
DOI: 10.1142/S0129054111008933

November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

International Journal of Foundations of Computer Science
Vol. 22, No. 7 (2011) 1639–1653
c© World Scientific Publishing Company

COMPLEXITY IN UNION-FREE REGULAR LANGUAGES∗

GALINA JIRÁSKOVÁ†

Mathematical Institute, Slovak Academy of Sciences

Grešákova 6, 040 01 Košice, Slovakia

jiraskov@saske.sk

TOMÁŠ MASOPUST‡

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Mathematical Institute, Czech Academy of Sciences

Žǐzkova 22, 616 62 Brno, Czech Republic

masopust@math.cas.cz

Received 30 November 2010
Accepted 28 February 2011
Communicated by Sheng Yu

We continue the investigation of union-free regular languages that are described by
regular expressions without the union operation. We also define deterministic union-free
languages as languages accepted by one-cycle-free-path deterministic finite automata,
and show that they are properly included in the class of union-free languages. We prove
that (deterministic) union-freeness of languages does not accelerate regular operations,
except for the reversal in the nondeterministic case.

Keywords: Union-free regular language; finite automaton; one-cycle-free-path automa-
ton; descriptional complexity; closure properties.

1. Introduction

The class of regular languages is the simplest class of languages in the Chomsky hi-

erarchy. Regular languages have been intensively investigated due to their practical

applications in various areas of computer science, and for their importance in the

theory as well. In recent years, several special subclasses have been deeply examined,

such as finite languages described by expressions without the star operation [22],

suffix- and prefix-free languages used in codes [11], star-free and locally testable

∗This paper has been presented at the 14th Conference on Developments in Language Theory
(DLT 2010) held in London, Ontario, Canada on August 17-20, 2010.
†Research supported by VEGA grant 2/0183/11, and by the Slovak Research and Development
Agency under contract APVV-0035-10 “Algorithms, Automata, and Discrete Data Structures.”
‡Research supported by the CAS, Institutional Research Plan no. AV0Z10190503.

1639

http://dx.doi.org/10.1142/S0129054111008933
mailto:jiraskov@saske.sk
mailto:masopust@math.cas.cz


November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

1640 G. Jirásková & T. Masopust

languages, ideal, closed, and convex languages, etc. For a survey of descriptional

and computational complexity of finite automata, we refer the reader to [12].

In this paper, we continue this research and study union-free regular languages

that are represented by regular expressions without the union operation. Nagy

in [26] introduced one-cycle-free-path nondeterministic finite automata, in which

from each state, there is exactly one cycle-free path to the final state. He proved that

these automata characterize the class of union-free languages. First, we complement

his closure-property results. Then, in Section 3, we investigate the nondeterministic

state complexity of operations in the class of union-free languages. Surprisingly, we

show that all the known upper bounds for regular languages are met by union-free

languages, except for reversal, where the bound is n instead of n+ 1. In Section 4,

we define deterministic union-free languages as languages accepted by deterministic

one-cycle-free-path automata, and show that they are properly included in the class

of union-free languages. We study the state complexity of a number of operations,

and prove that deterministic union-freeness does not accelerate any of them.

To conclude this section, we mention several related works. Brzozowski [5] exam-

ined union-free regular expressions under the name star-dot expressions. Crvenković,

Dolinka, Ésik [7] investigated algebraic properties of union-free languages. Afonin

and Golomazov [1] studied union-free decompositions of regular languages, and

Nagy [27] union-complexity of regular languages.

2. Preliminaries

We assume that the reader is familiar with basic concepts of finite automata and

regular languages. For unexplained notions, we refer to [30, 31]. If Σ is an alphabet,

that is, a finite non-empty set, then Σ∗ denotes the set of all strings over the

alphabet Σ including the empty string ε. A language over Σ is any subset of Σ∗.

We denote the size of a finite set A by |A| and its powerset by 2A.

A nondeterministic finite automaton (nfa) is a quintuple M = (Q,Σ, δ, S, F ),

where Q is a finite non-empty set of states, Σ is an input alphabet, S is the set

of initial states, F is the set of accepting states, and δ is the transition function

that maps Q× (Σ∪{ε}) into 2Q. The transition function is extended to the domain

2Q×Σ∗ in a natural way. The nfa M accepts a string w in Σ∗ if δ(S,w)∩F 6= ∅. The

language accepted by M is the set of all strings accepted by M . The automaton M

is deterministic (dfa) if it has a single initial state, no ε-transitions, and |δ(q, a)| = 1

for all states q in Q and symbols a in Σ. In this case, we usually write δ : Q×Σ → Q.

A language is regular if there exists an nfa (or a dfa) accepting the language. The

state complexity of a regular language L, sc(L), is the minimal number of states in

any dfa accepting L. The nondeterministic state complexity of a regular language L,

nsc(L), is the minimal number of states in any ε-free nfa with a single initial state

accepting language L.

A path from state p to state q in an nfa/dfa M is a sequence p0a1p1a2 · · · anpn,

where p0 = p, pn = q, and pi ∈ δ(pi−1, ai) for i = 1, 2, . . . , n. The path is called



November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

Complexity in Union-Free Regular Languages 1641

accepting cycle-free if pn is an accepting state, and pi 6= pj whenever i 6= j. An

nfa/dfa is a one-cycle-free-path (1cfp) nfa/dfa if there is a unique accepting cycle-

free path from each of its states (but the dead state in the case of dfa’s).

