
Descriptional Complexity of Operations on

Alternating and Boolean Automata�

Galina Jirásková

Mathematical Institute, Slovak Academy of Sciences
Grešákova 6, 040 01 Košice, Slovakia

jiraskov@saske.sk

Abstract. The paper shows that the tight bound for the conversion of
alternating finite automata into nondeterministic finite automata with a
single initial state is 2n+1. This solves an open problem stated by Fellah
et al. (Intern. J. Computer Math. 35, 1990, 117–132). Then we examine
the complexity of basic operations on languages represented by boolean
and alternating finite automata. We get tight bounds for intersection and
union, and for concatenation and reversal of languages represented by
boolean automata. In the case of star, and of concatenation and reversal
of AFA languages, our upper and lower bounds differ by one.

1 Introduction

Boolean and alternating finite automata [1,2,8,9] are generalizations of nonde-
terministic finite automata. They recognize regular languages, however, they
may be exponentially smaller, in terms of the number of states, than equivalent
nondeterministic automata.

Fellah et al. [3] studied alternating finite automata (AFAs), that is, boolean
automata, in which the initial boolean function is given by a projection. They
proved that every AFA of n states can be simulated by a nondeterministic finite
automaton with a single initial state of at most 2n+1 states, and left as an open
problem the tightness of this upper bound. Our first result provides an answer to
this problem by describing an n-state binary AFA whose equivalent NFAs with
a single initial state have at least 2n + 1 states.

Then we examine the complexity of basic regular operations on languages
represented by boolean and alternating automata. In the case of union and
intersection, we get the tight bounds m+ n and m+ n+ 1 on the boolean and
alternating state complexity, respectively. Next we show that the boolean state
complexity of concatenation is 2m+n, and of reversal 2n. As for the alternating
state complexity of concatenation and reversal, our upper and lower bounds
differ by one. The same is true for star in both boolean and alternating case.

To get the results, we use known results on the state complexity of operations
on regular languages [4,5,6,7,11,14], as well as the fact that if the reversal of a
language is accepted by the minimal deterministic automaton of n states, than
every boolean automaton for this language has at least logn states.

� Research supported by VEGA grant 2/0183/11.

E. Hirsch et al. (Eds.): CSR 2012, LNCS 7353, pp. 196–204, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Complexity of Operations on Alternating and Boolean Automata 197

2 Preliminaries

This section gives basic definitions and notations. For all unexplained notions,
the reader may refer to [10,12,13].

If Σ is a non-empty finite alphabet, then Σ∗ is the set of all strings over Σ,
including the empty string ε. A language over alphabet Σ is any subset of Σ∗.

A boolean finite automaton (BFA) is a quintuple A = (Q,Σ, δ, gs, F), where Q
is a finite non-empty set of states, Q = {q1, . . . , qn}, Σ is an input alphabet, δ is
the transition function that maps Q×Σ into the set Bn of boolean functions of n
boolean variables q1, . . . , qn, gs ∈ Bn is the initial boolean function, and F ⊆ Q
is the set of final states. For example, let A1 = ({q1, q2}, {a, b}, δ, q1 ∧ q2, {q2}),
where transition function δ is given in Table 1.

Table 1. The transition function of boolean automaton A1

δ a b

q1 q1 ∨ q2 1

q2 q2 q1 ∧ q2

The transition function δ is extended to the domain Bn ×Σ∗ as follows: For
all g in Bn, a in Σ, and w in Σ∗,

δ(g, ε) = g;

if g = g(q1, . . . , qn), then δ(g, a) = g(δ(q1, a), . . . , δ(qn, a));

δ(g, wa) = δ(δ(g, w), a).

Next, let f = (f1, . . . , fn) be the boolean vector with fi = 1 iff qi ∈ F .
The language accepted by BFA A is the set L(A) = {w ∈ Σ∗ | δ(gs, w)(f) = 1}.
In our example we have

δ(gs, ab) = δ(q1 ∧ q2, ab) = δ(δ(q1 ∧ q2, a), b) = δ((q1 ∨ q2) ∧ q2, b) =

(1 ∨ (q1 ∧ q2)) ∧ (q1 ∧ q2) = q1 ∧ q2.

