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Abstract. Most software packages with regular expression matching en-
gines offer operators that extend the classical regular expressions, such as
counting, intersection, complementation, and interleaving. Some of the
most popular engines, for example those of Java and Perl, also provide
operators that are intended to control the nondeterminism inherent in
regular expressions. We formalize this notion in the form of the cut and
iterated cut operators. They do not extend the class of languages that
can be defined beyond the regular, but they allow for exponentially more
succinct representation of some languages. Membership testing remains
polynomial, but emptiness testing becomes PSPACE-hard.

1 Introduction

Regular languages are not only a theoretically well-understood class of formal
languages. They also appear very frequently in real world programming. In par-
ticular, regular expressions are a popular tool for solving text processing prob-
lems. For this, the ordinary semantics of regular expressions, according to which
an expression simply denotes a language, is extended by an informally defined
operational understanding of how a regular expression is “applied” to a string.
The usual default in regular expression matching libraries is to search for the
leftmost matching substring, and pick the longest such substring [2]. This be-
havior is often used to repeatedly match different regular expressions against a
string (or file contents) using program control flow to decide the next expression
to match. Consider the repeatedly matching pseudo-code below, and assume
that match_regex matches the longest prefix possible:

match = match_regex("(a*b)*", s);

if(match != null) then

if(match_regex("ab*c", match.string_remainder) != null) then

return match.string_remainder == "";

return false;

For the string s = abac, this program first matches R1 = (a∗ ·b)∗ to the substring
ab, leaving ac as a remainder, which is matched by R2 = a·(b∗)·c, returning true.
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The set of strings s for which the program returns “true” is in fact a regular
language, but it is not the regular language defined by R1 · R2. Consider for
example the string s = aababcc, which is matched by R1 · R2. However, in an
execution of the program above, R1 will match aabab, leaving the remainder cc,
which is not matched by R2. The expression R1 · R2 exhibits non-deterministic
behavior which is lost in the case of the earliest-longest-match strategy combined
with the explicit if -statement. This raises the question, are programs of this type
(with arbitrarily many if -statements freely nested) always regular, and how can
we describe the languages they recognize?

Related Work. Several extensions of regular expressions that are frequently avail-
able in software packages, such as counting (or numerical occurrence indicators,
not to be confused with counter automata), interleaving, intersection, and com-
plementation, have been investigated from a theoretical point of view. The suc-
cinctness of regular expressions that use one or more of these extra operators
compared to standard regular expressions and finite automata were investigated,
e.g., in [4, 6, 8]. For regular expressions with intersection, the membership prob-
lem was studied in, e.g., [10, 14], while the equivalence and emptiness problems
were analyzed in [3, 15]. Interleaving was treated in [5, 11] and counting in [9, 12].
To our knowledge, there is no previous theoretical treatment of the cut operator
introduced in this paper, or of other versions of possessive quantification.

Paper Outline. In the next section we formalize the control of nondeterminism
outlined above by defining the cut and iterated cut operators, which can be
included directly into regular expressions, yielding so-called cut expressions. In
Section 3, we show that adding the new operators does not change the expres-
sive power of regular expressions, but that it does offer improved succinctness.
Section 4 provides a polynomial time algorithm for the uniform membership
problem of cut expressions, while Section 5 shows that emptiness is PSPACE-
hard. In Section 6, we compare the cut operator to the similar operators found
more or less commonly in software packages in the wild (Perl, Java, PCRE, etc.).
Finally, Section 7 summarizes some open problems.

2 Cut Expressions

We denote the natural numbers (including zero) by N. The set of all strings
over an alphabet Σ is denoted by Σ∗. In particular, Σ∗ contains the empty
string ε. The set Σ∗ \ {ε} is denoted by Σ+. We write pref (u) to denote the
set of nonempty prefixes of a string u and prefε(u) to denote pref (u)∪ {ε}. The
canonical extensions of a function f : A → B to a function from A∗ to B∗ and
to a function from 2A to 2B are denoted by f as well.

