
DOI: 10.1142/S0129054111008076

January 31, 2011 16:27 WSPC/INSTRUCTION FILE S0129054111008076

International Journal of Foundations of Computer Science
Vol. 22, No. 2 (2011) 331–344
c© World Scientific Publishing Company

MAGIC NUMBERS AND TERNARY ALPHABET∗

GALINA JIRÁSKOVÁ†

Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

jiraskov@saske.sk
http://<im3.saske.sk/∼jiraskov>

Received 30 October 2009
Accepted 14 July 2010

Communicated by Volker Diekert and Dirk Nowotka

A number α, in the range from n to 2n, is magic for n with respect to a given alphabet
size s, if there is no minimal nondeterministic finite automaton of n states and s input
symbols whose equivalent minimal deterministic finite automaton has α states. We show
that in the case of a ternary alphabet, there are no magic numbers. For all n and α

satisfying n 6 α 6 2n, we define an n-state nondeterministic finite automaton with a
three-letter input alphabet that requires exactly α deterministic states.

Keywords: Deterministic and nondeterministic finite automata; minimal automata.

1991 Mathematics Subject Classification: 68Q19, 68Q45

1. Introduction

In 1997, at the Third Conference on Developments in Language Theory, Iwama,

Kambayashi, and Takaki [10] stated the question of whether there always exists

a minimal nondeterministic finite automaton of n states whose equivalent minimal

deterministic automaton has α states for all integers n and α satisfying n 6 α 6 2n.

The question has also been considered by Iwama, Matsuura, and Paterson in [11],

where a number α with n 6 α 6 2n is called “magic”, if there is no nondeterministic

finite automaton of n states that needs α deterministic states. In these two papers,

it has been shown that if α = 2n− 2k or α = 2n− 2k− 1, where 0 6 k 6 n/2− 2, or

if α = 2n − k, where 2 6 k 6 2n− 2 and some coprimality condition holds, then α

is not magic. The authors defined corresponding nondeterministic finite automata

over a two-letter alphabet, and mentioned that if we allow more input symbols,

then the problem becomes easier.

∗This paper has been presented at the Thirteenth International Conference on Developments in
Language Theory (DLT 2009) held in Stuttgart, Germany on June 30 - July 3, 2009.
†Research supported by VEGA grant 2/0111/09.

331

http://dx.doi.org/10.1142/S0129054111008076

January 31, 2011 16:27 WSPC/INSTRUCTION FILE S0129054111008076

332 G. Jirásková

In the case when the alphabet size is allowed to grow exponentially with n,

appropriate automata have been described for all values of n and α by the author

in [12]. It has been shown that a 2n-letter alphabet would be enough; however, in

this case, corresponding automata were given only implicitly. For a binary alphabet,

all numbers between n and n2/2 have been proved to be non-magic in [12].

The explicit constructions of nondeterministic finite automata using n+2 input

symbols have been presented by Geffert [6]. He also considered a binary alpha-

bet, and provided a description of binary nondeterministic automata requiring α

deterministic states for each value of α in the range from n to 2n
1/3

.

The problem has been solved for a fixed four-letter alphabet by Jirásek,

Jirásková, and Szabari [14] by describing, for all n and α such that n 6 α 6 2n,

a minimal nondeterministic finite automaton of n states with a four-letter input al-

phabet that needs α deterministic states. This means that in the case of a four-letter

alphabet, there are no magic numbers.

Let us note that in the unary case, all numbers between e(1+o(1))·
√
n lnn and 2n

are magic since every n-state unary nondeterministic finite automaton can be simu-

lated by an e(1+o(1))·
√
n lnn-state deterministic finite automaton [15, 4, 7]. Moreover,

Geffert proved in [7] that there are many more magic than non-magic numbers in

the range from n to e(1±o(1))·(
√
n lnn) in the unary case.

Here we continue this research and study the ternary case. We show that neither

in this case do magic numbers exist, and give explicit constructions of appropriate

nondeterministic finite automata with a three-letter input alphabet. Surprisingly,

the constructions and proofs are even easier than in the case of a four-letter alphabet

[14]. The question of whether or not there are magic numbers for a binary alphabet

remains open.

Some partial results for the binary case have recently been obtained by Matsuura

and Saito in [16] and by the author in [13]. The first paper shows that, with some

exceptions, all numbers from 2n to 2n − 4n are non-magic, while in the the second

one, all numbers from n to 2n/3 are proved to be non-magic.

To conclude this section we mention two more related works. Magic numbers

for symmetric difference nfa’s have been studied by Zijl [20], and similar problems

for nonterminal complexity of some operations on context-free languages have been

investigated by Dassow and Stiebe [5].

2. Preliminaries

In this section, we give some basic definitions, notations, and preliminary results

used throughout the paper. For further details, we refer the reader to [18, 19].