To determine whether ab ∈ L(A1), we evaluate δ(gs, ab) at vector f = (0, 1).
We obtain 0, hence ab /∈ L(A1). On the other hand, we have abb ∈ L(A1) since
δ(gs, abb) = δ(q1 ∧ q2, b) = 1 ∧ (q1 ∨ q2) = q1 ∨ q2, which gives 1 at (0, 1).

A boolean finite automaton A is alternating (AFA) if the initial function is
given by a projection g(q1, . . . , qn) = qi. It is nondeterministic with multiple
initial states (NNFA) if gs and δ(qk, a) are of the form

∨
i∈I qi. If, moreover,

gs = qi, then automaton A is nondeterministic with a single initial state (NFA).
If, moreover, δ(qk, a) are of the form qi, automaton A is deterministic (DFA).

The reverse AR of NNFA A is obtained from A by swapping the role of
the initial and final states, and by reversing all the transitions. The reverse of
NNFA A accepts language L(A)R = {wR | w ∈ L}; where wR is the mirror
image of string w defined by εR = ε and (wa)R = awR.

198 G. Jirásková

3 Optimal Simulation of AFAs by NFAs

This section provides an answer to an open question stated by Fellah et al. [3]
whether or not the upper bound 2n + 1 on AFA-to-NFA coversion is tight. We
start with conversion of boolean automata to NNFAs. Then we show that every
NNFA of 2n states whose reverse is deterministic may be represented by an n-
state boolean automaton. This allow us to describe boolean automata by NNFAs
in our worst-case example.

Lemma 1. If a language L is accepted by an n-state boolean automaton, then
L is accepted by an NNFA of at most 2n states.

Proof. Let A = (Q,Σ, δ, gs, F) be a boolean automaton with Q = {q1, . . . , qn}.
Like in [3], construct the NNFA A′ = ({0, 1}n, Σ, δ′, S, {f}), where for every
u = (u1, . . . , un) in {0, 1}n and every a in Σ,

δ′(u, a) = {u′ ∈ {0, 1}n | δ(qi, a)(u′) = ui for i = 1, . . . , n},
S = {b ∈ {0, 1}n | gs(b) = 1},
f = (f1, . . . , fn) ∈ {0, 1}n with fi = 1 iff qi ∈ F.

The proof of L(A′) = L(A) is almost the same as in [3, Theorem 4.1]. ��
Lemma 2. Let A = (Q,Σ, δ, S, F) be an NNFA such that |Q| = 2n. Let the
reverse of A be deterministic (and complete). Then there exists an n-state boolean
automaton A′ such that L(A) = L(A′). Moreover, if A has 2n−1 initial states,
then A′ may be taken to be alternating.

Proof. Assume Q = {0, 1, . . . , 2n − 1}. Since AR is deterministic, NNFA A has
exactly one final state, and assume F = {k}. Moreover, for every symbol a in Σ
and every state i in Q, there is exactly one state j in Q such that j goes to i by
a in NNFA A.

For a state i in Q, let bin(i) = (b1, . . . , bn) be the binary n-tuple such that
b1b2 · · · bn is the binary notation of i on n digit with leading zeros if necessary.

Define an n-state boolean automaton A′ = (Q′, Σ, δ′, gs, F ′), where Q′ =
{q1, . . . , qn}, F ′ = {q� | bin(k)� = 1}, and for each i in Q and a in Σ,

(δ′(q1, a), . . . , δ′(qn, a))(bin(i)) = bin(j) where i ∈ δ(j, a), and

gs(bin(i)) = 1 iff i ∈ S.