As usual, a regular expression over an alphabet Σ (where ε, ∅ /∈ Σ) is either
an element of Σ ∪ {ε, ∅} or an expression of one of the forms (E |E′), (E · E′),
or (E∗). Parentheses can be dropped using the rule that ∗ (Kleene closure1)

1 Recall that the Kleene closure of a language L is the smallest language L∗ such that
{ε} ∪ LL∗ ⊆ L∗.
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takes precedence over · (concatenation), which takes precedence over | (union).
Moreover, outermost parentheses can be dropped, and E · E′ can be written
as EE′. The language L(E) denoted by a regular expression is obtained by
evaluating E as usual, where ∅ stands for the empty language and a ∈ Σ ∪ {ε}
for {a}. We denote by E ≡ E′ the fact that two regular expressions (or, later on,
cut expressions) E and E′ are equivalent, i.e., that L(E) = L(E′). Where the
meaning is clear from context we may omit the L and write E to mean L(E).

Let us briefly recall finite automata. A nondeterministic finite automaton
(NFA) is a tuple A = (Q,Σ, δ, q0, F ) consisting of a finite set Q of states, a
initial state q0 ∈ Q, a set F ⊆ Q of final states, an alphabet Σ, and a transition
function δ : Q×Σ → 2Q. In the usual way, δ extends to a function δ : Σ∗ → 2Q,
i.e., δ(ε) = {q0} and δ(wa) =

⋃
q∈δ(w) δ(q, a). A accepts w ∈ Σ∗ if and only if

δ(w) ∩ F 	= ∅, and it recognizes the language L(A) = {w ∈ Σ∗ | δ(w) ∩ F 	= ∅}.
A deterministic finite automaton (DFA) is the special case where |δ(q, a)| ≤ 1
for all (q, a) ∈ Q×Σ. In this case we consider δ to be a function δ : Q×Σ → Q,
so that its canonical extension to strings becomes a function δ : Q×Σ∗ → Q.

We now introduce cuts, iterated cuts, and cut expressions. Intuitively, E !E′

is the variant of EE′ in which E greedily matches as much of a string as it can
accommodate, leaving the rest to be matched by E′. The so-called iterated cut
E!∗ first lets E match as much of a string as possible, and seeks to iterate this
until the whole string is matched (if possible).

Definition 1 (cut and cut expression). The cut is the binary operation ! on
languages such that, for languages L,L′,

L !L′ = {uv | u ∈ L, v ∈ L′, uv′ /∈ L for all v′ ∈ pref (v)}.

The iterated cut of L, denoted by L!∗, is the smallest language that satisfies

{ε} ∪ (L ! (L!∗)) ⊆ L!∗

(i.e., L ! (L ! · · · (L ! (L ! {ε})) · · · ) ⊆ L!∗ for any number of repetitions of the cut).
Cut expressions are expressions built using the operators allowed in regular

expressions, the cut, and the iterated cut. A cut expression denotes the language
obtained by evaluating that expression in the usual manner.

The precedence rules give !∗ precedence over ·, which in turn gets precedence
over ! which in turn gets precedence over | .

The motivation for the inclusion of the iterated cut is two-fold; (i) it is a
natural extension for completeness in that it relates to the cut like the Kleene
closure relates to concatenation; and, (ii) in the context of a program like that
shown on page 1, the iterated cut permits the modelling of matching regular
expressions in loops.

Let us discuss a few examples.

1. The cut expression ab∗ ! b yields the empty language. This is because every
string in L(ab∗b) is in L(ab∗) as well, meaning that the greedy matching of
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the first subexpression will never leave a b over for the second. Looking at
the definition of the cut, a string in L(ab∗ ! b) would have to be of the form
ub, such that u ∈ L(ab∗) but ub /∈ L(ab∗). Clearly, such a string does not
exist. More generally, if ε /∈ L(E′) then L(E !E′) ⊆ L(EE′)\L(E). However,
as the next example shows, the converse inclusion does not hold.