Let Σ be a finite alphabet and Σ∗ the set of all strings over the alphabet Σ

including the empty string ε. The length of a string w is denoted by |w|. A language

is any subset of Σ∗. We denote the cardinality of a finite set A by |A| and its

power-set by 2A.

January 31, 2011 16:27 WSPC/INSTRUCTION FILE S0129054111008076

Magic Numbers and Ternary Alphabets 333

A deterministic finite automaton (dfa) is a quintuple M = (Q,Σ, δ, s, F), where

Q is a finite non-empty set of states, Σ is a finite non-empty input alphabet, δ is the

transition function that maps Q×Σ to Q, s is the initial (start) state, s ∈ Q, and F

is the set of accepting (final) states, F ⊆ Q. In this paper, all deterministic automata

are assumed to be complete, that is, the next state δ(q, a) is defined for each state q

inQ and each symbol a in Σ. The transition function δ is extended to a function from

Q×Σ∗ to Q in a natural way. A string w in Σ∗ is accepted by dfa M if state δ(s, w)

is an accepting state of dfa M . The language accepted by dfa M , denoted L(M), is

the set of strings accepted by dfa M , that is, L(M) = {w ∈ Σ∗ | δ(s, w) ∈ F}.

A nondeterministic finite automaton (nfa) is a quintuple M = (Q,Σ, δ, s, F),

where Q,Σ, s, and F are defined in the same way as for a dfa, and δ is a nonde-

terministic transition function that maps Q×Σ to 2Q. The transition function can

be naturally extended to the domain Q × Σ∗, and then to the domain 2Q × Σ∗. A

string w in Σ∗ is accepted by nfa M if the set δ(s, w) contains an accepting state

of nfa M . The language accepted by nfa M is the set of strings accepted by nfa M ,

that is, L(M) = {w ∈ Σ∗ | δ(s, w) ∩ F 6= ∅}.

Two automata are said to be equivalent if they accept the same language. A

(non)deterministic finite automatonM is calledminimal if every (non)deterministic

finite automaton equivalent to M has at least as many states as M . It is well-known

that a dfa (Q,Σ, δ, s, F) is minimal if (i) all of its states are reachable from the initial

state (that is, for each state q, there is a string w such that δ(s, w) = q), and (ii) no

two distinct states are equivalent (states p and q are said to be equivalent if for all

strings w in Σ∗, state δ(p, w) is accepting if and only if state δ(q, w) is accepting).

Each regular language has a unique minimal dfa, up to isomorphism. However, the

same result does not hold for nfa’s.

Every nondeterministic finite automaton M = (Q,Σ, δ, s, F) can be converted

to an equivalent deterministic finite automaton M ′ = (2Q,Σ, δ′, s′, F ′) using an

algorithm known as the “subset construction” [17] in the following way. Every state

of dfa M ′ is a subset of state set Q. The initial state of dfa M ′ is the singleton

set {s}. The transition function δ′ is defined by δ′(R, a) = δ(R, a) for each state

R in 2Q and each symbol a in Σ. A state R in 2Q is an accepting state of dfa

M ′ if it contains an accepting state of nfa M . We call automaton M ′ the subset

automaton corresponding to nfa M . Notice that the subset automaton need not be

minimal, since some of its states may be unreachable or equivalent. The following

two lemmata help us to prove reachability and inequivalence of states of subset

automata in the next section.

Lemma 1. Let R be a family of some reachable subsets in the subset automaton

corresponding to an nfa (Q,Σ, δ, s, F) such that

(1) the initial subset {s} is in R,

(2) for each subset S in R and each symbol a in Σ, the subset δ(S, a) is in R.

Then the family R consists of all reachable subsets of the subset automaton.

January 31, 2011 16:27 WSPC/INSTRUCTION FILE S0129054111008076

334 G. Jirásková

Proof. Let S be a reachable subset in the subset automaton. Then there is a string

w in Σ∗ such that S = δ({s}, w). We prove by induction on |w| that S is in R.

The basis, |w| = 0, holds true since the initial subset {s} is in family R by (1).

Assume that every subset that can be reached from the initial subset by a string of

length k is in R. Let S = δ({s}, w) and |w| = k + 1. Then there is a symbol a in Σ

and a string v of length k such that w = va. Let T = δ({s}, v). Then S = δ(T, a).

By the induction hypothesis, subset T is in family R. Hence by (2), subset S is in

family R as well, and our proof is complete.

Lemma 2. Let M be an nfa such that for each state q of M , there exists a string

wq which is accepted by M started in state q but is not accepted by M started in

any other state. Then no two different states of the subset automaton corresponding

to nfa M are equivalent.

Proof. Let S and T be two different states in the subset automaton corresponding

to nfa M . Then there is a state q of M that is in one of these two sets but not

in the other. Without loss of generality, let q be in S. This means that the string

wq is accepted by the subset automaton from state S. Since wq is not accepted by

M started in any state different from q, this string is not accepted by the subset

automaton from state T , and so distinguishes S and T .