A regular expression over an alphabet Σ is defined inductively as follows: ∅, ε,

and a, for a in Σ, are regular expressions. If r and t are regular expressions, then

also (s+ t), (s · t), and (s)∗ are regular expressions.

A regular expression is union-free if no symbol + occurs in it. A regular language

is union-free if there exists a union-free regular expression describing the language.

Let K and L be languages over Σ. We denote by K ∩ L, K ∪ L, K − L, K ⊕ L

the intersection, union, difference, and symmetric difference of languages K and L,

respectively. To denote complement, Kleene star, and reversal of L, we use Lc, L∗,

and LR. The left and right quotient of L with respect to a string w is the set

w\L = {x | wx ∈ L} and L/w = {x | xw ∈ L}, respectively. The cyclic shift

of L is defined as Lshift = {uv | vu ∈ L}. The shuffle of languages K and L is

K L = {u1v1u2v2 · · ·umvm | m > 1, ui, vi ∈ Σ∗, u1 · · ·um ∈ K, v1 · · · vm ∈ L}.

For the definition of positional addition, K +L, we refer to [17]: informally, strings

are considered as numbers encoded in a |Σ|-adic system, and automata read their

inputs from the least significant digit.

3. Union-Free Regular Languages

A regular language is union-free if it is described by a union-free regular expression.

Nagy [26] proved that the classes of union-free regular languages and languages

accepted by one-cycle-free-path nfa’s coincide, and that union-free languages are

closed under concatenation, Kleene-star, and substitution by a union-free language.

Using an observation that the shortest string of a union-free language is unique, he

proved not closeness under union, complementation, intersection, and substitution

by a regular language. Our first result complements the closure properties.

Theorem 1 (Closure Properties) The class of union-free regular languages is

closed under reversal, but is not closed under cyclic shift, shuffle, symmetric differ-

ence, difference, left and right quotients, and positional addition.

Proof. We prove the closeness under reversal by induction on the structure of a

regular expression r. If r is ∅, ε, or a, the reversal is described by the same expression.

If r = st, or r = s∗, then the reversal is L(t)RL(s)R or (L(s)R)∗, respectively, which

are union-free due to closeness under concatenation and star.

To prove the nonclosure properties, we give union-free languages with the short-

est string of length two in the resulting language, and show that there are at least

two such strings in all cases: {ab}shift = {a} {b} = {ab} ⊕ {ba} = {ab, ba};

a(b + c)∗ − a∗ = {ab, ac, . . .}; g\(ge + gf)∗b = {eb, fb, . . .} and a(eb + fb)∗/b =

{ae, af, . . .}; 88∗ + 33∗ = {11, 91, . . .}. As the shortest strings are not unique, the

resulting languages are not union-free.



November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

1642 G. Jirásková & T. Masopust

The subset construction insures that every nfa of n states is simulated by a dfa

of at most 2n states. The worst case binary examples are well known, see [20, 23, 25].

In addition, Domaratzki et al. [8] have shown that there are at least 2n−2 distinct

binary languages accepted by nfa’s of n states that require 2n deterministic states.

However, none of the above mentioned automata is a one-cycle-free-path nfa. The

following theorem shows that the bound 2n is also tight for union-free languages.

Theorem 2 (NFA to DFA Conversion) For every n, there exists a binary one-

cycle-free-path nfa of n states whose equivalent minimal dfa has 2n states.

Proof. Consider the binary 1cfp nfa with states 0, 1, . . . , n − 1, where 0 is the

initial state and n− 1 is the sole accepting state. By a, each state i goes to {i+1},

except for state n − 1, which goes to the empty set. By b, each state i goes to

{0, i}. We show that the corresponding subset automaton has 2n reachable and

pairwise distinguishable states. Each singleton {i} is reached from the initial state

{0} by ai, and the empty set is reached by an. Each set {i1, i2, . . . , ik}, where

0 6 i1 < i2 < · · · < ik 6 n − 1, of size k, 2 6 k 6 n, is reached from the set

{i2− i1, i3− i1, . . . , ik − i1} of size k− 1 by string bai1 . This proves the reachability

of all subsets. For distinguishability, notice that the string an−1−i is accepted by

the nfa only from state i. Two different subsets must differ in a state i, and so the

string an−1−i distinguishes the two subsets.

We next study the nondeterministic state complexity of regular operations in

the class of union-free languages. Surprisingly, all the upper bounds on the non-

deterministic state complexity of operations on regular languages are also met by

union-free languages, except for reversal where the tight upper bound is n instead

of n+ 1. We use a fooling set lower-bound technique, see [2, 3, 4, 10, 13].

Definition 3. A set of pairs of strings {(x1, y1), (x2, y2), . . . , (xn, yn)} is called a

fooling set for a language L if

(F1) xiyi ∈ L for i = 1, 2, . . . , n, and

(F2) if i 6= j, then xiyj /∈ L or xjyi /∈ L.

It is well known that the size of a fooling set for a regular language provides a

lower bound on the number of states in any nfa for the language. The argument is

simple. Fix the accepting computations of any nfa on strings xiyi. Then, the states

on these computations reached after reading xi must be pairwise distinct, otherwise

the nfa accepts both xiyj and xjyi for two distinct pairs. The next lemma shows that

sometimes, if we insist on having just one initial state, one more state is necessary.