2. We have (a∗ | b∗) ! (ac | bc) ≡ a+bc | b+ac.2 This illustrates that the semantics
of the cut cannot be expressed by concatenating subsets of the involved
languages. In the example, there are no subsets L1 and L2 of L(a∗ | b∗) and
L(ac | bc), respectively, such that L1 · L2 = L(a∗ | b∗) !L(ac | bc).

3. Clearly, ((ab)∗ ! a) ! b ≡ (ab)∗ab whereas (ab)∗ ! (a ! b) ≡ (ab)∗ ! ab ≡ ∅ (as in
the first example). Thus, the cut is not associative.

4. As an example of an iterated cut, consider ((aa)∗ ! a)∗. We have (aa)∗ ! a ≡
(aa)∗a and therefore ((aa)∗ ! a)∗ ≡ a∗. This illustrates that matching a string
against (E !E′)∗ cannot be done by greedily matching E, then matching E′,
and iterating this procedure. Instead, one has to “chop” the string to be
matched into substrings and match each of those against E !E′. In partic-
ular, (E ! ε)∗ ≡ E∗ (since E ! ε ≡ E). This shows that E!∗ cannot easily be
expressed by means of cut and Kleene closure.

5. Let us finally consider the interaction between the Kleene closure and the
iterated cut. We have L!∗ ⊆ L∗ and thus (L!∗)∗ ⊆ (L∗)∗ = L∗. Conversely,
L ⊆ L!∗ yields L∗ ⊆ (L!∗)∗. Thus (L!∗)∗ = L∗ for all languages L.
Similarly, we also have (L∗)!∗ = L∗. Indeed, if w ∈ L∗, then it belongs to
(L∗)!∗, since the first iteration of the iterated cut can consume all of w.
Conversely, (L∗)!∗ ⊆ (L∗)∗ = L∗. Thus, altogether (L∗)!∗ = L∗ = (L!∗)∗

3 Cut Expressions versus Finite Automata

In this section, we compare cut expressions and finite automata. First, we show
that the languages described by cut expressions are indeed regular. We do this by
showing how to convert cut expressions into equivalent finite automata. Second,
we show that cut expressions are succinct: There are cut expressions containing
only a single cut (and no iterated cut), such that a minimal equivalent NFA or
regular expression is of exponential size.

3.1 Cut Expressions Denote Regular Languages

Let A,A′ be DFAs. To prove that the languages denoted by cut expressions are
regular, it suffices to show how to construct DFAs recognizing L(A) !L(A′) and
L(A)!∗. We note here that an alternative proof would be obtained by showing how
to construct alternating automata (AFAs) recognizing L(A) !L(A′) and L(A)!∗.
Such a construction would be slightly simpler, especially for the iterated cut,
but since the conversion of AFAs to DFAs causes a doubly exponential size
increase [1], we prefer the construction given below, which (almost) saves one

2 As usual, we abbreviate EE∗ by E+.
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level of exponentiality. Moreover, we hope that this construction, though more
complex, is more instructive.

We first handle the comparatively simple case L(A) !L(A′). The idea of the
construction is to combine A with a kind of product automaton of A and A′.
The automaton starts working like A. At the point where A reaches one of its
final states, A′ starts running in parallel with A. However, in contrast to the
ordinary product automaton, the computation of A′ is reset to its initial state
whenever A reaches one of its final states again. Finally, the string is accepted
if and only if A′ is in one of its final states.

To make the construction precise, let A = (Q,Σ, δ, q0, F ) and A′ = (Q′, Σ, δ′,
q′0, F ′). In order to disregard a special case, let us assume that q0 /∈ F . (The case
where q0 ∈ F is easier, because it allows us to use only product states in the
automaton constructed.) We define a DFA A = (Q,Σ, δ, q0, F ) as follows:

– Q = Q ∪ (Q ×Q′) and F = Q× F ′,
– for all q, r ∈ Q, q = (q, q′) ∈ Q, and a ∈ Σ with δ(q, a) = r

δ(q, a) =

{
r if r /∈ F
(r, q′0) otherwise,

and δ(q, a) =

{
(r, δ′(q′, a)) if r /∈ F
(r, q′0) otherwise.