To prove that an nfa is minimal we use a fooling-set lower-bound technique

[1, 2, 3, 8, 9]. Let us recall the definition of a fooling set, and the lemma from [2]

describing this lower-bound technique.

Definition 3. A set {(xi, yi) | i = 1, 2, . . . , n} of pairs of strings is said to be

a fooling set for a regular language L if for every i and j in {1, 2, . . . , n},

(F1) the string xiyi is in L, and

(F2) if i 6= j, then at least one of the strings xiyj and xjyi is not in L.

Lemma 4 ([2], Lemma 1) Let A be a fooling set for a regular language L. Then

every nfa for L needs at least |A| states. 2

The following lemma from [14] shows that each integer can be expressed as a

sum of powers of 2 decreased by 1 if, when necessary, the smallest summand can

be taken twice. We will use this lemma later in our constructions.

Lemma 5 ([14], Lemma 2) Let k be a positive integer. Then for each integer m

such that 1 6 m < 2k, one of the following three cases holds:

m = 2k − 1,

m = (2k1 − 1) + (2k2 − 1) + · · ·+ (2k`−1 − 1) + (2k` − 1),

m = (2k1 − 1) + (2k2 − 1) + · · ·+ (2k`−1 − 1) + 2 · (2k` − 1),

where 1 6 ` 6 k − 1, and k − 1 > k1 > k2 > · · · > k` > 1. 2

January 31, 2011 16:27 WSPC/INSTRUCTION FILE S0129054111008076

Magic Numbers and Ternary Alphabets 335

3. Main Results

The aim of this section is to show that in the case of a three-letter alphabet, there

are no magic numbers, which means that each value in the range from n to 2n can

be the size of the minimal dfa equivalent to a minimal n-state nfa defined over a

three-letter alphabet. Let us start with an example.

Example 6. Consider the five-state nfa A5 with the input alphabet {a, b, c} shown

in Figure 1. The automaton has states 1, 2, 3, 4, 5, and state 5 is both the initial

state and sole accepting state. On inputs a and b, each state i goes to state i + 1,

except for state 5 which goes to itself. Moreover, on input b, each state goes to

state 1. There is only one transition on input c, which goes from state 4 to state 5.

a,b a,b a,b

b

b
a,b

a,b

c
b

bb

1 2 3 4 5

Fig. 1. The nondeterministic finite automaton A5.

Let A′
5 be the corresponding subset automaton, shown in Figure 2. To keep

the figure transparent, we label the states of the dfa without commas and brackets,

omit transitions on a and b in some accepting states, and also all transitions on c

except for the transition from state {4}. We can see that state {5} goes to a subset

containing state 5 by each string in {a, b}∗. Moreover, each such subset is reachable

from {5} by a string in {a, b}∗. We prove this property in the general case later.

Next, consider states {2}, {2, 3}, {2, 3, 4}, depicted by a red (grey) color in

the figure. Notice that from state {2}, seven subsets of {1, 2, 3, 4}, none of which

contains state 5, can be reached by a string over {a, b}. Three more such subsets

can be reached from state {2, 3}, and one more subset from state {2, 3, 4}.

Thus, if we would like to have a five-state nfa requiring, for example,

17 + 7 + 3 + 1 (= 28) deterministic states —let us call it B5,28— we can con-

struct it from nfa A5 by adding transitions on symbol c from states 1, 2, and 3 to

subsets {2}, {2, 3}, and {2, 3, 4}, respectively. To see that nfa B5,28 is minimal let

us show that the set {(ε, ba3c), (b, a3c), (ba, a2c), (ba2, ac), (ba3, c)} is a fooling set

of size five for language L(B5,28). The string ba3c is accepted by nfa B5,28, and so

(F1) from Definition 3 holds. Since no string in a∗c and no string barc with r 6= 3

is accepted by B5,28, (F2) holds as well. By Lemma 4, nfa B5,28 is minimal. Next,

the empty string is accepted by B5,28 only from state 5, while the string a4−ic is

accepted only from state i for i = 1, 2, 3, 4. By Lemma 2, no two different states

of the subset automaton corresponding to nfa B5,28 are equivalent. The following

subsets are reachable in the subset automaton:

January 31, 2011 16:27 WSPC/INSTRUCTION FILE S0129054111008076

336 G. Jirásková

a

b

b

a

b

a

b

a

a

b

a

b

a

b
a

b

b

a

a

b

b

a,c
b

a

c

a

b

b

a

a
b

b

a

b

a

b

a

b

a

5

15

25

125

235

1235

35

135

1

2

3

4

14

24

124

13

12

23

34

134

123

234

1234

45

145

245

1245

345

1345

2345

12345

...

R3

R4

R4
,

R2

Fig. 2. The deterministic finite automaton A′
5
.

