, 0) by aibj. The cross-product automaton for the symmetric difference of K and L is shown in Fig. 12 for m = 4 and
n = 5. For the other operations only the final states change.
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Fig. 11. The all-sided ideals meeting the upper bounds for boolean operations.

Fig. 12. Cross-product automaton for symmetric difference;m = 4, n = 5.

In the case of intersection, the sole final state is (m − 1, n − 1). Consider two states in different rows, that is states (i, j)
and (k, l) with i < k. By word bn, they go to distinct states (i, n− 1) and (k, n− 1) in the column n− 1. The latter states are
distinguished by word am−1−k, since it is accepted from (k, n − 1) but rejected from (i, n − 1). Symmetrically, two states in
different columns are distinguished by a word in amb∗.

In the case of symmetric difference, all the states in row m − 1 and column n − 1, except for state (m − 1, n − 1) are
final. Consider two states in different rows, that is states (i, j) and (k, l) with i < k. Then the word bnam−1−k is rejected from
(k, ℓ) and accepted from (i, j). Symmetrically, two states in different columns are distinguished by a word in amb∗.

In the case of union, all the states in row m − 1 and in column n − 1 are final. All of them accept Σ∗. Therefore, these
final states are equivalent. The non-final states are distinguished by a word in a∗

∪ b∗.
In the case of difference, all the states in rowm−1, except for state (m− 1, n− 1) are final. All the states in column n−1

are equivalent to the dead state (m− 1, n− 1). Consider the remaining states. The states in different rows are distinguished
by a word in a∗. States (i, j) and (i, ℓ) with j < ℓ are distinguished by ambn−1−ℓ since it is rejected from (i, ℓ) but accepted
from (i, j). �

Now we turn to left ideals. The next theorem shows that the complexity of all four operations is the same as for regular
languages, and binary alphabets suffice for tightness for intersection and symmetric difference. However, an alphabet of
four letters is needed for union and three, for difference.

Theorem 8 (Boolean Operations: Left Ideals). Let K and L be left ideals over an alphabet Σ with κ(K) = m ≥ 1, κ(L) = n ≥ 1,
Then

(1) κ(K ∩ L), κ(K ⊕ L) ≤ mn, and the bound is tight if |Σ | ≥ 2;
(2) κ(K ∪ L) ≤ mn, and the bound is tight if |Σ | ≥ 4;
(3) κ(K \ L) ≤ mn, and the bound is tight if |Σ | ≥ 3.

Proof. All the upper bounds hold since they hold for regular languages. Let us prove the lower bounds.
1. Since languagesK and L accepted by dfa’s in Fig. 11 are all-sided ideals, the lower bounds for intersection and symmetric

difference follow by Theorem 7.
2. Consider left ideals K and L accepted by the dfa’s in Fig. 13. In the corresponding cross-product automaton for union,

each state (i, j) is reached from the initial state (0, 0) by aibj. Notice that each state (i, j) goes to state (i, 0) by c , and to state
(0, j) by d. All the states in row m − 1 and in column n − 1 are final. Two distinct states in different rows are distinguished
by a word in ca∗, and two distinct states in different columns are distinguished by a word in db∗.
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Fig. 13. The left ideals meeting the boundmn for union.

3. Consider left ideals K and L accepted by dfa’s in Fig. 13, but restricted to letters a, b, c. In the corresponding cross-
product automaton for difference, each state (i, j) is reached from the initial state (0, 0) by aibj. All the states in rowm − 1,
except for state (m− 1, n− 1), are final. Two distinct states in different rows are distinguished by a word in ca∗. Two states
(i, j) and (i, ℓ) with j < ℓ are distinguished by bn−1−ℓam−1−i since state (i, ℓ) goes to non-final state (m − 1, n − 1) by this
word, while state (i, j) goes to a final state in rowm − 1. �

4.2. Product

The bound for product (catenation, concatenation) of regular languages is (m − 1)2n
+ 2n−1, and it is tight in the binary

case [22,29,42]. We show that the bound for right ideals is still exponential in n, and can be met by binary languages. In
contrast to this, the bound for the other three ideals is onlym + n − 1 and it is met by unary languages.

Theorem 9 (Product). Let K and L be ideals of the same type with κ(K) = m ≥ 1 and κ(L) = n ≥ 1. Then

(1) If K and L are left, two-sided, or all-sided ideals, then κ(KL) ≤ m + n − 1;
(2) If K and L are right ideals and n ≥ 2, then κ(KL) ≤ m + 2n−2.