Then L(A′) = L(A). If A has 2n−1 initial states, assume S = {2n−1, . . . , 2n−1}.
Now to get an AFA, let gs = q1, that is gs(b1, . . . , bn) = 1 iff b1 = 1. ��
The next lemma shows that there exists an NNFA of 2n states and 2n−1 ini-
tial states whose reverse is deterministic, and such that every equivalent NFA
requires at least 2n + 1 states.

Lemma 3. Let L be the language accepted by 2n-state NNFA of Fig. 1. Then
every NFA for L has at least 2n + 1 states.

Complexity of Operations on Alternating and Boolean Automata 199

a,b a,b a,b a,b

a

aaaa

a

b

...

...

b b b b

m/2−1

m/2 m/2+1

m/2−2 1 0

m−2 m−1

Fig. 1. The NNFA for Lemma 3; m = 2n

Proof. Let m = 2n and L be the language accepted by the NNFA of Fig. 1.
Let N be an NFA (that is, an NNFA with a single initial state) for L. Consider
the set of m pairs of strings

A = {(ai, am−i) | i = 1, 2, . . . ,m− 1} ∪ {(am−1b, ε)}.
For every pair in A, the concatenation of the first part of the pair and its second
part results in string am or am−1b, both of which are in L. On the other hand,
for two distinct pairs in A, the concatenation of the first part of one of the two
pairs and the second part of the other pair results in a string in

{ak | m/2 ≤ k ≤ m−1 or 3m/2 ≤ k ≤ 2m−1}∪{am−1ba� | m/2+1 ≤ � ≤ m−1}.
No such string is in L. It follows that A is a fooling set for L.

Now fix accepting computations of N on strings aiam−i (1 ≤ i ≤ m− 1) and
am−1b, and let pi (1 ≤ i ≤ m− 1) and pm be the states on these computations
that are reached after reading ai resp. am−1b. Since A is a fooling set for L,
states p1, . . . , pm must be pairwise distinct. Now let p0 be (the sole) initial state
of N . Consider the strings am/2−1, a, bam/2−1 that are in L, so are accepted from
state p0. Then

p0 /∈ {pn} ∪ {p1, . . . , pm/2−1}
since otherwise one of strings am−1b ·am/2−1 or ai ·am/2−1 with 1 ≤ i ≤ m/2−1
would be accepted by N . However, none of these strings is in L. Next,

p0 /∈ {pm/2, . . . , pm−2}
since otherwise one of strings aj · a with m/2 ≤ j ≤ m − 2 would be accepted
by N . None of them is in L. Finally, p0
= pm−1 since otherwise the string
am−1 · bam/2−1, that is not in L, would be accepted by N . Therefore, NFA N
must have at least m+ 1 states, and the lemma follows. ��
The next result gives the optimal simulation of boolean automata by NFAs. The
worst-case language is accepted by an AFA over a two-letter alphabet.

200 G. Jirásková

Theorem 1. Let L be a language accepted by an n-state boolean automaton.
Then 2n + 1 states are sufficient and necessary in the worst case for nondeter-
ministic finite automata with a single initial state to accept language L. The
upper bound is met by an n-state alternating automaton over a binary alphabet.

Proof. By Lemma 1, language L is accepted by an 2n-state NNFA. By adding
a new initial state going by the empty string to the initial states of the NNFA,
we get an NFA of 2n + 1 states for L.

For tightness, consider the language L accepted by the 2n-state NNFA of
Fig. 1. The NNFA has 2n−1 initial states, and its reverse is deterministic. By
Lemma 2, language L is accepted by an n-state AFA. By Lemma 3, every NFA
for L has at least 2n + 1 states. This proves the theorem. ��

4 Boolean and Alternating State Complexity
of Basic Regular Operations

This section examines complexity of basic regular operations on languages rep-
resented by boolean and alternating automata.

Recall that the state complexity of a regular language L, sc(L), is the small-
est number of states in any DFA accepting L. Similarly define nondeterminis-
tic, alternating, and boolean state complexity of a regular language L, in short
nsc(L), asc(L), and bsc(L), respectively, as the smallest number of states in any
NFA, AFA, and BFA for L, respectively. The following results are well known.