Let w ∈ Σ∗. By construction, δ has the following properties:

1. If u /∈ L(A) for all u ∈ prefε(w), then δ(w) = δ(w).
2. Otherwise, let w = uv, where u is the longest prefix of w such that u ∈ L(A).

Then δ(w) = (δ(w), δ′(v)).

We omit the easy inductive proof of these statements. By the definition of
L(A) !L(A′) and the choice of F , they imply that L(A) = L(A) !L(A′). In other
words, we have the following lemma.

Lemma 2. For all regular languages L and L′, the language L !L′ is regular.

Let us now consider the iterated cut. Intuitively, the construction of a DFA
recognizing L(A)!∗ is based on the same idea as above, except that the product
construction is iterated. The difficulty is that the straightforward execution of
this construction yields an infinite automaton. For the purpose of exposing the
idea, let us disregard this difficulty for the moment. Without loss of generality,
we assume that q0 /∈ F (which we can do because L(A)!∗ = (L(A) \ {ε})!∗) and
that δ(q, a) 	= q0 for all q ∈ Q and a ∈ Σ.

We construct an automaton whose states are strings q1 · · · qk ∈ Q+. The
automaton starts in state q0, initially behaving like A. If it reaches one of the
final states of A, say q1, it continues in state q1q0, working essentially like the
automaton for L(A) !L(A). In particular, it “resets” the second copy each time
the first copy encounters a final state of A. However, should the second copy
reach a final state q2 of A (while q1 /∈ F ), a third copy is spawned, thus resulting
in a state of the form q1q2q0, and so on.

Formally, let δa : Q → Q be given by δa(q) = δ(q, a) for all a ∈ Σ and q ∈ Q.
Recall that functions to extend to sequences, so δa : Q∗ → Q∗ operates element-
wise. We construct the (infinite) automaton Â = (Q̂, Σ, δ̂, q0, F̂ ) as follows:
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– Q̂ = (Q \ {q0})∗Q.

– For all s = q1 · · · qk ∈ Q̂ and a ∈ Σ with δa(s) = q′1 · · · q′k

δ̂(s, a) =

{
q′1 · · · q′k if q′1, . . . , q

′
k /∈ F

q′1 · · · q′lq0 if l = min{i ∈ {1, . . . , k} | q′i ∈ F}. (1)

– F̂ = {q1 · · · qk ∈ Q̂ | qk = q0}.
Note that δ̂(s, a) ∈ Q̂ since we assume that δ(q, a) 	= q0 for all q ∈ Q and a ∈ Σ.

Similar to the properties of A above, we have the following:

Claim 1. Let w = v1 · · · vk ∈ Σ∗, where v1 · · · vk is the unique decomposition of w
such that (a) for all i ∈ {1, . . . , k−1}, vi is the longest prefix of vi · · · vk which is in

L(A) and (b) prefε(vk)∩L(A) = ∅.3 Then δ̂(w) = δ(v1 · · · vk)δ(v2 · · · vk) · · · δ(vk).
In particular, Â accepts w if and only if w ∈ L(A)!∗.

Again, we omit the straightforward inductive proof.
It remains to be shown how to turn the set of states of Â into a finite set. We

do this by verifying that repetitions of states of A can be deleted. To be precise,
let π(s) be defined as follows for all s = q1 · · · qk ∈ Q̂. If k = 1 then π(s) = s. If
k > 1 then

π(s) =

{
π(q1 · · · qk−1) if qk ∈ {q1, . . . , qk−1}
π(q1 · · · qk−1)qk otherwise.