Lemma 4. Let A and B be sets of pairs of strings and let u and v be two strings

such that A ∪ B, A ∪ {(ε, u)}, and B ∪ {(ε, v)} are fooling sets for a language L.

Then every nfa with a single initial state for L has at least |A|+ |B|+ 1 states.



November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

Complexity in Union-Free Regular Languages 1643

0 1 . . . n−2 n−1
a a a a

b

Fig. 1. The binary n-state nfa language meeting the bound n+ 1 on reversal.

Proof. Consider an nfa for language L, and let A = {(xi, yi) | i = 1, 2, . . . ,m} and

B = {(xm+j , ym+j) | j = 1, 2, . . . , n}. Since the strings xkyk are in L, we fix an

accepting computation of the nfa on each string xkyk. Let pk be the state on this

computation that is reached after reading xk. As A ∪ B is a fooling set for L, the

states p1, p2, . . . , pm+n are pairwise distinct. As A ∪ {(ε, u)} is a fooling set, the

initial state is distinct from all the states p1, p2, . . . , pm. As B∪{(ε, v)} is a fooling

set, the (sole) initial state is also distinct from all the states pm+1, pm+2, . . . , pm+n.

Thus the nfa has at least m+ n+ 1 states.

Example 5. It is shown in [15] that there is a binary regular language L with

nsc(L) = n and nsc(LR) = n + 1. The language is shown in Fig. 1, and the proof

in [15] is by a counting argument. Notice that if F is a fooling set for language LR,

then {(yR, xR) | (x, y) ∈ F} is a fooling set for language L. Therefore, we cannot

expect that we would be able to find a fooling set of size n + 1 for language LR.

However, Lemma 4 is applicable here with A = {(bai, an−1−i) | i = 0, 1, . . . , n− 2},

B = {(ban−1, ε)}, u = ε, and v = a.

Theorem 6 (Nondeterministic State Complexity) Let K and L be union-

free regular languages over an alphabet Σ accepted by an m-state and an n-state

one-cycle-free-path nfa, respectively. Then,

1. nsc(K ∪ L) 6 m+ n+ 1, and the bound is tight if |Σ| > 2;

2. nsc(K ∩ L) 6 mn, and the bound is tight if |Σ| > 2;

3. nsc(KL) 6 m+ n, and the bound is tight if |Σ| > 2;

4. nsc(K L) 6 mn, and the bound is tight if |Σ| > 2;

5. nsc(K + L) 6 2mn+ 2m+ 2n+ 1, and the bound is tight if |Σ| > 6;

6. nsc(L2) 6 2n, and the bound is tight if |Σ| > 2;

7. nsc(Lc) 6 2n, and the bound is tight if |Σ| > 3;

8. nsc(LR) 6 n, and the bound is tight if |Σ| > 1;

9. nsc(L∗) 6 n+ 1, and the bound is tight if |Σ| > 1;

10. nsc(Lshift) 6 2n2 + 1, and the bound is tight if |Σ| > 2.

Proof. 1. To get an nfa for union from two given nfa’s, we add a new initial state

that goes by the empty string to the initial states of the given automata. To prove

tightness, consider the binary union-free languages (am)∗ and (bn)∗, and let us

give an alternative proof to that in [18] using Lemma 4. Consider the following

sets of pairs of strings: A = {(ai, am−i) | i = 1, 2, . . . ,m − 1} ∪ {(am, am)} and

B = {(bj, bn−j) | j = 1, 2, . . . , n− 1} ∪ {(bn, bn)}.



November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

1644 G. Jirásková & T. Masopust

0 1 . . . n−2 n−1

a a a a

bbbb

Fig. 2. One-cycle-free-path nfa meeting the bound 2n on square and 2n2 + 1 on cyclic shift.

Let L = (am)∗ ∪ (bn)∗. We show that the set A ∪ B is a fooling set for L.

The concatenation of the first and the second part of each pair results in

a string in {am, a2m, bn, b2n}, and so is in L. The concatenation of the first

part of a pair and the second part of another pair results in a string in

{ar, am+r, bs, bn+s, arbs, bsar, ambn, bnam | 0 < r < m, 0 < s < n}, and so is not

in L. Finally, both sets A∪{(ε, bn)} and B∪{(ε, am)} are fooling sets for L as well.

By Lemma 4, every nfa with a single initial state for L has at least m+n+1 states.

2. The cross-product construction provides the upper bound mn for intersection.

To prove tightness, consider binary union-free languages ((b∗a)m)∗ and ((a∗b)n)∗

(see also [18]). The set {(aibj, am−ibn−j) | 0 6 i 6 m − 1, 0 6 j 6 n − 1} is a

fooling set of size mn for the intersection of the two languages.

3. To get an nfa for concatenation of languages given by two nfa’s, we only add

an ε-transition from all the final states in the first automaton to the initial state in

the second automaton. For tightness, consider binary languages (am)∗ and (bn)∗.

The set {(ai, am−ibn) | i = 0, 1, . . . ,m − 1} ∪ {(ambj, bn−j) | j = 1, 2, . . . , n} is a

fooling set of size m + n for the concatenation of the two languages, and so every

nfa for the concatenation has at least m+ n states.

4. The state set of an nfa for shuffle is the product of the state sets of the given

nfa’s, and its transition function δ is defined using transition functions δA and δB of

the given automata by δ((p, q), a) = {(δA(p, a), q), (p, δB(q, a))}, cf. [6]. This gives

the upper bound mn. The bound is met by the shuffle of languages (am)∗ and (bn)∗

because the set {(aibj , am−ibn−j) | 0 6 i 6 m − 1, 0 6 j 6 n− 1} is a fooling set

of size mn for the shuffle of the two languages.