• the empty set and all subsets containing state 5 (17 subsets),

• state {1, 5} goes by c to state {2}, from which 7 subsets of {1, 2, 3, 4} can

be reached,

• state {2, 5} goes by c to state {2, 3}, from which 3 more subsets of {1, 2, 3, 4}

can be reached,

• state {3, 5} goes by c to a new subset {2, 3, 4},

• no other subset is reachable.

Hence the total number of reachable states is 17 + 7 + 3 + 1 (= 28).

January 31, 2011 16:27 WSPC/INSTRUCTION FILE S0129054111008076

Magic Numbers and Ternary Alphabets 337

If we would like to get a five-state nfa B5,17+7+7 requiring 31 deterministic

states, we would define transitions on symbol c by 1
c

−→ {2}, 2
c

−→ {1, 2}, and

4
c

−→ {5}, while in the case of nfa B5,17+7+3+3 requiring 30 deterministic states we

would have 1
c

−→ {2}, 2
c

−→ {2, 3}, 3
c

−→ {1, 2, 3}, and 4
c

−→ {5}. A problem could

arise if we would like to reach 17 + 7 + 3 + 1 + 1 states in the subset automaton;

however, in this case we will use 4
c

−→ {1, 2, 3, 4} instead of 4
c

−→ {5}, and the states

still will not be equivalent. In such a way, using Lemma 5, we can define a five-state

nondeterministic finite automaton B5,17+m that needs 17 +m deterministic states

for each m with 1 6 m 6 15. 2

Let us now generalize the above example. Our first aim is to define a ternary

k-state nfa Bk,β that needs β deterministic states, for each β greater than 2k−1. We

will use these automata later to get the whole range of complexities from n to 2n.

To this aim define a ternary k-state nfa Ak = (Qk, {a, b, c}, δ, k, {k}), where

Qk = {1, 2, . . . , k}, and for each i in Qk,

δ(i, a) =

{

{i+ 1}, if 1 6 i 6 k − 1,

{k}, if i = k,

δ(i, b) =

{

{1, i+ 1}, if 1 6 i 6 k − 1,

{1, k}, if i = k,

δ(i, c) =

{

{k}, if i = k − 1,

∅, if i 6= k − 1,

that is, on inputs a and b, each state i goes to state i+ 1 except for state k which

goes to itself. Moreover, on symbol b, each state also goes to state 1. Transitions on

input c are defined only in state k − 1, and this state goes to state k on symbol c.

Automaton Ak is depicted in Figure 3.

...a,b a,b a,b a,b a,b
c

b a,b

b
b

bb

1 2 k−1 k3

Fig. 3. The nondeterministic finite automaton Ak.

Let A′
k = (2Qk , {a, b, c}, δ′, {k}, F ′) be the subset automaton corresponding to

nfa Ak. Recall that the subset automaton contains all 2k states, some of which may

be unreachable. Since the initial state k of Ak goes to itself on a and b, and the

only transition on c goes to state k, all nonempty subsets of Qk that do not contain

state k are unreachable in the subset automaton. On the other hand, let us show

that all other subsets are reachable.

January 31, 2011 16:27 WSPC/INSTRUCTION FILE S0129054111008076

338 G. Jirásková

Lemma 7. All subsets of state set Qk containing state k are reachable in subset

automaton A′
k from the initial state {k} by a string over the binary alphabet {a, b}.

The empty set is reachable as well.

Proof. The empty set is reachable, since the initial state state k goes to the empty

set by symbol c. We prove by induction on the size of subsets that each subset

containing state k is reachable. The singleton set {k} is reachable since it is the

initial state of subset automaton A′
k. Let 1 6 t 6 k−1 and assume that each subset

of size t containing state k is reachable by a string over {a, b}. Let {i1, i2, . . . , it, k}

be a subset of size t+ 1 such that 1 6 i1 < i2 < · · · < it < k. Then we have

{i1, i2, . . . , it, k} = δ′({i2 − i1, i3 − i1, . . . , it − i1, k}, ba
i1−1),

where the latter set of size t containing state k is reachable by a string over {a, b}

by the induction hypothesis. Hence the subset {i1, i2, . . . , it, k} is reachable by a

string over {a, b}, and this completes our proof.

If we look at dfa A′
5 without the dead state in our Example 1, in Figure 2 on

page 336, like at a tree rooted in state {1}, then all (accepting) states that are leaves

of the tree can be reached from the initial state {5} by a string over {a, b}. The

empty set is reached from state {5} by c. Hence the dfa has 17 reachable states.

In the general case, subset automaton A′
k has 2k−1 + 1 reachable states. We

now continue our constructions by adding new transitions on input c to get non-

deterministic automata whose corresponding subset automata have more reachable

states. As a result, we will be able to construct an nfa requiring β deterministic

states for each β between 2k−1 + 1 and 2k.