Let π(Â) be the NFA obtained from Â by taking the quotient with respect to

π, i.e., by identifying all states s, s′ ∈ Q̂ such that π(s) = π(s′). The set of final

states of π(Â) is the set π(F̂ ).
This completes the construction. The following lemmas prove its correctness.

Lemma 3. For all s ∈ Q̂ and a ∈ Σ it holds that π(δ̂(s, a)) = π(δ̂(π(s), a)).

Proof. By the very definition of π, for every function f : Q → Q and all s ∈ Q̂
we have π(f(s)) = π(f(π(s))). In particular, this holds for f = δa. Now, let

s = q1 · · · qk be as in the definition of δ̂. Since the same set of symbols occurs
in δa(s) and δa(π(s)), the same case of Equation 1 applies for the construction

of δ̂(s, a) and δ̂(π(s), a). In the first case π(δ̂(s, a)) = π(δa(s)) = π(δa(π(s))) =

π(δ̂(π(s), a)). In the second case

π(δ̂(s, a)) = π(δa(q1 · · · ql)q0)
= π(δa(q1 · · · ql))q0
= π(δa(π(q1 · · · ql)))q0
= π(δa(π(q1 · · · ql))q0)
= π(δ̂(π(s), a)).

Note that the second and the fourth equality make use of the fact that q0 /∈
{q1, . . . , qk−1}, which prevents π from deleting the trailing q0. ��
3 The strings v1, . . . , vk are well defined because ε /∈ L(A).
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Lemma 4. The automaton π(Â) is a DFA such that L(π(Â)) = L(A)!∗. In
particular, L!∗ is regular for all regular languages L.

Proof. To see that π(Â) is a DFA, let a ∈ Σ. By the definition of π(Â), its

transition function δ̂π is given by

δ̂π(t, a) = {π(δ̂(s, a)) | s ∈ Q̂, t = π(s)}

for all t ∈ π(Q̂). However, by Lemma 3, π(δ̂(s, a)) = π(δ̂(t, a)) is independent

of the choice of s. In other words, Â is a DFA. Furthermore, by induction on
the length of w ∈ Σ∗, Lemma 3 yields δ̂π(w) = π(δ̂(w)). Thus, by Claim 1,

L(π(Â)) = L(A)!∗. In particular, for a regular language L, this shows that L!∗

is regular, by picking A such that L(A) = L. ��
We note here that, despite the detour via an infinite automaton, the construction
given above can effectively be implemented. Unfortunately, it results in a DFA
of size O(n!), where n is the number of states of the original DFA.

Theorem 5. For every cut expression E, L(E) is regular.

Proof. Follows from combining Lemmas 2 and 4. ��

3.2 Succinctness of Cut Expressions

In this section we show that for some languages, cut expressions provide an
exponentially more compact representation than regular expressions and NFAs.

Theorem 6. For every k ∈ N+, there exists a cut expression Ek of size O(k)
such that every NFA and every regular expression for L(Ek) is of size 2Ω(k).
Furthermore, Ek does not contain the iterated cut and it contains only one oc-
currence of the cut.

Proof. We use the alphabets Σ = {0, 1} and Γ = Σ ∪ {], [}. For k ∈ N+, let

Ek = (ε | [Σ∗0Σk−11Σ∗] | [Σ∗1Σk−10Σ∗]) ! [Σ2k].

Each string in the language L(Ek) consists of one or two bitstrings enclosed
in square brackets. If there are two, the first has at least two different bits at
a distance of exactly k positions and the second is an arbitrary string in Σ2k.
However, when there is only a single pair of brackets the bitstring enclosed is of
length 2k and its second half will be an exact copy of the first.