5. An nfa of 2mn + 2m + 2n + 1 states for positional addition is described

in [17]: The group of 2mn states corresponds to the situation when both automata

read their inputs without or with a carry. Then there is a group of 2m+ 2n states

simulating the situation when one of the two automata has already finished reading

of its input. One more state is necessary if a carry eventually occurs. It was shown

in [17] that the bound is met by the positional addition of union-free languages

((1∗5)m)∗ and ((2∗5)n)∗ over the alphabet {0, 1, 2, 3, 4, 5}.

6. Since L2 is the concatenation of the language L with itself, the upper bound

2n follows from part 3. The lower bound is shown in [9] for a union-free language

an−1(ban−1)∗. For the sake of completeness, we give a different (and simpler) proof

for the lower bound. Moreover, our worst-case language is a witness not only for

square but also for cyclic shift. Consider the 1cfp nfa shown in Fig. 2. Construct

an nfa with the state set Q = {p0, p1, . . . , pn−1}∪{q0, q1, . . . , qn−1} for language L2

from two copies of the nfa for L by adding an ε-transition from the final state of the



November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

Complexity in Union-Free Regular Languages 1645

0 1 . . . n−2 n−1

a

b,c

a

b,c

a a

b,c

b,c

b

b

cb

c

c

Fig. 3. One-cycle-free-path nfa meeting the 2n bound on complement.

first copy to the initial state of the second copy. The initial state of the resulting

nfa is p0, and the only final state is qn−1. For each state s in Q, define two strings

xs and ys in such a way that the initial state p0 goes to state s by string xs, and

each state s goes to the accepting state qn−1 by string ys:

xs =

{

ai if s = pi,

a2n−2bn−1−i if s = qi,
ys =







a2n−2−i if s = pi and i 6= n− 1,

bn−1a2n−2 if s = pn−1,

an−1−i if s = qi.

Thus, each string xsys is in L2. If s /∈ {pn−1, q0}, then p0 goes only to state s by

string xs, and string ys is accepted only from state s. It follows that xsyt is not in

L2 if s and t are two distinct states in Q − {pn−1, q0}. If s ∈ Q − {pn−1, q0} and

t = q0, then string xsyt is not in L2 because string an−1 is accepted only from states

pn−1 and q0. Finally, if s ∈ Q− {pn−1} and t = pn−1, then string xsyt is not in L2

because string yt = bn−1a2n−2 is accepted only from state pn−1, and string xs does

not reach state pn−1 from state p0. Hence {(xs, ys) | s ∈ Q} is a fooling set for L2

of size 2n.

7. Subset construction applied to a given n-state nfaM followed by interchanging

of accepting and rejecting states results in an nfa (even a dfa) for the complement

of language L(M) with at most 2n states. The bound has been proved to be tight

for a four-letter alphabet in [4], and for a binary alphabet in [15]. However, the

binary witness nfa’s in [15] are not 1cfp. We prove the tightness of the bound also

for 1cfp automata.

Consider a ternary language L accepted by the 1cfp nfa in Fig. 3; denote the

state set {0, 1, . . . , n− 1} by Q. By c, state n− 1 goes to {0, 1, . . . , n− 1}, and each

other state i goes to {i}. Transitions by a and b are the same as in the automaton

in the proof of Theorem 2. Therefore, in the corresponding subset automaton, each

subset S of the state set Q is reached from the initial state {0} by a string xS in

{a, b}∗. We now define strings yS so that the set {(xS , yS) | S ⊆ Q} would be a

fooling set for Lc. Let S be a subset of Q. If S = {0, 1, . . . , n − 2}, let yS = c;

otherwise, let yS = y1y2 · · · yn, where for each i in Q,

yn−i =

{

a if i ∈ S,

ca if i /∈ S.



November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

1646 G. Jirásková & T. Masopust

First, we show that for each subset S, the string yS is not accepted by the

nfa from any state in the set S, but is accepted from each state that is not in S.

The claim holds if S = {0, 1, . . . , n− 2} because c is not accepted from any state in

{0, 1, . . . , n−2}, but is accepted from state n−1. Let S 6= {0, 1, . . . , n−2}. By a and

ca, each state i goes to {i+1}, except for state n−1, which goes to the empty set by

a, and to {1, 2, . . . , n−1} by ca. If i is in S, then yS = y1y2 · · · yn−i−1ayn−i+1 · · · yn.

State i goes to {n− 1} by y1y2 · · · yn−i−1, and the next symbol a of the string yS
cannot be read. Hence, the string yS is not accepted from state i. On the other

hand, if i is not in S, then yS = y1y2 · · · yn−i−1cayn−i+1 · · · yn. In case i < n − 1,

state i goes to state n−1 by y1y2 · · · yn−i−1, then it may go to state n− i−1 by ca,

and, finally, to the accepting state n − 1 by yn−i+1 · · · yn. In case i = n − 1, since

S 6= {0, 1, . . . , n− 2}, there is a state j with j < n− 1, which is not in S. It follows

that yS = cay2 · · · yn−j−1cayn−j+1 · · · yn. State n− 1 may go to state j + 1 by ca,

then to state n− 1 by y2 · · · yn−j−1, then to state n − j − 1 by ca, and, finally, to

the accepting state n− 1 by yn−j+1 · · · yn. This proves our claim.