To this aim consider states {2}, {2, 3}, {2, 3, 4}, . . . , {2, 3, 4, . . . , k − 1} of sub-

set automaton A′
k. Notice that {2} ⊆ {2, 3} ⊆ {2, 3, 4} ⊆ · · · ⊆ {2, 3, 4, . . . , k − 1},

which is an important property that will be crucial in the proof of our main result.

Consider also all subsets of Qk not containing state k that can be reached from

these states by strings over the binary alphabet {a, b}, and let us introduce some

notation. Let 2 6 r 6 k − 1, and let

R1 =
{

R ⊆ Qk \ {k} | R = δ′({1}, w) for some string w over {a, b}
}

,

Rr =
{

R ⊆ Qk \ {k} | R = δ′({2, 3, . . . , r}, w) for some string w over {a, b}
}

,

R′
r =

{

R ⊆ Qk \ {k} | R = δ′({1, 2, 3, . . . , r}, w) for some string w over {a, b}
}

,

that is,R1,Rr, andR′
r are the families of subsets of state set Qk that do not contain

state k and can be reached by strings over the binary alphabet {a, b} from states

{1}, {2, 3, . . . , r}, and {1, 2, 3, . . . , r}, respectively. In our Example 6 in Figure 2

on page 336 we have R3 =
{

{2, 3}, {3, 4}, {1, 3, 4}
}

, R4 =
{

{2, 3, 4}
}

, and R′
4 =

{

{1, 2, 3, 4}
}

. We can see that in this example, the families R2, R3, and R4 are

pairwise disjoint and contain 23 − 1, 22 − 1, and 21 − 1 states, respectively. Let us

consider the general case.

January 31, 2011 16:27 WSPC/INSTRUCTION FILE S0129054111008076

Magic Numbers and Ternary Alphabets 339

Lemma 8. Let 2 6 r 6 s 6 k− 1 and let R1, Rr, and R′
r be the families of states

of subset automaton A′
k defined above. Then we have:

(i) The size of family R1 is 2k−1 − 1.

(ii) The size of family Rr and of family R′
r is 2k−r − 1.

(iii) Families Rr and R′
s are disjoint.

(iv) If r < s, then families Rr and Rs are disjoint.

Proof. First, let us prove by induction on ` that the set of states reachable from

state {2, 3, . . . , r} by strings over {a, b} of length `, with 0 6 ` 6 k − r − 1, is
{

S ∪ {2 + `, 3 + `, . . . , r + `} | S ⊆ {1, 2, . . . , `}
}

.

The basis, ` = 0, holds true since the only state reachable by the empty string is

{2, 3, . . . , r}. Assume that 0 6 ` 6 k − r − 2, and that the claim holds for `. Let w

be a string over {a, b} of length `+ 1. Then w = va or w = vb, where v is a string

of length `. By the induction hypothesis, state {2, 3, . . . , r} goes by the string v to

a state S ∪ {2 + `, 3 + `, . . . , r + `}, for some subset S of the set {1, 2, . . . , `}. Since

`+ r 6 k − 2, this state goes to state

{s+ 1 | s ∈ S} ∪ {2 + `+ 1, 3 + `+ 1, . . . , r + `+ 1}

by a, and to state

{1} ∪ {s+ 1 | s ∈ S} ∪ {2 + ` + 1, 3 + `+ 1, . . . , r + `+ 1}

by b. Here the sets {s + 1 | s ∈ S} and {1} ∪ {s + 1 | s ∈ S} are subsets of

{1, 2, . . . , `+ 1}. Now let S′ ⊆ {1, 2, . . . , `+ 1}, and let us show that the set

S′ ∪ {2 + ` + 1, 3 + `+ 1, . . . , r + `+ 1}

is reachable from state {2, 3, . . . , r} by a string of length `+1. If 1 /∈ S, then this set

can be reached from the set {s−1 | s ∈ S}∪{2+ `, 3+ `, . . . , r+ `} by a. Otherwise,

it can be reached from the set {s−1 | s ∈ S and s 6= 1}∪{2+`, 3+`, . . . , r+`} by b.

By the induction hypothesis, both of these sets are reachable from state {2, 3, . . . , r}

by a string of length `. This completes the proof of the claim.

In a similar way we can prove that the set of states reachable from state

{1, 2, . . . , r} by strings over {a, b} of length `, with 0 6 ` 6 k − r − 1, is
{

S ∪ {1 + `, 2 + `, 3 + `, . . . , r + `} | S ⊆ {1, 2, . . . , `}
}

.

Both states {2, 3, . . . , r} and {1, 2, 3, . . . , r} go to a subset containing state k by

every string over {a, b} of length at least k− r. As a corollary, we get (iii) and (iv).

Next, it follows that

|Rr | = |R′
r| = 1 + 2 + 4 + · · ·+ 2k−r−1 = 2k−r − 1 and |R1| = 2k−1 + 1,

which proves the lemma.