Lemma 4 ([1,9,3]). If L is accepted by a boolean automaton of n-states, then
LR is accepted by a DFA of 2n states. If L is accepted by an AFA of n-states,
then LR accepted by DFA of 2n states of which 2n−1 are final. If sc(LR) = 2n

then bsc(L) ≥ n. If sc(LR) = 2n and minimal dfa for LR has more than 2n−1

or less than 2n−1 final states, then asc(L) ≥ n+ 1.

We start with union and intersection, and show that the boolean state complexity
of both operations is m+n, while their alternating state complexity is m+n+1.

Theorem 2 (Union and Intersection on BFAs). Let K and L be languages
over an alphabet Σ with bsc(K) = m and bsc(L) = n. Then
1) bsc(K ∪ L) ≤ m+ n,
2) bsc(K ∩ L) ≤ m+ n,

and both bounds are tight if |Σ| ≥ 2.

Proof. Let languages K and L be accepted by BFAs (QA, Σ, δA, gA, FA) and
(QB, Σ, δB, gB, FB), respectively. Let |QA| = m, |QB| = n, and QA ∩QB = ∅.
Then the languages K ∪ L and K ∩ L are accepted by boolean automata
(QA ∪ QB, Σ, δ, gA∨ gB , FA ∪FB) and (QA ∪QB, Σ, δ, gA∧ gB , FA ∪FB), resp.,
where δ(p, a) = δA(p, a) if p ∈ QA and δ(p, a) = δB(p, a) if p ∈ QB.

Complexity of Operations on Alternating and Boolean Automata 201

For tightness, consider languages

KR = {w ∈ {a, b}∗ | |w|a ≡ 0 mod 2m}, and

LR = {w ∈ {a, b}∗ | |w|b ≡ 0 mod 2n}.
Both languages are accepted by DFAs of 2m and 2n states, respectively. There-
fore, languages K and L are accepted by boolean automata of m and n states,
respectively. Next we have (K ∪L)R = KR ∪LR, and it is known [5,11,14] that
the minimal DFA for KR ∪ LR has 2m+n states. It follows that every boolean
automaton for K ∪ L has at least m + n states. The same argument holds for
intersection. ��
Theorem 3 (Union and Intersection on AFAs). Let K and L be languages
over an alphabet Σ with asc(K) = m and asc(L) = n. Then
1) asc(K ∪ L) ≤ m+ n+ 1,
2) asc(K ∩ L) ≤ m+ n+ 1,

and both bounds are tight if |Σ| ≥ 2.

Proof. The upper bounds are from [3]. For tightness, consider languages (K ′)R

and (L′)R accepted by DFAs obtained from the DFAs for KR and LR in the
previous lemma by making states 2m−1, . . . , 2m−1 in the DFA for K, and states
2n−1, . . . , 2n − 1 in the DFA for L final. Since both DFAs have half of states
final, languages K ′ and L′ are accepted by alternating finite automata of m
and n states, respectively. To accept language (K ′ ∪ L′)R, we still need 2m+n

deterministic states, but this time, the number of final states in the minimal
DFA for (K ′ ∪ L′)R is more than 2m+n−1. It follows that the minimal AFA
for (K ′ ∪ L′) has at least m + n + 1 states. In the case of intersection, the
minimal 2m+n-state DFA for (K ′ ∩ L′)R has less then 2m+n−1 final states, so
asc(K ′ ∩ L′) ≥ m+ n+ 1. ��

Now we consider concatenation. First we show that its boolean state com-
plexity is 2m + n. In the case of alternating state complexity, we get an upper
bound 2m + n+ 1, and a lower bound 2m + n.

Theorem 4 (Concatenation on BFAs). Let K and L be languages over an
alphabet Σ with bsc(K) = m and bsc(L) = n. Then bsc(KL) ≤ 2m + n, and the
bound is tight if |Σ| ≥ 2.