The first bound is tight if |Σ | ≥ 1, and the second, if |Σ | ≥ 2.

Proof. 1. Ifm = 1, then K = Σ∗, and κ(KL) = κ(Σ∗L) = n = m+ n− 1. Hence suppose thatm ≥ 2, K and L are left ideals,
and A and B are the dfa’s for K and L, respectively. Construct a dfa C from dfa’s A and B by omitting all the final states of
A and all the transitions going from the final states, and by redirecting all the transitions that go from a non-final state to a
final state of A to the initial state of B.

Let us show that dfa C accepts KL. If a word w is accepted by C, then it is in KL. Now let w be a word in KL. Then w = uv
for somewords u and v such that dfaA accepts u and dfaB accepts v. Let u′ be the shortest prefix of u such that dfaA is in a
final state after reading u′. Then u = u′u′′ for someword u′′. Since L is a left ideal and v is in L, the word u′′v is in L as well, and
therefore B accepts u′′v. It follows that dfa C accepts u′u′′v since the accepting computation of C on u′u′′v consists of the
computation of A on u′, in which the last transitions is redirected to the initial state of B, and of the accepting computation
of B on u′′v. Hence C accepts KL and has at most m + n − 1 states.

Since every all-sided or two-sided ideal is also a left ideal, the upper bound applies in these cases as well. The bound is
met by unary all-sided ideals am−1a∗ and an−1a∗.

2. If K and L are right ideals, then KL = KΣ∗LΣ∗
= K · Σ∗LΣ∗, where Σ∗LΣ∗ is a left ideal. The quotient complexity of

this left ideal is at most 2n−2
+ 1 by Theorem 4. In the same way as above, we can construct a dfa for K · Σ∗LΣ∗ of at most

m + 2n−2 states.
For tightness, consider the right ideals K and L given by dfa’s in Fig. 14; if m = 1, then K = (a ∪ b)∗ and if n = 2, then

L = b∗a(a∪ b)∗. To get an nfa for KL, add a loop on a in state p0, and redirect transitions on a, b from statem− 2 to state p0.
In the corresponding subset automaton, all the subsets of {p0, p1, . . . , pn−2} containing state p0 are reachable by Lemma1,

and two such distinct subsets are distinguished by a word in a∗b. The singleton sets {0}, {1}, . . . , {m − 2} are reachable as
well, and are distinguished by a word in a∗b. The singleton set {i} with 0 ≤ i ≤ n − 2 and a subset of {p0, p1, . . . , pn−2}

containing state p0 are distinguished by the word an−2b that is rejected from {i} but accepted from any such subset, since
state p0 goes to the accepting state pn−1 by an−2b. All these subsets are non-final states of the subset automaton. The final
state {p0, pn−1} is reached from {p0, pn−2} by b. This givesm + 2n−2 reachable and pairwise distinguishable states. �

4.3. Star

For the star operation, the bound for regular languages [29,42] is 2n−1
+2n−2, and it is met by a binary language. In sharp

contrast to this, the corresponding bound for ideals is only n + 1, and it is also met by a binary language.
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Fig. 14. The right ideals meeting the boundm + 2n−2 for product.

Fig. 15. The all-sided ideal meeting the bound n + 1 for star.

Theorem 10 (Star). Let L be an ideal language with κ(L) = n ≥ 2. Then κ(L∗) ≤ n + 1, and the bound is tight if |Σ | ≥ 2.

Proof. If L is an ideal and i ≥ 1, then Li ⊆ L. It follows that L∗
= {ε} ∪ L. To get a dfa for L∗ from the quotient automaton for

L, we only need to add a new initial and final state going by every letter a to state La corresponding to the quotient of L by a.
Therefore, κ(L∗) ≤ n + 1.

For tightness, consider the binary all-sided ideal accepted by the dfa of Fig. 15. Construct a dfa for L∗ by adding a new
initial and final state going to state 1 by a and to state 0 by b. The resulting (n+ 1)-state dfa is minimal since the new initial
and final state is distinguished from final state n − 1 by b, while two distinct non-final states are distinguished by a word
in a∗. �

4.4. Reversal

To deal with reversal, we start with the quotient dfa of L and reverse it by making all the final states initial, making the
initial state into a final state, and reversing all the transitions.We then use the subset construction to obtain a dfa for LR with
at most 2n states.

By a theorem of Brzozowski [4], if a dfa has no unreachable states then the subset construction applied to its reverse and
restricted to the reachable states always yields a minimal dfa. Therefore, the complexity of the reverse of a regular language
is the same as the number of reachable states in the subset construction for its reverse, and distinguishability need not be
verified.