Using the results of the above lemma we are now able to give, for each β between

2k−1 and 2k, a construction of a k-state nfa that needs β deterministic states.

January 31, 2011 16:27 WSPC/INSTRUCTION FILE S0129054111008076

340 G. Jirásková

Lemma 9. For all integers k and β such that 2k−1 + 1 6 β 6 2k, there exists a

minimal ternary k-state nfa Bk,β whose equivalent minimal dfa has β states.

Proof. Since all k-state nfa’s described in this proof require more than 2k−1 deter-

ministic states, they must be minimal.

If β = 2k−1+1, then we set Bk,β = Ak, where Ak is the nfa defined on page 337.

The empty string is accepted by Ak only from state k, while for each other state i,

the string ak−1−ic is accepted only from state i. By Lemma 2, no two different

states of the corresponding subset automaton are equivalent. By Lemma 7, the

subset automaton has 2k−1 + 1 reachable states.

If 2k−1 + 1 < β 6 2k, then β = 2k−1 + 1 + m for an integer m such that

1 6 m 6 2k−1 − 1. By Lemma 5, one of the following three cases holds for m:

m = 2k−1 − 1 (1)

m = (2k1 − 1) + (2k2 − 1) + · · ·+ (2k`−1 − 1) + (2k` − 1) (2)

m = (2k1 − 1) + (2k2 − 1) + · · ·+ (2k`−1 − 1) + 2 · (2k` − 1) (3)

where 1 6 ` 6 k − 2, and k − 2 > k1 > k2 > · · · > k` > 1.

Construct a k-state nfa Bk,β = (Qk, {a, b, c}, δB, k, {k}) from nfa Ak by adding

transitions on input c depending on m as follows:

• In case (1) holds, add the transition on c from state 1 to {1}.

• In case (2) holds, add transitions on c from state i to {2, 3, . . . , k − ki} for

i = 1, 2, . . . , `.

• In case (3) holds, add the same transitions as in the case where (2) holds, and

add also the transition on c from state `+1 to {1, 2, 3, . . . , k− k`}. If ` = k− 2,

that is, if m = (2k−2−1)+(2k−3−1)+ · · ·+3+1+1, then replace the transition

on c from k − 1 to k with the transition on c from k − 1 to {1, 2, . . . , k − 1}.

In all cases, the empty string is accepted only from state k, and for every other

state i, the string ak−1−ic is accepted only from state i, except in the case where

m = (2k−2 − 1) + (2k−3 − 1) + · · · + 3 + 1 + 1. In this case, the string cak−2ca is

accepted only from state k − 1, since only this state goes to state 1 on symbol c.

Next, the string ak−1−icak−2ca is accepted only from state i for i = 1, 2, . . . , k − 2.

This means that no two different states of the corresponding subset automata are

equivalent.

Set ri = k − ki (1 6 i 6 `) and let R denote the family consisting of the empty

set and all subsets of {1, 2, . . . , k} containing state k. Let us show that the following

families S1, S2, and S3 consist of all reachable states of the subset automaton B′
k,β

corresponding to nfa Bk,β in cases (1), (2), and (3), respectively; recall that the

families Rr and R′
r are defined before Lemma 8 on page 338:

S1 = R∪R1,

S2 = R∪Rr1 ∪Rr2 ∪ · · · ∪ Rr` ,

S3 = R∪Rr1 ∪Rr2 ∪ · · · ∪ Rr` ∪R′
r` .

January 31, 2011 16:27 WSPC/INSTRUCTION FILE S0129054111008076

Magic Numbers and Ternary Alphabets 341

The empty set is reachable since no transition on symbol c is defined in state k. All

subsets containing state k are reachable by Lemma 7. In case (1) holds, state {1, k}

goes to state 1 by c, and then all the subsets in R1 are reachable from state 1 by

strings over {a, b}. In case (2) holds, each state {i, k}, 1 6 i 6 `, goes by c to state

{2, 3, . . . , k − ki}, that is to state {2, 3, . . . , ri}, from which all the subsets in Rri

are reached by strings over {a, b}. Similarly, in case (3) holds, all subsets in Rri ,

1 6 i 6 `, are reachable, and, moreover, in this case, state {`+ 1, k} goes to state

{1, 2, 3, . . . , r`}, and so all the subsets in R′
r`

are reachable as well.

We now show that no other subsets are reachable. By Lemma 1, since the initial

state {k} is in S1 (S2,S3), it is enough to prove that each state S in family S1

(S2,S3, respectively) goes to a state in this family by each of the symbols a, b, c.

This is quite straightforward for symbols a and b since every state in Rr goes either

to another state in Rr or to a state in R by a and by b. In the case of symbol

c, it is important to notice that we have δB(k − 1, c) = {k} or δB(k − 1, c) =

{1, 2, . . . , k − 1}, and δB(1, c) ⊆ δB(2, c) ⊆ · · · ⊆ δB(`, c), and in case (3) holds, we

also have δB(`, c) ⊆ δB(`+1, c). In the other states, transitions on c are not defined.