Now, we show that the set {(xS , yS) | S ⊆ Q} is a fooling set for the language Lc.

To prove (F1), notice that the initial state {0} goes to the set S by string xS . As

string yS is not accepted from any state in S, string xSyS is not accepted by the

nfa, and thus is in Lc. To prove (F2), let S and T be two different subsets of state

set Q. Then, there is a state i such that, without loss of generality, i ∈ S and i /∈ T .

Consider the computation of the nfa on string xSyT . As state i is in S, the initial

state {0} goes to i by xS . As i is not in T , the string yT is accepted by the nfa

from state i. It follows that string xSyT is accepted by the nfa, and so is not in Lc.

Hence, the set {(xS , yS) | S ⊆ Q} is a fooling set for the complement of L, and,

thus, every nfa for the complement needs at least 2n states.

8. To get an nfa for the reversal of a language accepted by an n-state 1cfp nfa,

reverse all the transitions, make the initial state final, and (the only) final state

initial. The resulting nfa has n states (and a single initial state). The unary union-

free language an−1 meets the bound.

9. The standard construction of an nfa for Kleene star that adds a new initial

(and accepting) state connected through an ε-transition to the initial state of the

given nfa as well as ε-transitions from each final state to the initial state, provides

the upper bound n+ 1. For tightness, consider the union-free language an−1(an)∗.

The set {(ε, ε)} ∪ {(ai, an−1−i) | i = 1, 2, . . . , n − 2} ∪ {(an−1, an), (an, an−1)} is a

fooling set of size n+ 1 for the Kleene star of this language.

10. The nfa for cyclic shift in [16] consists of an initial state and 2n copies of a

given nfa. The initial state goes by the empty string to the i-th state of each i-th

copy, and all the final states in the i-th copy go by the empty string to the initial

state in the (n + i)-th copy. The i-th state in each (n + i)-th copy is a final state

of the resulting nfa. The one-cycle-free-path nfa in Fig. 2 meets the bound 2n2 +1,

cf. [16]. To prove the result, a fooling set of size 2n2 is described in [16], and then

Lemma 4 is used to show that one more state is necessary.



November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

Complexity in Union-Free Regular Languages 1647

4. Deterministic Union-Free Regular Languages

We now turn our attention to deterministic union-free languages, that is, to lan-

guages accepted by one-cycle-free-path deterministic finite automata. We first show

that deterministic union-free languages are properly included in the class of union-

free languages. Then, we study the state complexity of regular operations.

Theorem 7 (1cfp DFAs vs. 1cfp NFAs) The class of deterministic union-free

regular languages is a proper subclass of the class of union-free regular languages.

Proof. Let n > 4. Consider the regular language L = {ε, an−3} ∪ {ai | i > n− 1}.

Since every dfa recognizing language L has at least three final states, the language is

not deterministic union-free. To prove that language L is union-free, we describe a

1cfp nfa for L. The only initial and final state is state 0, and the automaton consists

of n+ 2 cycles. Each cycle starts and ends in state 0, but otherwise, the cycles are

pairwise disjoint. The length of the cycles is consequently n − 3, n − 1, and then

n, n+ 1, . . . , 2n− 1. The automaton is 1cfp nfa, accepts ε, an−3, and an−1, as well

as all the strings of length at least n, but no other strings because going through

more than one cycle results in a string of length at least n.

The next theorem shows that deterministic union-freeness of languages does not

accelerate basic regular operations. This contrasts with the results in previously

studied subclasses of regular languages such as finite, unary, prefix-, suffix-, factor-,

subword-free (or closed, or convex) etc. In the case of intersection and square, the

known witness languages are deterministic union-free, see [32, 28]. Slightly changed

Maslov’s automata, cf. [21], provide lower bounds for star and concatenation, while

a modification of the hardest dfa in [16] gives a lower bound for cyclic shift. In the

case of reversal, the paper [29] claims that there is a binary n-state dfa language

whose reversal requires 2n deterministic states. Although the witness automaton is

one-cycle-free-path dfa, the result cannot be used because the proof is not correct.

For n = 8, the resulting dfa has only 252 states instead of 256. A similar problem

arises here whenever n is divisible by 4.

Theorem 8 (State Complexity) Let K and L be union-free regular languages

over Σ accepted by an m-state and an n-state 1cfp dfa respectively. Then,

1. sc(K ∪ L) 6 mn, and the bound is tight if |Σ| > 2;

2. sc(K ∩ L) 6 mn, and the bound is tight if |Σ| > 2;

3. sc(K − L) 6 mn, and the bound is tight if |Σ| > 2;

4. sc(K ⊕ L) 6 mn, and the bound is tight if |Σ| > 2;

5. sc(KL) 6 m2n − 2n−1, m > 2, n > 3, and the bound is tight if |Σ| > 2;

6. sc(L2) 6 n2n − 2n−1, and the bound is tight if |Σ| > 2;

7. sc(Lc) 6 n, and the bound is tight if |Σ| > 1;

8. sc(L∗) 6 2n−1 + 2n−2, n > 2, and the bound is tight if |Σ| > 2;

9. sc(LR) 6 2n, n > 2, and the bound is tight if |Σ| > 3;

10. sc(Lshift) 6 2n
2+n log n. The bound 2n

2+n logn−5n is met if |Σ| > 4.