In the case of regular languages, the bound for reversal [25,30] is 2n, and it is met by a binary language. The bounds for
ideals are still exponential, but with somewhat reduced exponents. The witness is binary for right ideals, ternary for left and
two-sided ideals, and requires a growing alphabet of 2n − 4 letters for all-sided ideals. Since the reverse of any language
recognized by a 1-state dfa is the same language, we assume that n ≥ 2 in the next theorem.

Theorem 11 (Reversal). Let L be a language with κ(L) = n ≥ 2.

(1) If L is a right ideal, then κ(LR) ≤ 2n−1.
(2) If L is a left ideal, then κ(LR) ≤ 2n−1

+ 1.
(3) If L is a two-sided ideal, then κ(LR) ≤ 2n−2

+ 1.
(4) If L is an all-sided ideal, then κ(LR) ≤ 2n−2

+ 1.

The bound is tight for right ideals if |Σ | = 1 for n = 2 and if |Σ | ≥ 2 otherwise, for left and two-sided ideals if |Σ | ≥ 3, and for
all-sided ideals if |Σ | ≥ 2n − 4.

Proof. 1. Since L is a right ideal, it has only one final quotientΣ∗. This quotient becomes the initial state of the nfa for LR. Since
this initial state goes to itself by every letter, it appears in every reachable subset of the corresponding subset automaton.
Hence there are at most 2n−1 reachable states in the corresponding subset automaton.

For tightness, if n = 2, then L = aa∗ meets the bound. For n ≥ 3, consider the binary right ideal accepted by the dfa in
Fig. 16. In the subset automaton corresponding to the reverse of this dfa, every subset of {0, 1, . . . , n − 1} containing state
n − 1 is reachable by Lemma 1. This gives 2n−1 reachable subsets and proves the lower bound.
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Fig. 16. The right ideal meeting the bound 2n−1 for reversal.

Fig. 17. The left ideal meeting the bound 2n−1
+ 1 for reversal. States 1, 2, . . . , n − 1 go to state 1 under c .

Fig. 18. The two-sided ideal meeting the bound 2n−2
+ 1 for reversal.

2. The initial state of the quotient automaton of a left ideal L is the only final state in the nfa for LR. In the corresponding
subset automaton, this state appears in 2n−1 subsets. All these subsets are final states of the subset automaton and all accept
Σ∗, since LR is a right ideal. Hence κ(LR) ≤ 2n−1

+ 1.
Let us prove the tightness of the bound. If n = 2, then the bound is met by the language (a ∪ b)∗a. If n ≥ 5, consider the

ternary left ideal accepted by the dfa shown in Fig. 17, where all the transitions under c from states 1, 2, . . . , n − 1 go to
state 1. Notice that the automaton restricted to states 1, 2, . . . , n−1 and inputs a and b is Šebej’s (n−1)-state automaton [24]
meeting the upper bound for reversal. Therefore, every subset of {1, 2, . . . , n − 1} is reachable in the subset automaton
corresponding to the reverse of the dfa in Fig. 17. Next, state {0, 1, . . . , n − 1} is reached from state {1} by c .

For n = 4, input b maps state 3 to itself in the dfa of Fig. 17 and the remaining transitions are not changed. For n = 3,
input amaps 0 to itself and transposes 1 and 2, and input b is unchanged.

3. Since L is a right ideal, its quotient automaton has exactly one final state, which accepts Σ∗. Therefore the subset
automaton for LR has at most 2n−1 reachable states. Since L is also a left ideal, all final states of the subset automaton for LR
accept Σ∗. Hence κ(LR) ≤ 2n−2

+ 1.
If n = 2, the bound is met by unary two-sided ideal a∗aa∗. For n ≥ 3, consider the ternary two-sided ideal accepted by

the dfa in Fig. 18. By Lemma 1, every subset of {1, 2, . . . , n− 1} containing state n− 1 is reachable in the subset automaton
corresponding to the reverse of the dfa. Moreover, state {0, 1, . . . , n − 1} is reached from state {1, n − 1} by c . This gives
2n−2

+ 1 reachable subsets and proves the lower bound.
4. Since an all-sided ideal is a two-sided ideal, the bound 2n−2

+ 1 applies.
If n = 2, then the bound is 2, and it is met by the unary all-sided ideal a∗aa∗. If n ≥ 3, consider the language L over the

alphabet {a1, . . . , an−2, b1, . . . , bn−2} accepted by the dfa in Fig. 19. Here the initial state 0 goes to state i by ai and to itself
by all bj’s. Every state i goes to state n−1 by bi and by all aj’s, and to itself by every other letter. The sole final state n−1 goes
to itself by every letter. After adding loops on every letter in every state of the dfa, and applying the subset construction and
minimization to the resulting nfa, we get a dfa isomorphic to the original one. It follows that L is an all-sided ideal.