It follows that for each subset S of state set Qk, the set δB(S, c) is either empty,

or contains state k, or is equal to δB(q, c) for the greatest integer q in {1, 2, . . . , `}

(in {1, 2, . . . , `+1}, respectively) that is in S. In all three cases, the set δ(S, c) is in

family S1 (S2,S3, respectively).

By Lemma 8, the families Rr1 ,Rr2 , . . . ,Rr` , and R′
r`

are pairwise disjoint and

|Rri | = |R′
ri | = 2k−ri − 1 = 2k−(k−ki)−1 − 1 = 2ki − 1.

Hence the subset automaton corresponding to nondeterministic automaton Bk,β

has 1+ 2k−1 +m reachable states, and no two different states are equivalent. Since

we have β = 1 + 2k−1 +m, our proof is complete.

We are now able to prove our main result.

Theorem 10. For all integers n and α such that n 6 α 6 2n, there exists a mini-

mal nondeterministic finite automaton of n states with a three-letter input alphabet

whose equivalent minimal deterministic finite automaton has exactly α states.

Proof. If α = n, then take an n-state nfa for {w ∈ {a, b, c}∗ | |w| > n − 1}. If

α > 2n−1 + 1, then take the n-state nfa Bn,α given by Lemma 9. Otherwise, let us

find an integer k, such that 1 6 k 6 n− 1 and

n− (k − 1) + 2k−1
6 α < n− k + 2k.

Then

α = n− k + 1 + 2k−1 +m

for some integer m such that 0 6 m < 2k−1. If we define β by β = 1 + 2k−1 +m,

then

α = n− k + β.

January 31, 2011 16:27 WSPC/INSTRUCTION FILE S0129054111008076

342 G. Jirásková

Construct an n-state nfa Cn,α from the k-state nfa Bk,β described in the proof of

Lemma 9 in the following way. First, add new states k+1, k+2, . . . , n. State n is the

initial state, and state k is the sole accepting state of nfa Cn,α. Add transitions on

symbol b from state j to state j+1 for each state j greater than k. Add transitions

on symbols a and c from state k+1 to itself. Automaton Cn,α for α = n−k+1+2k−1

is shown in Figure 4.

a,b a,b a,b a,b a,b
c

b a,b

b
b

bb

b b b

b

a,c

1 2 k−1 k

k+1

3

k+2n

...

...

Fig. 4. The nondeterministic finite automaton Cn,n−k+1+2k−1 .

To prove that nfa Cn,α is minimal, consider the following set of pairs of strings
{

(bj , bn−k−1−jakcbbak−2ca) | 0 6 j 6 n− k − 1
}

∪
{

(bn−k−1akcb, bak−2ca)
}

∪
{

(bn−k−1akcbbai, ak−2−ica) | 0 6 i 6 k − 2
}

.

Let us show that this set is a fooling set of size n for language L(Cn,α). The string

bn−k−1akcbbak−2ca is accepted by nfa Cn,α since Cn,α goes to state k by bn−k−1akcb,

then to state 1 by b, then to state k− 1 by ak−2, and then either goes to state k or

remains in state k− 1 by c, and finally goes to the accepting state k by a. It follows

that (F1) in Definition 3 holds. On the other hand, nfa Cn,α does not accept the

following strings: brakcbbak−2ca with r < n−k−1, since a cannot be read in states

greater than k + 1; bn−k−1akcb · brakcbbak−2ca, since after reading the second ak,

the nfa is in state k and cannot read c; bn−k−1akcbbas · brakcbbak−2ca for the same

reason; bn−k−1akcb · arca with r > 0 and bn−k−1akcbbasca with s > k − 2, since c

cannot be read in state k. Thus (F2) holds, and so nfa Cn,α is minimal.

Consider the corresponding subset automaton C′
n,α. Each of the singleton sets

{n}, {n− 1}, . . . , {k} is reachable from the initial state {n} by a string in b∗. Then,

all β reachable states of the subset automaton B′
k,β are reachable in C′

n,α as well.

Moreover, no other subset of set {1, 2, . . . , n} is reachable. Hence nfa C′
n,α has

n− k + β reachable states. Since n− k + β = α, it is enough to show that no two

different reachable states are equivalent. Two different subsets of {1, 2, . . . , k} can

be distinguished by the same string as in the dfa B′
k,β . If k+1 6 i < j 6 n, then the

string bi−k distinguishes states {i} and {j}. If S is a subset of the set {1, 2, . . . , k}

and k+1 6 i 6 n, then the string bi−k−1akcb is accepted from {i} but not from S.

This concludes our proof.