We argue that any NFA that recognizes L(Ek) must have at least 2k states.
Assume, towards a contradiction, that there is an NFA A with fewer than 2k

states that recognizes L(Ek).
Since |Σk| = 2k there must exist two distinct bitstrings w1 and w2 of length

k such that the following holds. There exist a state q of A and accepting runs ρ1
and ρ2 of A on [w1w1] and [w2w2], resp., such that ρ1 reaches q after reading [w1
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and ρ2 reaches q after reading [w2. This, in turn, means that there are accepting
runs ρ′1 and ρ′2 of Aq on w1] and w2], respectively, where Aq is the automaton
obtained from A by making q the sole initial state. Combining the first half of
ρ1 with ρ′2 gives an accepting run of A on [w1w2]. This is a contradiction and
we conclude that there is no NFA for Ek with fewer than 2k states.

The above conclusion also implies that every regular expression for L(Ek) has
size 2Ω(k). If there was a smaller regular expression, the Glushkov construction [7]
would also yield a smaller NFA. ��
Remark 7. The only current upper bound is the one implied by Section 3.1, from
which automata of non-elementary size cannot be ruled out as it yields automata
whose sizes are bounded by powers of twos.

A natural restriction on cut expressions is to only allow cuts to occur at the
topmost level of the expression. This gives a tight bound on automata size.

Lemma 8. Let E be a cut expression, without iterated cuts, such that no subex-
pression of the form C∗ or C · C′ contains cuts. Then the minimal equivalent
DFA has 2O(|E|) states, and this bound is tight.

Proof (sketch). Given any DFAs A,A′, using product constructions we get DFAs
for L(A) |L(A′) and L(A) !L(A′) whose number of states is proportional to
the product of the number of states in A and A′. (See Lemma 2 for the case
L(A) !L(A′).) Thus, one can construct an exponential-sized DFA in a bottom-up
manner. Theorem 6 shows that this bound is tight. ��

4 Uniform Membership Testing

We now present an easy membership test for cut expressions that uses a dynamic
programming approach (or, equivalently, memoization). Similarly to the Cocke-
Younger-Kasami algorithm, the idea is to check which substrings of the input
string belong to the languages denoted by the subexpressions of the given cut
expression. The pseudocode of the algorithm is shown in Algorithm 1. Here, the
string u = a1 · · · an to be matched against a cut expression E is a global variable.
For 1 ≤ i ≤ j ≤ n+ 1, Match(E, i, j) will check whether ai · · · aj−1 ∈ L(E). We
assume that an implicit table is used in order to memoize computed values
for a given input triple. Thus, recursive calls with argument triples that have
been encountered before will immediately return the memoized value rather than
executing the body of the algorithm.

Theorem 9. The uniform membership problem for cut expressions can be de-
cided in time O(m · n3), where m is the size of the cut expression and n is the
length of the input string.

Proof. Consider a cut expression E0 of size m and a string u = a1 · · · an. It is
straightforward to show by induction on m+n that Match(E, i, j) = true if and
only if ai · · · aj−1 ∈ L(E), where 1 ≤ i ≤ j ≤ n+ 1 and E is a subexpression of
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Algorithm 1. Match(E, i, j)

if E = ∅ then return false
else if E = ε then return i = j
else if E ∈ Σ then return j = i+ 1 ∧E = ai

else if E = E1 |E2 then return Match(E1, i, j) ∨Match(E2, i, j)
else if E = E1 ·E2 then

for k = 0, . . . , j − i do
if Match(E1, i, i+ k) ∧Match(E2, i+ k, j) then return true

return false
else if E = E∗

1 then
for k = 1, . . . , j − i do

if Match(E1, i, i+ k) ∧Match(E, i+ k, j) then return true
return i = j

else if E = E1 !E2 then
for k = j − i, . . . , 0 do

if Match(E1, i, i+ k) then return Match(E2, i+ k, j)
return false

else if E = E!∗
1 then

for k = j − i, . . . , 1 do
if Match(E1, i, i+ k) then return Match(E, i+ k, j)

return i = j

E0. For E = E1 !E2, this is because of the fact that v ∈ L(E) if and only if v
has a longest prefix v1 ∈ L(E1), and the corresponding suffix v2 of v (i.e., such
that v = v1v2) is in L(E2). Furthermore, it follows from this and the definition
of the iterated cut that, for E = E!∗

1 , v ∈ L(E) if either v = ε or v has a longest
prefix v1 ∈ L(E1) such that the corresponding suffix v2 is in L(E).