In the subset automaton corresponding to the reverse of the dfa for L, {n−1} is the initial state, every one of the 2n−2
−1

subsets {n − 1, i1, i2, . . . , ik}, where 1 ≤ k ≤ n − 2 and 1 ≤ i1 < i2 < · · · < ik ≤ n − 2, is reached from the initial state
{n − 1} by word bi1bi2 · · · bik . The set {0, 1, . . . , n − 1} is reached from {n − 1} by a1a1. This completes the proof. �

5. Unary languages

Unary languages have special properties because the product of unary languages is commutative. Let Σ = {a}. If L is a
unary right ideal, let ai be its shortestword. Then L ⊇ aia∗, and so L = aia∗, and every unary right ideal is principal (generated
by a single element). In fact, L = aia∗

= a∗ai = a∗aia∗
= a∗ ai; hence left, right, two-sided and all-sided ideals coincide.
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Fig. 19. The dfa of the all-sided ideal meeting the bound 2n−2
+ 1 for reversal.

Proposition 12. Let K and L be unary ideals of any type, with κ(K) = m ≥ 1, κ(L) = n ≥ 1. Let M be the minimal generator
of L. Then

κ(M) = n + 1;

κ(L) = κ(M) − 1;

κ(K ∪ L) = min(m, n);

κ(K ∩ L) = max(m, n);

κ(K \ L) =


n, if m < n,

1, otherwise;

κ(K ⊕ L) =


max(m, n), if m ≠ n,

1, otherwise;

κ(KL) = m + n − 1;

κ(L∗) =


1, if n ∈ {1, 2},

n, otherwise;

κ(LR) = n.

Proof. If L is a unary ideal, then L = an−1a∗ for some n ≥ 1, and its minimal generator is an−1.
We prove the result for L∗. If n = 1 or n = 2, then L∗

= a∗, and so κ(L∗) = 1. If n ≥ 3, then L∗
= ε ∪ an−1a∗, and

κ(L∗) = n. �

6. Conclusions

We have presented a rather complete picture of the state/quotient complexity of operations on regular ideal languages.
Tables 1–3 summarize our results. The complexities for regular languages are from [6,29,42]. The minimal alphabet sizes
required to meet the bounds are shown in parentheses. As can be seen from the tables, binary alphabets cannot be replaced
by unary alphabets. Also, the alphabet of n− 2 letters for the ideal generated by a language cannot be decreased. We do not
know whether the other alphabets can be decreased.
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Table 1
Bounds on quotient complexity of generation and of generators.

f (G) f (M) κ(M)

Unary ideals n n − 1 n + 1

Right n (1) n (2) n + 1 (1)
Left 2n−1 (2) 2n−2 (2) n(n + 1)/2 + 2 (2)
2-sided 2n−2

+ 1 (2) 2n−3
+ 1 (2) 3 + (n − 1)(n − 2)/2 (3)

All-sided 2n−2
+ 1 (n − 2) 2n−3

+ 1 (n − 3) Open

Table 2
Bounds on quotient complexity of boolean operations.

K ∪ L K ∩ L K \ L K ⊕ L

Unary ideals min(m, n) max(m, n) n max(m, n)
Right, 2-, all-sided mn − (m + n − 2) (2) mn (2) mn − (m − 1) (2) mn (2)
Left ideals mn (4) mn (2) mn (3) mn (2)
Regular languages mn (2) mn (2) mn (2) mn (2)

Table 3
Bounds on quotient complexity of product, star and reversal.

KL L∗ LR

Unary ideals m + n − 1 n n
Right m + 2n−2 (2) n + 1 (2) 2n−1 (2)
Left m + n − 1 (1) n + 1 (2) 2n−1

+ 1 (3)
2-sided m + n − 1 (1) n + 1 (2) 2n−2

+ 1 (3)
All-sided m + n − 1 (1) n + 1 (2) 2n−2

+ 1 (2n − 4)
Regular m2n

− 2n−1 (2) 2n−1
+ 2n−2 (2) 2n (2)
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