January 31, 2011 16:27 WSPC/INSTRUCTION FILE S0129054111008076

Magic Numbers and Ternary Alphabets 343

4. Conclusions

In this paper, we have shown that there are no magic numbers in the ternary case.

We have described a minimal n-state nondeterministic finite automaton with a

three-letter input alphabet whose equivalent minimal deterministic finite automaton

has exactly α states for all integers n and α satisfying n 6 α 6 2n.

The question of whether there are some magic numbers in the binary case re-

mains open. However, after investigating the ternary case, we strongly conjecture

that each value in the range from n to 2n can be reached as the size of the mini-

mal deterministic finite automaton equivalent to a minimal binary nondeterministic

finite automaton of n-states.

Acknowledgments

I would like to thank Alexander Szabari for his help with the computational verifica-

tion of some conjectures. I am very grateful to anonymous referees of DLT 2009 for

their valuable corrections and suggestions. My thanks also go to Mikhail Volkov and

Janusz Brzozowski for their careful reading of the manuscript and useful remarks

that have helped me to improve the presentation of this paper.

References

[1] Aho, A.V., Ullman, J.D., and Yannakakis, M.: On notions of information transfer in
VLSI circuits. In: Proc. 15th STOC, pp. 133–139 (1983)

[2] Birget, J.-C.: Intersection and union of regular languages and state complexity. In-
form. Process. Lett. 43, 185–190 (1992)

[3] Birget, J.-C.: Partial orders on words, minimal elements of regular languages, and
state complexity. Theoret. Comput. Sci. 119, 267–291 (1993); Erratum: Available at
http://clam.rutgers.edu/∼birget/poWordsERR.ps

[4] Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47, 149–
158 (1986); Erratum: Theoret. Comput. Sci. 302, 497–498 (2003)

[5] Dassow, J., Stiebe, R.: Nonterminal complexity of some operations on context-free
languages. In: Geffert, V., Pighizzini, G. (eds.) 9th International Workshop on De-
scriptional Complexity of Formal Systems, pp. 162–169. P.J. Šafárik University of
Košice, Slovakia (2007)

[6] Geffert, V.: (Non)determinism and the size of one-way finite automata. In:
Mereghetti, C., Palano, B., Pighizzini, G., Wotschke D. (eds.) 7th International
Workshop on Descriptional Complexity of Formal Systems, pp. 23–37. University
of Milano, Italy (2005)

[7] Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inform. Comput.
205, 1652–1670 (2007)

[8] Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite
automata. Inform. Process. Lett. 59, 75–77 (1996)

[9] Hromkovič, J.: Communication complexity and parallel computing. Springer, Heidel-
berg, 1997.

[10] Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of
DFAs that are equivalent to n-state NFAs. Theoret. Comput. Sci. 237, 485–494 (2000).
Preliminary version in: Bozapalidis, S. (ed.) 3rd International Conference on Devel-
opments in Language Theory. Aristotle University of Thessaloniki (1997)

January 31, 2011 16:27 WSPC/INSTRUCTION FILE S0129054111008076

344 G. Jirásková

[11] Iwama, K., Matsuura, A., Paterson, M.: A family of NFAs which need 2n − α deter-
ministic states. Theoret. Comput. Sci. 301, 451–462 (2003)

[12] Jirásková, G.: Note on minimal finite automata. In: Sgall, J., Pultr, A., Kolman, P.
(eds.) MFCS 2001. LNCS, vol. 2136, pp. 421–431. Springer, Heidelberg (2001)

[13] Jirásková, G.: On the state complexity of complements, stars, and reversals of regular
languages. In: Ito M., Toyama M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 431–442.
Springer, Heidelberg (2008)

[14] Jirásek, J., Jirásková, G., Szabari, A.: Deterministic blow-ups of minimal nondeter-
ministic finite automata over a fixed alphabet. Internat. J. Found. Comput. Sci. 16,
511–529 (2005)

[15] Lyubich, Yu.I.: Estimates for optimal determinization of nondeterministic au-
tonomous automata. Sib. Mat. Zh. 5, 337–355 (1964) (in Russian)

[16] Matsuura A., Saito, Y.: Equivalent transformation of minimal finite automata over
a two-letter alphabet. In: Campeanu, C., Pighizzini, G.: (eds.) 10th International
Workshop on Descriptional Complexity of Formal Systems, pp. 224–232. University
of Prince Edward Island, Canada (2008)

[17] Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Res. De-
velop. 3, 114–129 (1959)

[18] Sipser, M.: Introduction to the theory of computation. PWS Publishing Company,
Boston (1997)

[19] Yu, S.: Chapter 2: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Hand-
book of Formal Languages - Vol. I, pp. 41–110. Springer, Heidelberg (1997)

[20] Zijl, L.: Magic numbers for symmetric difference NFAs. Internat. J. Found. Comput.
Sci. 16, 1027–1038 (2005)

	Introduction
	Preliminaries
	Main Results
	Conclusions