Regarding the running time of Match(E, 1, n+ 1), by memoization the body
of Match is executed at most once for every subexpression of E and all i, j,
1 ≤ i ≤ j ≤ n+ 1. This yields O(m · n2) executions of the loop body. Moreover,
a single execution of the loop body involves at most O(n) steps (counting each
recursive call as one step), namely if E = E∗

1 , E = E1 !E2 or E = E!∗. ��

5 Emptiness Testing of Cut Expressions

Theorem 10. Given a cut expression E, it is PSPACE-hard to decide whether
L(E) = ∅. This remains true if E = E1 !E2, where E1 and E2 are regular
expressions.

Proof. We prove the theorem by reduction from regular expression universality,
i.e. deciding for a regular expression R and an alphabet Σ whether L(R) = Σ∗.
This problem is well known to be PSPACE-complete [12].Given R, we construct
a cut expression E such that L(E) = ∅ if and only if L(R) = Σ∗.

We begin by testing if ε ∈ L(R). This can be done in polynomial time. If
ε /∈ L(R), then we set E = ε, satisfying L(E) 	= ∅. Otherwise, we set E = R !Σ.
If R is universal, there is no string ua such that u ∈ L(R) but ua /∈ L(R). Thus
L(E) is empty. If R is not universal, since ε ∈ L(R) there are u ∈ Σ∗ and a ∈ Σ
such that u ∈ L(R) and ua 	∈ L(R), which means that ua ∈ L(E) 	= ∅. ��
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Lemma 11. For cut expressions E the problems whether L(E) = ∅ and L(E) =
Σ∗ are LOGSPACE-equivalent.

Proof. Assume that # /∈ Σ, and let Σ′ = Σ ∪ {#}. The lemma then follows
from these two equivalences: (i) E ≡ ∅ if and only if ((ε |EΣ∗) !Σ+) | ε ≡ Σ∗;
and; (ii) E ≡ Σ∗ if and only if (ε |E#(Σ′)∗) !Σ∗# ≡ ∅. ��

6 Related Concepts in Programming Languages

Modern regular expression matching engines have numerous highly useful fea-
tures, some of which improve succinctness (short-hand operators) and some of
which enable expressions that specify non-regular languages. Of interest here
is that most regular expression engines in practical use feature at least some
operation intended to control nondeterminism in a way that resembles the cut.
They are however only loosely specified in terms of backtracking, the specific
evaluation technique used by many regular expression engines. This, combined
with the highly complex code involved, makes formal analysis difficult.

All these operations appear to trace their ancestry to the first edition of
“Mastering Regular Expressions” [2], which contains the following statement:

“A feature I think would be useful, but that no regex flavor that I know of has, is
what I would call possessive quantifiers. They would act like normal quantifiers
except that once they made a decision that met with local success, they would
never backtrack to try the other option. The text they match could be unmatched
if their enclosing subexpression was unmatched, but they would never give up
matched text of their own volition, even in deference to the overall match.”[2]

The cut operator certainly fits this somewhat imprecise description, but as we
shall see implementations have favored different interpretations. Next we give a
brief overview of three different operations implemented in several major regular
expression engines, that exhibit some control over nondeterminism. All of these
operators are of great practical value and are in use. Still, they feature some
idiosyncrasies that should be investigated, in the interest of bringing proper
regular behavior to as large a set of regular expression functionality as possible.

Possessive Quantifiers. Not long after the proposal for the possessive quantifier,
implementations started showing up. It is available in software such as Java,
PCRE, Perl, etc. For a regular expression R the operation is denoted R∗+, and
behaves like R∗ except it never backtracks. This is already troublesome, since
“backtracking” is poorly defined at best, and, in fact, by itself L(R∗+) = L(R∗),
but L(R∗+ · R′) = L(R∗ !R′) for all R′. That is, extending regular expressions
with possessive quantifiers makes it possible to write expressions such that L(E ·
E′) 	= L(E) · L(E′), an example being given by E = a∗+ and E′ = a. This
violates the compositional spirit of regular expressions.