Proof. To prove the upper bound, first transform the BFA for K into an NNFA
with 2m states which accepts language K. Then, using idea in [3, Theorem 9.2],
we get a boolean automaton of 2m + n states for language KL.

We now prove tightness. It is well known that the tight bound on the state
complexity of concatenation is (m−1)2n+2n−1 and the bound is met by binary
DFA languages [11,14]. Now let LR andKR be the Maslov’s [11] binary witnesses
for concatenation with 2n and 2m states, respectively. Then bsc(K) ≤ m and
bsc(L) ≤ n. Moreover, sc(KL)R = sc(LRKR) = (2n − 1) · 22m + 22

m−1 ≥
2n−1 · 22m + 2n−1 · 22m−1 ≥ 2n−122

m

(1 + 1/2). It follows that bsc(KL) ≥
�log(2n−122

m

(1 + 1/2))� = 2m + n, and the theorem is proved. ��

202 G. Jirásková

Theorem 5 (Concatenation on AFAs). Let K and L be languages over an
alphabet Σ with asc(K) = m and asc(L) = n. Then asc(KL) ≤ 2m + n+1. The
bound 2m + n is met if |Σ| ≥ 2.

Proof. The upper bound is from [3]. For tightness, we need LR and KR with
half of states final. In such a case, the upper bound for concatenation is m/2 ·
2n +m/2 · 2n−1 [14] and is met by binary languages [4]. Now let LR and KR be
the binary witnesses from [4] with 2n and 2m states, respectively, half of which
are final in both DFAs. Then asc(K) ≤ m and asc(L) ≤ n. The minimal DFA
for (KL)R = LRKR has 2n−1 · 22m + 2n−1 · 22m−1, so asc(KL) ≥ 2m + n. This
completes the proof. ��
The next two results show that the boolean state complexity of reversal is 2n,
while its alternating state complexity is at least 2n and at most 2n + 1.

Theorem 6 (Reversal on BFAs). Let L be a language over an alphabet Σ
with bsc(L) = n. Then bsc(LR) ≤ 2n, and the bound is tight if |Σ| ≥ 2.

Proof. If L is accepted by an n-state boolean automaton, then LR is accepted
by an 2n-state NNFA. Thus bsc(LR) ≤ 2n. The upper bound on the state com-
plexity of reversal of regular languages is 2n, and it is known to be tight in the
binary case [7,9]. Let LR be the binary witness from [7, Theorem 5] with 2n

states. Then bsc(L) ≤ n, and sc((LR)R) = 22
n

. Therefore, bsc(LR) ≥ 2n, and
our proof is complete. ��
Theorem 7 (Reversal on AFAs). Let L be a language over an alphabet Σ
with asc(L) = n. Then asc(LR) ≤ 2n + 1. The bound 2n is met if |Σ| ≥ 2.

Proof. If L is accepted by an n-state AFA, then LR is accepted by an (2n + 1)-
state NFA. Thus asc(LR) ≤ 2n + 1. For the lower bound, we need a witness for
reversal with half of states final. Such an example is given in [9, Proposition 2]
with 2n states. This proves lower bound and completes the proof. ��
The last operation under consideration is star operation The following two the-
orems show that both boolean and alternating complexity of star are at least 2n

and at most 2n + 1.

Theorem 8 (Star on BFAs). Let L be a language over an alphabet Σ with
bsc(L) = n. Then bsc(L∗) ≤ 2n + 1. The bound 2n is met if |Σ| ≥ 2.

Proof. If L is accepted by an n-state boolean automaton, then L∗ is accepted
by an (2n+1)-state NFA. Thus bsc(L∗) ≤ 2n+1. The upper bound on the state
complexity of star of regular languages is 2n−1 +2n−2, and is known to be tight
in the binary case [14]. Let LR be the binary witness from [14] with 2n states.
Then bsc(L) ≤ n, and

sc((L∗)R) = sc((LR)∗) = 22
n−1 + 22

n−2 = 22
n−1(1 + 2−1).