November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

1648 G. Jirásková & T. Masopust

q0 q1 . . . qm−1

0 1 . . . n−3 n−2 n−1

a a a

b b b

a

b b b b

a,b

a

a a a b

Fig. 4. One-cycle-free-path dfa’s meeting the m2n − 2n−1 bound on concatenation.

Proof. 1.-4. The cross-product construction gives the upper bound mn. For all

the four operations, the bound is met by deterministic union-free binary languages

((b∗a)m)∗ and ((a∗b)n)∗, see also [18], except for the case of union with m = 1,

and the case of symmetric difference with m = n = 2. In all the other cases,

the strings aibj with 0 6 i 6 m − 1 and 0 6 j 6 n − 1 are pairwise distinct

in the right equivalence defined by the intersection (union, difference, symmetric

difference, respectively). For the union with m = 1, we take K = ∅. The bound 4

on the state complexity of symmetric difference in the case of m = n = 2 is met by

deterministic union-free binary languages b∗a(a+ b)∗ and a∗b(a+ b)∗.

5. The upper bound is m2n−2n−1, see [21, 32], because in the subset automaton

corresponding to the standard nfa for concatenation, each reachable subset consists

of exactly one state of the first automaton and some states of the second automaton.

However, no subset containing an accepting state of the first automaton and not

containing the initial state of the second automaton is reached. Note that neither

the ternary witness automata in [32] nor the binary witnesses in [14] are 1cfp dfa’s.

However, Maslov [21] claimed the result for two binary languages accepted by au-

tomata, the first of which is a 1cfp dfa, while the other can be modified to become a

1cfp dfa by changing its accepting state from n−1 to n−2. As no proof is provided

in [21], we recall the automata and show that they meet the upper bound.

Consider the languages accepted by the 1cfp dfa’s shown in Fig. 4. Construct an

nfa for the concatenation of the languages from these dfa’s by adding an ε-transition

from state qm−1 to state 0. The initial state of the resulting nfa is state q0 and the

sole accepting state is n−2. We show that the corresponding subset automaton has

(m− 1)2n + 2n−1 = m2n − 2n−1 reachable and pairwise distinguishable states.

By induction on the size of subsets we first prove that each set {qi} ∪ S, where

0 6 i 6 m− 2 and S is a subset of {0, 1, . . . , n− 1}, as well as each set {qm−1}∪ T ,

where T is a subset of {0, 1, . . . , n−1} containing state 0, is reachable. Each singleton

set {qi} with i 6 m − 2 is reached from the initial state {q0} by ai. Assume the

reachability of all appropriate sets of size k, and let S = {qi, j1, j2, . . . , jk} be a

subset of size k + 1. First, let i = m − 1, which means that j1 = 0. As symbol a

is a permutation symbol in the second dfa, we use δ−1(j, ar) to denote the state

that goes to state j by ar. Consider the set S′ = {qm−2, δ
−1(j2, a), . . . , δ

−1(jk, a)}

of size k. Set S′ is reachable by the induction hypothesis, and since S′ goes to S by



November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

Complexity in Union-Free Regular Languages 1649

0 1 . . . n−2 n−1
a

b

a a a

bbbb

a

Fig. 5. One-cycle-free-path dfa meeting the 2n−1 + 2n−2 bound on star.

a, set S is reachable as well. Now, let i 6 m− 2 and j1 = 0. Then, set S is reached

from the set {qm−1, 0, δ
−1(j2, a

i+1), . . . , δ−1(jk, a
i+1)} by ai+1. Finally, if i 6 m− 2

and j1 > 0, set S is reached from the set {qi, 0, j2 − j1, j3 − j1, . . . , jk − j1} by bj1 .

This concludes the proof of reachability.

Let {qi} ∪ S and {qj} ∪ T be two distinct reachable sets. If i < j, then string

bam−j−1bn−2 distinguishes the two subsets. If i = j, then S and T differ in a state j,

and, moreover, j > 0 if i = m − 1. Then, either string bn−j−2 if j 6 n − 3, or the

empty string if j = n− 2, or string a if j = n− 1 distinguishes the two subsets.

6. The upper bound follows from the upper bound on concatenation, and, as

shown in [28], is met by the binary language accepted by a 1cfp dfa with states

0, 1, . . . , n− 1, where 0 is the initial state, and n− 1 is the sole accepting state; by

a, each state i goes to state i+1 mod n, and by b, each state i goes to itself except

for state 1 that goes to state 0 by b.

7. To get a dfa for complement, we only exchange the accepting and rejecting

states. The bound is met by the language (an)∗.

8. The upper bound is 2n−1 + 2n−2, cf. [32], because in the subset automaton

corresponding to the standard nfa for star, the reachable states are as follows: a new

initial and accepting state, all the subsets of the state set of a given dfa containing

its initial state, and all the non-empty subsets containing neither its initial nor its

final state. The witness language in [32] is not deterministic union-free, however,

Maslov [21] provides a deterministic union-free witness example shown in Fig. 5.

As there is no proof in [21], we give it here. Construct an nfa for the star of the

language accepted by the 1cfp dfa in Fig. 5 by adding a new initial and accepting

state q0 that goes to state 1 by a and to state 0 by b, and by adding the transition

by a from state n− 2 to state 0. We prove the reachability of 2n−1 + 2n−2 subsets

in the corresponding subset automaton by induction on the size of subsets.