Next, consider Table 1. The expression on the first row, call it R, is tested in
each of the given implementations, and the language recognized is shown. The
results on the first row are easy to accept from every perspective. The second
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Table 1. Some examples of possessive quantifier use

Expression Perl 5.16.2 Java 1.6.0u18 PCRE 8.32

(aa)∗+a {a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .}
((aa)∗+a)∗ {ε, a, aaa, aaaaa, . . .} {ε, a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .}
((aa)∗+a)∗a {a} {a} {a}

Table 2. Comparison between Perl and PCRE when using the (*PRUNE) operator

Expression Perl 5.10.1 Perl 5.16.2 PCRE 8.32

(aa)∗(*PRUNE)a {a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .} {a, aaa, aaaaa, . . .}
((aa)∗(*PRUNE)a)∗ {ε, a, aa, aaa, . . .} ∅ ∅

a∗(*PRUNE)a {a, aa, aaa, . . .} ∅ ∅

row however has the expression R∗, and despite a ∈ L(R) no implementation
gives aa ∈ L(R∗), which violates the classical compositional meaning of the
Kleene closure (in addition, in PCRE we have ε /∈ L(R∗)). The third row further
illustrates how the compositional view of regular expressions breaks down when
using possessive quantifiers.

Independent Groups or Atomic Subgroups. A practical shortcoming of the pos-
sessive quantifiers is that the “cut”-like operation cannot be separated from the
quantifier. For this reason most modern regular expression engines have also in-
troduced atomic subgroups (“independent groups” in Java). An atomic subgroup
containing the expression R is denoted (?R), and described as “preventing back-
tracking”. Any subexpression (?R∗) is equivalent to R∗+, but subexpressions of
the form (?R) where the topmost operation in R is not a Kleene closure may be
hard to translate into an equivalent expression using possessive quantifiers.

Due to the direct translation, atomic subgroups suffer from all the same id-
iosyncrasies as possessive quantifiers, such as L(((? (aa)∗)a)∗a) = {a}.

Commit Operators and (*PRUNE). In Perl 6 several interesting “commit oper-
ators” relating to nondeterminism control were introduced. As Perl 5 remains
popular they were back-ported to Perl 5 in version 5.10.0 with different syntax.
The one closest to the pure cut is (*PRUNE), called a “zero-width pattern”, an
expression that matches ε (and therefore always succeeds) but has some engine
side-effect. As with the previous operators the documentation depends on the
internals of the implementation. “[(*PRUNE)] prunes the backtracking tree at
the current point when backtracked into on failure”[13].

These operations are available both in Perl and PCRE, but interestingly their
semantics in Perl 5.10 and Perl 5.16 differ in subtle ways; see Table 2. Looking at
the first two rows we see that Perl 5.10 matches our compositional understanding
of the Kleene closure (i.e., row two has the same behavior as ((aa)∗!a)∗). On the
other hand Perl 5.10 appears to give the wrong answer in the third row example.
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7 Discussion

We have introduced cut operators and demonstrated several of their properties.
Many open questions and details remain to be worked out however:

– There is a great distance between the upper and lower bounds on minimal
automata size presented in Section 3.2, with an exponential lower bound for
both DFA and NFA, and a non-elementary upper bound in general.

– The complexity of uniform membership testing can probably be improved
as the approach followed by Algorithm 1 is very general. (It can do comple-
mentation, for example.)

– The precise semantics of the operators discussed in Section 6 should be
studied further, to ensure that all interesting properties can be captured.

Acknowledgments. We thank Yves Orton who provided valuable information
about the implementation and semantics of (*PRUNE) in Perl.
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