Hence bsc(L∗) ≥ 2n, and the theorem follows. ��

Complexity of Operations on Alternating and Boolean Automata 203

Theorem 9 (Star on AFAs). Let L be a language over an alphabet Σ with
asc(L) = n. Then asc(L∗) ≤ 2n + 1. The bound 2n is met if |Σ| ≥ 2.

Proof. The upper bound follows like in the previous theorem. For the lower
bound, we need LR with half of states final. In such a case, the upper bound
for star is 2n−1 + 2n−1−�, where � is the number of final states different from
the initial state. Such a bound is met for every � (1 ≤ � ≤ n − 1) in the binary
case [6]. Let LR be the binary witness from [6, Theorem 5] with 2n states and
� = 2n−1 final states distinct from the initial state. Then asc(L) ≤ n, and

sc((L∗)R) = sc((LR)∗) = 22
n−1 + 22

n−1−n/2 = 22
n−1(1 + 2−n/2).

Thus asc(L∗) ≥ 2n, which proves the theorem. ��

5 Conclusions

We proved the tight bound on the number of states of nondeterministic finite
automaton with a single initial state that are sufficient and necessary in the
worst case to simulate a boolean or alternating finite automaton of n states is
2n + 1. This solves an open problem from [3].

Then we examined the boolean and alternating state complexity of basic
regular operations. Our results are summarised in the following table. All the
worst-case examples are defined over a binary alphabet. The tightness of the
upper bounds for star of BFAs and AFAs, as well as for concatenation and
reversal of AFAs, remains open.

Table 2. Boolean and alternating state complexity of basic regular operations

union intersection concatenation reversal star

BFAs m+ n m+ n 2m + n 2n ≥ 2n

≤ 2n + 1

AFAs m+ n+ 1 m+ n+ 1 ≥ 2m + n ≥ 2n ≥ 2n

≤ 2m + n+ 1 ≤ 2n + 1 ≤ 2n + 1

Acknowledgement. I would like to thank Markus Holzer and Martin Kutrib
for reading a preliminary version of the proof of Theorem 1, and for interesting
discussions on the topic.

References

1. Brzozowski, J., Leiss, E.: On equations for regular languages, finite automata, and
sequential networks. Theoret. Comput. Sci. 10, 19–35 (1980)

2. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. JACM 28, 114–133
(1981)

204 G. Jirásková

3. Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata.
Intern. J. Computer Math. 35, 117–132 (1990)

4. Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and com-
plementation. Internat. J. Found. Comput. Sci. 16, 511–529 (2005)

5. Jirásková, G., Masopust, T.: Complexity in Union-Free Regular Languages. In:
Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 255–266.
Springer, Heidelberg (2010)

6. Jirásková, G., Masopust, T.: State Complexity of Projected Languages. In: Holzer,
M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 198–211.
Springer, Heidelberg (2011)

7. Jirásková, G., Šebej, J.: Note on Reversal of Binary Regular Languages. In: Holzer,
M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 212–221.
Springer, Heidelberg (2011)

8. Kozen, D.: On parallelism in turing machines. In: Proc. 17th FOCS, pp. 89–97
(1976)

9. Leiss, E.: Succinct representation of regular languages by boolean automata. The-
oret. Comput. Sci. 13, 323–330 (1981)

10. Leiss, E.: On generalized language equations. Theoret. Comput. Sci. 14, 63–77
(1981)

11. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Doklady 11, 1373–1375 (1970)

12. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company,
Boston (1997)

13. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, ch. 2, vol. I, pp. 41–110. Springer, Heidelberg (1997)

14. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

	Descriptional Complexity of Operations on
Alternating and Boolean Automata
	Introduction
	Preliminaries
	Optimal Simulation of AFAs by NFAs
	Boolean and Alternating State Complexity of Basic Regular Operations
	Conclusions
	References