The initial state {q0} and all the singleton sets {i} are reachable. Assume that all

the subsets of size k−1 containing 0, or containing neither 0 nor n−1 are reachable.

Let S = {i1, i2, . . . , ik} be a subset of size k with 0 6 i1 < i2 < · · · < ik 6 n − 1

(and if i1 > 0, then ik < n−1). First, let i1 = 0. Then, set S is reached from the set

{i2 + (n− 1)− ik − 1, i3 + (n− 1)− ik − 1, . . . , ik−1 + (n− 1)− ik − 1, n− 2} of size

k − 1, containing neither 0 nor n − 1, by string abn−1−ik . Now, let i1 > 0. Then,

ik < n− 1, and set S is reached from the set {0, i2 − i1, i3 − i1, . . . , ik − i1}, which

contains state 0, by a.

To prove distinguishability notice that the initial (and accepting) state {q0} is

equivalent to any state not containing state n − 1. However, string an is accepted



November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

1650 G. Jirásková & T. Masopust

0 1 2 . . . n−3 n−2 n−1

a

b,c

a,b

a,b a,b a,b a,b

ccccc

c

Fig. 6. One-cycle-free-path dfa meeting the 2n bound on reversal.

by the nfa from state n− 1 but not from state q0. Two different subsets of the state

set of the given dfa differ in a state i, and string an−1−i distinguishes them.

9. Reversal of a dfa language is accepted by an nfa obtained from the dfa by

reversing all the transitions, and interchanging the role of accepting and initial

states. The subset construction gives a dfa of at most 2n states. As pointed out by

Mirkin [24], Lupanov’s ternary worst-case example for nfa-to-dfa conversion in [20]

is, in fact, a reversed dfa. Leiss [19] presented a ternary and a binary dfa’s that

meet the upper bound.

As none of these automata is 1cfp dfa, consider the 1cfp dfa shown in Fig. 6.

Construct the reversed nfa. Note that in this nfa each state i goes to state

(i+ 1) mod n by ca. It follows that, in the subset automaton, each subset not

containing state 0 is reached from a subset containing state 0 by a string in (ca)∗.

We show by induction on the size of subsets that each subset of the state set

{0, 1, . . . , n− 1} containing state 0 is reachable in the subset automaton.

The set {0} is reached from the initial state {1} of the subset automaton by a.

The subset {0, i1, i2, . . . , ik}, where 1 6 i1 < i2 < · · · < ik 6 n− 1, of size k + 1 is

reached from the set {0, i2−i1+1, i3−i1+1, . . . , ik−i1+1} of size k by string bci1−1.

Finally, the empty set is reached from state {1} by b. For distinguishability, notice

that string cn−1−i is accepted by the nfa only from state i for i = 1, 2, . . . , n − 1,

and string acn−2 is accepted only from state 0.

10. The upper bound follows from [16, 21]. The work [16] proves the lower bound

2n
2+n log n−5n for the language accepted by the dfa of Fig. 7 over the alphabet

{a, b, c, d}. By a, states 0 and n− 1 go to itself and there is a cycle (1, 2, . . . , n− 2);

by b, state 0 goes to itself and there is a cycle (1, 2, . . . , n− 1); by c, all the states

go to itself except for state 0 that goes to 1 and state 1 that goes to 0; by d, all the

states go to state 0 except for state n − 1 that goes to state 1. This automaton is

not one-cycle-free-path dfa. Therefore, change transitions on symbol b, see Fig. 8,

so that in the new dfa by b, all the states go to itself, except for state n − 2 that

goes to n − 1 and state n − 1 that goes to n − 2. The resulting automaton is a

1cfp dfa, and, moreover, the transitions by old symbol b are now implemented by

string ba. It follows that the proof in [16] works for the new 1cfp dfa if we replace

all the occurrences of b in the proof by ba.



November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

Complexity in Union-Free Regular Languages 1651

0 1 2 . . . n−3 n−2 n−1

c

a,b,d

c,d

c
c

c a,c

ba,ba,ba,ba,b

b,d

a

d

d

d

Fig. 7. The dfa meeting the 2n
2+n log n−5n bound on cyclic shift.

5. Conclusions

We have investigated union-free regular languages described by regular expressions

without the operation of union. Using results of Nagy [26] on characterization of

automata accepting those languages, we have proved additional closure properties,

and studied the nondeterministic state complexity of regular operations. We have

shown that all the known upper bounds for regular languages are met by union-free

languages, except for reversal operation, where the tight bound is n instead of n+1.

This gives rise to a question where is the breakpoint of this complexity.

Furthermore, we have defined deterministic union-free languages as languages

accepted by deterministic one-cycle-free-path automata, and proved that they are

properly included in the class of union-free languages. We have examined the state

complexity of a number of regular operations, and have shown that deterministic

union-freeness of languages accelerates none of them. This contrasts with results on

complexity of operations in previously studied subclasses of regular languages.

Some questions remain open. We conjecture that for the difference of two union-

free languages, nfa’s need m2n states, and we do not now the result on the shuffle of

deterministic union-free languages. A description of deterministic union-free regular

languages in terms of regular expressions or grammars, as well as the case of unary

union-free languages, is of interest, too.

0 1 2 . . . n−3 n−2 n−1

c

a,b,d

c,d

b

b,c b,c
c a,c

b

b
aaaa

d

a

d

d

d

Fig. 8. One-cycle-free-path dfa meeting the 2n
2+n log n−5n bound on cyclic shift.



November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

1652 G. Jirásková & T. Masopust

References

[1] S. Afonin and D. Golomazov. Minimal union-free decompositions of regular languages.
In Proc. of LATA 2009, volume 5457 of LNCS, pages 83–92. Springer, 2009.

[2] A. V. Aho, J. D. Ullman, and M. Yannakakis. On notions of information transfer in
VLSI circuits. In Proc. of STOC 1983, pages 133–139, 1983.

[3] J.-C. Birget. Intersection and union of regular languages and state complexity. Inform.

Process. Lett., 43:185–190, 1992.
[4] J.-C. Birget. Partial orders on words, minimal elements of regular languages, and

state complexity. Theoret. Comput. Sci., 119:267–291, 1993. Erratum available at
http://clam.rutgers.edu/∼birget/poWordsERR.ps.

[5] J. Brzozowski. Regular expression techniques for sequential circuits. PhD thesis, De-
partment of Electrical Engineering, Princeton University, Princeton, NJ, June 1962.

[6] C. Câmpeanu, K. Salomaa, and S. Yu. Tight lower bound for the state complexity of
shuffle of regular languages. J. Autom. Lang. Comb., 7(3):303–310, 2002.

[7] S. Crvenković, I. Dolinka, and Zoltán Ésik. On equations for union-free regular lan-
guages. Inform. and Comput., 164(1):152–172, 2001.

[8] M. Domaratzki, D. Kisman, and J. Shallit. On the number of distinct languages
accepted by finite automata with n states. J. Autom. Lang. Comb., 7(4):469–486,
2002.

[9] M. Domaratzki and A. Okhotin. State complexity of power. Theoret. Comput. Sci.,
410(24-25):2377–2392, 2009.

[10] I. Glaister and J. Shallit. A lower bound technique for the size of nondeterministic
finite automata. Inform. Process. Lett., 59:75–77, 1996.

[11] Y.-S. Han and K. Salomaa. State complexity of basic operations on suffix-free regular
languages. Theoret. Comput. Sci., 410(27-29):2537–2548, 2009.

[12] M. Holzer and M. Kutrib. Descriptional and computational complexity of finite
automata–a survey. Inform. and Comput., 209(3):456–470, 2011.

[13] J. Hromkovič. Communication complexity and parallel computing. Springer, Heidel-
berg, 1997.

[14] J. Jirásek, G. Jirásková, and A. Szabari. State complexity of concatenation and com-
plementation. Int. J. Found. Comput. Sci., 16(3):511–529, 2005.

[15] G. Jirásková. State complexity of some operations on binary regular languages. The-
oret. Comput. Sci., 330:287–298, 2005.

[16] G. Jirásková and A. Okhotin. State complexity of cyclic shift. Theor. Inform. Appl.,
42(2):335–360, 2008.

[17] G. Jirásková and A. Okhotin. Nondeterministic state complexity of positional addi-
tion. In Proc. of DCFS 2009, pages 151–161. EPTCS vol. 3, 2009.

[18] M. Kutrib and M. Holzer. Nondeterministic descriptional complexity of regular lan-
guages. Int. J. Found. Comput. Sci., 14(6):1087–1102, 2003.

[19] E. Leiss. Succint representation of regular languages by boolean automata. Theoret.
Comput. Sci., 13:323–330, 1981.

[20] O. B. Lupanov. Über den vergleich zweier typen endlicher quellen (German. Russian
original). Probl. Kybernetik, 6:328–335, 1966. translation from Probl. Kibernetiki 9,
321-326 (1963).

[21] A. N. Maslov. Estimates of the number of states of finite automata. Soviet Math.

Dokl., 11(5):1373–1375, 1970.
[22] R. McNaughton and S. Papert. Counter-Free Automata. The MIT Press, 1971.
[23] A. R. Meyer and M. J. Fischer. Economy of description by automata, grammars, and

formal systems. In Proc. of FOCS 1971, pages 188–191. IEEE, 1971.
[24] B. G. Mirkin. On dual automata. Kibernetika, 2(1):7–10, 1966.



November 24, 2011 14:38 WSPC/INSTRUCTION FILE
S0129054111008933

Complexity in Union-Free Regular Languages 1653

[25] F. R. Moore. On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput.,
20(10):1211–1214, 1971.

[26] B. Nagy. Union-free regular languages and 1-cycle-free-path automata. Publ. Math.

Debrecen, 68(1-2):183–197, 2006.
[27] B. Nagy. On union-complexity of regular languages. In Proc. of CINTI 2010, pages

177–182. IEEE, 2010.

[28] N. Rampersad. The state complexity of L2 and Lk. Inform. Process. Lett.,
98(6):231–234, 2006.

[29] A. Salomaa, D. Wood, and S. Yu. On the state complexity of reversals of regular
languages. Theoret. Comput. Sci., 320:315–329, 2004.

[30] M. Sipser. Introduction to the theory of computation. PWS Publishing Company,
Boston, 1997.

[31] S. Yu. Chapter 2: Regular languages. In Handbook of Formal Languages – Vol. I,
pages 41–110. Springer, Heidelberg, 1997.

[32] S. Yu, Q. Zhuang, and K. Salomaa. The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci., 125(2):315–328, 1994.


	Introduction
	Preliminaries
	Union-Free Regular Languages
	Deterministic Union-Free Regular Languages
	Conclusions

